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We study dynamic optimal taxation in a class of economies with private information. Optimal
allocations in these environments are complicated and history-dependent. Yet, we show that they can be
implemented as competitive equilibria in market economies supplemented with simple tax systems. The
market structure in these economies is similar to that in Bewley (1986); agents supply labour and trade
risk-free claims to future consumption, subject to a budget constraint and a debt limit. Optimal taxes are
conditioned only on two observable characteristics—an agent’s accumulated stock of claims, or wealth,
and her current labour income. We show that optimal taxes are generally non-linear and non-separable in
these variables and relate the structure of marginal wealth and income taxation to the properties of agent
preferences.

1. INTRODUCTION

This paper studies optimal taxation in a class of dynamic economies with private information. We
consider an environment in which agents’ preferences are defined over consumption and labour,
and each agent receives a privately observed sequence of i.i.d. preference shocks. Incentive-
compatibility constraints stemming from private information imply that socially optimal, or
constrained–efficient, allocations in this environment are complicated and history-dependent.
Yet, we show that they can be implemented as competitive equilibria in market economies sup-
plemented with simple tax systems. The market structure in these economies is identical to that
in Bewley (1986), Huggett (1993) or Aiyagari (1994); agents can trade current consumption for
claims to future consumption, subject to a budget constraint and a borrowing limit. These claims
have a non-contingent pre-tax return. Crucially, taxes are conditioned upon only two observable
characteristics of an agent: current wealth, given by the agent’s accumulated stock of claims, and
current labour income. They do not depend on any other aspect of an agent’s past history.

Most models of dynamic optimal taxation follow the Ramsey approach, in which the set
of fiscal instruments available to the government is exogenously specified.1 Linear labour and
capital income taxes are typically included in this set, while lump-sum taxes are ruled out. The
exclusion of the latter is justified by appealing to incentive or administrative constraints, but these
are not explicitly modelled. These exogenous restrictions on fiscal instruments represent frictions
that the government seeks to ameliorate through its optimal choice of tax rates.

The approach we adopt in this paper builds on the optimal taxation literature initiated
by Mirrlees (1971). Mirrlees assumes that agents receive privately observed shocks to their

1. Chari and Kehoe (1999) provide an excellent overview of this literature.
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productivity. The incentive-compatibility constraints that stem from this private information then
impose endogenous restrictions on optimal tax policies. Mirrlees characterizes those tax functions
that induce agents to select constrained–efficient allocations. Such allocations exhibit a pattern
of wedges between the social and an individual agent’s shadow price of labour. Optimal marginal
income tax rates simply “fill in” these wedges so that the constrained–efficient allocation satisfies
the first order conditions of agents in the market economy with taxes.

The Mirrlees model is static, as have been most of its successors. Consequently, the proper-
ties of optimal taxes in dynamic economies with private information remain largely unexplored.2

On the other hand, the dynamic contracting literature has extensively studied the properties of
constrained–efficient allocations in such settings.3 This literature has limited attention to imple-
mentation via direct mechanisms. Under such mechanisms, private agents report their privately
observed shocks and allocations are made contingent on histories of reports. As Green (1987)
and others have shown, when shocks are i.i.d., the constrained–efficient allocation can be imple-
mented by a mechanism that is recursive in promised utilities.

Although direct mechanisms can be interpreted as tax systems, they seem divorced from
the actual combination of markets and taxes that are used in practice to allocate resources, at
least within modern economies.4 This motivates our analysis of fiscal implementations. These
are arrangements of markets and taxes that implement dynamic constrained–efficient allocations
as competitive equilibria, in the spirit of Mirrlees. We focus on a class of fiscal implementations
in which equilibrium allocations are recursive in an agent’s wealth and taxes are conditioned only
on current wealth and current labour earnings. In the same way that promised utility encodes an
agent’s history under a recursive direct mechanism, wealth encodes an agent’s history in our
fiscal implementations. The government is able to infer from an agent’s wealth the continuation
allocation to which she is entitled. Since the tax system is designed to induce the agent to choose
this allocation, it is essential that taxes depend on wealth. In this way, the informational role of
wealth crucially influences how it is taxed.

The existence of an optimal mechanism recursive in promised utilities does not imply
the existence of a corresponding fiscal implementation. Under a direct mechanism, by adopt-
ing different reporting strategies an agent can obtain different allocations. In a market economy
with taxes, an agent chooses from the set of budget-feasible allocations. Since the constrained–
efficient allocation is incentive-compatible, it can be implemented if the set of budget-feasible
allocations in the market economy equals the set of allocations available to an agent under the di-
rect mechanism. However, in our simple fiscal implemetations, the tax system is conditioned only
on an agent’s current wealth and labour earnings. Consequently, an agent in the market economy
might choose a labour supply that is consistent with constrained–efficient behaviour given a par-
ticular history of shocks, but then allocate her after-tax resources between consumption and sav-
ings in a way that matches constrained–efficient behaviour given a different history of shocks. The
tax system cannot verify consistency of the previous period’s labour earnings with this period’s
wealth, nor can it ensure that an agent’s savings are consistent with her labour earnings. Surpris-
ingly, when agents’ preferences are separable in consumption and labour and when idiosyncratic
shocks are i.i.d., we show that it is possible to design a tax system, conditioned on current wealth
and labour earnings only, that induces agents to choose the constrained–efficient allocation.

As in the static Mirrlees model, dynamic constrained–efficient allocations exhibit a pattern
of wedges. In particular, when preferences are additively separable in consumption and labour,

2. da Costa and Werning (2001) and Kocherlakota (2004a) also apply the Mirrlees approach in a dynamic setting.
Golosov and Tsyvinski (2003a) apply a similar strategy to the analysis of disability insurance.

3. See, for example, Green (1987), Phelan and Townsend (1991), Atkeson and Lucas (1992, 1995) or Phelan
(1994).

4. They may more closely resemble the arrangements used in simple village economies, see Ligon (1998).
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they admit an intertemporal wedge between the social and an individual agent’s shadow price
of claims.5 This wedge provides a rationale for asset taxation that is often absent from com-
plete information Ramsey models. While implementation requires that the constrained–efficient
allocation satisfies the agent’s Euler equation in the market economy, there are many patterns
of marginal asset taxes consistent with this condition. A natural first guess is that the optimal
marginal asset tax at date t + 1 simply matches the intertemporal wedge by equating the private
and social shadow price of claims at date t . In general, however, such marginal asset taxes fail to
ensure that the constrained–efficient allocation satisfies the agent’s second order necessary con-
ditions in the market economy. Underlying this failure is a potential complementarity between
savings and labour supply. We provide an example in which this complementarity underpins a
profitable joint deviation from the constrained–efficient allocation. In this joint deviation agents
save too much in period t and work too little in period t + 1. To remove the deviation marginal
asset taxes at t + 1 must covary negatively with the agent’s labour income at this date.
In this example, the optimal expected marginal asset tax equals zero and the intertemporal
wedge is entirely generated by the negative covariance between marginal asset taxes and labour
income. This covariance discourages saving by making claims a poor hedge against labour
income risk.

More generally, we obtain recursive fiscal implementations that use a combination of a
positive expected marginal asset tax and a negative covariance between marginal asset taxes and
labour income to generate the intertemporal wedge. We show that the extent to which the tax
systems implied by these implementations incorporate either of these two features is linked to
the magnitude of wealth effects on labour supply in the planner’s problem.

We explore the steady state properties of our optimal tax system in numerical examples.
We find that marginal taxes are strongly sensitive to wealth in a neighbourhood of the borrowing
limit. Marginal income taxes are decreasing in wealth and marginal asset taxes are decreasing
in labour income. The intertemporal wedge is less than 1% over most of the wealth range, but
is much larger close to the borrowing limit. The expected marginal asset tax falls steadily with
wealth, while the absolute value of the covariance between the marginal asset tax and labour
income falls sharply as wealth increases away from the limit.

Our paper is closely related to Kocherlakota (2004a). He also derives a tax system that im-
plements constrained–optimal allocations in an environment similar to ours. His analysis allows
for persistent idiosyncratic shocks. Kocherlakota’s tax system is not recursive and does not ex-
ploit the information conveyed by an agent’s asset position. Instead, it conditions taxes on an
agent’s entire history of labour earnings. Thus, his tax system, while more general, is also much
more complex than ours. Interestingly, Kocherlakota’s optimal tax system always implies a zero
expected marginal asset tax. As we discuss in the body of the paper, results on marginal asset
taxes are sensitive to the way in which the tax system uses information on the agents’ past history.

The remainder of the paper proceeds as follows. In Section 2, we state the planner’s prob-
lem and provide a recursive formulation for it that is closely related to that in Atkeson and Lucas
(1992). In Section 3, we prove our main implementation result. Section 4 describes the optimal
pattern of wedges that characterize constrained–efficient allocations and discusses the impli-
cations for taxes in a dynamic setting through a series of revealing examples. We present a
numerical analysis of the optimal tax system in the steady state of an infinite period economy in
Section 5. In this section, we also compare our optimal tax system with the findings of the static
optimal non-linear income taxation literature. Section 6 concludes.

5. This result was first derived by Diamond and Mirrlees (1978) and Rogerson (1985). Golosov, Kocherlakota
and Tsyvinski (2003) extend it to a very general setting.
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2. THE PLANNER’S PROBLEM IN A FINITE PERIOD ECONOMY

In this section, we describe the planner’s problem in a finite period economy. The economy is
inhabited by a continuum of agents. These agents have preferences over stochastic sequences
{ct , yt }T

t=0 of consumption ct ∈ R+ and labour yt ∈ Y ≡ [0, y] of the form

W0({ct , yt }T
t=0) = E

[
T∑

t=0

β t [u(ct )+ θtv(yt )]

]
. (1)

We assume that u : R+ → U ⊂ R and v : Y → V ⊂ R are continuously differentiable, strictly
concave and, respectively, strictly increasing and strictly decreasing functions. The variable
θt ∈ � ⊂ R+ denotes an idiosyncratic preference shock. We assume that � is a compact set
and that the preference shocks are distributed independently over time and across agents with
probability distribution π .6 We define a t-period history to be θ t = (θ0, . . . ,θt ) ∈ �t+1 and de-
note the corresponding probability distribution by π t . We assume that the idiosyncratic shocks
are privately observed by agents. The term θtv(yt ) denotes the disutility from labour at time
t . Preference shocks alter the disutility of labour and the marginal rate of substitution between
consumption and labour. They may, for example, be interpreted as short-lived shocks to health.
We also assume that the production technology converts one unit of labour into one unit of out-
put. The preference shock formulation that we adopt can easily be mapped into one in which
agents receive privately observed productivity shocks that perturb their individual marginal rates
of transformation of labour into output.

Each agent is identified with an initial lifetime utility promise w0. Let �0 denote the dis-
tribution over such promises and let W0 ⊂ Range(W0) denote its support. It is convenient to
state the planner’s problem in terms of utility, rather than resource, variables. GivenW0, define
a utility allocation to be a sequence of functions z = {ut ,vt }T

t=0 with ut :W0 ×�t+1 → U and
vt :W0 × �t+1 → V . Here ut and vt give the utility obtained by an agent from consumption
and labour at date t as a function of that agent’s utility promise and shock history. An individual
utility allocation for an agent with initial promise w0 will be denoted z (w0).7 Let C : U → R+
denote the inverse of u and Y : V → Y the inverse of v . An individual utility allocation can be
mapped into a consumption–labour allocation using the functions C and Y . Denote an agent’s
continuation utility from the individual utility allocation z(w0) after history θ s by

Us+1(z(w0),θ
s) = E

⎡⎣ T∑
t=s+1

β t−s−1[ut (w0,θ
t )+ θtvt (w0,θ

t )]|θ s

⎤⎦ s = 0, . . . ,T −1

with UT+1
(
z (w0) ,θ

T+1
)= 0. Let U

nat
s ≡ supϕ∈U ,ς∈V

1−βT+1−s

1−β [ϕ+Eθς ] denote an upper bound
for Us .

We now introduce three restrictions on the set of utility allocations available to a planner.
First, utility allocations must ensure that agents’ utility promises are kept. Formally, they must
satisfy the promise-keeping condition, for all w0 ∈W0,

w0 = U0(z(w0)). (2)

6. We also interpret π(θ) as the fraction of agents receiving the shock θ . In doing so we rely on the argument of
Judd (1985).

7. The strict concavity of the problem ensures that it is optimal for a planner to treat all agents with the same utility
promise identically. Hence, there is no loss of generality in assuming that agents with the same promise receive the same
allocation.
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Since agents privately observe their shock histories, we also require allocations to be incen-
tive-compatible. Define a reporting strategy δ to be a sequence of functions {δt }T

t=0 with δt : �t →
�. We interpret δt as mapping an agent’s history of shocks into a report concerning her current
shock. Let z(w0; δ ) denote the composition of the individual utility allocation z(w0) and the re-
porting strategy δ. This is also an individual utility allocation. Let δ∗ = {δ∗

t }T
t=0 denote the truthful

reporting strategy, where for all t , θ t, δ∗
t (θ t−1,θt ) = θt . We invoke the Revelation Principle and,

without loss of generality, require that utility allocations induce agents to be truthful. Thus, we
restrict attention to utility allocations z that satisfy the incentive-compatibility condition, for all
w0 ∈W0,

∀δ, U0(z(w0; δ∗)) ≥ U0(z(w0; δ )). (3)

We say that a utility allocation z = {ut ,vt }T
t=0 is temporarily incentive-compatible if for all w0

∀t,θ t−1,θ,θ ′, ut (w0,θ
t−1,θ)+ θvt (w0,θ

t−1,θ)+βUt+1(z(w0),θ
t−1,θ)

≥ ut (w0,θ
t−1,θ ′)+ θvt (w0,θ

t−1,θ ′)+βUt+1(z(w0),θ
t−1,θ ′). (4)

The latter constraints imply that after each history of shocks, an agent is better off truthfully
reporting her shock, rather than lying and being truthful thereafter. Equation (3) clearly implies
(4) and, in a finite period setting, the reverse implication is also true.

Finally, we require that allocations maintain the continuation utilities of agents above an
exogenous lower bound, U t+1 < U

nat
t+1 at each date. Thus, utility allocations must satisfy, for all

w0 ∈W0,
∀t ∈ {0, . . . ,T −1}, θ t , Ut+1(z(w0)|θ t ) ≥ U t+1. (5)

DefineWt = [U t+1,∞)∩ Range(Ut ) to be the set of possible expected period t pay-offs for

an agent, and let {Gt }T
t=0 denote a sequence of exogenous planner (or government) consumption

levels. The planner’s cost objective is given by

D(z; {Gt }T
t=0 ,�0) = max

t∈{0,...,T }

×

⎧⎪⎨⎪⎩
∫

w0∈W0

∫
θ t∈�t+1

[
C(ut (w0,θ

t ))−Y (vt (w0,θ
t ))
]
dπ t d�0 + Gt

⎫⎪⎬⎪⎭ . (6)

The planner minimizes this cost objective subject to the promise-keeping, incentive-compatibility
and utility bound constraints:

C({U t+1}T−1
t=0 ,{Gt }T

t=0 ,�0) = inf
z

D(z; {Gt }T
t=0 ,�0)

subject to: ∀w0, (2), (4) and (5). (7)

If z∗ = {u∗
t ,v

∗
t }T

t=0 attains the infimum in (7) then we will call z∗ a constrained–efficient al-

location (at ({U t+1}T−1
t=0 ,{Gt }T

t=0 ,�0)). We say that a triple ({U t+1}T−1
t=0 ,{Gt }T

t=0 ,�0) is con-
sistent with resource clearing if there exists a constrained–efficient allocation at ({U t+1}T−1

t=0 ,
{Gt }T

t=0 ,�0) that satisfies, for t ∈ {0, . . .T },∫
w0∈W0

∫
θ t∈�t+1

[
C(ut (w0,θ

t ))−Y (vt (w0,θ
t ))
]
dπ t d�0 + Gt = 0.

We now describe a related economy and invoke a result of Atkeson and Lucas (1992)
to establish that equilibrium allocations in this economy are constrained–efficient. Fix a triple
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({U t+1}T−1
t=0 ,{Gt }T

t=0 ,�0) and, hence, {Wt }T
t=0. Define a utility allocation rule to be a collec-

tion of functions ζ = {{ϕt ,ςt ,ωt+1}T−1
t=0 ,ϕT ,ςT } with ϕt :Wt ×� → U , ςt :Wt ×� → V and

ωt+1 :Wt ×� →Wt+1. ϕt (wt ,θt ), ςt (wt ,θt ) and ωt+1(wt ,θt ) represent, respectively, the utility
from current consumption, labour supply, and the period t +1 utility promise assigned to an agent
with current utility promise wt and shock θt . A utility allocation rule recursively induces a utility
allocation as follows. Given ζ then for all w0 ∈W0, t and θ t , let ut (w0,θ

t ) = ϕt (wt (w0,θ
t−1),θt )

and vt (w0,θ
t ) = ςt (wt (w0,θ

t−1),θt ), where for t > 0, wt (w0,θ
t−1) = ωt (wt−1(w0,θ

t−2),θt−1)
and w0(w0,θ

−1) = w0. Thus, the utility allocation rule uses utility promises to summarize past
information. We denote by z(ζ ) the utility allocation induced by ζ . Similarly, let z(ζ,w0) denote
the individual utility allocation induced by ζ from w0.

Let {qt }T−1
t=0 ∈ RT+ denote a sequence of intertemporal prices and suppose a population of

component planners each matched with a single agent. Assume that the representative component
planner chooses a utility allocation rule to solve the following sequence of recursive problems.
For t ∈ {0, . . . ,T −1},

Bt (wt ) = inf
ϕ:�→U ,ς :�→V

ω:�→Wt+1

∫
�

[C(ϕ(θ))−Y (ς(θ))+qt Bt+1(ω(θ))]dπ (8)

subject to the temporary incentive-compatibility constraint

∀θ,θ ′, ϕ(θ)+ θς(θ)+βω(θ) ≥ ϕ(θ ′)+ θς(θ ′)+βω(θ ′), (9)

and the promise-keeping constraint

wt =
∫
�

[ϕ(θ)+ θς(θ)+βω(θ)]dπ. (10)

In the terminal period T , the component planner solves

BT (wT ) = inf
ϕ:�→U
ς :�→V

∫
�

[C(ϕ(θ))−Y (ς(θ))]dπ (11)

subject to the temporary incentive-compatibility constraint

∀θ,θ ′, ϕ(θ)+ θς(θ) ≥ ϕ(θ ′)+ θς(θ ′), (12)

and the promise-keeping constraint

wT =
∫
�

[ϕ(θ)+ θς(θ)]dπ. (13)

Denote the utility allocation rule that solves problems (8) and (11) by ζ ∗. We assume that such
a ζ ∗ exists and that each Bt is continuous. We provide sufficient conditions for each in Albanesi
and Sleet (AS) (2004).

The optimal promise functions {ω∗
t+1}T−1

t=0 and the distribution �0 induce a sequence of
cross sectional utility promise distributions �t+1 according to

∀S ∈ B(Wt+1) : �t+1(S) =
∫

1{
ω∗

t+1(w,θ)∈S
}dπd�t ,
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where B(Wt+1) denotes the Borel subsets of Wt+1. Additionally, ζ ∗ and {�t }T
t=0 imply a

sequence of aggregate resource costs for t = 0, . . . ,T :∫
Wt

∫
�

[
C(ϕ∗

t (w,θ))−Y (ς∗
t (w,θ))

]
dπd�t + Gt .

Define a component planner economy, denoted EC P ({U t+1}T−1
t=0 ,{Gt }T

t=0 ,�0), to be a con-
tinuum of component planners, an initial cross sectional distribution of utility promises �0, a
sequence of continuation utility bounds {U t+1}T−1

t=0 , a sequence of markets for one period ahead
claims to consumption between periods 0 and T −1, and a sequence of government consumptions
{Gt }T

t=0. We define an equilibrium of this economy as follows.

Definition 1. A sequence of intertemporal prices {qt }T−1
t=0 , cost functions {Bt }T

t=0, with
Bt :Wt →R, and cross sectional distributions of utility promises {�t }T

t=1 and a utility allocation
rule ζ ∗ = {{ϕ∗

t ,ς∗
t ,ω∗

t+1}T−1
t=0 , ϕ∗

T ,ς∗
T } are an equilibrium of EC P ({U t+1}T−1

t=0 , {Gt }T
t=0 , �0) if:

(1) {Bt }T−1
t=0 satisfy (8) and BT satisfies (11);

(2) {ϕ∗
t ,ς∗

t ,ω∗
t+1} attain the infima in the problems (8). {ϕ∗

T ,ς∗
T } attain the infima in the

problems (11);
(3) ∀t, S ∈ B(Wt+1), �t+1(S) = ∫

1{
ω∗

t+1(w,θ)∈S
}dπd�t ;

(4) ∀t , Gt +
∫ [

C(ϕ∗
t (w,θ))−Y (ς∗

t (w,θ))
]
dπd�t = 0.

The following lemma links such equilibria to constrained–efficient allocations and motivates
our interest in them. Its proof is similar to that of Theorem 1, Atkeson and Lucas (1992) and is
omitted.

Lemma 1. Let ζ ∗ be an equilibrium utility allocation rule for the economy
EC P ({U t+1}T−1

t=0 , {Gt }T
t=0 , �0), then z(ζ ∗) is constrained–efficient at ({U t+1}T−1

t=0 , {Gt }T
t=0 ,

�0). Additionally, ({U t+1}T−1
t=0 , {Gt }T

t=0 , �0) is consistent with resource clearing.

We call such a ζ ∗ a constrained-efficient utility allocation rule. Given such a rule and the
associated cost functions {Bt }T

t=0 and using the fact that each Bt is strictly increasing (see AS,
2004) and, hence, invertible, we define Y∗

t : Bt (Wt )⇒ Y by

Y∗
t (Bt (wt )) ≡ {y : y = Y (ς∗

t (wt ,θ)) some θ ∈ �} ⊆ Y. (14)

Thus, Y∗
t (bt ) is the set of labour supplies available to an agent with utility promise B−1

t (bt ) at t
under ζ ∗.

3. IMPLEMENTATION

We now show that a component planner equilibrium, and, hence, the associated constrained–
efficient allocation, can be obtained as part of a competitive equilibrium in a market economy
with taxes and borrowing constraints. In the market economy agents are endowed with an initial
stock of non-contingent claims b0. They enter each period t with claims bt , they work yt , pay
taxes and, in periods t ≤ T −1, they allocate their after-tax income between consumption ct and
purchases of claims bt+1. In the terminal period T , they simply consume all after-tax income.
All market trades undertaken by an agent are publicly observable. A government is exogenously
assigned the spending levels {Gt }T

t=0 and administers a tax system {Tt }T
t=0. The tax system condi-

tions an agent’s tax payment in each period only on her current labour income yt and her current
claims bt and not on any other aspect of her past history.
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Formally, a market economy with taxes and borrowing limits, denoted EM E ({bt+1}T−1
t=0 ,�0,

{Gt }T
t=0 , {Tt }T

t=0), is a sequence of markets for one period ahead claims to consumption that
open at each date t ≤ T −1, a sequence of borrowing limits {bt+1}T−1

t=0 , an initial cross sectional
distribution of claim holdings �0, a sequence of government spending levels {Gt }T

t=0, and a
sequence of tax functions {Tt }T

t=0 , with Tt : Bt ×Y→ R, where for t > 0, Bt ≡ [
bt ,∞

)
and B0

denotes the support of �0. We define a market allocation rule to be a sequence of functions â =
{{ĉt , ŷt , b̂t+1}T−1

t=0 , ĉT , ŷT }, with ĉt : Bt ×� →R+, ŷt : Bt ×� → Y , and b̂t+1 : Bt ×� → Bt+1.
The functions ĉt (bt ,θt ), ŷt (bt ,θt ) and b̂t+1(bt ,θt ) represent, respectively, consumption, labour
supply, and savings at time t of an agent with current wealth bt and shock θt . A competitive
equilibrium of the market economy EM E ({bt+1}T−1

t=0 , �0, {Gt }T
t=0 , {Tt }T

t=0) is defined as follows.

Definition 2. A sequence of claims prices {q̂t }T−1
t=0 ∈ RT+, value functions {Vt }T

t=0, with
Vt : Bt → R, and cross sectional distributions of claim holdings {�t+1}T−1

t=0 and a market alloca-
tion rule â = {{ĉt , ŷt , b̂t+1}T−1

t=0 , ĉT , ŷT } is a competitive equilibrium of EM E ({bt+1}T−1
t=0 ,�0,

{Gt }T
t=0 ,{Tt }T

t=0) if:

(1) for t ∈ {0, . . . ,T −1}, Vt and Vt+1 satisfy

Vt (b) = supc:�→R+,y:�→Y,
b′:�→Bt+1

∫
[u(c(θ))+ θv(y(θ))+βVt+1(b

′(θ))]dπ (15)

subject to, for each θ , b = c(θ)− y(θ)+ Tt (b, y(θ))+ q̂t b′(θ); VT satisfies

VT (b) = supc:�→R+,y:�→Y
∫

[u(c(θ))+ θv(y(θ))]dπ (16)

subject to, for each θ , b = c(θ)− y(θ)+ TT (b, y(θ));
(2) {ĉt , ŷt , b̂t+1} attain the suprema in the problems (15). {ĉT , ŷT } attain the suprema in (16);
(3) ∀S ∈ B(Bt+1), �t+1(S) = ∫

1{
b̂t+1(b,θ)∈S

}dπd�t ;
(4) ∀t , Gt +

∫ [
ĉt (b,θ)− ŷt (b,θ)

]
dπd�t = 0.

Given an initial wealth b0, an equilibrium market allocation rule induces a utility allocation
ẑ(â,b0) from b0. We formally define an implementation as follows.

Definition 3. Let z∗ be a constrained–efficient allocation at ({Ut+1}T−1
t=0 ,�0,{Gt }T

t=0). We
say that z∗ is implemented by a competitive equilibrium in a market economy with taxes and
borrowing limits EM E ({bt+1}T−1

t=0 , �0, {Gt }T
t=0 , {Tt }T

t=0) if:

(1) there exists a measurable function f :W0 → R such that for each S ∈ B(R), �0(S) =
�0( f −1(S));

(2) EM E ({bt+1}T−1
t=0 ,�0,{Gt }T

t=0 ,{Tt }T
t=0) has a competitive equilibrium ξ M E = {{qt }T−1

t=0 , â,
{Vt }T

t=0, {�t+1}T−1
t=0 } such that for each w0 ∈W0, ẑ(â, f (w0)) = z∗(w0).

If z∗ can be implemented by a competitive equilibrium ξ M E in a market economy
EM E ({bt+1}T−1

t=0 , �0, {Gt }T
t=0 , {Tt }T

t=0), then (EM E ({bt+1}T−1
t=0 ,�0, {Gt }T

t=0 ,{Tt }T
t=0),ξ

M E ) is
said to be a fiscal implementation of z∗.

The first condition in the definition describes how the initial wealth distribution is set in
the market economy. It implies that initial claim holdings will reveal the agent’s initial utility
promise to the government. The second condition is the central one. It requires that an agent
with initial claim holdings of f (w0) in the market economy chooses the constrained–efficient
individual utility allocation z∗(w0).
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3.1. Implementation in a two period economy

Although our main fiscal implementation result applies to economies of arbitrary finite length, the
key insights are most easily seen in a two period setting, and we will initially focus on this case.
Subsequently, we extend our results to time horizons T > 1. Our approach is constructive. Given
a component planner economy equilibrium, we propose an initial distribution of claims and a
candidate equilibrium claims price for the market economy. We then derive a tax function and
debt limits under which agents will be able to afford the constrained–efficient allocation from
the component planner economy. The challenge lies in showing that the agents in the market
economy do in fact choose this allocation.

Formally, let ξC P = {q, ζ ∗, {Bt }1
t=0, �1} denote the equilibrium of a two period component

planner economy EC P (U ,{Gt }1
t=0 ,�0). We set the candidate equilibrium price in the market

economy to be q, as in ξC P , and set f = B0. We then structure the debt limits and tax system so
that in period 0 an agent with wealth B0(w0), w0 ∈W0 can afford to purchase each of the triples
{C(ϕ∗

0 (w0,θ)),Y (ς∗
0 (w0,θ)), B1(ω

∗
1(w0,θ))}, θ ∈ �, while, in period 1, an agent with wealth

B1(w1), w1 ∈W1 can afford each pair {C(ϕ∗
1 (w1,θ)), Y (ς∗

1 (w1,θ))}, θ ∈ �.
Under this arrangement, an agent with utility promise w0 in the component planner econ-

omy is endowed with an initial quantity of claims equal to B0(w0), the cost to a component
planner of delivering w0. The agent can then afford the constrained–efficient allocation if she
saves an amount equal to the component planner’s continuation cost. This identification of an
agent’s wealth with a component planner’s costs is natural since the latter give the expected dis-
counted net transfers to an agent under the constrained–efficient allocation. Moreover, if for each
B0(w0), w0 ∈W0 and θ ∈ �, an agent can be induced to save B1(ω

∗
1(w0,θ)), then a government

attempting to implement the constrained–efficient allocation can use an agent’s savings to infer
the continuation allocation to which she is entitled. Since the tax function will be designed to
induce agents to choose this allocation, it will be essential that taxes depend on wealth and this
informational role of wealth will crucially influence how it is taxed.

In period 1, we set the tax functions so that for each B1(w1) and Y (ς∗
1 (w1,θ)), w1 ∈W1

and θ ∈ �,

T1(B1(w1),Y (ς∗
1 (w1,θ))) = B1(w1)+Y (ς∗

1 (w1,θ))−C(ϕ∗
1 (w1,θ)). (17)

It then follows that an agent with savings B1(w1), w1 ∈W1 in the market economy can afford
each of the period 1 allocations available to an agent with utility promise w1 under ζ ∗. Equa-
tion (17) only defines taxes for {b, y} ∈ Graph Y∗

1 . To prevent agents from choosing savings in
period 0 outside of B1(W1) = [B1(U ),∞), we simply impose the borrowing limit b = B1(U )
and set B1 = B1(W1). We then extend T1 onto the whole of B1 ×Y , by choosing, for each
b = B1(w1), w1 ∈W1 and y ∈ Y/Y∗

1 (b), T1(b, y) so that

∀θ , ϕ∗
1 (w1,θ)+ θς∗

1 (w1,θ) ≥ u(b + y − T1(b, y))+ θv(y). (18)

This ensures that no agent with wealth b would choose the labour supply y. The constrained–
efficient allocation rule does not prescribe how this should be done, and we have some flexibility
in selecting T1(b, ·) over such labour supplies. The procedure in period 0 is analogous, we set the
tax function on Graph Y∗

0 so that the agent can afford the relevant constrained–efficient alloca-
tions. Specifically, for each B0(w0) and Y (ς∗

0 (w0,θ)), w0 ∈W0 and θ ∈ �, we set

T0(B0(w0),Y (ς∗
0 (w0,θ))) = B0(w0)+Y (ς∗

0 (w0,θ))−C(ϕ∗
0 (w0,θ))−q B1(ω

∗
1(w0,θ)). (19)

As in (18), we set taxes so that y ∈ Y/Y∗
0 (B0(w0)) will not be chosen by an agent with initial

wealth B0(w0).
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We have now defined taxes for all savings and labour supply levels that can occur in the
market economy. Do the resulting tax functions succeed in implementing z(ζ ∗)? To understand
why they might fail, it is useful to compare the sets of allocations available to an agent in the
component planner and market economies. Let ZC P (w0) denote those utility allocations that an
agent with initial promise w0 can attain by adopting different reporting strategies under ζ ∗. Let
ZM E (B0(w0)) be the set of budget-feasible utility allocations available to an agent with initial
wealth B0(w0) in the market economy. If for each w0 ∈W0, ZC P (w0) = ZM E (B0(w0)) then
we would be able to rely on the incentive-compatibility of the constrained–efficient allocation to
ensure that z(ζ ∗) is implemented. It follows directly from the affordability of ζ ∗ in the market
economy that ZC P (w0) ⊆ ZM E (B0(w0)). But, the reverse set inclusion does not hold so that
ZC P (w0) ⊂ ZM E (B0(w0)).

Since the tax system is able to detect and deter agents from choosing wealth and labour
supply pairs outside of Graph Y∗

t , t = 0,1, we can restrict attention in the market economy to
those allocations that remain within these sets. However, even with this restriction, there remain
utility allocations available to the agent in the market economy that are unavailable to her under
ζ ∗, and one or more of these may be preferred to the constrained–efficient allocation. These
allocations involve an agent selecting a labour supply y = Y (ς∗

0 (w0,θ)) that is constrained–
efficient given the history (w0,θ) and a savings level B1(ω

∗
1(w′

0,θ
′)) that is constrained–efficient

given some alternative history (w′
0,θ

′). Since taxes are conditioned on current wealth and labour
earnings only, the tax system cannot in period 1 “look back” to the previous period’s labour
earnings and verify consistency with this period’s wealth. Nor in period 0, can it prevent an agent
from choosing a savings level that is inconsistent, from the point of view of ζ ∗, with that period’s
labour supply. Despite this, the simple tax system we construct ensures that all allocations in
ZM E (B0(w0))/ZC P (w0) are inferior to the constrained–efficient one.

Proposition 1 formally establishes the existence of a fiscal implementation for constrained–
efficient allocations. The argument, given in the Appendix, relies on our assumptions that an
agent’s preferences are separable in consumption and labour and shocks are i.i.d. We provide
intuition for the proof and discuss the role of our assumptions below.

Proposition 1. Let ξC P = {q, ζ ∗, {Bt }1
t=0, �1} be an equilibrium of the component plan-

ner economy EC P (U ,{Gt }1
t=0 ,�0). Then, the associated constrained–efficient allocation can be

implemented by a competitive equilibrium in a market economy with taxes and borrowing limits.

The main step of the proof involves splitting the period 0 problem of an agent in the market
economy and of a planner in the component planner economy into two stages. In the market
economy, an agent in the first stage of period 0 selects a labour supply y0 and an after-tax quantity
of resources x . In the second stage, she allocates these resources between current consumption
and savings. In period 1 she selects a labour supply and a consumption level. In the component
planner economy, the planner first assigns utilities from labour supply ς0 and interim utility
promises d contingent on an agent’s initial utility promise and shock report. In the second stage of
period 0, she allocates d between utility from consumption ϕ0 and a continuation utility promise
ω. In period 1 she chooses utilities from labour ς1 and consumption ϕ1 as functions of ω and
the agent’s reported shock. Let X∗(d) denote the resource cost to the planner of delivering the
interim utility promise d to the agent and let d∗(w0,θ) denote the optimal interim utility assigned
to an agent with initial utility promise w0 and shock report θ by the component planner. Figures
A.1 and A.2 in the Appendix display timelines for both economies.

The proof proceeds by backward induction. We construct the period 1 tax system so that
the choice set of an agent with wealth B1(w1) in the market economy includes {Y (ς∗

1 (w1,θ)),
C(ϕ∗

1 (w1,θ))}θ∈�. The incentive-compatibility of {Y (ς∗
1 (w1,θ)),C(ϕ∗

1 (w1,θ))} ensures that it
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will be chosen when the agent receives the shock θ . We then establish that in the second stage of
period 0, an agent with after-tax resources X∗(d) in the market economy chooses the same in-
tertemporal allocation as a component planner with interim utility d. This is the key step of the
proof. Finally, we construct the tax function in period 0 so that the choice set of an agent with
wealth B0(w0) includes {Y (ς∗

0 (w0,θ)), X∗(d∗(w0,θ))}θ∈�. As in period 1, the incentive-
compatibility of the constrained–efficient labour and resource pairs ensures that they will
be chosen.

Our approach relies on the fact that continuation constrained–efficient allocations are mea-
surable with respect to the agent’s continuation utility and, hence, the planner’s continuation
cost. This is not true if shocks are persistent.8 In addition, the proof of Proposition 1 hinges on
a decomposition of period 0 into two stages whose only link is the interim utility promise d or
quantity of resources X∗(d) that is passed from the first to the second stage. The decomposition
fails if X∗(d) is not a sufficient state variable for the stage 2 intertemporal allocation problem
in the market economy. This occurs when, given X∗(d), the agent’s intertemporal marginal rate
of substitution in the second stage of period 0 depends upon her labour supply or her prefer-
ence shock in the first stage. The first case occurs when preferences are non-separable in labour
and consumption, the second when the preference shock θ is persistent. We briefly discuss the
persistent shock case in the concluding remarks.

Remark 1. In our recursive fiscal implementation an agent’s constrained–efficient contin-
uation allocation is measurable with respect to her current wealth. Alternatively, we could imag-
ine an implementation such that an agent’s continuation allocation is measurable with respect
to some other variable st where st depends on the past market choices of agents. Kocherlakota
(2004a) proposes such an implementation. In this st = yt−1 = {y0, . . . , yt−1}, the past labour
history of the agent, and wealth pays no role in conveying information to the government about
the allocation to which the agent is entitled. Thus Kocherlakota considers using tax functions
of the form Tt (yt−1,bt , yt ). He imposes sufficient assumptions on the underlying constrained–
efficient allocation to ensure that the tax system can detect deviations to utility allocations outside
of ZC P (w0).9 The tax system is then constructed so that the constrained–efficient allocation
is affordable and all such deviations deliver an allocation to the agent that is inferior to the
constrained–efficient one. Specifically, Kocherlakota restricts the functional form of the tax sys-
tem to be T 0

t (yt ) + T 1
t (yt )bt and chooses the functions {T 0

t , T 1
t } to achieve these objectives. As

described previously the tax system constructed in the proof of Proposition 1 can only directly
detect a subset of deviations to allocations outside of ZC P (w0). If an agent deviates to a sav-
ings level b′

t+1 that, given the agent’s labour history, is inconsistent with implementation of the
constrained–efficient allocation then, under this tax system, she will be induced to choose the
continuation allocation of an agent whose constrained–efficient savings level is b′

t+1. Proposition
1 shows that this is sufficient for implementation if shocks are i.i.d. and preferences separable
between consumption and labour.

Remark 2. An immediate implication of the tax system that we construct in the proof of
Proposition 1 is that, for each B0(w0), w0 ∈W0,

E[T0(B(w0),Y (ς∗
0 (w0,θ0)))|w0] = E[B(w0)+Y (ς∗

0 (w0,θ0))− X∗
0(d∗

0 (w0,θ0))|w0] = 0. (20)

Similarly E[T1(B(w1),Y (ς∗
1 (w1,θ1)))|w1] = 0. Thus, the tax system is solely redistributive and

raises no revenue to finance the government spending levels {Gt }1
t=0. In our implementation, such

8. See, for example, Fernandes and Phelan (2000).
9. Specifically, he assumes that the constrained efficient consumption allocation is measurable with respect to the

history of past (constrained efficient) labour supplies.
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spending is financed via an appropriate setting of the initial distribution of claims. In particular,
to extract net resources from the population of agents, the government must hold claims against
them at date 0.

A straightforward iteration of the argument underlying the proof of Proposition 1 allows us
to extend this result to economies of arbitrary finite length. Formally, we have:

Proposition 2. Let ξC P be an equilibrium of the component planner economy
EC P ({U t+1}T−1

t=0 ,{Gt }T
t=0 ,�0). Then, the associated constrained–efficient allocation can be

implemented by a competitive equilibrium in a market economy with taxes and borrowing limits.

In AS (2004) we provide sufficient conditions for a fiscal implementation to exist in economies
of infinite horizon as well.

4. PROPERTIES OF OPTIMAL TAX FUNCTIONS

To derive the properties of the optimal tax function, we proceed in two steps. First, we describe
the implications of constrained–efficient allocations for the pattern of wedges between individual
and social shadow prices. Since these have been obtained elsewhere we relegate their derivation
to AS (2004). We then analyse the implications of these wedges for optimal tax functions.

Constrained–efficient allocations imply a wedge between an agent’s shadow price and the
social shadow price of labour. We call this the effort wedge. Formally, the component planner’s
first order conditions imply

−θv ′(Y (ς∗
t (wt ,θ)))/u′(C(ϕ∗

t (wt ,θ))) ≤ 1, (21)

with strict inequality when the incentive constraints bind. The L.H.S. of this inequality gives the
agent’s shadow price. The linear technology ensures that the social shadow price is 1.

The implications of the effort wedge for optimal non-linear income taxation are well known
from the static public finance literature (e.g. Mirrlees, 1971). If a consumption–labour allocation
(c∗

t (wt ,θ), y∗
t (wt ,θ)) = (C(ϕ∗

t (wt ,θ)), Y (ς∗
t (wt ,θ))) is to be implemented at date t with the

tax function Tt , it must be such that

(c∗
t (wt ,θ), y∗

t (wt ,θ)) ∈ argsup
c,y

u(c)+ θv(y) (22)

s.t. c + Tt (Bt (wt ), y) = y + Bt (wt )−qt+1 Bt+1(ω
∗
t+1(wt ,θ)).

In particular, if Tt (Bt (wt ), ·) is differentiable at y∗
t (wt ,θ), then

∂Tt (Bt (wt ), y∗
t (wt ,θ))

∂y
= 1+ θv ′(y∗

t (wt ,θ))

u′(c∗
t (wt ,θ))

(23)

and the marginal income tax at (Bt (wt ), y∗
t (wt ,θ)) equals the effort wedge.

In dynamic models with additively separable preferences there is an additional wedge. If the
lower bound on continuation utilities does not bind, then the component planner’s intertemporal
Euler equation implies the following inverted Euler equation:

1

u′(c∗
t (wt ,θ))

= qt

β
Eθ ′

[
1

u′(c∗
t+1(ω

∗
t+1(wt ,θ),θ ′))

]
, (24)

where c∗
t+ j (wt+ j ,θ) = C(ϕ∗

t+ j (wt+ j ,θ)). From Jensen’s inequality, we then have

qt ≤ βEt

[
u′(c∗

t+1(ω
∗
t+1(wt ,θ),θ ′))

u′(c∗
t (wt ,θ))

]
, (25)
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with strict inequality if the incentive-compatibility constraint binds. Thus, a wedge occurs be-
tween the social shadow price of claims qt and the individual agent’s private shadow price
βEθ ′ [u′(c∗

t+1(ω
∗
t+1(wt ,θ),θ ′))]/ u′(c∗

t (wt ,θ)). We refer to this as the intertemporal wedge.
The intertemporal wedge was first derived by Diamond and Mirrlees (1978) and Rogerson

(1985). Golosov et al. (2003) establish that it is present in a very large class of private infor-
mation economies. This wedge stems from the adverse effect of savings on incentives. Higher
saving at t reduces the correlation between an agent’s consumption and her labour supply at t +1
and, hence, exacerbates the incentive problem at t + 1. The intertemporal wedge adjusts for this
additional marginal social cost of saving. Just as the effort wedge gives rise to positive marginal
labour income taxes, the intertemporal wedge provides a rationale for asset taxation. Specifi-
cally, implementation of a constrained–efficient consumption and savings allocation {c∗

t (wt ,θ),
Bt+1(ω

∗
t+1(wt ,θ)), c∗

t+1(ω
∗
t+1(wt ,θ), ·)} requires

{c∗
t (wt ,θ), Bt+1(ω

∗
t+1(wt ,θ)),c∗

t+1(ω
∗
t+1(wt ,θ), ·)} ∈ arg maxct ,bt+1,ct+1u(ct )+βEtu(ct+1)

s.t. ct + Tt (Bt (wt ), y∗
t (wt ,θ)) = y∗

t (wt ,θ)+ Bt (wt )−qtbt+1,

and

∀θ ′, ct+1(θ
′)+ Tt+1(bt+1, y∗

t+1(ω
∗
t+1(wt ,θ),θ ′)) = y∗

t+1(ω
∗
t+1(wt ,θ),θ ′)

+bt+1 −qt+1 Bt+2(ω
∗
t+2(ω

∗
t+1(wt ,θ),θ ′)).

Hence, assuming that the function Tt+1 is differentiable in its first argument, Tt+1 must be con-
sistent with the agent’s Euler equation holding at this allocation:

qt = βEt

[(
1− ∂Tt+1(Bt+1(ω

∗
t+1(wt ,θ)), y∗

t+1(ω
∗
t+1(wt ,θ),θ ′))

∂b

)
×u′(c∗

t+1(ω
∗
t+1(wt ,θ),θ ′))

u′(c∗
t (wt ,θ))

]
. (26)

Condition (26) places a linear restriction upon marginal asset taxes, but it does not, in general,
uniquely determine them. In contrast (23) uniquely pins down the marginal labour income tax.
A positive intertemporal wedge implies that

0 < Et

[
∂Tt+1

∂b

u′(c∗
t+1)

u′(c∗
t )

]
= Et

[
∂Tt+1

∂b

]
Et

[
u′(c∗

t+1)

u′(c∗
t )

]
+Covt

[
∂Tt+1

∂b
,

u′(c∗
t+1)

u′(c∗
t )

]
. (27)

This decomposition illustrates two ways in which asset taxation can generate an intertemporal
wedge. The first is to set a positive expected marginal asset tax Et

[
∂Tt+1

∂b

]
> 0 so that the ex-

pected return on savings is reduced. The second is to set marginal asset taxes so that the after-tax

return on savings covaries positively with consumption, generating Covt

[
∂Tt+1

∂b ,
u′(c∗

t+1)

u′(c∗
t )

]
> 0.

This discourages savings in period t by making claims a less effective hedge against period
t + 1 consumption risk. Clearly, a positive covariance requires that ∂Tt+1/∂b depends on yt+1
and, hence, that the tax function is additively non-separable in wealth and labour income. By
an argument in AS (2004), c∗

t+1(wt+1, ·) and y∗
t+1(wt+1, ·) are monotone decreasing in θ .

Consequently, if the cross partial ∂2Tt+1/∂b∂y exists on Y∗
t+1(Bt+1(ω

∗
t+1(wt ,θ))) then

Covt

[
∂Tt+1

∂b ,
u′(c∗

t+1)

u′(c∗
t )

]
> 0 implies that ∂2Tt+1(Bt+1(ω

∗
t+1(wt ,θ)), y)/∂b∂y < 0 for at least some

y ∈ Y∗
t+1(Bt+1(ω

∗
t+1(wt ,θ))). Overall and crucially, (27) shows that a positive intertemporal

wedge does not necessarily translate into a positive expected marginal asset tax.
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To explore the respective roles of the expected and the stochastic components of marginal
asset taxation in generating the intertemporal wedge, we present two examples in order of com-
plexity of the physical environment. In the first example it is essential that marginal asset taxes
generate a positive covariance between after-tax returns on assets and labour earnings. Absent this
covariance, an agent could increase her lifetime utility with a deviation in which she saves more
in period t and reduces her labour supply in period t + 1, relative to the constrained–efficient
allocation. In this example, the optimal expected marginal asset tax equals zero. The second
example illustrates the link between the dependence of the constrained–efficient labour alloca-
tion in period t +1 on wealth and a positive expected marginal asset tax.

4.1. Example 1: Zero expected marginal asset tax

4.1.1. The component planner’s problem. In this example we consider a modified two
period component planner economy in which agents neither receive preference shocks nor work
in period 0. In period 1, shocks are drawn from � = {θ,θ}, θ < θ , while labour supply choices are
made from the discrete set Y = {y, y}, y < y. Define �y = y − y and �v = v(y)− v(y). We as-
sume that the initial utility promise distribution is degenerate so that �0(w0) = 1 andW0 = {w0}.
We also assume that there is no lower bound on the continuation utility of agents so thatW1 =
Range (U1). Let q be an intertemporal price. We choose a pair of, possibly negative, government
spending levels, {Gt }1

t=0 to ensure that an equilibrium of the component planner economy with
price q exists. In this equilibrium, component planners solve problems of the form

Period 0 B0(w0) = inf
ϕ∈U ,ω∈W1

C(ϕ)+q B1 (ω)

s.t. w0 = ϕ +βω
(28)

and
Period 1 B1 (w1) = inf

ϕ:�→U ,ς :�→{v(y),v(y)}
∑
θ∈�

{C(ϕ(θ))−Y (ς(θ))}π(θ)

s.t. w1 = ∑
θ∈�

{ϕ(θ)+ θς(θ)}π(θ)

∀θ,θ ′, ϕ(θ)+ θς(θ) ≥ ϕ(θ ′)+ θς(θ ′).

(29)

Let ζ ∗ = {ϕ∗
0 ,ϕ∗

1 ,ς∗
1 ,ω∗} denote a solution to (28) and (29). The following simple lemma sum-

marizes some properties of ζ ∗ under an assumption on C . We make this assumption throughout
the example.

Lemma 2. Assume that infu∈U C(u + θ�v)−C(u) < �y < supu∈U C(u)−C(u − θ�v).

(1) There exists a w1 such that for w1 < w1, ς∗
1 (w1,θ) = v(y) and for w1 > w1, ς∗

1 (w1,θ) =
v(y). Similarly, there exists a w1 ≥ w1, such that for w1 < w1, ς∗

1 (w1,θ) = v(y) and for
w1 > w1, ς∗

1 (w1,θ) = v(y).
(2) There exists a w0 such that for w0 ≤ w0, ω∗(w0) ≤ w1 and for w0 > w0, ω∗(w0) > w1.

Similarly, there exists a w0 ≥ w0, such that for w0 < w0, ω∗(w0) < w1 and for w0 ≥ w0,
ω∗(w0) ≥ w1.

Proof. See AS (2004). ‖

It follows that if w0 ∈ (w0,w0) then ς∗
1 (ω∗(w0),θ) = v(y), ς∗

1 (ω∗(w0),θ) = v(y) and the
period 1 incentive constraints bind:

ϕ∗
1 (ω∗(w0),θ)−ϕ∗

1 (ω∗(w0),θ) = θ
[
ς∗

1 (ω∗(w0),θ)−ς∗
1 (ω∗(w0),θ)

]
> 0. (30)

We assume that this is the case in the remainder. We refer to the effect of changes in w1 on
the continuation labour allocation {ς∗

1 (w1,θ), ς∗
1 (w1,θ)} as a wealth effect. In this example, the
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discreteness of the labour supply and shock sets imply that small changes in w1 have no wealth
effects when w1 ∈ (w1,w1).

Let z∗ = z(ζ ∗,w0) denote the constrained–efficient utility allocation induced by ζ ∗ from w0.
Also, let α∗ = {c∗

0,c∗
1, y∗

1 , B∗
1 } denote the associated constrained–efficient resource allocation and

period 1 planner cost, where c∗
0 = C(ϕ∗

0 (w0)), B∗
1 = B1(ω

∗(w0)), y∗
1 (θ) = Y (ς∗

1 (ω∗(w0),θ)) and
c∗

1(θ) = C(ϕ∗
1 (ω∗(w0),θ)). By assumption, Y∗

1 (B∗
1 ) = Y = {y, y}. The first order conditions for

ϕ∗
0 , ϕ∗

1 , ω∗ and the period 1 envelope condition imply the inverted Euler equation:

1

u′(c∗
0)

= q

β

[
π(θ)

u′(c∗
1(θ))

+ π(θ)

u′(c∗
1(θ))

]
. (31)

4.1.2. A condition for implementation. Notice that in the planning problem above, all
agents have identical histories at the beginning of period 1 and all receive the same continua-
tion constrained–efficient allocation in that period. Consequently, in a fiscal implementation, the
government does not need to use an agent’s wealth or any other variable to infer the particular
continuation allocation to which the agent is entitled. As in Section 3, we assume that all agents
receive an initial endowment of claims equal to B0(w0). We also assume that there are no taxes
in period 0 of the market economy.10 The solution to the component planner’s problem (28) and
the agent’s period 0 budget constraint in the market economy then imply that all agents must save
B∗

1 if z∗ is to be implemented. To induce an agent to make this choice, the implementation needs
to ensure that the agent is worse off if she deviates to a wealth level B1(w1) �= B∗

1 . One way to
do this is to follow the procedure in the proof of Proposition 1 and construct a tax system that
induces the agent to choose the continuation allocation implied by ζ ∗ at w1 if she deviates to
B1(w1) �= B∗

1 . However, there are many other tax systems that can induce agents to choose B∗
1

and, hence, z∗. In this section, we show that all such tax systems differentiable in wealth satisfy
a striking condition; they imply a zero expected marginal asset tax at B∗

1 .
Define a candidate set of tax functions T equal to all functions T :R×Y→R, differentiable

in their first argument and satisfying

T (B∗
1 , y∗

1 (θ)) = B∗
1 + y∗

1 (θ)− c∗
1(θ), (32)

and

qu′(c∗
0) = βE

[(
1− ∂T

∂b
(B∗

1 , y∗
1 )

)
u′(c∗

1)

]
. (33)

Incentive-compatibility of the constrained–efficient allocation then immediately guarantees that
if the agent saves B∗

1 , she will choose the constrained–efficient labour supply:

y ∈ arg max
y∈{y,y}

u(B∗
1 − T (B∗

1 , y)+ y)+ θv(y), (34)

y ∈ arg max
y∈{y,y}

u(B∗
1 − T (B∗

1 , y)+ y)+ θv(y). (35)

Thus, all tax systems in T are consistent with the agent’s first order conditions holding at the
constrained–efficient allocation. Coupled with the initial wealth endowment B0(w0) all of these
tax systems render the constrained–efficient allocation affordable for the agent. A very natural
candidate tax system is one that is additively separable in labour income and savings: T̂ (b, y) ≡
T̂0(y) + T̂1b, with T̂1 chosen to satisfy

qu′(c∗
0) = β(1− T̂1)E

[
u′(c∗

1)
]
, (36)

10. These assumptions provide a convenient normalization of the level of taxes and savings. The characterization
of marginal asset tax rates that we give below does not depend in any essential way on this normalization.
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and T̂0 set so that T̂0(y∗
1 (θ)) = (1− T̂1)B∗

1 + y∗
1 (θ) − c∗

1(θ). As we show in the following lemma,
this tax system fails to implement the desired allocation.

Lemma 3. z∗ cannot be implemented in a market economy with the tax function T̂0(y)+
T̂1b.

Proof. Assume instead that z∗ can be implemented with the tax function T̂ (b, y) = T̂0(y)
+ T̂1b. The binding incentive-compatibility constraint (30) in the component planner’s problem
implies that an agent can obtain a lifetime expected utility equal to that from z∗ by choosing an
alternative allocation in which she saves B∗

1 , and selects y and c∗
1(θ) in all states in period 1. The

binding incentive-compatibility constraint also implies c∗
1(θ) < c∗

1(θ). It follows that

qu′(c∗
0) = β(1− T̂1)E[u′(c∗

1)] < β(1− T̂1)u
′(c∗

1(θ)).

Thus, z∗ is dominated by an allocation in which the agent saves B∗
1 + ε (for ε > 0 and small)

and chooses y regardless of her shock. This contradicts the optimality of z∗ for the agent in the
market economy. ‖

Why does this tax function fail? Although it satisfies the first order conditions of the agent
at the constrained–efficient allocation, it permits a complementarity between saving and effort.
To see this, define F by

F(b1, y(θ), y(θ); T ) = u(B0(w0)−qb1)+βE[u(b1 − T (b1, y)+ y)+ θv(y)].

F gives the agent’s pay-off in the market economy in terms of her savings and labour allocation.
The discrete approximation to the cross partial of F in (b1, y(θ)) at the constrained–efficient
allocation is

�

�y

[
∂F

∂b

]
(T̂ ) = 1

y − y

{
∂F

∂b
(B∗

1 , y, y; T̂ )− ∂F

∂b
(B∗

1 , y, y; T̂ )

}

= 1

y − y
β(1− T̂1){u′(c∗

1(θ))−u′(c∗
1(θ))}π(θ) < 0.

This complementarity then underpins a profitable joint deviation for the agent in which she saves
too much in period 0 and works too little in period 1.11

T̂ is the only additively separable tax function that renders the constrained–efficient alloca-
tion affordable and that satisfies the first order conditions of the agent in the market economy at
this allocation. Since it fails to implement the constrained–efficient allocation, it follows that no
optimal tax function can be additively separable and, in particular, that marginal asset taxes must
depend on labour income. Lemma 4 obtains a sharper characterization of marginal asset taxes.
In this lemma, we show that optimal marginal asset taxes must be chosen so that they equate the
marginal value of an extra unit of savings across all states:

qu′(c∗
0) = β

(
1− ∂T

∂b
(B∗

1 , y)

)
u′(c∗

1(θ)), qu′(c∗
0) = β

(
1− ∂T

∂b
(B∗

1 , y)

)
u′(c∗

1(θ)). (37)

11. This finding is related to Golosov and Tsyvinski (2003a) who consider the design of optimal disability insur-
ance. They show that disability benefits must be made contingent on an age-dependent asset level.
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We refer to equations such as (37) as state-by-state Euler equations. They imply that regardless
of her choice of labour in period 1, the agent does not find it profitable to make a small adjustment
to her savings. They also imply that the complementarity term is set to zero:

�

�y

[
∂F

∂b

]
(T ) = 1

y − y
β

{(
1− ∂T

∂b
(B∗

1 , y)

)
u′(c∗

1(θ))−
(

1− ∂T

∂b
(B∗

1 , y)

)
u′(c∗

1(θ))

}
π(θ)

= 0.

Finally, as we show, they imply marginal asset taxes that have a negative covariance with con-
sumption and that are zero on average.

Lemma 4. Any tax function T differentiable in b that implements z∗ must satisfy

qu′(c∗
0) = β

(
1− ∂T

∂b
(B∗

1 , y)

)
u′(c∗

1(θ)), qu′(c∗
0) = β

(
1− ∂T

∂b
(B∗

1 , y)

)
u′(c∗

1(θ)).

Moreover, all such tax functions satisfy:

(1) ∂T
∂b (B∗

1 , y) > ∂T
∂b (B∗

1 , y);

(2) ∂T
∂b (B∗

1 , y)π(θ)+ ∂T
∂b (B∗

1 , y)π(θ) = 0.

Proof. See Appendix. ‖

The tax system constructed in the proof of Proposition 1 satisfies the conditions of Lemma 4.
To check this directly, recall that for all pairs in Graph Y∗

1 this tax system satisfies

T (B1(w1),Y (ς∗
1 (w1,θ))) = B1(w1)+Y (ς∗

1 (w1,θ))−C(ϕ∗
1 (w1,θ)). (38)

For w1 ∈ (w1,w1), there are no local wealth effects on labour supply, i.e. ∂ς∗
1 (w1,θ)/

∂w1 = 0. It then follows from the component planner’s period 1 incentive and promise-keeping
constraints that ϕ∗

1 (w1,θ) = w1 + K (θ), where K (θ) is independent of w1. Thus, for each
(θ,w1) ∈ �× (w1,w1), ∂ϕ∗

1 (w1,θ)/∂w1 = 1. Totally differentiating (38) evaluated at (θ,w1) ∈
�× (w1,w1), with respect to w1 then gives12

∂T

∂b
(B1(w1),Y (ς∗

1 (w1,θ))) = 1−C ′(ϕ∗
1 (w1,θ))

1

B ′
1(w1)

. (39)

Also, for an initial w0 ∈ (w0,w0), the component planner’s period 0 first order condition implies

C ′(ϕ∗
1 (ω∗(w0),θ))

1

B ′
1(ω

∗(w0))
= q

β

u′(c∗
0)

u′(c∗
1(θ))

. (40)

Combining (39) and (40) gives the state-by-state Euler equations (37). It then follows from the ar-
gument underlying the last part of Lemma 4 that the expected marginal asset tax Eθ [

∂T (B∗
1 ,y∗

1 (θ))

∂b ]
is zero.

This example can be generalized by allowing the initial distribution of utility promises �0
to be non-degenerate. If we retain the assumption that W0 ⊂ (w0,w0), then, in the component

12. We show that B1 is differentiable on (w1,w1) in AS (2004).
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planning problem, agents with different initial utility promises receive the same constrained–
efficient labour allocation, but different constrained–efficient consumption allocations in period
1. The implementation must now be such that the tax function keeps track of sufficient informa-
tion about an agent’s past to permit it to induce the appropriate consumption allocation for the
agent in period 1. As Proposition 1 shows, an agent’s wealth is sufficient information and the tax
function constructed in the proof of that proposition succeeds in implementing this constrained–
efficient allocation. It may be shown, once again, that this tax function exhibits zero expected
marginal asset taxes across the range of savings chosen by agents in period 0.

4.2. Example 2: Positive expected marginal asset taxes

4.2.1. Component planner’s problem. We now alter Example 1 by setting � equal to
[θ,θ ] and by assuming that π admits a strictly positive density ρ on this interval. Thus, in period
1, the component planner solves

B1 (w1) = inf
ϕ:�→U ,ς :�→{v(y),v(y)}

∫ θ

θ
{C(ϕ(θ))−Y (ς(θ))}ρ(θ)dθ

s.t. w1 =
∫ θ

θ
{ϕ(θ)+ θς(θ)}ρ(θ)dθ,

∀θ,θ ′, ϕ(θ)+ θς(θ) ≥ ϕ(θ ′)+ θς(θ ′).

We keep the period 0 component planner problem the same as in Example 1. In particular, we
assume that �0({w0}) = 1 for some w0.

The incentive-compatibility constraints for the period 1 component planner problem imply
that any feasible ς is decreasing and that if ς(θ) = ς(θ ′), then ϕ(θ) = ϕ(θ ′), ∀ θ,θ ′ ∈ �. Thus,
this problem can be rewritten as follows:

B1 (w1) = inf
{ϕ,ϕ∈U ,

θ̂∈[θ,θ ]}

[{C(ϕ)−Y (v)}�(θ̂)+{C(ϕ)−Y (v)}(1−�(θ̂))]

s.t. w1 =
{

ϕ�[θ̂ ]+ v

∫ θ̂

θ
θρ(θ)dθ

}
+
{

ϕ(1−�[θ̂ ])+ v

∫ θ

θ̂
θρ(θ)dθ

}
,

ϕ = ϕ + θ̂�v,

where �[θ̂ ] = ∫ θ̂
θ ρ(θ)dθ , v = v(y), v = v(y) and �v = v − v > 0. In this problem, the compo-

nent planner chooses a cut-off value for shocks θ̂ and a utility allocation of the form: {ϕ(θ),ς(θ)}=
{ϕ,v}, θ < θ̂ and {ϕ(θ),ς(θ)} = {ϕ,v}, θ ≥ θ̂ . Let {ϕ∗

1
,ϕ∗

1, θ̂
∗
1 } denote optimal choices of ϕ, ϕ

and θ̂ as functions of the component planner’s period 1 utility promise w1. We assume that
θ̂∗

1 (ω∗(w0)) ∈ (θ,θ). We now refer to the effect of w1 on θ̂∗
1 as a wealth effect. It summarizes the

consequences of different w1 values for the constrained–efficient labour allocation. The follow-
ing lemma gives a sufficient condition for the wealth effect to be negative. We assume that this
condition holds for the remainder of the example. It is satisfied whenever u is CARA or CRRA
with coefficient of relative risk aversion greater than or equal to 1/2.

Lemma 5. If C ′′′ > 0, then
∂θ̂∗

1
∂w1

≤ 0.

Proof. See AS (2004). ‖
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Let c∗
1 = C(ϕ∗

1
(ω∗(w0))), c∗

1 = C(ϕ∗
1(ω

∗(w0))). To economize on notation we also use θ̂∗
1

without an argument to denote θ̂∗
1 (ω∗(w0)) below.

4.2.2. Implementation. Without loss of generality, we assume that agents in the market
economy also work y when their shock is below a critical θ̂ and y when it is above this level. We
restrict attention to implementations that rely on a period 1 tax function that depends on wealth
and labour income and that is differentiable in wealth. An agent’s budget constraint may then be
used to re-express her preferences as a function of a savings level b1 and a threshold shock θ̂ :

F(b1, θ̂ ) = u(B0(w0)−qb1)+βu(b1 + y − T (b1, y))�(θ̂)

+β{u(b1 + y − T (b1, y))(1−�(θ̂))−β�v

∫ θ̂

θ
θρ(θ)dθ +βv(y). (41)

Successful implementation requires a tax function that induces agents to choose b1 = B∗
1 and

θ̂ = θ̂∗
1 . This tax function must be such that the agent’s first order conditions hold at (B∗

1 , θ̂∗
1 ):

∂F(B∗
1 , θ̂∗

1 )

∂b1
= −qu′(c∗

0)+β

{(
1− ∂T

∂b
(B∗

1 , y)

)
u′(c∗

1)�(θ̂∗
1 )

+
(

1− ∂T

∂b
(B∗

1 , y)

)
u′(c∗

1)(1−�(θ̂∗
1 ))

}
= 0,

and

∂F(B∗
1 , θ̂∗

1 )

∂θ̂
= [{u(c∗

1)+ θ̂∗
1 v(y)}−{u(c∗

1)+ θ̂∗
1 v(y)}]ρ(θ̂∗

1 ) = 0.

The second derivatives of F evaluated at (B∗
1 , θ̂∗

1 ) are

∂2 F(B∗
1 , θ̂∗

1 )

∂b2
1

= q2u′′(c∗
0)+β

{(
1− ∂T

∂b
(B∗

1 , y)

)2

u′′(c∗
1)�(θ̂∗

1 )

+
(

1− ∂T

∂b
(B∗

1 , y)

)2

u′′(c∗
1)(1−�(θ̂∗

1 ))

}
< 0, (42)

and

∂2 F(B∗
1 , θ̂∗

1 )

∂θ̂2
= −β�vρ(θ̂∗

1 ) < 0. (43)

The cross partial of the objective is

∂2 F(B∗
1 , θ̂∗

1 )

∂b1∂θ̂
= β

{(
1− ∂T

∂b
(B∗

1 , y)

)
u′(c∗

1)−
(

1− ∂T

∂b
(B∗

1 , y)

)
u′(c∗

1)

}
ρ(θ̂∗

1 ). (44)

This last expression can be interpreted as implying that locally around their constrained–efficient
values, there is a complementarity between saving b1 and the threshold shock θ̂ in the
market economy. This complementarity is only eliminated when

(
1 − ∂T

∂b (B∗
1 , y)

)
u′(c∗

1) =(
1− ∂T

∂b (B∗
1 , y)

)
u′(c∗

1) = q
β u′(c∗

0). In other words it is only eliminated when marginal asset taxes
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satisfy the state-by-state Euler equations. The determinant of the Hessian for the agent’s
market economy problem evaluated at the constrained–efficient allocation is

|H | = −
[

q2u′′(c∗
0)+β

{(
1− ∂T

∂b
(B∗

1 , y)

)2

u′′(c∗
1)�(θ̂∗

1 )

+
(

1− ∂T

∂b
(B∗

1 , y)

)2

u′′(c∗
1)(1−�(θ̂∗

1 ))

}]
{β�vρ(θ̂∗

1 )}

−
[
β

{(
1− ∂T

∂b
(B∗

1 , y)

)
u′(c∗

1)−
(

1− ∂T

∂b
(B∗

1 , y)

)
u′(c∗

1)

}
ρ(θ̂∗

1 )

]2

.

|H | ≥ 0 is a second order necessary condition for the constrained–efficient allocation to be op-
timal in the market economy. This condition requires that the complementarity term in the final
line not be too large.13 In contrast to Example 1, it does not require that the complementarity
term be zero.

One tax function that succeeds in implementing the constrained–efficient allocation, and that
must therefore satisfy the above first and second order necessary conditions is that constructed
in Proposition 1. Recall once again that this is constructed using the entire utility allocation rule,
with for each w1,

T (B1(w1), y) = B1(w1)+ y −C(ϕ∗
1
(w1)), (45)

T (B1(w1), y) = B1(w1)+ y −C(ϕ∗
1(w1)). (46)

Totally differentiating these equations with respect to w1 and using the fact that ϕ∗
1(w1) =

ϕ∗
1
(w1)+ θ̂∗

1 (w1)�v and that, under our assumption, ∂θ̂∗
1 /∂w1 < 0,(

1− ∂T

∂b1
(B1(w1), y)

)
u′(C(ϕ∗

1(w1))) = 1

B ′
1(w1)

{
∂ϕ∗

1

∂w1
(w1)+ ∂θ̂∗

1

∂w1
(w1)�v

}

<
1

B ′
1(w1)

∂ϕ∗
1

∂w1
(w1)

=
(

1− ∂T

∂b1
(B1(w1), y)

)
u′(C(ϕ∗

1
(w1))). (47)

Thus, the state-by-state Euler equations no longer hold. Moreover, in this case, the size of the
expected marginal asset tax rate is linked to the size of wealth effects on the efficient labour
allocation. Under the assumption that these wealth effects are negative, the expected marginal
asset tax is positive. To see why, first recall that the tax function constructed in Proposition 1
associates different savings levels to different utility promises and, hence, to different efficient

continuation allocations. Thus, under the assumption that the wealth effect is negative,
∂θ̂∗

1
∂w1

< 0,
agents with different savings levels are induced to choose different labour allocations in period
1. Let θ̃∗

1 (b) denote the agent’s choice of shock threshold in the market economy as a func-
tion of her period 1 wealth. The reproduction of negative wealth effects in the market economy

requires that
∂θ̃∗

1
∂b (B1(w1)) = − ∂2 F(B1(w1),θ̃

∗
1 (B1(w1)))

∂b1∂θ̂
/

∂2 F(B1(w1),θ̃
∗
1 (B1(w1)))

∂θ̂2 < 0 or, equivalently,

that
∂2 F(B1(w1),θ̃

∗
1 (B1(w1)))

∂b1∂θ̂
< 0. Combining this inequality, equation (44) and the agent’s Euler

13. Kocherlakota (2004b) analyses a model of unemployment insurance with hidden search effort and hidden sav-
ing. He identifies a complementarity between these variables similar to that between b1 and θ̂ . He shows how this
complementarity can preclude an application of the first order approach to such contracting problems.
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equation gives (
1− ∂T

∂b1
(B∗

1 , y)

)
u′(c∗

1) = q

β
u′(c∗

0)+ k1(
1− ∂T

∂b1
(B∗

1 , y)

)
u′(c∗

1) = q

β
u′(c∗

0)+ k2

where k1�(θ̂∗
1 ) + k2(1 − �(θ̂∗

1 )) = 0 and k2 > k1 from (47). But then, using the component
planner’s first order conditions and the fact that c∗

1 > c∗
1:

E

(
∂T

∂b1
(B∗

1 , y)

)
= 1−

{
q

β
u′(c∗

0)+ k1

}
�(θ̂∗

1 )

u′(c∗
1)

−
{

q

β
u′(c∗

0)+ k2

}
1−�(θ̂∗

1 )

u′(c∗
1)

= −
[

k1
�(θ̂∗

1 )

u′(c∗
1)

+ k2
1−�(θ̂∗

1 )

u′(c∗
1)

]
> 0.

4.3. Utility bounds and borrowing limits

The previous examples focus on the implications of the incentive-compatibility constraint for the
tax system. The lower bound on the continuation utilities in the component planning problems
also has implications both for taxes and the structure of asset markets. The argument in the proof
of Proposition 1 implies that this lower bound can be implemented with a lower bound on an
agent’s claim holdings. In the implementation of Section 3, an agent with utility promise wt and
shock θ is induced to save Bt+1(ω

∗
t (wt ,θ)), the corresponding continuation cost of a component

planner. If the component planner is restricted to making utility promises in excess of Ut+1,
then this implementation requires agents to hold claims in excess of bt+1 = Bt+1(Ut+1). This
borrowing limit will bind on those agents with low after-tax resources, xt = bt + yt − Tt (bt , yt ),
in period t .

A binding borrowing limit has implications for both the agents’ intertemporal Euler equa-
tions and the intertemporal wedge. Letting η̂t+1 denote the multiplier on the borrowing limit the
intertemporal wedge can be decomposed as

βEtu′ (ct+1)−qtu′ (ct )

βEtu′ (ct+1)︸ ︷︷ ︸
Intertemporal wedge

=
Et

[
∂Tt+1

∂b (bt+1, yt+1)u′ (ct+1)
]

Etu′ (ct+1)︸ ︷︷ ︸
Tax component

−
η̂t+1

Etu′ (ct+1)︸ ︷︷ ︸
Limit component

. (48)

The first component is induced by the tax system, the second by the multiplier on the borrowing
limit. Clearly, the second component is only present when the borrowing limit binds. However,
the lower utility bound in the planner’s problem also has implications for the optimal tax system.
Specifically, the bound restricts the planner’s ability to use continuation utilities to provide
incentives for truthful revelation. Thus, the planner must rely more heavily on variations in
current consumption to provide incentives. Close to the lower bound, the constrained–efficient
allocation will then exhibit greater consumption variability and larger effort wedges. These char-
acteristics translate into greater curvature of optimal tax functions at wealth levels close to the
borrowing limit.

5. NUMERICAL ANALYSIS

To shed further light on the properties of the optimal tax system, we turn to numerical examples.
We set parameters according to recent calibrations of Bewley economies with endogenous labour
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supply. However, our examples are intended to be illustrative rather than a fully calibrated quan-
titative exercise. For reasons of space, we only report one example in detail below. However, we
indicate those properties that are robust across other examples that we have computed.

5.1. Calibration and numerical procedure

We adopt the utility function

U (c, y; θ) = κ
c1−σ

1−σ
+ (1−κ)

(y − θy)1−γ

1−γ
. (49)

Here, θ may be interpreted as a cost of effort shock.14 This preference specification is common
in macroeconomics.15

The numerical parameters for this economy are
{
κ,σ,γ, y,β,U ,�,π,{Gt }∞t=0

}
. For our

benchmark case, we follow Heathcote, Storesletten and Violante (2003) in setting the preference
parameters (1 −κ)/κ to 1·184, y to 1, σ to 1·461, γ to 2·54. This parameterization implies that
their model matches the fraction of time devoted to labour and the wage-hours correlation for the
U.S. It implies a Frisch elasticity of labour supply of 0·3. In addition, we set β to 0·90. In the
benchmark case, we assume that 1/θ is distributed uniformly on the interval [0·2,1·2]. We set
U to −3·48, which translates into a borrowing limit of −2·14. This value of U lies between the
lifetime utility that an agent would attain if she were at her “natural” debt limit16 in a Bewley
economy without taxes, which is clearly −∞, and the lifetime utility under autarky without taxes
and markets, equal to −2·74. Government consumption is constant over time and equal to 0·1 in
each period, which amounts to approximately 30% of steady state aggregate output.

We numerically solve for the steady state of a component planner economy.17 In the steady
state, the price of claims is constant at q, the component planner’s cost function B and optimal
policy functions, {ϕ∗,ς∗,ω∗} are time invariant, and the cross sectional distribution of utility
promises, �, is a fixed point of the Markov operator implied by ω∗. Our algorithm solves the
recursive component planner problem using numerical dynamic programming techniques at each
intertemporal price. We use the policy functions from this problem to obtain an approximation
to the limiting distribution over utility promises. We iterate on the intertemporal price until this
distribution is consistent with resource feasibility. Finally, we construct the time invariant tax
function T (b, y) on Graph Y∗, where Y∗(b) = {y : y = Y (ς∗(B−1(b),θ)), θ ∈ �}, from the
solution to the component planning problem using the procedure of the proof of Proposition 1.

5.2. Numerical results

The optimal tax function T for the benchmark parameterization is illustrated in Figure 1 on the set
Graph Y∗. Taxes are negative at low wealth and low labour income levels. Across the whole of its
domain, the cross partial of the tax function, ∂2T (b,y)

∂b∂y , is negative. This is especially marked, and

14. θ can also be interpreted as the reciprocal of a productivity shock. Then, y should be interpreted as the agent’s
output.

15. These preferences retain the key property of additive separability in consumption and labour. They drop the
inessential property of multiplicative separability in the shock and the utility from labour. Since they are not bounded, we
assume that the tax functions we compute do not admit an infinite sequence of deviations that raise the agents’ pay-off
above their constrained efficient one.

16. The natural debt limit is the maximal borrowing that an agent can service. Given the bound on the agent’s per
period output, this limit is finite, but it translates into a utility bound of −∞.

17. We do not have a proof of the existence of a steady state in our environment. The numerical policy functions
we compute indicate that the Markov process for utility promises possesses an ergodic distribution. As in Atkeson and
Lucas (1995), U is essential to ensure this.
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FIGURE 1

The tax function, T (b, y)

the curvature of the tax function especially large, close to the borrowing limit. These properties
conform with the discussion in section 4.3., and imply that the marginal taxes of low wealth agents
are very sensitive to wealth.

Figure 2 shows ∂T (b,y)
∂y , the marginal labour income tax, as a function of y. Each curve

corresponds to a different wealth level b. The negative cross partial ∂2T (b,y)
∂b∂y implies that marginal

labour income taxes are decreasing in wealth. These features are common across many other
examples that we have computed. In contrast, we have found the dependence of the marginal
labour income tax on labour income to be quite sensitive to the choice of utility function and
shock distribution. In our benchmark parameterisation reported here, marginal labour income
taxes have an inverted U shape as a function of income, holding wealth fixed. At the lowest and
highest labour supplies at each wealth level, the marginal income tax is zero. At intermediate
levels it is positive.18

This sensitivity of the dependence of marginal labour income taxes on labour income to
parameters characterises much of the work on static non-linear income taxation. Consequently,
there are few general results in that literature. Mirrlees (1971) obtained marginal income tax
rates that are low and slightly declining in income, while Diamond (1998) and Saez (2001) find
marginal income taxes that are high and sharply declining in income at low income levels.19

Diamond and Saez’s results have been interpreted as being consistent with the empirical phasing
out of social benefits for low income agents as their income rises. In contrast, our numerical
findings suggest that the transfers received by low wealth agents should be rapidly phased out as
their labour incomes increase.

The implications of the intertemporal wedge for marginal asset taxes are illustrated in
Figures 3 and 4. Figure 3 plots ∂T

∂b (·, y) against b for different fixed labour income levels y.

Now the negative cross partial ∂2T (b,y)
∂b∂y implies that marginal asset taxes covary negatively with

18. The same pattern has been found in the static non-linear tax literature when similar assumptions on preferences
and shocks are made. The zero marginal income taxes at the lowest and highest labour supplies stem from the fact that the
incentive-compatibility constraint does not bind at these points. See the Supplement and Seade (1977) for further details.

19. The low value of marginal income taxes in Mirrlees (1971) stems from his choice of utility function: logc +
log(1 − l), which implies a high labour supply elasticity. The monotonically declining pattern of rates in income stems
from his assumption of a log-normal distribution of shocks. Diamond (1998) and Saez (2001) assume lower labour supply
elasticities and a (calibrated) Pareto shock distribution, and obtain higher marginal income taxes.
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FIGURE 2

The marginal labour income tax, ∂T (b,y)
∂y

income, being high at low income levels and low at high ones. As with marginal income taxes,
variation in marginal asset taxes is greatest close to the borrowing limit. Figure 4 explicitly re-
lates the tax function to the intertemporal wedge. Recall from (27) that the contribution of the tax
function to the intertemporal wedge in (48) can be decomposed into an expected marginal tax and
a covariance component, and is equal to the intertemporal wedge at wealth levels strictly greater
than the borrowing limit. Figure 4 shows the contribution of the tax function to the wedge (solid
line), as well as the expected marginal asset tax (dashed line), and the covariance (dash–dot)
component. Over most of the wealth range the intertemporal wedge is less than 1% in value, but
close to the borrowing limit it becomes much larger rising to about 16%. The expected marginal
asset tax peaks at a little over 2% at the borrowing limit, and then falls steadily with wealth. The
covariance component is also decreasing in wealth, but it is much larger close to the limit and
falls off much more quickly as wealth increases. Consequently, the covariance component plays
the major role in generating the intertemporal wedge only when the agent’s wealth is small and
the wedge is large.

We model taxes as a function of labour income and the stock of wealth. The marginal asset
taxes drawn in Figure 3 can be converted into marginal asset income taxes by multiplying them
by a factor of 1/(1 −q). This conversion indicates that optimal marginal asset income taxes are
quite large and very sensitive to labour income, especially close to the borrowing limit. The
optimal expected marginal asset income tax peaks at over 20% and exceeds 10% over much of the
wealth range.

6. CONCLUDING REMARKS

We study optimal taxation in a class of dynamic economies with private information. We show
that constrained–efficient allocations in this environment can be implemented as competitive
equilibria in market economies with taxes. The optimal tax system is simple and conditions only
upon current wealth and current labour earnings. The incentive compatibility constraints shape
the features of the resulting optimal tax system. We analytically derive implications for both
income and asset taxation and further explore them in numerical examples.
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FIGURE 3

The marginal asset tax, ∂T (b,y)
∂b

FIGURE 4

The tax contribution to the intertemporal wedge

Our implementation relies on a recursive formulation of the planner’s problem. However,
this is only valid for the case in which the agent’s shocks are i.i.d. Consequently, our fiscal imple-
mentation will not work when shocks are persistent. In this case, wealth levels do not adequately
describe past histories. Moreover, when shocks are persistent an agent’s current shock influences
her intertemporal marginal rate of substitution. Thus, the agent’s intertemporal allocation of con-
sumption and savings will depend upon this shock as well as her after-tax quantity of resources.
The simple decomposition of the agent’s and component planner’s within period problem on
which the proof of Proposition 1 relies will no longer hold.

Kocherlakota (2004a) provides an alternative fiscal implementation that works even with
persistent shocks. In Kocherlakota’s formulation, the government keeps track of an agent’s entire
history of labour supplies and condition taxes upon this history. The government does not use
wealth to summarize aspects of an agent’s past history.
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It remains an open question as to whether there exists a fiscal implementation intermediate
between ours and Kocherlakota’s that would be valid for an economy with persistent shocks.
Fernandes and Phelan (2000) and Doepke and Townsend (2002) have shown that there do exist
recursive formulations of the planning problem for Markovian shocks. These rely on a vector
of utility promises to keep track of histories. Similarly, a recursive fiscal implementation for an
economy with persistent shocks could not rely on an agent’s stock of non-contingent claims alone
to keep track of past histories. It would be necessary to augment the state space. For example,
it may be possible to use an agent’s portfolio position in a richer asset market structure in con-
junction with truncated labour histories to encode past shock histories. We leave this important
extension to future work.

Our fiscal implementation embeds specific assumptions about the relative roles of markets
and government policy. In particular, no private insurance contracts are allowed with the current
market structure. In practice, government welfare programmes and private insurance contracts
are complementary in providing incentives and determining the extent of risk-sharing supported
in a competitive equilibrium. Exploring this complementarity could provide important insight in
cross-country differences in government policies.20

APPENDIX: PROOFS
Proof of Proposition 1. We directly construct a two period market economy with taxes and borrowing limits.

We assume a market for claims opens in period 0. We set f = B0 and set �0 to satisfy condition (1) in Definition 3.
We set the government spending shocks to {Gt }1

t=0, the debt limit to b = B0(U ) and B1 to [b,∞). The (candidate)
equilibrium price in the market economy is set to q. The proof will be complete if we can find taxes that ensure that
for each w0, an agent with initial wealth B0(w0) in the market economy chooses the allocation z(ζ∗,w0), where
ζ∗ = {{ϕ∗

t ,ς∗
t }1

t=0,ω∗}.
The argument is in three steps that work back from period 1 to period 0. In the first step, a tax function is found such

that an agent with a stock of claims B1(w1) in period 1 will choose the same allocation as is awarded to an agent with a
utility promise of w1 in the component planner economy. Period 0 is divided into two stages in both the market and the
component planner economy. In the second stage, the intertemporal allocation of a given quantity of resources between
time 0 consumption and claims is obtained. In the first stage, the labour–resource allocation is determined. The next step
of the proof shows that the agent’s second stage problem in the market economy is the dual of the corresponding second
stage component planner’s problem. In the final step, a tax function is found such that an agent with an initial stock of
claims B0(w0) chooses the same labour and resource pair as would be awarded to an agent with utility promise w0 in the
component planner economy. We give the argument for � = [θ,θ ] and for ς∗

t (w0, ·) continuous each w0 ∈W0. These
assumptions simplify the exposition; neither is essential.

Period 1: A component planner with assigned utility promise w1 ∈W1 solves the problem

B1(w1) = inf
ϕ:�→U ,ς :�→V

∫
[C(ϕ(θ))−Y (ς(θ))]dπ, (A.1)

s.t. w1 = ∫
[ϕ(θ)+ θς(θ)]dπ and ∀θ,θ ′ ∈ �, ϕ(θ)+ θς(θ) ≥ ϕ(θ ′)+ θς(θ ′). Denote the policy functions that attain

the infima in the problems (A.1) by ς∗
1 :W1 ×� → V and ϕ∗

1 :W1 ×� → U . Let y∗
1 and c∗

1 denote the corresponding
constrained–efficient resource allocation defined by y∗

1 (B1(w1),θ) = Y (ς∗
1 (w1,θ)) and c∗

1(B1(w1),θ) = C(ϕ∗
1 (w1,θ)).

Next consider the period 1 problem of an agent in the market economy confronting a tax function T1. An agent with
wealth b1 ∈ B1 solves

V1(b1) = sup
c:�→R+,y:�→Y

∫ [
u(c(θ))+ θv(y(θ))

]
dπ (A.2)

subject to the budget constraint, for each θ ∈ �, b1 = c(θ)− y(θ)+ T1(b1, y(θ)).

Define Y∗
1 (b) as in (14) and for b ∈ B1 and y ∈ Y∗

1 (b) set T1(b1, y) according to (17). Since � = [θ,θ ] and

ς∗
1 (B−1

1 (b), ·) is continuous, Y∗
1 (b) is an interval of the form [y1(b), y1(b)] with y1(b) = y∗

1 (b,θ) and y1(b) = y∗
1 (b,θ).

For y > y1(b1), set T1(b1, y) > T1(b1, y1(b1)) and such that u(b1 + y − T1(b1, y)) + θv(y) < u(b1 + y1(b1) −

20. Golosov and Tsyvinski (2003b) consider this issue.
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FIGURE A.1

Timeline for the market economy

FIGURE A.2

Timeline for the component planner economy

T1(b1, y1(b1))) + θv(y1(b1)). For example, extend T1(b1, ·) linearly onY/Y∗
1 (b1) by setting T1(b1, y) = T1(b1, y1(b1))

+ τ1(y − y1(b1)), where τ1 = [u′(c∗
1(b1, y1(b1))) − θv ′(y1(b1))]/u′(c∗

1(b1, y1(b1))). Similarly, for y < y1(b1), set
T1(b1, y) < T1(b1, y

1
(b1)) and such that u(b1 + y − T1(b1, y)) + θv(y) < u(b1 + y

1
(b1) − T1(b1, y

1
(b1))) +

θv(y1(b1)). For example, set T1(b1, y) = T1(b1, y1(b1)) + τ1(y − y1(b1)), where τ1 = [u′(c∗
1(b1, y1(b1))) −

θv ′(y
1
(b1))]/u′(c∗

1(b1, y
1
(b1))).

Consider an agent in the market economy in period 1 with wealth b1 = B1(w1) and shock θ . Under (17), if the agent
chooses labour y∗

1 (b1,θ ′) ∈ Y∗
1 (b1), she obtains consumption c∗

1(b1,θ ′). By construction, this provides the utility pair
(ϕ∗

1 (w1,θ ′), ς∗
1 (w1,θ ′)). By choosing different labour levels in Y∗

1 (b1), the agent can obtain the entire set of period 1
report-contingent resource allocations available to an agent with utility promise w1 in the component planner economy.
Incentive-compatibility implies that amongst these, the agent obtains the highest pay-off from (c∗

1(b1,θ), y∗
1 (b1,θ)). For

y ∈ Y/Y∗
1 (b1), consider first an agent choosing y = y1(b1)+ δ, δ > 0. By construction, u(b1 + y − T1(b1, y)) + θv(y)

< u(b1 + y1(b1) − T1(b1, y1(b1))) + θv(y1(b1))+ (θ − θ)(v(y)− v(y1(b1))) < u(b1 + y1(b1) − T1(b1, y1(b1))) +
θv(y1(b1)). Thus, for all y > y1(b1), the agent is better off reducing her labour to y1(b1). By a similar argument the
agent would never choose y < y

1
(b1). It follows that the agent will choose the allocation (c∗

1(b1,θ), y∗
1 (b1,θ)) and,

hence, the utility pair (ϕ∗
1 (w1,θ), ς∗

1 (w1,θ)). Since b1 and θ were arbitrary, it follows that for all b′
1 ∈ B1 and θ ′ ∈ �,

an agent will choose (c∗
1(b′

1,θ ′), y∗
1 (b′

1,θ ′)) when confronted with the tax function T1. The agent’s value function in the

market economy, V1, defined in (A.2), then equals B−1
1 and, hence, is strictly increasing.

Period 0: We divide the agent’s problem in the market economy into two stages. In the first, the agent chooses
labour y0 and resources x . In the second, she allocates x between current consumption c0 and claims b1. Similarly, the
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component planner’s problem can be subdivided. In the first stage, the agent reports her shock and receives a utility from
labour, ς0, and an interim utility promise d. In the second stage, the planner allocates the interim promise between utility
from current consumption ϕ0 and a continuation utility promise w1.

Period 0, second stage: Consider the second stage problem of a component planner with interim utility promise
d ∈D = {ϕ +βw : ϕ ∈ U ,w ∈W1}:

X (d) = inf
ϕ0∈U ,w1∈W1

C(ϕ0)+q B1(w1) (A.3)

subject to: d = ϕ0 +βw1. It is straightforward to verify that X is strictly increasing. Let ϕ̃∗
0 : D→ U and ω̃∗ : D→

W1 denote policy functions that attain the infima in the problems (A.3). Define the corresponding resource allocation
functions by c̃∗

0 and b̃∗
1, where c̃∗

0(X (d)) = C(ϕ̃∗
0 (d)) and b̃∗

1(X (d)) = B1(ω̃∗(d)).
Next consider the agent’s second stage problem in the market economy. The agent allocates x ≥ qb units of resources

across current consumption and savings to solve

D(x) = sup
c0∈R+,b1≥b

u(c0)+βV1(b1)

subject to x = c0 +qb1. The allocation (̃c∗
0(x), b̃∗

1(x)) is optimal for the agent in this problem. To see this suppose that
there was some alternative allocation (c′,b′) such that x = c′ +qb′, c′ ∈R+, b′ ≥ b and u(c′)+βV1(b′) > d = X−1(x).
Then, since d ∈ D, and u and V1 are continuous and monotone, there exists an allocation (c+,b+) with c+ ≤ c′ and
b+ ≤ b′ with at least one of these inequalities strict such that u(c+)+βV1(b+) = d. But then (u(c+),V1(b+)) attains
the interim utility promise d and has a cost strictly less than x . This contradicts the optimality of ϕ̃∗

0 and ω̃∗ at d for the
component planner’s problem.

Period 0, first stage: In this stage, a component planner with utility promise w0 ∈W0 solves

B0(w0) = inf
d:�→D,ς :�→V

∫
[X (d(θ))−Y (ς(θ))]dπ, (A.4)

s.t. w0 = ∫
[X (d(θ))+ θς(θ)]dπ and ∀θ,θ ′ ∈ �, d(θ) + θς(θ) ≥ d(θ ′) + θς(θ ′). Denote the policy functions that

attain the infima in these problems by d∗
0 :W0 ×� → D and ς∗

0 :W0 ×� → V . Let y∗
0 (B0(w0),θ) = Y (ς∗

0 (w0,θ))

and x∗
0 (B0(w0),θ) = X (d∗

0 (w0,θ)).
Next consider the first stage problem of an agent in the market economy with initial wealth b0 ∈ B0, B0 = B0(W0)

under a tax function T0:

V0(b0) = sup
xc:�→R+,y:�→Y

∫ [
D(x(θ))+ θv(y(θ))

]
dπ (A.5)

subject to the budget constraint, for each θ ∈ �, b0 = x(θ)− y(θ)+ T0(b, y(θ)).

Define Y∗
0 (b) as in (14). For each b0 ∈ B0 and θ , set T0(b0, y∗

0 (b0,θ)) = b0 + y∗
0 (b0,θ) − x∗

0 (b0,θ). Since

� = [θ,θ ] and ς∗
0 (B−1

0 (b), ·) is continuous, Y∗
0 (b) is an interval of the form [y0(b), y0(b)]. For y > y0(b0), set

T0(b0, y) > T0(b0, y0(b0)) and such that D(b0 + y − T0(b0, y)) + θv(y) < D(b0 + y0(b0) − T0(b0, y0(b0))) +
θv(y0(b0)). Similarly, for y < y0(b0), set T0(b0, y) < T0(b0, y0(b0)) and such that D(b0 + y − T0(b0, y)) + θv(y)

< D(b0 + y0
(b0) − T0(b0, y0

(b0))) + θv(y0
(b0)). Then, the set of budget-feasible labour and resource combinations

(x0, y0) for an agent with initial wealth b0 = B0(w0) and shock θ0 in the market economy includes those available to
an agent with initial promise w0 in the component planner problem. By incentive-compatibility (x∗

0 (b0,θ), y∗
0 (b0,θ)) is

optimal for the agent amongst these. In the market economy, the agent can also increase her labour above y0(b0) or reduce
it below y0(b0). However, as in period 1, allocations obtained in this way are sub-optimal. Let c∗

0(b0,θ) = c̃∗
0(x∗

0 (b0,θ))

and b∗(b0,θ) = b̃∗
1(x∗

0 (b0,θ)).
Combining the previous arguments, it follows that it is optimal for an agent in the market economy, endowed with

a stock of claims b0 = B0(w0) and confronting the price q and the tax system {T0,T1}, to make choices that induce the
indvidual utility allocation z(ζ∗,w0). ‖

Proof of Lemma 4. Under our normalization, implementation requires that the agent saves B∗
1 . It also requires

that she obtains the consumption level c∗
1(θ) if she chooses y and c∗

1(θ) if she chooses y. Define T 1 by qu′(c∗
0) =

β(1− T 1) u′(c∗
1(θ)) and T 1 by qu′(c∗

0) = β(1− T 1)u′(c∗
1(θ)).

Now, suppose that the tax function T (b, y) implements z∗ in the market economy and that ∂T
∂b (B∗

1 , y) < T 1. Then,
as in the proof of Lemma 3, the agent can save B∗

1 and select y regardless of her shock. This is feasible and delivers the

same pay-off, w0, to the agent as z∗. However, since ∂T
∂b (B∗

1 , y) < T 1, qu′(c∗
0) < β(1 − ∂T

∂b (B∗
1 , y))u′(c∗

1(θ)), so that
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the agent can do even better and obtain a pay-off above w0 by saving slightly more than B∗
1 , and selecting an effort of

y regardless of her shock. It follows that if T (b, y) implements z∗ then ∂T
∂b (B∗

1 , y) ≥ T 1. Similarly, if ∂T
∂b (B∗

1 , y) > T 1,
the agent can improve on the planner’s solution by saving slightly less than B∗

1 and choosing y regardless of her shock.

Thus, ∂T
∂b (B∗

1 , y) = T 1. It then follows from the definitions of T 1 and T 1 that z∗ is consistent with the agent’s Euler

equation only if ∂T
∂b (B∗

1 , y) = T 1.
Condition 1 in the lemma follows from the definitions of T 1 and T 1 and the fact that c∗

1(θ) < c∗
1(θ). For Condition 2,

combine the definitions of T 1 and T 1 with the component planner’s intertemporal first order condition (31) to obtain

T 1π(θ)+ T 1π(θ) = 1− q

β
u′(c∗

0)

{
π(θ)

u′(c∗
1(θ))

+ π(θ)

u′(c∗
1(θ))

}
= 0. ‖
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