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Abstract

Economies with private information provide a rationale for capital taxation. In this

paper we ask what the welfare gains from following this prescription are. We de-

velop a method to answer this question in standard general equilibrium models with

idiosyncratic uncertainty and incomplete markets. We find that general equilibrium

forces are important and greatly reduce the welfare gains. Once these effects are taken

into account the gains are relatively small in our benchmark calibration. These results

do not imply that dynamic aspects of social insurance design are unimportant, but

they do suggest that capital taxation may play a modest role.
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1 Introduction

Advanced countries use the tax system as a tool for social insurance. Friedman (1962) pro-
posed a “negative income tax” where individuals with low enough income would owe a
negative tax, and thus collect transfers. In particular, he advocated a simple system where
a constant marginal tax on income is combined with a lump sum rebate—resulting in a
linear tax function with a negative intercept (Sheshinski, 1972). For a given distribution of
before-tax income, such a tax reduces the dispersion in after-tax income, thus achieving a
more equitable outcome. Mirrlees’ (1971) seminal work refined this idea by allowing for
fully non-linear taxation of income.

These contributions focus on the taxation of labor income to provide social insurance.
Is there a similar role to be played by capital taxation? In an important paper Atkin-
son and Stiglitz (1976), provided a negative answer using the same approach as Mirrlees.
Under some conditions, they showed that the optimum taxes labor income only, leaving
capital income untaxed. Their analysis rested on a model where individuals work and
save, but do not face uncertainty about future earnings. A model that incorporates future
uncertainty seems better suited for thinking about social insurance. Adding uncertainty
turns out to make an important difference. Indeed, when individuals do face uncertainty,
the optimal insurance arrangement calls for taxing capital positively: constrained effi-
cient allocations satisfy an Inverse Euler equation, as opposed to the agent’s standard in-
tertemporal Euler equation, implying a positive capital tax (Diamond and Mirrlees, 1977;
Rogerson, 1985; Ligon, 1998; Golosov et al., 2003).

Hence, there is a theoretical case for positive capital taxation as part of an optimal
social insurance system. The purpose of this paper is to evaluate the quantitative contri-
bution of capital taxation towards welfare.

One can view our exercise as a counterpart to Lucas’ well-known “Supply Side Eco-
nomics”. (Lucas, 1990) computed the welfare gains from removing a linear tax on capital
in a Ramsey model, where it is well known that capital should not be taxed (Chamley,
1986; Judd, 1985).1 In a similar spirit, here, we use a dynamic version of Mirrlees’ model
where capital should be taxed and compute the welfare gains of taxing capital optimally,
starting from a situation without capital taxes. Our focus, as was Lucas’, is on the welfare
implications of the capital tax itself, not those of the entire tax system.2

1 Thus, both Chamley and Judd reach a similar conclusion to Atkinson-Stiglitz, but in very different
models. The common denominator is that both models lack idiosyncratic individual uncertainty, which is
the focus of our paper.

2In Farhi and Werning (2010) we do solve for the fully optimal social insurance arrangement, including
both labor and savings distortions.
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A key input of our model is the uncertainty of earnings. Workers are affected by var-
ious shocks that contribute towards this uncertainty. For example, unemployment risk,
health shocks, or outright disability. More generally, individuals may not be able to per-
fectly predict the path of their future skill or earning opportunities. Many papers find it
fruitful to isolate a particular source of risk, such as unemployment (e.g. Hopenhayn and
Nicolini, 1997; Shimer and Werning, 2008) or disability (e.g. Diamond and Mirrlees, 1977;
Golosov and Tsyvinski, 2006), and study the optimal design of an insurance program that
takes aim at this particular risk. However, for the purposes of evaluating the overall ben-
efits from taxing capital, focusing on a particular risk would be a mistake. Instead, it is
important to capture uncertainty more broadly, in a way that reflects estimates for overall
earnings processes from panel data, not particular sources of risk. Such an approach is
consistent with a large incomplete-markets literature that has been quite successful mod-
eling consumption and wealth, taking as an input the estimated earnings process. We fol-
low this tradition. Our method is flexible and allows us to study such model economies.
In so doing, we bridge the gap between a more theoretical New Dynamic Public Finance
literature and this more applied incomplete-markets literature.

We lay down a Mirrleesian economy with neoclassical technology and idiosyncratic
uncertainty. Agents consume and work, experiencing skill shocks that are private infor-
mation. As a result, feasible allocations must be incentive compatible. In this setting, as
long as utility is additively separable, constrained efficient allocations satisfy the Inverse
Euler equation. Because this condition is incompatible with the agents’ standard Euler
equation, saving distortions are needed and take the form of a positive tax on capital.
Starting from an equilibrium where agents save freely, introducing these optimal taxes
increases welfare. We are interested in computing and understanding the determinants
of these welfare gains. These measures answer the question posed earlier, regarding the
importance of capital taxation as a component of social insurance.

Two approaches are possible to quantify the magnitude of these welfare gains, and we
pursue both. The first approach requires modeling the stochastic process for individual
consumption directly. The second models consumption indirectly. It uses as a starting
point equilibrium allocations from a competitive economy where agents are subject to
idiosyncratic skill shocks and can save freely by accumulating a risk-free bond. The ad-
vantage of this approach is that direct empirical knowledge on the consumption process
is more limited than that for income and wealth. We now describe our results following
both approaches in turn.

We start with the first approach. We are able to obtain closed-form solutions when
utility is logarithmic and consumption follows a geometric random walk. We use the
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simplicity of our closed-form solutions to derive some insights that illuminate the main
determinants for welfare gains. In particular, our formulas highlight how the magnitude
of optimal capital taxes, as well as the efficiency gain from these taxes, depend positively
on the variance of consumption growth. As we review, the empirical literature only pro-
vides imperfect guidance for this statistic. With a partial-equilibrium analysis, using a
fixed interest rate, we find that the welfare gains span a wide range, going from 0% to
10%, reflecting the range of empirical evidence on the variance of consumption growth.3

This wide range of welfare gains leads us to consider a general equilibrium setting. We
find that general equilibrium effects can dramatically reduce welfare gains, which now
range from 0% to 0.25%.

We then turn to to the second approach. We adopt an Aiyagari-Bewley incomplete-
market model. Individuals face idiosyncratic labor income risk. They can save in a risk-
free asset, but cannot borrow. At a steady-state equilibrium the interest rate is constant
and equal to the marginal product of capital. Although individual consumption fluc-
tuates, the cross-sectional distribution of assets and consumption is invariant. Starting
from this steady state, we introduce optimal saving distortions and compute the associ-
ated welfare gains, taking into account the resulting transitional dynamics. The solution
is no longer closed form, but we show that it is sufficiently tractable to be computed nu-
merically.

There are two important, and potentially offsetting, differences in this setting (second
approach), relative to the geometric random-walk case (first approach) where closed-form
solutions were available. On the one hand, as is well known, agents are able to smooth
consumption quite effectively in Aiyagari-Bewley models, minimizing the variance of
consumption growth and reducing the potential welfare gains from saving distortions.
On the other hand, equilibrium consumption in these models is not well described by a
geometric random walk. Indeed, a steady state, with a stable cross-sectional distribution
for consumption, requires a mean reverting consumption process. We show that this
tends to magnify potential welfare gains.

We compute the steady state equilibrium for a range of parameters for the income
processes and the coefficient of relative risk aversion. For our baseline calibration, we
find that welfare gains are relatively small, below 0.2%. Away from this baseline, we
find that welfare gains increase with the coefficient of relative risk aversion and with the
variance and persistence of the income process. However, unless one allows the planner

3Indeed, theoretically, the gains are potentially unbounded, establishing that it is incorrect to simply
presume that the welfare gains are necessarily small, underscoring the need for a quantitative assessment
that uncovers their main determinants.
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to relax borrowing constraints, the welfare gains remain relatively modest.
Overall, our findings suggest that the welfare gains from saving distortions may be

small. This does not imply that there are small welfare gains from optimal dynamic so-
cial insurance more generally, only that the supporting role of saving distortions may be
modest, especially when general equilibrium forces are taken into account.

On the methodological front, our strategy requires perturbing the consumption as-
signment and holding the labor assignment unchanged, while preserving incentive com-
patibility. The new allocation satisfies the Inverse Euler equation and delivers the same
utility while freeing up resources. The reduction in resources is our measure of welfare
gains. By leaving the labor assignment unchanged, we focus on the gains from intro-
ducing savings distortions, without changing the incentive structure implicit in the labor
assignment. In this way, we sidestep resolving the optimal trade-off between insurance
and incentives.

There are several advantages to our approach. First, our exercise does not require
specifying some components of the economy. In particular, no knowledge of individual
labor assignment or the disutility of work function is required. In this way, the degree
to which work effort responds to incentives is not needed. This robustness is important,
since empirical knowledge of these elasticities remains incomplete. Indeed, our welfare
gains depend only on the original consumption assignment, the utility function for con-
sumption and technology. Second, our planning problem has the advantage of being
tractable, even for rich specifications of uncertainty. In our view, having this flexibility is
important for quantitative work. Finally, by focusing our attention on savings distortions
in this way, the welfare gains we compute can be traced back to a few intuitive parame-
ters, such as the variance of consumption growth, the coefficient of relative risk aversion
and the concavity of the production function.

Related Literature. The question we address is largely unexplored. One reason is that it
is difficult to solve dynamic economies with private information, except for very particu-
lar cases, such as shocks that are i.i.d. over time, or when shocks are binary and absorbing,
as is the applications to unemployment and disability insurance (see below). The optimal
taxation literature based on models with private information (see Golosov, Tsyvinski and
Werning, 2006, and the references therein) often characterizes the constrained efficient
allocations and taxes, but rarely provides a quantitative analysis of the efficiency gains,
especially not focusing on the contribution of savings distortions. Recent progress has
been made applying a “first-order approach” to characterize and compute constrained
efficient allocations when shocks are persistent (Farhi and Werning, 2010; Golosov et al.,
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2010). However, this approach remains computationally challenging and has only been
applied to date in partial equilibrium settings. Moreover, the focus in these papers is on
characterizing the optimum, not evaluating the contribution from capital taxes. Instead,
our approach here zeros in on the contribution of capital taxes and is tractable enough to
be carried out in general equilibrium. Overall our results on the small welfare gains asso-
ciated with savings distortions highlight the importance of focusing on labor distortions
in these dynamic social insurance environements as pursued by these recent contribu-
tions.

Another difference is that much of the literature has proceeded by studying particu-
lar aspects of social insurance in isolation. In contrast, in our paper, for an evaluation of
the benefits from saving distortions for social insurance, it is important to take a broader
perspective. Golosov and Tsyvinski (2006) study disability insurance and Shimer and
Werning (2008) study unemployment insurance. In both cases, the nature of the stochas-
tic process for shocks allows for a low dimensional recursive formulation that is numeri-
cally tractable. Golosov and Tsyvinski (2006) provide a quantitative analysis of disability
insurance. Disability is modeled as an absorbing negative skill shock. They calibrate
their model and compute the welfare gains that can be reaped by moving from the most
efficient allocation that satisfies free savings to the optimal allocation. They focus on log-
arithmic utility and report welfare gains of 0.5%. Shimer and Werning (2008) provide a
quantitative analysis of unemployment insurance. They consider a sequential job search
model, where a risk averse, infinitely lived worker samples wage offers from a known
distribution. Regarding savings distortions, they show that with CARA utility allowing
agents to save freely is optimal. With CRRA utility, savings distortions are optimal, but
they find that the efficiency gains they provide are minuscule. As most quantitative exer-
cises to date, both Golosov and Tsyvinski (2006) and Shimer and Werning (2008) are set
in partial equilibrium settings with linear technologies.

Second, there is a vast literature studying and calibrating incomplete-market Aiyagari-
Bewley economies to consumption, income and wealth data. These papers emphasize the
role of consumers self-smoothing through the precautionary accumulation of risk-free
assets. In most positive analyses, government policy is either ignored or else a simple
transfer and tax system is included and calibrated to current policies. In some normative
analyses, some reforms of the transfer system, such as the income tax or social security,
are evaluated numerically (e.g. Conesa and Krueger, 2005). Our paper bridges the gap
between this literature and the optimal tax literature.

The notion of efficiency used in the present paper is often termed constrained-efficiency,
because it imposes the incentive-compatibility constraints that arise from the assumed
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asymmetry of information. Another, very different, notion has been developed for exoge-
nously incomplete-market models (see Geanakoplos and Polemarchakis, 1985). The idea
is to take the available asset structure as given and ask whether individuals can change
their trading positions in way that, while not individually optimal, collectively produces
a Pareto improvement. This notion has been applied by Davila, Hong, Krusell and Rios-
Rull (2005) in the Aiyagari-Bewley context.

2 A Two-Period Economy

This section presents a simple example economy with two-periods and a linear technol-
ogy. We use it to introduce some key concepts quickly and fix some basic ideas that are
useful for the rest of the paper. The next sections generalize the model to an infinite hori-
zon setting with general technologies.

In this example economy there are two periods and a continuum of ex-ante identical
agents. They consume in both periods, but work only in the second period.4 In the
second period, they experience a labor productivity shock, the realization of which is
independent across agents. The presence of uncertainty creates a role for insurance.

If productivity were publicly observable, then the first best would be attainable. The
first best features perfect insurance in consumption, so that consumption is equalized
across workers. It also requires workers with higher productivity to produce more.

Following Mirlees, we assume instead that productivity is private information and re-
vealed to each worker at the beginning of the second period. With private information,
the first best is no longer feasible, because it is not incentive compatible. There is now a
tradeoff between insurance and incentives. The constrained efficient allocation, or second
best, can be derived as the solution of a planning problem using the tools of mechanism
design. The allocation now features distortions in labor and savings. It can be imple-
mented using distortionary nonlinear taxes on labor and capital. Roughly speaking, one
can think of labor distortions as arising from the attempts to provide insurance while
trading off incentives. It turns out that savings distortions reduce the cost of providing
these incentives.

Why is this the case? The agent’s calculation, if he can save freely, is different for the
usual precautionary saving motives. This discrepancy explains a positive savings taxes.
More technically, if agents were able to save freely, without saving distortions, then the
standard Euler equation would hold. Instead, the constrained efficient allocation satisfies

4It is easy to allow for work in the first period, but this feature is not essential. The example economy is
meant to be the simplest setting to introduce basic conceptual points.
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an Inverse Euler equation, which is incompatible with the Euler equation. It is this conflict
between the Euler and Inverse Euler equations that requires the introduction of savings
distortions.

How much do savings distortions contribute towards welfare? That is the question
we focus on in this paper. That is, we wish to explore the quantitative importance of
satisfying the Inverse Euler equation, instead of the Euler equation.

Preferences. There are two periods t = 0, 1. Agents are ex ante identical. Consumption
takes place in both periods, while work occurs only in period t = 1. Agents obtain utility

v = U(c0) + βE [U(c1)−V (n1; θ)] . (1)

where U is the utility function from consumption, V is the disutility function from ef-
fective units of labor (hereafter: labor for short) and E is the expectations operator. Un-
certainty is captured by an individual shock θ ∈ [θ, θ̄] ≡ Θ that affects the disutility of
effective units of labor, where Θ is an interval of R. We will sometimes refer to θ as a skill
or productivity shock, which is justified in the specification used by Mirrlees (1971) where
the disutility from labor V(n; θ) is equal to v(n/θ) for some convex function v over work
effort n, so that θ can be interpreted as productivity. To capture the idea that uncertainty
is idiosyncratic, we assume that a version of the law of large number holds so that for any
function f on Θ, E[ f ] corresponds to the average of f across agents.

The utility function U is assumed increasing, concave and continuously differentiable.
We assume that the disutility function V is continuously differentiable and that, for any
θ ∈ Θ, the function V(·, θ) is increasing and convex. We also assume the single crossing
property: ∂

∂n1
V (n1; θ) is strictly decreasing in θ, so that a high shock θ indicates a low

disutility from work.

Technology. We assume that technology is linear with a rate of return on savings equal
to q−1 and normalize labor productivity to 1. It is convenient to change variables and
define an allocation by the triplet {u0, u1, n1} with u0 ≡ U(c0), u1(θ) ≡ U(c1(θ)). The
cost of an allocation is

k0 = c(u0) + qE [c(u1(θ))− n1(θ)] .

where c ≡ U−1 is the inverse of the utility function.

Incentive-Compatibility. The shock realizations are private information to the agent, so
we must ensure that allocations are incentive compatible. By the revelation principle we
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can consider, without loss of generality, a direct mechanism, where agents make a report
θ̂ about their shock realization θ in period t = 1, and assigned labor and utility from
consumption as a function of this report. We require that they find truth-telling optimal:

u0 + β (u1(θ)−V(n1(θ); θ)) ≥ u0 + β
(
u1(θ̂)−V(n1(θ̂); θ)

)
for all θ, θ̂ ∈ Θ2. (2)

As is well known (see e.g. Milgrom and Segal, 2002), the single crossing property implies
that incentive compatibility is equivalent to the condition that n1 be non-decreasing and

u0 + β (u1(θ)−V(n1(θ); θ)) = u0 + β (u1(θ)−V(n1(θ); θ)) + β
∫ θ

θ

∂V
∂θ̂

(n1(θ̂); θ̂))dθ̂ (3)

which can be thought of as an envelope condition, written in integral form.

Perturbations. Fix a utility level v and labor assignment {n1}. Then equation (1) and
equation (3) pin down a unique value for the utility from consumption u0 + βu1(θ) as a
function of θ.5,6 In other words, equation (3) implies that providing incentives for a given
labor assignment requires some given spread in u0 + βu1(θ) across θ; expected utility v
pins down the level with equation (1). Thus, for given a utility assignments {u0, u1} that
satisfy equation (1) and equation (3), all other feasible utility assignments {ũ0, ũ1} can be
obtained by the following perturbation:

ũ0 = u0 − β∆ and ũ1(θ) = u1(θ) + ∆ for all θ ∈ Θ,

for some ∆ ∈ R.

Efficiency and The Inverse Euler Equation. Using this perturbation, it follows that a
utility assignment {u0, u1} satisfying equations equation (1) and equation (3) minimizes
the cost k0 if and only if ∆ = 0 minimizes c(u0 − β∆) + qE [c(u1(θ) + ∆)] over ∆, holding
{u0, u1} fixed. The necessary and sufficient first order condition is

1
U′ (c (u0))

=
1

βq−1 E

[
1

U′ (c (u1 (θ)))

]
, (4)

5 This is where using equation (3), rather than equation (2), is convenient.
6 This result relies on our assumption that types are continuous, so that Θ is an interval. If instead

the set of feasible types were finite, then incentive constraints could be slack for any given assignment of
labor (a finite vector), creating room for some choice over u0 + βu1(θ). However, as the number of types
is increased so that the set of types becomes dense, approaching the continuum, then in the limit v and the
labor assignment once again determine a unique value for u0 + βu1(θ) as a function of θ.

9



which is known as the Inverse Euler equation.
In contrast, when agents can save freely, the standard Euler equation

U′ (c (u0)) = βq−1E
[
U′ (c (u1 (θ)))

]
(5)

must hold.7 The standard Euler equation holds because agents perceive that the following
perturbations are possible: c̃0 = c0 − qε and c̃1(θ) = c1(θ) + ε for all θ ∈ Θ. Note that
these perturbations are risk free in terms of consumption. In contrast, the perturbations
perceived by the planner are risk free in terms of utility.

If the Inverse Euler equation holds, Jensen’s inequality implies that

U′(c(u0)) < βq−1E
[
U′(c(u1(θ)))

]
, (6)

as long as consumption at t + 1 is uncertain conditional on information at t. This inequal-
ity shows that equation (4) is incompatible with the standard Euler equation equation (5).
Thus, the optimum cannot be implemented by allowing agents to save freely at the tech-
nological rate of return.

An Intuition for the Optimality of Positive Savings Distortions. Start from a baseline
allocation {u0, u1} with free savings, so that the Euler equation holds. Consider now
perturbing this allocation so that ũ0 = u0 − β∆ and ũ1(θ) = u1(θ) + ∆. The pertubated
allocation is incentive compatibility and delivers the same level of utility. For some ∆ < 0,
it satisfies the Inverse Euler equation. The corresponding perturbed allocation has a lower
cost than the baseline allocation.

Intuitively, although one is used to thinking of a risk-free asset as the natural one for
borrowing and saving, our analysis suggests that, in economies with private information,
the proper asset is one that does not upset incentive compatibility. Preserving incentive
compatibility is possible with a hypothetical asset, with holdings ∆, that is risk free in
terms of utility, instead of consumption. However, such an asset amounts to a risky as-
set in terms of its consumption payoff ∆/U′(c1(θ))—it must pay out more whenever the
marginal utility of consumption is low (i.e. when consumption is high). From a finance
perspective, this is the definition of a risky return, with no expected premium to compen-

7If agents can save freely then an allocation must satisfy the Euler equation, in addition to the incentive
compatibility constraint. Indeed, for a given labor assignment {n1} and utility level v, the utility assign-
ments {u0, u1} are uniquely determined by incentive compatibility, the requirement that the allocation de-
liver expected utility v and the Euler equation. That is, there exists a unique utility assignment that satisfies
the Euler equation supporting {n1} and v. The converse is not generally true, although in practice we have
found that this is not an issue for the allocations that we compute.

10



sate. As a result, the optimum involves a negative holding of such an asset: it is attractive
to borrow because repayment is higher when tomorrow’s consumption is higher. By
borrowing today against good states of nature tomorrow, the planner increases today’s
consumption relative to tomorrow’s, explaining why ∆ < 0 is optimal.8

Why does this imply a positive tax on capital? Consumers face a conventional risk-
free saving technology, instead of the ideal, but hypothetical, risky asset described above
(which is risk-free in terms of utility, but risky in terms of consumption). Thus, taxes are
needed to induce agents to make the correct consumption and saving choice. In partic-
ular, we need a positive tax on capital to induce the agent to raise today’s consumption
relative to tomorrow’s, to match the planner optimum.

Efficiency Gains from Savings Distortions. We have established that allowing agents
to save freely is costly. The goal of this paper is to explore the magnitude of this cost. The
lower curve in Figure 1 represents the minimum cost k0, for a given v, as a function of the
labor assignment {n1}. Along this curve, the Inverse Euler equation holds. Similarly, the
upper curve represents the cost of the allocation when agents can save freely. Along this
curve, the Euler equation holds. The distance between these curves represents the cost
of foregoing the optimal taxation of savings and allowing, instead, agents to save freely.
Indeed, the vertical distance represents precisely the added cost, for a given v and {n1},
of imposing the Euler equation instead of the Inverse Euler equation.

We now consider three distinct allocations: (a) self-insurance, where agents can save
freely with the technological return q−1 and the output from their labor is untaxed; (b)
the optimum for a planner that is subject to the incentive compatibility constraints and
the constraint that agents can save freely; and (c) the constrained optimum, which solves
a planning problem subject to the incentive compatibility constraints.

Allocation (c) can be implemented by a combination of nonlinear taxes on labor and
capital, allocation (b) requires a nonlinear labor tax, while allocation (a) features no taxes.

These allocations are displayed in Figure 1. Point (b) lies at the minimum of the upper
curve, while (c) lies at the minimum of the lower curve. Point (a) is depicted on the far
right of the upper curve to convey the idea that we expect labor to be higher since it is not
distorted by taxation.

Suppose the economy starts at self-insurance at point (a), and moves towards the con-
strained efficient allocation, at point (c). In the figure, this can be seen as a jump from

8 Borrowing here is relative to the solution with free borrowing and saving. The level of savings is
not really pinned down without specifying some initial endowment or transfers from the government. At
an optimum it is also irrelevant if the government can change the timing of transfers, due to the usual
Ricardian equivalence arguments.
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{n1}

cost
Standard Euler

Inverse Euler

a

b

c
a′

c′

Figure 1: Efficiency gains as a function of n1 for given v. The upper (green) curve imposes
free savings. The lower (blue) curve implements the Inverse Euler equation with optimal
savings distortions.

the upper curve to lower curve, from point (a) to (a’) as well as a movement along the
lower curve, from (a’) to (c). An alternative is to decompose the change from (a) to (c) as
a movement along the upper curve to point (c’) and then a vertical switch to the lower
curve, from (c’) to (c).

The move from (a) to (c) combines the introduction of optimal labor and savings dis-
tortions. Therefore, it would be incorrect to attribute the entire gain between points (a)
and (c) to the introduction of savings distortions. Instead, we propose interpreting the
vertical distances between the two curves, either between (a) and (a’) or between (c’) and
(c) as measuring the gains from savings distortions.

One might also consider the gains of moving from point (b) to point (c). This move
represents the gains of introducing savings distortions, when labor distortions are fully
optimized in both cases. Note that the vertical distance between (c) to (c’) provides an
upper bound for the gains from (b) to (c), providing another rationale for focusing on the
vertical distance between the two curves.

Furthermore, in practice, the distance between (a) and (a’) is greater than the distance
between (c’) and (c), because it features greater uncertainty in consumption, which is re-
sponsible for the difference between the Euler and Inverse Euler equations in the first
place. Consumption inequality is greater at self-insurance because labor income is un-
taxed, resulting in greater after-tax income uncertainty.

A Numerical Example. To illustrate this analysis, we have computed the three allo-
cations for a parametrized version of this economy. In particular we adopte logarithmic
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Policy Experiment Efficiency gains
a→ c 3.08%
b→ c 0.33%
c′ → c 0.39%
a→ a′ 1.38%

Table 1: Efficiency gains for an example economy. The gains are expressed as a percentage
of aggregate consumption in autarky.

utility U(c) = log c, and V(n; θ) = κ (n/θ)1+ 1
ε and set the Frisch elasticity to ε = 1/2.

With only two periods, it is natural to interpret a period as half a working lifetime (20
years). Correspondingly, we set β = (0.96)20 and take the productivity distribution to be
log normal with variance equal to 20× 0.0161.9 This example is meant to provide a rough
illustration of our concepts, not a full-blown calibration.10

Table 1 displays our findings for this economy. The first row shows that the gains
of moving from autarky to the constrained efficient allocation are relatively large, equal
to 3.08%. Note, however, that at the constrained efficient allocation there are both sav-
ings and labor distortions. Thus, it would be incorrect to attribute these gains to savings
distortions that implement the Inverse Euler equation. In contrast, the other rows in the
table provide measures of efficiency gains that may be attributed to savings distortions.
In particular, the second row shows the gains from the optimum with free savings, to the
constrained optimum where agents face optimal savings distortions. The gains in this
case are significantly smaller, 0.33%. Also shown are the vertical distances, (c’) to (c) and
(a) to (a’), with gains of 0.39% and 1.38%. These numbers represent the gains, for a given
labor allocation, of moving from the Euler to the Inverse Euler equation. As such, they
capture one notion of the gains from savings distortions. Also note that, as claimed ear-
lier, (c’) to (c) is an upper bound on the distance between (b) and (c). In this example it
is also the case that the distance between (a) and (a’) is an upper bound on the other two
measures of efficiency gains from savings distortions, (b) to (c) and (c’) to (c).

9The number 0.0161 corresponds to the variance of the innovations in the permanent component of
income estimated by Storesletten, Telmer and Yaron (2004)

10For these calculations, we compute the autarkic allocation as a competitive equilibrium with no taxes
(a). This yields a utility assignment {u0, u1}, a labor assignment {n1}, and utility level v. For this utility
level and labor assignment, we can compute (a’) by perturbing (a) so that the Inverse Euler equation holds.
Allocation (b) is solved by miminizing cost k0 subject to the promise keeping constraint (1), the Euler equa-
tion (5), and the incentive compatibility constraints (3); we then verify that this allocation is attainable when
agents can save freely. Allocation (c) solves a relaxed version of that problem where the Euler equation is
dropped. Allocation (c’) is obtained from (c) by finding the perturbation that satisfied the Euler equation;
we then verify that this allocation is feasible when agents can save freely. The efficiency gains are displayed
as the reduction in cost k0, scaled by the cost of consumption c(u0) + qE[c(u1(θ))] of the autarkic allocation.
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Discussion. In this simple example economy, the allocations (a), (a’), (b), (c) and (c’) are
easily computed. In the more general infinite horizon setup with general technologies and
arbitrary stochastic processes for productivity that we consider in the rest of the paper,
this is no longer the case. In particular, computing numerically points (b), (c) and (c’) is
out of reach in most cases.

In the rest of the paper, we develop a general method to compute theoretically and
quantitatively, for a given level of utility and a given labor assignment, the efficiency gains
that can be realized by moving from a utility assignment that satisfies the Euler equation
to one that satisfies the inverse Euler equation. That is, we develop a method to analyze
theoretically and numerically the vertical distance between the two curves represented in
Figure 1 in very general economies with infinite horizon, arbitrary stochastic processes for
idiosyncratic productivity shocks, and general technologies. In the numerical application
of our method we consider an economy without taxes, thus we focus on the analog of the
move from (a) to (a’).

There are a number of advantages that come from approaching the efficiency gains
from savings distortions through the vertical distance between the two curves in Figure 1.
First, we have explained how this vertical distance homes in on the benefit of savings dis-
tortions while also being informative of other, more encompassing, measures of efficiency
gains that also allow for changes in the labor assignment {n1}.

Second, our measure of efficiency gains can be computed by a simple perturbation
method. Indeed, consider the feasible allocation {u0, u1, n1} that satisfies the Euler equa-
tion. We can obtain the utility assignment {ũ0, ũ1} that supports the same utility and
labor assignment {n1} through a simple perturbation {u0 − β∆, u1 + ∆} of the baseline
utility assignment {u0, u1}while fixing the labor assignment {n1}. Indeed, {ũ0, ũ1} is the
unique utility assignment within this class of perturbations that satisfies the Inverse Euler
equation. The existence of these simple perturbations greatly facilitates the computation
of the efficiency gains from moving from {u0, u1, n1} and {ũ0, ũ1, n1}.

Third, given the baseline utility assignment {u0, u1}, no knowledge of either the labor
assignment {n1} or the disutility of work V is needed in order to compute our measure
of efficiency gains. In other words, one does not need to take a stand on how elastic work
effort is to changes in incentives. More generally one does not need to take a stand on
whether the problem is one of private information regarding skills or of moral hazard re-
garding effort, etc. This robustness is a crucial advantage since current empirical knowl-
edge of these characteristics and parameters is limited and controversial. The vertical
distance between the two curves in Figure 1 addresses precisely the question of whether
the intertemporal allocation of consumption is efficient, without taking a stand on how
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correctly the tradeoff between insurance and incentives has been resolved.11

Finally, as we will show, the magnitude of the efficiency gains is determined by some
rather intuitive parameters: the relative variance of consumption changes, the coefficient
of relative risk aversion and the concavity of the production function.

3 Infinite Horizon

In this section, we lay down our general environment. We then describe a class perturba-
tions that preserve incentive compatibility. These perturbations serve as the basis for our
method to compute efficiency gains.

3.1 The Environment

We cast our model within a general Mirrleesian dynamic economy. Our formulation is
closest to Golosov, Kocherlakota and Tsyvinski (2003). This paper obtains the Inverse
Euler equation in a general dynamic economy, where agents’ privately observed skills
evolve as a stochastic process.

Preferences. Our economy is populated by a continuum of agent types indexed by i ∈ I
distributed according to the measure ψ. Preferences generalize those used in Section 2
and are summarized by the expected discounted utility

∞

∑
t=0

βtEi[U(ci
t)−V(ni

t; θi
t)]

where Ei is the expectations operator for type i.
Additive separability between consumption and leisure is a feature of preferences that

we adopt because it is required for the arguments leading to the Inverse Euler equation.12

Idiosyncratic uncertainty is captured by an individual specific shock θi
t ∈ Θ, where

as in Section 2, Θ is an interval of the real line. These shocks affect the disutility of ef-

11This robustness property, can be more formally described as follows. Consider the set Ω({u0, u1, n1}, v)
of disutility functions V with the following properties: V is continuously differentiable; for any θ ∈ Θ, the
function V(·, θ) is increasing and convex; V has the single crossing property that ∂

∂n1
V (n1; θ) is strictly

decreasing in θ and (3) holds. The set of perturbed allocations {{u0 − β∆, u1 + ∆}|∆ ∈ R} is the largest
of allocations such that for all V ∈ Ω({u0, u1, n1}, v), incentive compatibility (3) and promise keeping (1)
hold.

12 The intertemporal additive separability of consumption also plays a role. However, the intertemporal
additive separability of work effort is completely immaterial: we could replace ∑∞

t=0 βtE[V(nt; θt)] with
some general disutility function Ṽ({nt}).
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fective units of labor. We sometimes refer to them as skill or productivity shocks. The
stochastic process for each individual θi

t is identically distributed within each type i ∈ I
and independently distributed across all agents. We denote the history up to period t by
θi,t ≡ (θi

0, θi
1, . . . , θi

t), and by πi the probability measure on Θ∞ corresponding to the law
of the stochastic process θi

t for an agent of type i.
Given any function f on Θ∞, we denote the integral

∫
f (θi,∞)dπ(θi,∞) using the expec-

tation notation Ei[ f (θi,∞)] or simply Ei[ f ]. Similarly, we write Ei[ f (θi,∞)|θi,t−1], or simply
Ei

t−1[ f ], for the conditional expectation of f given history θi,t−1 ∈ Θt.
As in Section 2, all uncertainty is idiosyncratic and we assume that a version of the law

of large number holds so that for any function f on Θ∞, Ei[ f ] corresponds to the average
of f across agents with type i.

To preview the use we will have for types i ∈ I, note that in our numerical implemen-
tation we will assume that skills follow a Markov process. We will consider allocations
that result from a market equilibrium where agents save in a riskless asset. For this kind
of economy, agent types are then initial asset holdings together with initial skill. The
measure ψ captures the joint distribution of these two variables.

It is convenient to change variables, translating consumption allocations into utility
assignments {ui

t(θ
i,t)}, where ui

t(θ
i,t) ≡ U(ci

t(θ
i,t)). This change of variable will make in-

centive constraints linear and render the planning problem, that we will introduce shortly,
convex.

Information and Incentives. The shock realizations are private information to the agent.
We invoke the revelation principle to derive the incentive constraints by considering a di-
rect mechanism. Agents are allocated consumption and labor as a function of the entire
history of reports. The agent’s strategy determines a report σi

t(θ
i,t) for each period t as a

function of the history of shocks θi,t. Define the history up to time t of such reports to be
σi,t(θi,t) = (σi

0(θ
i
0), σi

1(θ
i,1), . . . , σi

t(θ
i,t)). The incentive compatibility constraint requires

that truth-telling, σi,∗
t (θi,t) = θi

t, be optimal, so that for all for all reporting strategies {σi
t}

and all i ∈ I,

vi ≡
∞

∑
t=0

βtEi[ui
t(θ

i,t)−V(ni
t(θ

i,t); θi
t)] ≥

∞

∑
t=0

βtEi[ui
t(σ

i,t(θi,t))−V(ni
t(σ

i,t(θi,t)); θi
t)]. (7)

Technology. Let Ct and Nt represent aggregate capital, labor and consumption for pe-
riod t, respectively. That is, letting c ≡ U−1 denote the inverse of the utility function,

Ct ≡
∫

Ei
[
c(ui

t)
]

dψ
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Nt ≡
∫

Ei
[
ni

t

]
dψ

for t = 0, 1, . . . In order to facilitate our efficiency gains calculations, it will prove con-
venient to index the resource constraints by et which represents the aggregate amount of
resources that is being economized in every period. The resource constraints are then

Kt+1 + Ct + et ≤ (1− δ)Kt + F(Kt, Nt) t = 0, 1, . . . (8)

where Kt denotes aggregate capital. The function F(K, N) is assumed to be homogenous
of degree one, concave and continuously differentiable, increasing in K and N.

Two cases are of particular interest. The first is the neoclassical growth model, where
F(K, N) is strictly concave and satisfies Inada conditions FK(0, N) = ∞ and FK(∞, N) = 0.
In this case, we also impose Kt ≥ 0. The second case has linear technology F(K, N) =

N + (q−1 − 1)K, δ = 0 and 0 ≤ q < 1. One interpretation is that output is linear in labor
with productivity normalized to one, and a linear storage technology with safe gross rate
of return q−1 is available. Another interpretation is that this represents the economy-wide
budget set for a partial equilibrium analysis, with constant interest rate 1 + r = q−1 and
unit wage. Under either interpretation, we avoid corner solutions by allowing negative
capital holdings, subject to Kt+1 ≥ −∑∞

s=1 qsNt+s. This constraint allows borrowing up
to the natural borrowing limit, equal to the present value of future labor income. With
this borrowing limit one can summarize the constraints on the economy by the single
present-value condition

∞

∑
t=0

qtCt ≤
∞

∑
t=0

qt(Nt − et) +
1
q

K0.

Feasibility. An allocation {ui
t, ni

t, Kt, et} and utility profile {vi} is feasible if conditions
(7)–(8) hold. That is, feasible allocations must deliver utility vi to agent of type i ∈ I, and
must be incentive compatible and resource feasible.

Free-Savings. For the purposes of this paper, an important benchmark is the case where
agents can save, and perhaps also borrow, freely. Free borrowing and saving increases
the choices available to agents, which adds further restrictions relative to the incentive
compatibility constraints.

In this scenario, the government enforces labor and taxes as a function of the his-
tory of reports, but does not control consumption directly. Disposable after-tax income
is wtni

t(σ
i,t(θi,t))− Ti

t(σ
i,t(θi,t)).13 Agents face the following sequence of budget and bor-

13A special case of interest is where the dependence of the tax on any history of reports θ̂i,t, can be
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rowing constraints:

ci
t(θ

i,t) + ai
t+1(θ

i,t) ≤ wtni
t(σ

i,t(θi,t))− Ti
t(σ

i,t(θi,t)) + (1 + rt)ai
t(θ

i,t−1) (9a)

ai
t+1(θ

i,t) ≥ ai
t+1(σ

i,t(θi,t)) (9b)

with ai
0 given. We allow the borrowing limits ai

t+1(θ
i,t) to be tighter than the natural

borrowing limits.
Agents with type i maximize utility ∑∞

t=0 βtEi[ui
t(σ

i,t(θi,t)) − V(ni
t(σ

i,t(θi,t)); θi
t)] by

choosing a reporting, consumption and saving strategy {σi
t , ci

t, ai
t+1} subject to the se-

quence of constraints (9), taking ai
0 and {ni

t, Ti
t , wt, rt} as given. A feasible allocation

{ui
t, ni

t, Kt, et} is part of a free-savings equilibrium if there exist taxes {Ti
t}, such that

the optimum {σi
t , ci

t, ai
t+1} for agent of type i with wages and interest rates given by

wt = FN(Kt, Nt) and rt = FK(Kt, Nt) − δ satisfies truth telling σi
t(θ

i,t) = θi
t and gener-

ates the utility assignment ui
t(θ

i,t) = U(ci
t(θ

i,t)).14

At a free-savings equilibrium, the incentive compatibility constraints (7) are satisfied.
The consumption-savings choices of agents impose additional further restrictions. In par-
ticular, a necessary condition is the intertemporal Euler condition

U′(c(ui
t)) ≥ β(1 + rt+1)E

i
t

[
U′(c(ui

t+1))
]

, (10)

with equality if ai
t+1(θ

i,t) > ai
t+1(θ

i,t). Note that if the borrowing limits ai
t+1(θ

i,t) are equal
to the natural borrowing limits, then the Euler equation (10) always holds with equality.

Efficiency. We say that the allocation {ui
t, ni

t, Kt, et} and utility profile {vi} is dominated
by the alternative {ũi

t, ñi
t, K̃t, ẽt} and {ṽi}, if ṽi ≥ vi, K̃0 ≤ K0, et ≤ ẽt for all periods t and

either ṽi > vi for a set of agent types of positive measure, K̃0 < K0 or et < ẽt for some
period t.

We say that a feasible allocation is efficient if it is not dominated by any feasible alloca-
tion. We say that an allocation is conditionally efficient if it is not dominated by a feasible
with the same labor allocation ni

t = ñi
t.

As explained in Section 2, allocations that are part of a free-savings equilibrium are not
conditionally efficient. Conditionally efficient allocations satisfy a first order condition,
the Inverse Euler equation, which is inconsistent with the Euler equation. Being part

expressed through its effect on the history of labor ni,t(θ̂i,t). That is, when Ti
t (θ̂

i,t) = Ti,n
t (ni,t(θ̂i,t)) for some

Ti,n
t function.

14Note that individual asset holdings and taxes are not part of this definition, because they are indeter-
minate due to Ricardian equivalence.
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of a free-savings equilibrium therefore acts as a constraint on the optimal provision of
incentives and insurance. Efficiency gains can be reaped by departing from free-savings.

3.2 Incentive Compatible Perturbations

In this section, we develop a class of perturbations of the allocation of consumption that
preserve incentive compatibility. We then introduce a concept of efficiency, ∆-efficiency,
that corresponds to the optimal use of these perturbations. Our perturbation set is large
enough to ensure that every ∆-efficient allocation satisfies the Inverse Euler equation.
Moreover, we show that ∆-efficiency and conditional efficiency are closely related con-
cepts: ∆-efficiency coincides with conditional efficiency on allocations that satisfy some
mild regularity conditions.

A Class of Perturbations. For any period t and history θi,t a feasible perturbation, of
any baseline allocation, is to decrease utility at this node by β∆i and compensate by in-
creasing utility by ∆i in the next period for all realizations of θi

t+1. Total lifetime util-
ity is unchanged. Moreover, since only parallel shifts in utility are involved, incentive
compatibility of the new allocation is preserved. We can represent the new allocation as
ũi

t(θ
i,t) = ui

t(θ
i,t)− β∆i, ũi

t+1(θ
i,t+1) = ui

t+1(θ
i,t+1) + ∆i, for all θi

t+1.
This perturbation changes the allocation in periods t and t + 1 after history θi,t only.

The full set of variations generalizes this idea by allowing perturbations of this kind at all
nodes:

ũi
t(θ

t) ≡ ui
t(θ

t) + ∆i(θi,t−1)− β∆i(θi,t)

for all sequences of {∆i(θi,t)} such that ũi
t(θ

i,t) ∈ U(R+) and such that the limiting con-
dition

lim
T→∞

βTEi[∆i(σi,T(θi,T))] = 0

for all reporting strategies {σi
t}. This condition rules out Ponzi-like schemes in utility.15

By construction, the agent’s expected utility, for any strategy {σi
t}, is only changed by a

constant ∆i
−1:

∞

∑
t=0

βtE[iũi
t(σ

i,t(θi,t))] =
∞

∑
t=0

βtEi[ui
t(σ

i,t(θi,t))] + ∆i
−1. (11)

15 Note that the limiting condition is trivially satisfied for all variations with finite horizon: sequences for
{∆i

t} that are zero after some period T, as was the case in the discussion of a perturbation at a single node
and its successors.
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It follows directly from equation (7) that the baseline allocation {ui
t} is incentive compat-

ible if and only if the new allocation {ũi
t} is incentive compatible. Note that the value of

the initial shifter ∆i
−1 determines the lifetime utility of the new allocation relative to its

baseline. Indeed, for any fixed infinite history θ̄i,∞ equation (11) implies that (by substi-
tuting the deterministic strategy σi

t(θ
i,t) = θ̄i

t)

∞

∑
t=0

βtũi
t(θ̄

i,t) =
∞

∑
t=0

βtui
t(θ̄

i,t) + ∆i
−1 ∀θ̄i,∞ ∈ Θ∞ (12)

Thus, ex-post realized utility is the same along all possible realizations for the shocks.16

Let Υ({ui
t}, ∆i

−1) denote the set of utility allocations {ũi
t} that can be generated by

these perturbations starting from a baseline allocation {ui
t} for a given initial ∆i

−1.17 This
set is convex.

Below, we show that these perturbation are rich enough to deliver the Inverse Euler
equation. In this sense, they fully capture the characterization of optimality stressed by
Golosov et al. (2003).

An allocation {ui
t, ni

t, Kt, et}with utility profile {vi} is ∆-efficient if it is feasible and not
dominated by another feasible allocation {ũi

t, ni
t, K̃t, ẽt} such that {ũi

t} ∈ Υ({ui
t}, ∆i

−1).
Note that conditional efficiency implies ∆-efficiency, since both concepts do not allow

for changes in the labor allocation. Under mild regularity conditions, the converse is also
true. More precisely, in Appendix A, we define the notion of regular utility and labor as-
signments {ui

t, ni
t}.18 We then show that ∆-efficiency coincides with conditional efficiency

on the class of allocations with regular utility and labor assignments. Indeed, given a reg-
ular utility and labor assignment {ui

t, ni
t}, the perturbations Υ({ui

t}, ∆i
−1) characterize all

the utility assignments {ũi
t} such that {ũi

t, ni
t} is regular and satisfies the incentive com-

patibility constraints (7).

Inverse Euler Equation. Building on Section 2, we review briefly the Inverse Euler
equation which is the optimality condition for any ∆-efficient allocation.

Proposition 1. A set of necessary and sufficient conditions for an allocation {ui
t, ni

t, Kt, et} to be

16 The converse is nearly true: by taking appropriate expectations of equation (12) one can deduce equa-
tion (11), but for a technical caveat involving the possibility of inverting the order of the expectations op-
erator and the infinite sum (which is always possible in a version with finite horizon and Θ finite). This
caveat is the only difference between equation (11) and equation (12).

17Our method involves recursive methods. For this reason, it is useful to allow for ∆i
−1 6= 0 in this

definition, even though our planning problem in Section 3.3 imposes ∆i
−1 = 0.

18 Regularity is a mild technical assumption which is necessary to derive an Envelope condition, similar
to that behind equation (3), crucial for our proof.
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∆-efficient is given by

c′(ui
t) =

qt

β
Ei

t[c
′(ui

t+1)] ⇐⇒ 1
U′(c(ui

t))
=

qt

β
Ei

t

[
1

U′(c(ui
t+1))

]
. (13)

where qt = 1/(1 + rt) and
rt ≡ FK(Kt+1, Nt)− δ (14)

is the technological rate of return.

A ∆-efficient allocation that is not deterministic cannot allow agents to save freely
at the technology’s rate of return, since then equation (10) would hold as a necessary
condition, which is incompatible with the planner’s optimality condition, equation (13).

3.3 Efficiency Gains from Optimal Savings Distortions

In this section we consider a baseline allocation and consider an improvement that yields
a ∆-efficient allocation. We define a metric for the efficiency gains from this improvement
that is our measure of the gains from the introduction of optimal savings distortions.

If an allocation {ui
t, ni

t, Kt, et}with corresponding utility profile {vi}, is not ∆-efficient,
then we can always find an alternative allocation {ũi

t, ni
t, K̃t, ẽt} that leaves utility un-

changed, so that ṽi = vi for all i ∈ I, but economizes on resources: K̃0 ≤ K0 and et ≤ ẽt

with at least one strict inequality. In the rest of the paper, we restrict to cases where et = 0,
K̃0 = K0 and ẽt = λ̃Ct for some λ̃ > 0. We then take λ̃ as our measure of efficiency gains
between these allocations. This measure represents the resources that can be saved in all
periods in proportion to aggregate consumption.

We now introduce a planning problem that uses this metric to compute the distance
of any baseline allocation from the ∆-efficient frontier. For any given baseline allocation
{ui

t, ni
t, Kt, 0}, which is feasible with et = 0 for all t ≥ 0, we seek to maximize λ̃ by finding

an alternative allocation {ũi
t, ni

t, K̃t, λ̃Ct} with K̃0 = K0,

K̃t+1 +
∫

Ei[c(ũi
t)]dψ + λ̃Ct ≤ (1− δ)K̃t + F(K̃t, Nt) t = 0, 1, . . . (15)

and
{ũi

t} ∈ Υ({ui
t}, 0).

Let C̃t ≡
∫

Ei[c(ũi
t)]dψ denote aggregate consumption under the optimized allocation.

The optimal allocation {ũi
t, ni

t, K̃t, λ̃Ct} in this program is ∆-efficient and saves an amount
λ̃Ct of aggregate resources in every period. Our measure of the distance of the baseline
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allocation from the ∆-efficient frontier is λ̃.
For future use, we denote the corresponding sequence of interest rates and intertem-

poral prices by 1 + r̃t = 1 + FK(K̃t, Nt)− δ and q̃t = 1/(1 + r̃t).
In Appendix B, we explain why this planning problem is numerically tractable, and

detail a method to solve it. The basic idea is to introduce a relaxed planning problem
which replaces the resource constraints with a single present value condition for a given
sequence of intertemporal prices {q̃t}. The relaxed planning problem can then be further
decomposed in a series of component planning problems corresponding to the different
types i ∈ I.

In most situations, the baseline allocation admits a recursive representation for some
endogenous state variable.19 This is the case whenever θi

t is a Markov process and the
baseline allocation depends on the history of shocks θi,t−1 in a way that can be summa-
rized by an endogenous state xi

t, with law of motion xi
t = M(xi

t−1, θi
t) and given initial

condition xi
0 (types then correspond to different initial values xi

0). The endogenous state xi
t

is a function of the history of exogenous shocks θi,t. Defining the state vector si
t = (xi

t, θi
t)

there must exist a function ū such that ui
t(θ

i,t) = ū(si
t) for all θi,t. In this case, the compo-

nent planning problems can be boiled down to a simple Bellman equation with two state
variables, si

t and ∆i
t−1. This Bellman equation is mathematically isomorphic to solving

an income fluctuation problem where ∆i
t−1 plays the role of wealth, and is amenable to

numerical simulations.

4 Idiosyncratic and Aggregate Gains with Log Utility

In this section, we focus on the case of logarithmic utility. When utility is logarithmic,
our parallel shifts in utility imply proportional shifts in consumption. We first show that
the planning problem can be decomposed into an Idiosyncratic planning problem and a
simple Aggregate planning problem. Logarithmic utility also makes it possible to solve
the idiosyncratic efficiency gains and the corresponding allocation in closed form when
the baseline allocation is recursive and features constant consumption. In this case, the

19 The requirement that the baseline allocation be recursive in this way is hardly restrictive. Of course, the
endogenous state and its law of motion depend on the particular economic model generating the baseline
allocation. A leading example in this paper is the case of incomplete markets Bewley economies in Huggett
(1993) and Aiyagari (1994). In these models, described in more detail in Section 5, each individual is subject
to an exogenous Markov process for income or productivity and saves using a riskless asset. At a steady
state, the interest rate on this asset is constant, so that the agent’s solution can be summarized by a stationary
savings rule. The baseline allocation can then be summarized using asset wealth as an endogenous state,
with law of motion M given by the agent’s optimal saving rule. Another example are allocations generated
by a dynamic contract. The state variable then includes the promised continuation utility (see Spear and
Srivastava, 1987) along with the exogenous state.
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optimum in the planning problem and the efficiency gains λ̃ can be solved out almost ex-
plicitly by combining the solution of the Idiosyncratic problem with that of the Aggregate
planning problem. We then illustrate our results in the simple benchmark case when the
baseline allocation of consumption is a geometric random walk.

4.1 A Decomposition: Idiosyncratic and Aggregate

Idiosyncratic Efficiency Gains. The full planning problem maximizes over utility as-
signments and capital. It is useful to also consider a version of the problem that takes the
baseline sequence of capital {Kt} as given. Thus, define the idiosyncratic planning problem
as maximizing λI subject to∫

Ei[c(ûi
t)]dψ + λ̃ICt ≤ Ct t = 0, 1, . . .

and {ûi
t} ∈ Υ({ui

t}, 0). The idiosyncratic efficiency gains λI represent the constant pro-
portional reduction in consumption that is possible without changing the aggregate se-
quence of capital. Of course, the total efficiency gains are larger than the idiosyncratic
ones: λ̃ ≥ λ̃I .

The solution of the idiosyncratic planning problem improves over the baseline alloca-
tion by ensuring that the marginal rates of substitution corresponding to the Inverse Euler
equation Ei

t
[
c′(ûi

t+1)/
(

βc′(ûi
t)
)]

are equalized across types and histories in every period.
These marginal rates of substitution, however, are not necessarily linked to any techno-
logical rate of transformation as in equation (14). The idiosyncratic efficiency gains thus
correspond to the gains from equalizing the marginal rate of substitution across types and
histories in every period, without changing the sequence of capital.

The aggregate efficiency gains then capture the additional benefits from altering the
aggregate allocation to equalize these marginal rates of substitution with the marginal
rate of transformation in every period.

Aggregate Efficiency Gains. Given λ̃I ∈ [0, 1), the Aggregate planning problem seeks
to determine the aggregate allocation {C̃t, Nt, K̃t, λ̃Ct} that maximizes λ̃A, subject to K̃0 =

K0,
K̃t+1 + C̃t + (λ̃A + λ̃I)Ct ≤ (1− δ)K̃t + F(K̃t, Nt) t = 0, 1, . . .

and
∞

∑
t=0

βtU(C̃t) =
∞

∑
t=0

βtU(Ct(1− λ̃I))
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We refer to λ̃A as aggregate efficiency gains. Note that in this program we can always set
K̃t = Kt and C̃t = (1− λ̃I)Ct which guarantees that λ̃A ≥ 0.

Proposition 2. Suppose the utility is logarithmic and consider a baseline allocation {ui
t, ni

t, Kt, 0}
such that ∑∞

t=0 βtU(Ct) is well defined and finite. Then the total efficiency gains underlying
the planning problem are given by the sum of the idiosyncratic and aggregate efficiency gains:
λ̃ = λ̃I + λ̃A.

Proof. See Appendix C.

The proof of Proposition 2 also establishes that the utility assignment {ûi
t} that solves

the Idiosyncratic planning problem and the utility assignment {ũi
t} that solves the origi-

nal planning problem are related by ũi
t = ûi

t + δt where δt = U(C̃t)−U(Ct(1− λ̃I)).
The analysis of the evolution of the aggregate allocation {C̃t, K̃t} only requires the

knowledge of λ̃I , but can otherwise be conducted separately from the analysis of the
idiosyncratic problem. The aggregate planning problem is simply that of a standard de-
terministic growth model, which, needless to say, is straightforward to solve. For ex-
ample, suppose that the baseline allocation represents a steady state with constant ag-
gregates, Ct = Css, Kt = Kss and Nt = Nss. Then the optimized aggregate allocation
{C̃t, K̃t} converges to a steady state {C̃ss, K̃ss} such that 1− δ + FK(K̃ss, Nss) = 1/β and
C̃ss = F(K̃ss)− δK̃ss − λ̃Css. We will put that result to use in Section 5.

The aggregate planning problem is as a version of the problem that Lucas studied in
his famous “Supply Side Economics” exercise in (Lucas, 1990). Both involve computing
the welfare gains along the transition to a new steady state in the neoclassical growth
model. There is however, an important difference. Indeed, imagine that the Euler equa-
tion holds at the baseline allocation. Then whereas Lucas’ exercise involves computing a
transition to a steady state with more capital, our exercise, by contrast, involves a transi-
tion to a steady state with less capital. The reason is that he considers removing a capital
tax in a model where capital should not be taxed, while we consider introducing optimal
capital taxes in a model where capital should be taxed.

4.2 Example: Steady States with Geometric Random Walk

Although the main virtue of our approach is that we can flexibly apply it to various base-
line allocations, in this section we begin with a simple and instructive case. We maintain
the assumption of logarithmic utility throughout. We take the baseline allocation to be
a geometric random walk: ct+1 = εtct with εt i.i.d. across agents and over time. In the
language of Section 3.3, the baseline allocation is recursive: st+1 = εtst with εt i.i.d. and
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c(s) = s, so that u(s) = U(s). Moreover, we assume that log(ε) is normally distributed
with variance σ2

ε so that E
[
ε
]
·E
[
ε−1] = exp(σ2

ε ). We also assume that the baseline allo-
cation represents a steady state with constant aggregates Ct = Css, Kt = Kss and Nt = Nss

which requires E[ε] = 1. We define rss = FK(Kss, Nss)− δ and qss = 1/(1 + rss). More-
over, we assume that the Euler equation holds at the baseline allocation, which requires
qss = βE[ε−1] = β exp(σ2

ε ).
Although extremely stylized, a random walk is an important conceptual and em-

pirical benchmark. First, most theories—starting with the simplest permanent income
hypothesis—predict that consumption should be close to a random walk. Second, some
authors have argued that the empirical evidence on income, which is a major determi-
nant for consumption, and consumption itself shows the importance of a highly persis-
tent component (e.g. Storesletten, Telmer and Yaron, 2004a). For these reasons, a parsimo-
nious statistical specification for consumption may favor a random walk. Indeed, one can
construct an example economy where a geometric random walk for consumption arises
as a competitive equilibrium with incomplete markets.20

The advantage is that we obtain closed-form solutions for the optimized allocation,
the intertemporal wedge and the efficiency gains. The transparency of the exercise re-
veals important determinants for the magnitude of efficiency gains. A geometric random
walk however, is special for the following reason. If we apply the decomposition of Sec-
tion 4.1, then the idiosyncratic efficiency gains are zero. The entirety of the efficiency
gains are aggregate because, at the baseline allocation, the marginal rates of substitution
Ei

t
[
c′(ui

t+1)/(βc′(ui
t))
]

are already equalized across types and histories to β−1. These
marginal rates of substitution are not equalized, however, to the marginal rate of trans-
formation 1− δ + FK(Kss, Nss). Therefore, this section can be seen as an exploration of the
determinants of aggregate efficiency gains.

Partial Equilibrium: Linear Technology. We first study the case where the technology
is linear with a rate of return q−1 > 1. Since the Euler equation must hold we must have
q = qss = β exp(σ2

ε ). Note that q < 1 imposes, for a given discount rate β, an upper
bound on the variance of the shocks exp(σ2

ε ) < β−1.
Since the idiosyncratic efficiency gains λ̃I are zero, the solution of the planning prob-

lem can be derived by studying the Aggregate planning problem, which takes a remark-
ably simple form. The aggregate consumption sequence {C̃t} that solves the Aggregate

20 Assume V(n; θ) = v(n/θ) and that skills θt evolve as a geometric random walk. Individuals can only
accumulate a riskless asset paying return q−1, equal to the rate of return on the economy’s linear savings
technology, which is assumed to satisfy 1 ≥ βq−1E[ε−1]. There are no taxes. Finally, assume initial assets
are zero. In equilibrium agents hold zero assets and set ct = nt = θtn̄ for some constant n̄.
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planning problem is given by C̃t = Css exp
(

β
1−β σ2

ε

)
exp(−tσ2

ε ). The efficiency gains λ̃

and the optimal utility assignment {ũ} are then readily computed. We can also derive
the intertemporal wedge τ that measures the savings distortions at the optimal allocation
U′(c(ũ(st)) = β(1− τ)q−1E

[
U′(c(ũ(st+1)))|st].

Proposition 3. Suppose that utility is logarithmic and that the technology is linear. Suppose
that the baseline allocation is a geometric random walk with constant aggregate consumption
Ct = Css, that the shocks ε are lognormal with variance σ2

ε and that the Euler equation holds at
the baseline. Then the consumption assignment of the solution of the planning problem is given
by c̃(st) = exp

(
β

1−β σ2
ε

)
exp

(
−tσ2

ε

)
c(st). The intertemporal wedge at the optimal allocation is

given by τ = 1− exp(−σ2
ε ). The efficiency gains are given by λ̃ = 1− β−1−exp σ2

ε

β−1−1 exp
(

β
1−β σ2

ε

)
.

The optimized allocation has a lower drift than the baseline allocation. Intuitively, our
perturbations based on parallel shifts in utility can be understood as allowing consumers
to borrow and save with an artificial idiosyncratic asset, the payoff of which is correlated
with their baseline idiosyncratic consumption process: they can increase their consump-
tion today by reducing their consumption tomorrow in such a way that they reduce their
consumption tomorrow more in states where consumption is high than in states where
consumption is low. The desirable insurance properties of these perturbation make them
attractive, leading to a front-loading of consumption. In other words, because our pertur-
bations allow for better insurance, they reduce the benefits of engaging in precautionary
savings by accumulating a buffer stock of risk free assets. As a result, it is optimal to
front-load consumption, by superimposing a downward drift exp(−σ2

ε ) on the baseline
allocation, where the variance in the growth rate of consumption σ2

ε indexes the strength
of the precautionary savings motive at the baseline allocation.

In this example, the Inverse Euler equation provides a rationale for a constant and
positive wedge τ = 1− exp(−σ2

ε ) in the agent’s Euler equation. This is in stark contrast
to the Chamley-Judd benchmark result, where no such distortion is optimal in the long
run, so that agents are allowed to save freely at the social rate of return.

The efficiency gains are increasing in σ2
ε . Note that when σ2

ε = 0, there are no efficiency
gains. For small values of σ2

ε , the wedge is given by τ ≈ σ2
ε . The formula for the efficiency

gains then takes the form of a simple Ramsey formula λ̃ ≈
(

β/(1− β)2) τ2/2. At the
other extreme, as σ2

ε → − log(β) the efficiency gains converge to 100%. The reason is that
then q → 1, implying that the present value of the baseline consumption allocation goes
to infinity; in contrast, the cost of the optimal allocation remains finite.
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General Equilibrium: Concave Technologies. In this section, we maintain the assump-
tion that utility is logarithmic. We also assume that the baseline allocation is a geometric
random walk representing a steady state with constant aggregates, Ct = Css, Kt = Kss and
Nt = Nss, that the shocks ε are lognormally distributed and that the Euler equation holds
at the baseline allocation. We depart from the partial equilibrium assumption of a lin-
ear technology, and consider instead the case of concave accumulation technologies. We
argue that the efficiency effects may be greatly reduced. This point is not specific to the
model or forces emphasized here. Indeed, a similar issue arises in the Ramsey literature,
the quantitative effects of taxing capital greatly depend on the underlying technology.21

It is important to confront this issue to reach meaningful quantitative conclusions.22

The point that general equilibrium considerations are important can be made most
clearly from the following example. We consider the extreme case of a constant endow-
ment: the economy has no savings technology, so that Ct ≤ Nt for t = 0, 1, . . . (Huggett,
1993). Then the baseline allocation is ∆-efficient. This result follows since one finds a
sequence of intertemporal prices q̃t such that the Inverse Euler equation (13) holds. Thus,
in this exchange economy there are no efficiency gains from perturbing the allocation—
no efficiency gains from saving distortions.23 Certainly the fixed endowment case is an
extreme example, but it serves to illustrate that general equilibrium considerations are
extremely important.

Consider now a neoclassical production function F(K, N). Applying the results in
Section 4.1, we can decompose the efficiency gains into idiosyncratic and aggregate effi-
ciency gains. We have already argued that the corresponding efficiency gains are equal
to zero λI = 0. Therefore, and just as in the partial equilibrium case, all the efficiency
gains are aggregate. The aggregate planning problem is a simple modification of the
neoclassical growth model. The solution involves a transition to a steady state with an
interest rate equal to r̃ss = 1/β − 1. The efficiency gains, which reflect the strength of
the precautionary savings motive, depend on how much lower than r̃ss the interest rate
rss = 1/

(
β exp(σ2

ε )
)

at the baseline allocation is.24 This, in turn depends on the variance

21 Indeed, Stokey and Rebelo (1995) discuss the effects of capital taxation in representative agent en-
dogenous growth models. They show that the effects on growth depend critically on a number of model
specifications. They then argue in favor of specifications with very small growth effects, suggesting that a
neoclassical growth model with exogenous growth may provide an accurate approximation.

22 A similar point is at the heart of Aiyagari’s (1994) paper, which quantified the effects on aggregate
savings of uncertainty with incomplete markets. He showed that for given interest rates the effects could
be enormous, but that the effects were relatively moderate in the resulting equilibrium of the neoclassical
growth model.

23This point holds more generally in an endowment economy with CRRA utility when the baseline allo-
cation is a geometric random walk.

24 As already noted in Section 4.1, this analysis is akin to the one in (Lucas, 1990). But while his exer-
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of consumption growth σ2
ε .

Empirical Evidence. Suppose one accepts the random walk specification of consump-
tion as a useful approximation. What does the available empirical evidence say about
the crucial parameter σ2

ε ? Unfortunately, the direct empirical evidence on the variance of
consumption growth is very scarce, due to the unavailability of good quality panel data
for broad categories of consumption.25 Moreover, much of the variance of consumption
growth in panel data may be measurement error or attributable to transitory taste shocks
unrelated to the permanent changes we are interested in here.

There are a few papers that, somewhat tangentially, provide some direct evidence on
the variance of consumption growth. We briefly review some of this recent work to pro-
vide a sense of what is currently available. Using PSID data, Storesletten, Telmer and
Yaron (2004a) find that the variance in the growth rate of the permanent component of
food expenditure lies between 1%–4%.26 Blundell, Pistaferri and Preston (2008) use PSID
data, but impute total consumption from food expenditure. Their estimates imply a vari-
ance of consumption growth of around 1%.27 Krueger and Perri (2004) use the panel
element in the Consumer Expenditure survey to estimate a statistical model of consump-
tion. At face value, their estimates imply enormous amounts of mobility and a very large
variance of consumption growth—around 6%–7%—although most of this should be at-
tributed to a transitory, not permanent, component.28 In general, these studies reveal the
enormous empirical challenges faced in understanding the statistical properties of house-
hold consumption dynamics from available panel data.

An interesting indirect source of information is the cohort study by Deaton and Pax-
son (1994). This paper finds that the cross-sectional inequality of consumption rises as
the cohort ages. The rate of increase then provides indirect evidence for σ2

ε ; their point
estimate implies a value of σ2

ε = 0.0069. However, recent work using a similar method-
ology finds much lower estimates (Slesnick and Ulker, 2004; Heathcote, Storesletten and
Violante, 2004).

cise involves computing a transition to a steady state with more capital, whereas our exercise involves a
transition to a steady state with less capital.

25 For the United States the PSID provides panel data on food expenditure, and is the most widely used
source in studies of consumption requiring panel data. However, recent work by Aguiar and Hurst (2005)
show that food expenditure is unlikely to be a good proxy for actual consumption.

26 See their Table 3, pg. 708.
27 See their footnote 21.
28 They specify a Markov transition matrix with 9 bins (corresponding to 9 quantiles) for consumption.

We thank Fabrizio Perri for providing us with their estimated matrix. Using this matrix we computed that
the conditional variance of consumption growth had an average across bins of 0.0646 (this is for the year
2000, the last in their sample; but the results are similar for other years).
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Figure 2: Efficiency gains in % when baseline consumption is a geometric random walk
for consumption and the Euler equation holds as function of σ2

ε . The left panel shows the
gains in partial equilibrium and the right panel shows the gains in general equilibrium.
The bottom dotted line corresponds to β = .96, the middle dashed line to β = .97 and top
plain line to β = .98.

Calibration. We now display the efficiency gains as a function of σ2
ε . We choose three

possible discount factors β = 0.96, 0.97 and 0.98. For the linear technology model, this
imposes q = β exp(σ2

ε ). For the neoclassical growth model, we take F(K, N) = KαN1−α

with α = 1/3. Figure 2 plots the efficiency gains as a function of exp(σ2
ε ) for the linear

technology model and for the neoclassical growth model. The figure uses an empirically
relevant range for exp(σ2

ε ).
Consider first the linear technology model. For the parameters under consideration,

the efficiency gains range from minuscule—less than 0.1% to very large—over 10%. The
effect of the discount factor β is nearly equivalent to increasing the variance of shocks;
that is, moving from β = .96 to β = .98 has the same effect as doubling σ2

ε . To understand
this, interpret the lower discounting not as a change in the actual subjective discount, but
as calibrating the model to a shorter period length. But then holding the variance of the
innovation between periods constant implies an increase in uncertainty over any fixed
length of time. What matters is the amount of uncertainty per unit of discounted time.
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Consider now the neoclassical growth model. There again, there is considerable vari-
ation in the size of the efficiency gains, depending on the parameters. However, note that
the efficiency gains are much smaller than in the linear technology model. Large differ-
ences in interest rates r̃ss − rss are necessary to generate substantial efficiency gains: it
takes a difference of around 2%, to get efficiency gains that are bigger than 1%.

Lessons. Three lessons emerge from our simple exercise. First, efficiency gains are po-
tentially far from trivial. Second, they are quite sensitive to two parameters of our exer-
cise: the variance in the growth rate of consumption and the subjective discount factor.
Third, general equilibrium forces can greatly reduce efficiency gains.

5 A Numerical Exploration

In the previous section we provided a method to compute efficiency gains as a function
of a baseline consumption process. We also explored the potential gains for a simple
random-walk consumption process. On the one hand, this had the advantage of allowing
for easily interpretable closed-form solutions, delivering some important insights. On the
other hand, the available empirical evidence reviewed above does not provide reliable
estimates for the variance of consumption growth. Moreover, consumption may not be a
random walk.

A different strategy is to use consumption processes obtained from an incomplete-
market income-fluctuations model. This class of models has been relatively successful at
matching data on income, consumption and wealth. Consequently, in this section we take
as our baseline the steady-state equilibrium allocation of such a model. Since our goal is
to explore the main determinants of the gains from optimal capital taxation we simulate
model economies for a wide range of parameters. There is no absolute consensus among
the empirical literature, so this broad exploration also has the advantage of spanning the
type of parameters used in various studies.

The Model Economy. We follow Aiyagari (1994), who considered a Bewley economy,
where a continuum of agents each solve an income fluctuations problem, saving in a risk
free asset. Efficiency labor is specified as a first-order autoregressive process in logarithms
log(nt) = ρ log(nt−1) + (1− ρ) log(nss) + εt where εt is an i.i.d. random variable assumed
normally distributed with mean zero and standard deviation σε. With a continuum of
mass one of agents the average efficiency labor supply is Nss = nss.
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Labor income is given by the product wss nt where wss is the steady-state wage. Agents
face the following sequence of budget constraints at+1 + ct ≤ (1 + rss)at + wssnt for all
t = 0, 1, . . .. In addition borrowing is not allowed: at ≥ 0.

The equilibrium steady-state wage is given by the marginal product of labor wss =

FN(Kss, Nss) and the interest rate is given by the net marginal product of capital, rss =

FK(Kss, Nss) − δ.29 For any interest rate rss < β−1 − 1, agent optimization leads to an
invariant cross-sectional distribution for st, which we denote by ψ. A steady-state equi-
librium requires average assets, under ψ, to equal the capital stock Kss.

Individual consumption is a function of the state variable st ≡ (at, nt) which evolves
as a Markov process. We take this as our baseline allocation with agents distinguished by
their initial conditions i = s0, distributed according to the invariant distribution ψ.

Calibration. We simulate the economy for the wide range of parameter values consid-
ered in Aiyagari (1994). To solve the planning problem we use the theoretical results de-
scribed in Appendix B. We show how to solve the general equilibrium planning problem
by decentralizing it using intertemporal prices. A component planner then minimizes the
present value cost, taking these intertemporal prices as given. One can solve this latter
optimization using recursive methods. Appendix D contains some further details on the
numerical implementation of this approach.

The discount factor is set to β = .96, the production function is Cobb-Douglas with a
share of capital of 0.36, capital depreciation is 0.08. The utility function is assumed CRRA
so that U(c) = c1−σ/(1− σ) with σ ∈ {1, 3, 5}. Aiyagari argues, based on various sources
of empirical evidence, for a baseline parametrization with a coefficient of autocorrelation
of ρ = 0.6 and a standard deviation of labor income of 20%. We also consider different
values for the coefficient of relative risk aversion , the autocorrelation coefficient ρ ∈
{0, 0.3, 0.6, 0.9} and the standard deviation of log income, Std(log(nt)) = σε ∈ {0.2, 0.4}.

These values are based on the following studies. Kydland (1984) finds that the stan-
dard deviation σε of annual hours worked from PSID data is around 15%. Using data
from the PSID and the NLS, Abowd and Card (1987) and Abowd and Card (1989) find
that the standard deviation of percentage changes in real earnings and annual hours are
about 40% and 35% respectively. They report a first order serial correlation coefficient ρ of
about 0.3, resulting in a estimate of σε of 34%. Using PSID data, Heaton and Lucas (1996)
estimate a range of 0.23 to 0.53 for ρ and a range of 27% to 40% for σε.

29 For simplicity this assumes no taxation. It is straightforward to introduce taxation. However, we
conjecture that since taxation of labor income acts as insurance, it effectively reduces the variance of shocks
to net income. Lower uncertainty will then only lower the efficiency gains we compute.
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Figure 3: Simulated path of aggregate consumption for the baseline and the optimized
allocations for σ = 1, Std(log(nt)− log(nt−1)) = .4 and ρ = 0.9.

Some recent studies, within a life cycle context, consider an alternative approach and
estimate a process for log earnings indirectly, by using the increase in the observed cross-
sectional inequality of earnings over time within a cohort. Two views have been articu-
lated. The first view, dating back to Deaton and Paxson (1994) and developed most re-
cently by Storesletten et al. (2004a) and Storesletten et al. (2004b), posits that the increase
in earning inequality over time within a cohort is due to large and persistent income
shocks. This view leads to estimates of ρ around or above 0.9 and a range of estimates
for σε between 0.3 and 0.6, on the high end of the range of parameter values explored by
Aiyagari (1994).30 The second view, dating back to Lillard and Weiss (1979) and Hause
(1980) and developed more recently by Guvenen (2007, 2009) argues that the increase in
cross sectional earnings inequality over time within a cohort is better explained by an
alternative model where agents face individual-specific income profiles. This view leads
to lower values for ρ and σε, around 0.8 and 25% respectively. Since both approaches are
based on a life-cycle framework, the estimates are not directly relevant for our infinite
horizon setup.31

30 This literature typically fits an ARMA(1,1) instead of an AR(1) to the income process. The presence of
the MA component results in higher estimated values for the autoregressive coefficient.

31Indeed, as we have shown, a key object for our analysis is the conditional variance of consumption
growth which depends on the conditional variance of permanent income growth. Life-cycle models incor-
porate a retirement period, generating a longer horizon for consumption than for labor income, reducing
the impact of permanent income shocks on consumption. Taking this into account, estimates for the per-
sistence ρ and the standard deviation of labor income σε derived in the context of a life-cycle model would
therefore have to be adjusted downwards in order to be used in our numerical exercises.
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Figure 4: Simulation of a typical individual sample path for σ = 1, Std(log(nt) −
log(nt−1)) = .4 and ρ = 0.9.

Results. We find that the optimized allocation always features aggregates converging
to new steady state values: C̃t → C̃ss, K̃t → K̃ss, q̃t → q̃ss as t → ∞. The new steady state
interest rate r̃ss = 1/q̃ss − 1 is always higher than r̃ss ≥ 1/β− 1 as long as σ ≥ 1, with
equality when σ = 1. By contrast, the initial interest rate is rss < 1/β− 1.32,33 Figure 3
plots the path of aggregate consumption for one particular parameter case.34 Since the
baseline allocation represents a steady state, its aggregate consumption is constant. Ag-
gregate consumption for the optimized allocation is initially above this level, but declines
monotonically, eventually reaching a new, lower, steady state. For the same parameter
values, Figure 4 shows a typical sample path for individual income, cash in hand, con-
sumption and utility. Optimized consumption appears more persistent and displays a
downwards trend in the initial periods.

Tables 2, 3 and 4 collect the results of our simulations. All tables report our measure
of efficiency gains, λ̃. In the logarithmic utility case (σ = 1), Table 2 includes the idiosyn-
cratic and aggregate components λ̃I and λ̃A. For references, the tables show the baseline
and optimized steady state interest rates rss and r̃ss. The second column, showing rss,
closely confirms Aiyagari’s Table II (pg. 678).

32By contrast, when σ < 1, any steady state of a ∆-efficient allocation features an interest rate lower than
1β− 1.

33 In the case of logarithmic utility functions, we provided a formal proof of this result in Section 4.1. In
the more general CRRA utility function case, we rely solely on our numerical results.

34The figure plots the cross-sectional average of a large Monte Carlo simulation. This explains why the
path is not completely smooth, displaying some wiggles due to some remaining sampling error.
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σ = 1 and Std(log(nt)− log(nt−1)) = .2
Efficiency Gains

ρ rss r̃ss Idiosyncratic Aggregate Total Borrowing
0 4.14% 4.17% 0.0% 0.0% 0.0% 0.0%
0.3 4.13% 4.17% 0.0% 0.0% 0.0% 0.0%
0.6 4.09% 4.17% 0.0% 0.0% 0.0% 0.0%
0.9 3.95% 4.17% 0.2% 0.0% 0.2% 0.1%

σ = 1 and Std(log(nt)− log(nt−1)) = .4
Efficiency Gains

ρ rss r̃ss Idiosyncratic Aggregate Total Borrowing
0 4.06% 4.17% 0.1% 0.0% 0.1% 0.1%
0.3 3.97% 4.17% 0.2% 0.0% 0.2% 0.2%
0.6 3.79% 4.17% 0.4% 0.0% 0.4% 0.3%
0.9 3.38% 4.17% 1.2% 0.1% 1.3% 1.1%

Table 2: Efficiency Gains for replication of Aiyagari (1994) when σ = 1.

The baseline’s interest rate rss is decreasing in the size and persistence of the shocks,
as well as in the coefficient of relative risk aversion. Precautionary saving motives are
stronger and depress the equilibrium interest rate. In particular, r̃ss = 1/β − 1 when
utility is logarithmic, and r̃ss > 1/β− 1 when σ > 1. Moreover, we find that r̃ss increases
with σ and the size and the persistence of the labor income shocks. These comparative
statics for r̃ss are precisely the reverse of those for rss, which is perhaps not surprising,
given the reversal in the sign of the power coefficients in the Inverse Euler and Euler
equations, σ and −σ, respectively.

Efficiency gains are increasing with the variance of the shocks and with their persis-
tence. They also increase with the coefficient of relative risk aversion. Aiyagari argues,
based on various sources of empirical evidence, for a parameterization with a coefficient
of autocorrelation of ρ = 0.6 and a standard deviation of labor income of 20%. For this
baseline specification, we find that efficiency gains are small—below 0.2% for all three
values for the coefficient of relative risk aversion.

In the logarithmic case, the efficiency gains we compute are less than 1.3%. Our de-
composition along the lines of Section 4.1 shows that idiosyncratic efficiency gains λ̃I

are more important than aggregate efficiency gains λ̃A. For the baseline parameteriza-
tion, idiosyncratic efficiency gains are quite small. This could have perhaps been antici-
pated by our illustrative geometric random-walk example, where idiosyncratic gains are
zero. Intuitively, efficiency gains from the idiosyncratic component require differences in
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σ = 3 and Std(log(nt)− log(nt−1)) = .2
Efficiency Gains

ρ rss r̃ss Total Borrowing
0 4.09% 4.21% 0.0% 0.0%
0.3 4.02% 4.37% 0.0% 0.0%
0.6 3.88% 4.45% 0.2% 0.2%
0.9 3.36% 4.75% 0.7% 0.7%

σ = 3 and Std(log(nt)− log(nt−1)) = .4
Efficiency Gains

ρ rss r̃ss Total Borrowing
0 3.77% 4.62% 0.2% 0.2%
0.3 3.47% 4.77% 0.5% 0.5%
0.6 2.89% 5.03% 1.2% 1.2%
0.9 1.47% 5.56% 4.2% 3.3%

Table 3: Efficiency Gains for replication of Aiyagari (1994) when σ = 3.

the expected consumption growth rate across individuals. When individuals are able to
smooth their consumption over time effectively the remaining differences are small—as
a result, so are the efficiency gains. Efficiency gains from the aggregate component are
directly related to the difference between the equilibrium and optimal stead-state capi-
tal. With logarithmic utility this is equivalent, to the difference between the equilibrium
steady-state interest rate and β−1 − 1, the interest rate that obtains with complete mar-
kets. Hence, our finding of low aggregate efficiency gains is directly related to Aiyagari’s
(1994) main conclusion: for shocks that are not too large or for moderate risk aversion,
precautionary savings are small in the aggregate, in that steady-state capital and interest
rate are close their complete-markets levels, as shown in our Figure 2.

For the range of parameters that we consider, the efficiency gains range from less than
0.1% to 8.4%. However, efficiency gains larger than 1.3% are only reached for combina-
tions of high values of relative risk aversion— σ greater than 3—and both large and highly
persistent shocks—a standard deviation of labor income of 40% and a mean-reversion co-
efficient ρ greater than 0.6.

The Role of Borrowing Constraints. The market arrangement in Aiyagari’s economy
imposes borrowing constraints that limit the ability to trade consumption intertempo-
rally. At the baseline allocation, the Euler equation holds with equality U′(c(ui

t)) =

β(1 + rss)Ei
t
[
U′(c(ui

t+1))
]

when assets and current income are high enough. However,
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σ = 5 and Std(log(nt)− log(nt−1)) = .2
Efficiency Gains

ρ rss r̃ss Total Borrowing
0 4.01% 5.34% 0.0% 0.0%
0.3 3.89% 5.39% 0.0% 0.0%
0.6 3.61% 5.48% 0.2% 0.2%
0.9 2.66% 5.72% 1.0% 1.0%

σ = 5 and Std(log(nt)− log(nt−1)) = .4
Efficiency Gains

ρ rss r̃ss Total Borrowing
0 3.43% 5.54% 0.2% 0.2%
0.3 2.90% 5.55% 0.7% 0.7%
0.6 1.95% 5.58% 2.1% 2.0%
0.9 −0.16% 5.52% 8.4% 6.3%

Table 4: Efficiency Gains for replication of Aiyagari (1994) when σ = 5.

for low levels of assets and income, the agent may be borrowing constrained so that the
Euler condition holds with strict inequality U′(c(ui

t)) > β(1 + rss)Ei
t
[
U′(c(ui

t+1))
]
.

In contrast, since our planning problem does not impose arbitrary restrictions on
the perturbations, it places no such limits on intertemporal reallocation of consumption.
Thus, the perturbations can effectively undo limits to borrowing. As a result, part of the
efficiency gains we compute can be attributed to the relaxation of borrowing constraints,
not to the introduction of savings distortions.

To get an idea of the efficiency gains that are obtained from the relaxation of borrowing
constraints, we performed the following exercise. The basic idea is to use the perturba-
tions to construct a new allocation where the Euler equation always holds with equality.
That is, the new allocation stops short of satisfying the Inverse Euler equation, so it does
not introduce positive intertemporal wedges. Instead, it removes the negative intertem-
poral wedges that were present due to borrowing constraints. We compute the resource
savings from this perturbations as a simple measure of the efficiency gains due to the
relaxation of borrowing constraints.

More precisely, we seek to determine the unique allocation {ũi,B
t , ni

t, K̃B
t , λ̃BCss}, where

B stands for borrowing, that satisfies the following constraints. First, we impose that
the allocation be achievable through parallel perturbations of the baseline allocation, and
deliver the same utility

{ũi,B
t } ∈ Υ({ui

t}, 0).
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Second, we impose that the resource constraints hold

K̃B
t+1 +

∫
Ei
[
c(ũi,B

t )
]

dψ + λ̃BCss ≤ (1− δ)K̃B
t + F(K̃B

t , Nss) t = 0, 1, . . .

and require that the initial capital be equal the initial capital K̃B
0 = K0 of the baseline

allocation. Finally, we impose that the Euler equation hold for every agent in every period

U′(c(ũi,B
t )) = β[1− δ + FK(K̃B

t+1, Nss)]E
i
t[U
′(c(ũi,B

t+1))].

The allocation {ũi,B
t , ni

t, K̃B
t , λ̃BCss} can improve on the baseline allocation by insuring that

the Euler equation holds for every agent in every period. Note that this allocation does
not satisfy the Inverse Euler equation and is therefore not ∆-efficient. We adopt λ̃B as our
measure of the efficiency gains deriving from the relaxation of borrowing constraints.

The rightmost column in each of table reports the efficiency gains λ̃B that can be at-
tributed to the relaxation of borrowing constraints. Perhaps the most important conclu-
sion of our numerical exercise can be drawn by comparing the total efficiency gains λ̃ to
λ̃B. We find that, across all specifications, most of the efficiency gains come from the relax-
ation of borrowing constraints. Indeed, the difference between λ̃ and λ̃B is less than 0.1%
except for the largest and most persistent shocks—a standard deviation of labor income
growth of 40%, and a mean-reversion coefficient ρ equal to 0.9. In other words, most of
the efficiency come from allowing agents to better smooth their consumption over time
by alleviating borrowing constraints, rather than by optimally distorting savings as pre-
scribed by the Inverse Euler equation.

6 Conclusions

This paper provided a method for evaluating the auxiliary role that savings distortions
play in social insurance arrangements. We put it to use to evaluate the welfare importance
of recent arguments for capital taxation based on the Inverse Euler equation. Our main
finding is that, once general equilibrium effects are taken into account, these gains are
small.

The method developed here is flexible enough to accommodate several extensions
and it may be of interest to investigate how these may affect the quantitative conclusions
found here for our benchmark calibration. In a separate paper (Farhi and Werning, 2008)
we pursued such an extension using Epstein-Zin preferences that separate risk aversion
from the intertemporal elasticity of substitution.
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Our results do not imply that dynamic aspects of social insurance design are unim-
portant, only that the role for savings distortions is modest. More work is needed to char-
acterize other aspects of efficient insurance arrangements. In Farhi and Werning (2010),
we take a step in this direction, delivering an efficiency condition that provides a tight
characterization of the optimal labor distortions.
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Appendix

A Proofs for Section 3.2

To simplify the arguments, we first assume that the horizon is finite with terminal period
T > 0. We also assume that V (n; θ) is continuously differentiable with respect to n and θ.
We also assume throughout that shocks are continuous.

Consider an assignment for utility and labor
{

ui
t, ni

t
}

. We define the continuation
value U

(
θi,t) conditional on history θi,t as follows

Ui
(

θi,t
)
= E

[
T

∑
s=0

βs
[
ui

t+s

(
θi,t+s

)
−V

(
ni

t+s

(
θi,t+s

)
; θi

t+s

)]
|θi,t

]
.

Fix a history θi,t and consider a report θ̂i
t ∈ Θ. Define the strategy σθi,t

θ̂i
t

as follows:

σθi,t

θ̂i
t

(
θi,s) = θi,s except if θi,s � θi,t, in which case

σθi,t

θ̂i
t

(
θi,t−1, θi

t, θi
t+1, θi

t+2...
)
= (θi,t−1, θ̂i

t, θi
t+1, θi

t+2, ....).

This strategy coincides with truth-telling except in period t after history θi,t where the
report θ̂i

t can be different from the true shock θi
t.

For clarity and brevity, we use the notation θ̂i,s for σθi,t

θ̂i
t
(θi,s). We denote the continua-

tion utility after history θi,s � θi,t under the strategy σθi,t

θ̂i
t

, by Ui
(

σθi,t

θ̂i
t

(
θi,s)) or Ui (θ̂i,s; θi,t)

for short. Similarly, we denote by E
[
Ui (θ̂i,s; θi,t)] or E

[
Ui (θ̂i,s) |θi,t] the expectation of

this continuation utility, conditional on the realized history θi,t at date t.
We say that the assignment for utility and labor

{
ui

t, ni
t
}

is regular if for all t ≥ 0 and
θi,t−1 ∈ Θt, the continuation utility Ui (θ̂i,t; θi,t

)
is absolutely continuous in the true shock

θi
t, differentiable with respect to the true shock θi

t, and the derivative, which we denote by

− ∂

∂θi
t
V
(

n
(

θ̂i,t
)

; θi
t

)
+ β

∂

∂θi
t
E
[
Ui
(

θ̂i,t+1
)
|θi,t
]

is bounded by a function b(θi
t; θi,t−1) which is integrable with respect to θi

t.
Consider two regular, incentive compatible, assignments for utility and labor

{
ui

t, ni
t
}

and
{

ũi
t, ni

t
}

, that share the same assignment for labor
{

ni
t
}

. Denote by
{

Ui} and
{

Ũi}
the corresponding continuation utilities. We now show that there exists ∆−1 ∈ R such
that

{
ũi

t
}
∈ Υ

({
ui

t
}

, ∆−1
)
.

Note we can restate the result as follows: for all t with 0 ≤ t ≤ T − 1 and for all
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θi,t−1 ∈ Θt, there exists ∆
(
θi,t−1) ∈ R such that

Ũi
(

θi,t
)
= Ui

(
θi,t
)
+ ∆

(
θi,t−1

)
. (16)

Fix a history θi,t and consider the strategies σθi,t

θ̂i
t

. Using Theorem 4 in Milgrom and Segal
(2002), incentive compatibility and regularity implies the following Envelope condition

Ui
(

θi,t−1, θi
t

)
= Ui

(
θi,t−1, θi′

t

)
+
∫ θi

t

θi′
t

[
− ∂

∂θ̃i
t
|θ̃i

t=θ̄i
t
V
(

n
(

θ̄i,t
)

; θ̃i
t

)
+ β

∂

∂θ̃i
t
|θ̃i

t=θ̄i
t
E
[
Ui
(

θ̄i,t+1
)
|(θ̄i

t−1, θ̃i
t)
]

dθ̄i
t

]
. (17)

where θ̄i,t+s =
(
θi,t−1, θ̄i

t, θi
t+1, ..., θi

t+s
)

for all s ≥ 0 and θ̄i,t−s = θi,t−s for all s > 0.
The same expression holds for

{
ũi

t, ni
t
}

. Using the fact that shocks are continuous and
that

{
ui

t, ni
t
}

and
{

ũi
t, ni

t
}

share the same labor assignment, this implies that there exists
∆
(
θi,t−1) ∈ R such that

Ũi
(

θi,t
)
= Ui

(
θi,t
)
+ ∆

(
θi,t−1

)
+ β

∫ θi
t

θ

∂

∂θ̃i
t
|θ̃i

t=θ̄i
t
E
[
Ũi
(

θ̄i,t+1
)
−Ui

(
θ̄i,t+1

)
|(θ̄i

t−1, θ̃i
t)
]

dθ̄i
t.

For t = T, the last term on the right hand side vanishes and we have that for all θi,T ∈
ΘT+1, there exists ∆

(
θi,T−1) ∈ R such that (16) holds. We proceed by induction on t.

Suppose that t ≥ 0 and that for all θi,t ∈ Θt+1, there exists ∆
(
θi,t) ∈ R such that (16)

holds. Then applying (17) and using the fact that

∂

∂θ̃i
t
|θ̃i

t=θ̄i
t
E
[
∆
(

θ̄i,t
)
|(θ̄i,t−1, θ̃i,t)

]
= 0,

we immediately find that for all θi,t−1 ∈ Θt there exists ∆
(
θi,t−1) ∈ R such that

Ũi
(

θi,t
)
= Ui

(
θi,t
)
+ ∆

(
θi,t−1

)
.

The proof follows by induction.
When the horizon is infinite, the regularity conditions must be complemented with a

limit condition. For example, expanding our Envelope condition over two periods, we
find
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Ũi
(

θi,t
)
= Ui

(
θi,t
)
+ ∆

(
θi,t−1

)
+ β2

∫ θi
t

θ

∂

∂θ̃i
t
|θ̃i

t=θ̄i
t

E

[∫ θ̄i
t+1

θ

∂

∂θ̃i
t+1
|
θ̃i

t+1=
←→
θ i

t+1
E
[(

Ũi −Ui
) (←→

θ i,t+2
)
|(←→θ i,t, θ̃i,t+1)

]
d
←→
θ i

t|(θ̄i,t−1, θ̃i,t)

]
dθ̄i

t.

Consider the sequence which is constructed by iterating our Envelope condition for the
utility and labor assignment {ui

t, ni
t}. The first element of the sequence is

β
∫ θi

t

θ

∂

∂θ̃i
t
|θ̃i

t=θ̄i
t
E
[
Ui
(

θ̄i,t+1
)
|(θ̄i,t−1, θ̃i,t)

]
dθ̄i

t.

Similarly, the second element of the sequence is

β2
∫ θi

t

θ

∂

∂θ̃i
t
|θ̃i

t=θ̄i
t

E

[∫ θ̄i
t+1

θ

∂

∂θ̃i
t+1
|
θ̃i

t+1=
←→
θ i

t+1
E
[
Ui
(←→

θ i,t+2
)
|(←→θ i,t, θ̃i,t+1)

]
d
←→
θ i

t|(θ̄i,t−1, θ̃i,t)

]
dθ̄i

t.

Our proof then carries over if the condition that the limit of these terms when the number
of iterations goes to infinity is equal to zero is added to the requirements for regularity.

B Solving the Planning Problem: Relaxed Planning Prob-

lem and Component Planning Problems

B.1 Relaxed Problem

We now construct a relaxed planning problem that replaces the resource constraints with
a single present value condition. This problem is indexed by a sequence of intertemporal
prices or interest rates, which encodes the scarcity of aggregate resources in every pe-
riod. The relaxed planning problem can be further decomposed in a series of component
planning problems corresponding to the different types i ∈ I.

Given some positive intertemporal prices {Q̃t}with the normalization that ∑t=0 Q̃tCt =

1 we replace the sequence of resource constraints (15) with the single present value con-
dition

λ̃ =
∞

∑
t=0

Q̃t

(
F(K̃t, Nt) + (1− δ)K̃t − K̃t+1 −

∫
Ei
[
c(ũi

t)
]

dψ

)
(18)

which is obtained by multiplying equation (15) by Q̃t and summing over t = 0, 1, . . .

41



Formally, the relaxed planning problem seeks the allocation {ũi
t, ni

t, K̃t, λ̃Ct} where {ũi
t} ∈

Υ({ui
t}, 0) that maximizes λ̃ given by equation (18).

The connection with the original planning problem is the following. Suppose that,
given some {Q̃t}, the optimal allocation {ũi

t, ni
t, K̃t, λ̃Ct} for the relaxed problem satisfies

the resource constraints (15). Then, this allocation solves the original planning problem.
This relaxed problem approach is adapted from Farhi and Werning (2007) and is related
to the first welfare theorem proved in Atkeson and Lucas (1992).

The converse is also true. Indeed, the prices {Q̃t} are Lagrange multipliers and La-
grangian necessity theorems guarantee the existence of prices {Q̃t} for the relaxed prob-
lem. The following lemma, which follows immediately from Theorem 1, Section 8.3 in
Luenberger (1969), provides one such result.

Lemma 1. Suppose {ũi
t, ni

t, K̃t, λ̃Ct} solves the planning problem and the resource constraints (15)
hold with equality. Then there exists a sequence of prices {Q̃t} such that this same allocation solves
the relaxed planning problem.

The relaxed planning problem can be decomposed into a subproblem for capital {K̃t}
and a series of component planning problems for the utility assignment {ũi

t}. The sub-
problem for capital maximizes the right hand side of equation (18) with respect to {K̃t+1}.
The first-order conditions, which are necessary and sufficient for an interior optimum, are

1 = q̃t
(

FK(K̃t+1, Nt+1) + 1− δ
)

t = 0, 1, . . .

where q̃t ≡ Q̃t+1/Q̃t. This equation, together with the normalization that ∑∞
t=0 Q̃tCt = 1,

implies a one-to-one relationship between {K̃t+1} and {Q̃t}.
The component planning problem for type i ∈ I maximizes the right hand side of

equation (18) with respect to the utility assignment {ũi
t} ∈ Υ({ui

t}, 0). The objective
reduces to minimizing the present value of consumption:

∞

∑
t=0

Q̃t

Q̃0
Ei
[
c(ũi

t)
]

. (19)

Each of these component planning problems can be solved independently. Since both the
objective and the constraints are convex it follows immediately that, given {q̃t}, the first
order conditions for optimality at an interior solution in the component planning problem
(19) coincide exactly with the Inverse Euler equation (13):

c′(ũi
t) =

q̃t

β
Ei

t[c
′(ũi

t+1)] t = 0, 1, . . .
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B.2 A Bellman Equation

In most situations of interest, the baseline allocation admits a recursive representation
for some endogenous state variable. This is the case whenever {θi

t} is a Markov process
and the baseline allocation depends on the history of shocks θi,t−1 in a way that can be
summarized by an endogenous state xi

t, with law of motion xi
t = M(xi

t−1, θi
t) and given

initial condition xi
0. Note that the transition matrix M is assumed to be independent of i.

Types then correspond to different initial value xi
0. This difference is the only thing that

distinguishes them. The endogenous state xi
t is a function of the history of exogenous

shocks θi,t. Defining the state vector si
t = (xi

t, θi
t) there must exist a function ū such that

ui
t(θ

i,t) = ū(si
t) for all θi,t. In what follows we drop the hat notation and we stop indexing

the allocation by the type i of the agents. We denote a baseline allocation by u(st) and use
the notation c(st) for c(u(st)).

For such baseline allocations we can reformulate the component planning problems
recursively as follows.

The idea is to take st as an exogenous process and keep track of the additional lifetime
utility ∆t−1 previously promised as an endogeneous state variable.

For any date τ define the continuation plans {uτ
t }∞

t=0 with uτ
t (s) = ut+τ(s) and the

value function corresponding to the component planning problem starting at date τ with
state s

K(∆−, s; τ) ≡ inf
∞

∑
t=0

Q̃τ+t

Q̃τ
E [c(ũτ

t ) | sτ = s] s.t. {ũτ
t } ∈ Υ({uτ

t }, ∆−).

This value function satisfies the Bellman equation

K(∆−, s; τ) = min
∆

[
c(u(s) + ∆− − β∆) + q̃τE[K(∆, s′; τ + 1) | s]

]
. (20)

The optimization over ∆ is one-dimensional and convex and delivers a policy function
g(∆−, s; τ). Combining the necessary and sufficient first-order condition for ∆ with the
envelope condition yields the Inverse Euler equation in recursive form

c′ (u(s) + ∆− − βg(∆−, s; τ)) =
q̃τ

β
E
[
c′
(
u(s′) + g(∆−, s; τ)− βg(g(∆−, s; τ), s′; τ + 1)

)
| s
]

This condition can be used to compute g(·, ·; τ) for given g(·, ·, τ + 1).
An optimal plan for {ũt} can then be generated from the sequence of policy functions

{g(·, ·; τ)} by setting ũ(st) = u(st) + ∆(st−1) − β∆(st) and using the recursion ∆(st) =

g(∆(st−1), st; t) with initial condition ∆−1 = 0.
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With a fixed discount factor q, the value function is independent of time, K(∆−, s), and
solves the stationary Bellman equation

K(∆−, s) = min
∆

[
c(u(s) + ∆− − β∆) + qE[K(∆, s′) | s]

]
. (21)

This dynamic program admits an analogy with a consumer’s income fluctuation problem
that is both convenient and enlightening. We transform variables by changing signs and
switch the minimization to a maximization. Let ∆̃− ≡ −∆−, K̃(∆̃−; s) ≡ −K(−∆̃−; s)
and Ũ(x) ≡ −c(−x). Note that the pseudo utility function Ũ is increasing, concave
and satisfies Inada conditions at the extremes of its domain.35 Reexpressing the Bellman
equation (21) using these transformation yields:

K̃(∆̃−; s) = max
∆̃

[
Ũ(−u(s) + ∆̃− − β∆̃) + qE[K̃(∆̃; s′) | s]

]
.

This reformulation can be read as the problem of a consumer with a constant discount
factor q facing a constant gross interest rate 1 + r = β−1, entering the period with pseudo
financial wealth ∆̃−, receives a pseudo labor income shock−u(s). The fictitious consumer
must decide how much to save β∆̃; pseudo consumption is then x = −u(s) + ∆̃− − β∆̃.

The benefit of this analogy is that the income fluctuations problem has been exten-
sively studied and used; it is at the heart of most general equilibrium incomplete market
models (Aiyagari, 1994).

With logarithmic utility, the Bellman equation can be simplified considerably. The idea
is best seen through the analogy, noting that the pseudo utility function is exponential
−e−x in this case. It is well known that for a consumer with CARA preferences a one
unit increase in financial wealth, ∆̃, results in an increase in pseudo-consumption, x, of
r/(1 + r) = 1− β in parallel across all periods and states of nature. It is not hard to see
that this implies that the value function takes the form K̃(∆̃−; s) = e−(1−β)∆̃− k̃(s). These
ideas are behind the following result.

Proposition 4. With logarithmic utility and constant discount q, the value function in equa-
tion (21) is given by

K(∆−; s) = e(1−β)∆−k(s),

35 An important case is when the original utility function is CRRA U(c) = c1−σ/(1− σ) for σ > 0 and
c ≥ 0. Then for σ > 1 the function Ũ(x) is proportional to a CRRA with coefficient of relative risk aversion
σ̃ = σ/(σ− 1) and x ∈ (0, ∞). For σ < 1 the pseudo utility Ũ is “quadratic-like”, in that it is proportional
to −(−x)ρ for some ρ > 1, and x ∈ (−∞, 0].
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where function k(s) solves the Bellman equation

k(s) = Ac(s)1−β
(
E[k(s′) | s]

)β , (22)

where A ≡ (q/β)β/(1− β)1−β.
The optimal policy for ∆ can be obtained from k(s) using

∆ = ∆− −
1
β

log
(
(1− β)k(s)

c(s)

)
. (23)

Proof.
With logarithmic utility the Bellman equation is

K(s, ∆−) = min
∆

[s exp(∆− − β∆) + qE[K(s′, ∆) | s]]

= min
∆

[s exp((1− β)∆− + β(∆− − ∆)) + qE[K(s′, ∆) | s]]

Substituting that K(∆−, s) = k(s) exp((1− β)∆−) gives

k(s) exp((1− β)∆−) = min
∆

[s exp((1− β)∆−+ β(∆−−∆)) + qE[k(s′) exp((1− β)∆) | s]],

and canceling terms:

k(s) = min
∆

[s exp(β(∆− − ∆)) + qE[k(s′) exp((1− β)(∆− ∆−)) | s]]

= min
d

[s exp(−βd) + qE[k(s′) exp((1− β)d) | s]]

= min
d

[s exp(−βd) + qE[k(s′) | s] exp((1− β)d)]

where d ≡ ∆ − ∆−. We can simplify this one dimensional Bellman equation further.
Define q̂(s) ≡ qE[k(s′) | s]/s and

M(q̂) ≡ min[exp(−βd) + q̂ exp((1− β)d)].

The first-order conditions gives

β exp(−βd) = q̂(1− β) exp((1− β)d) ⇒ d = log
β

(1− β)q̂
. (24)
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Substituting back into the objective we find that

M(q̂) =
1

1− β
exp(−βd) =

1
1− β

exp
(
−β log

β

(1− β)q̂

)
=

1
(1− β)1−βββ

q̂β = Bq̂β,

where B is a constant defined in the obvious way in terms of β.
The operator associated with the Bellman equation is then

T[k](s) = sM
(

q
E[k(s′) | s]

s

)
= As1−β

(
E[k(s′) | s]

)β ,

where A ≡ Bqβ = (q/β)β/(1− β)1−β.
Combining the Bellman k(s)/s = M(q̂) = Aq̂β with equation (24) yields the policy

function as a function of K(s). This completes the proof.

This solution is nearly closed form: one needs only compute k(s) using the recursion
in equation (22), which requires no optimization. No simplifications on the stochastic
process for skills are required.

B.3 Idiosyncratic Gains With Log Utility

In this section, we assume log utility. The idiosyncratic planning problem lends itself to a
similar analysis. In order to avoid repetitions, we only sketch the corresponding analysis.
We can define a corresponding relaxed problem, given a sequence of prices {Q̂t}. We
can also prove an analogue of Lemma 1. This relaxed planning problem can then be
decomposed into a series of component planning problems. When the baseline allocation
is recursive, and given a sequence of prices {Q̂t}, we can study the component planning
problems using a Bellman equation as in equation (20). The corresponding first-order
conditions also take the form of an Inverse Euler equation

c′(ûi
t) =

q̂t

β
Ei

t[c
′(ûi

t+1)] t = 0, 1, . . .

where q̂t ≡ Q̂t+1/Q̂t.
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B.4 A Complete Solution When the Baseline is a Recursive Steady State

With Log Utility

In this section, we assume log utility. Suppose that the baseline allocation is recursive
with state s and features constant aggregate consumption Ct = Css. It is not necessary for
the argument that aggregate capital Kt and labor Nt be constant at the baseline allocation.
The idiosyncratic efficiency gains can then be easily computed. We can use q̂t = β to com-
pute the idiosyncratic allocation. Proposition 4 then allows us to compute the solution in
closed form. This leads to

λ̃I = 1− (1− β)
∫

k(s)dψ(s)
Css

where k(s) solves equation (22) with q = β. We can then apply Proposition 2 and com-
pute the efficiency gains λ̃ and the corresponding ∆-efficient allocation by solving the
Aggregate planning problem, a version of the neoclassical growth model. This method
provides a complete solution to the planning problem with log utility when the baseline
allocation is recursive and features constant aggregate consumption.

C Proof of Proposition 2

Consider the aggregate allocation {C̃t, Nt, K̃t, λ̃Ct} that solves the Aggregate planning
problem and the utility assignment {ûi

t} ∈ Υ({ui
t}, 0) that solve the Idiosyncratic plan-

ning problem as well as the corresponding idiosyncratic efficiency gains λ̃I .
Since the resource constraints hold with equality in the Idiosyncratic planning prob-

lem, we know from Lemma 1 that there exists a sequence of prices {Q̂t}, such that

c′(ûi
t) =

q̂t

β
Ei

t[c
′(ûi

t+1)] t = 0, 1, . . . (25)

where q̂t ≡ Q̂t+1/Q̂t. Moreover, the sequence {q̂t} is given by q̂t = βCt/Ct+1.
The aggregate allocation {C̃t, Nt, K̃t, λ̃Ct} satisfies the necessary and sufficient first-

order conditions

U′(C̃t) = β
(
1− δ + FK(K̃t+1, Nt+1)

)
U′(C̃t+1) t = 0, 1, . . . (26)

Define the following sequence {δt}

δt = −U((1− λ̃I)Ct) + U
(
C̃t
)

t = 0, 1, . . .
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We have ∑∞
t=0 βtδt = 0. With this choice of {δt}, we then define a utility assignment

{ũi
t} ∈ Υ({ui

t}, 0) as follows ũi
t = ûi

t + δt. The allocation {ũi
t, ni

t, K̃t, λ̃Ct} then satisfies all
the constraints of the original planning problem. Moreover using c′(ũi

t) = c′(δt)c′(ûi
t),

equation (25) and equation (26), we find that

c′(ũi
t) =

q̃t

β
Ei

t[c
′(ũi

t+1)] t = 0, 1, . . .

where
1 = q̃t

(
FK(K̃t+1, Nt+1) + 1− δ

)
t = 0, 1, . . .

Hence the allocation {ũi
t, ni

t, K̃t, λ̃Ct} satisfies the sufficient first order conditions in the
planning problem. It therefore represents the optimum.

D Numerical Method

To solve the planning problem we use the result developed in Appendix B.1.
To apply this result, we seek the appropriate sequence of discount factors {q̃t} as fol-

lows. For any given {q̃t} , we solve the non-stationary Bellman equation (20) using a
policy iteration method with ∆t−1 as the endogenous state variable and st as the exoge-
nous state. Using the underlying policy function for consumption in equation (20), and
integrating in every period over ψ, we compute an aggregate sequence of consumption
{C̃t}. Using the resource constraints, we can solve for λ̃ and a sequence for capital {K̃t}
that has K̃0 = Kss.

From Appendix B.1, if the condition 1/q̃t = 1 + FK(K̃t, Nss)− δ is met this constitutes
a solution. Otherwise, we take a new sequence of discount factors given by q̃′t = (1 +

FK(K̃t, Nss)− δ)−1 and iterate until convergence to a fixed point.
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