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Chapter 1

Introduction

These lecture notes cover a one-semester course. The overriding goal of the course is
to begin provide methodological tools for advanced research in macroeconomics. The
emphasis is on theory, although data guides the theoretical explorations. We build en-
tirely on models with microfoundations, i.e., models where behavior is derived from basic
assumptions on consumers’ preferences, production technologies, information, and so on.
Behavior is always assumed to be rational: given the restrictions imposed by the primi-
tives, all actors in the economic models are assumed to maximize their objectives.

Macroeconomic studies emphasize decisions with a time dimension, such as various
forms of investments. Moreover, it is often useful to assume that the time horizon is
infinite. This makes dynamic optimization a necessary part of the tools we need to
cover, and the first significant fraction of the course goes through, in turn, sequential
maximization and dynamic programming. We assume throughout that time is discrete,
since it leads to simpler and more intuitive mathematics.

The baseline macroeconomic model we use is based on the assumption of perfect com-
petition. Current research often departs from this assumption in various ways, but it is
important to understand the baseline in order to fully understand the extensions. There-
fore, we also spend significant time on the concepts of dynamic competitive equilibrium,
both expressed in the sequence form and recursively (using dynamic programming). In
this context, the welfare properties of our dynamic equilibria are studied.

Infinite-horizon models can employ different assumptions about the time horizon of
each economic actor. We study two extreme cases: (i) all consumers (really, dynasties) live
forever - the infinitely-lived agent model - and (ii) consumers have finite and deterministic
lifetimes but there are consumers of different generations living at any point in time -
the overlapping-generations model. These two cases share many features but also have
important differences. Most of the course material is built on infinitely-lived agents, but
we also study the overlapping-generations model in some depth.

Finally, many macroeconomic issues involve uncertainty. Therefore, we spend some
time on how to introduce it into our models, both mathematically and in terms of eco-
nomic concepts.

The second part of the course notes goes over some important macroeconomic topics.
These involve growth and business cycle analysis, asset pricing, fiscal policy, monetary
economics, unemployment, and inequality. Here, few new tools are introduced; we instead
simply apply the tools from the first part of the course.






Chapter 2

Motivation: Solow’s growth model

Most modern dynamic models of macroeconomics build on the framework described in
Solow’s (1956) paper.! To motivate what is to follow, we start with a brief description of
the Solow model. This model was set up to study a closed economy, and we will assume
that there is a constant population.

2.1 The model

The model consists of some simple equations:

C,+1,=Y,=F(K.L) (2.1)
-[t - Kt+1 - (]_ - 5) Kt (22)
[t =skF (Kt7 L) . (23)

The equalities in (2.1) are accounting identities, saying that total resources are either
consumed or invested, and that total resources are given by the output of a production
function with capital and labor as inputs. We take labor input to be constant at this point,
whereas the other variables are allowed to vary over time. The accounting identity can also
be interpreted in terms of technology: this is a one-good, or one-sector, economy, where
the only good can be used both for consumption and as capital (investment). Equation
(2.2) describes capital accumulation: the output good, in the form of investment, is
used to accumulate the capital input, and capital depreciates geometrically: a constant
fraction 6 € [0, 1] disintegrates every period.

Equation (2.3) is a behavioral equation. Unlike in the rest of the course, behavior
here is assumed directly: a constant fraction s € [0, 1] of output is saved, independently
of what the level of output is.

These equations together form a complete dynamic system - an equation system defin-
ing how its variables evolve over time - for some given F'. That is, we know, in principle,
what {K;11},o, and {Y;, Cy, I} -, will be, given any initial capital value K.

In order to analyze the dynamics, we now make some assumptions.

I'No attempt is made here to properly assign credit to the inventors of each model. For example, the
Solow model could also be called the Swan model, although usually it is not.



. F(0,L)=0.
4]

- limsFr (K, L)+ (1-6) < 1.

k—o0

- F'is strictly concave in K and strictly increasing in K.

An example of a function satisfying these assumptions, and that will be used repeat-
edly in the course, is F (K,L) = AK“L'™® with 0 < « < 1. This production function
is called Cobb-Douglas function. Here A is a productivity parameter, and o and 1 — «
denote the capital and labor share, respectively. Why they are called shares will be the
subject of the discussion later on.

The law of motion equation for capital may be rewritten as:

Kt+1 = (]_ — 5) Kt + SF (Kt7 L) .

Mapping K; into K;,; graphically, this can be pictured as in Figure 2.1.

t+1)

k[

K- K

Figure 2.1: Convergence in the Solow model

The intersection of the 45° line with the savings function determines the stationary
point. It can be verified that the system exhibits “global convergence” to the unique
strictly positive steady state, K*, that satisfies:

K* = (1-6) K"+ sF (K", L), or
SK* = sF (K", L) (there is a unique positive solution).

Given this information, we have

Theorem 2.1 dK* > 0:VK, >0, K; — K*.
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Proof outline.

(1) Find a K* candidate; show it is unique.

(2) If Ky > K*, show that K* < Ky < Ky YVt >0 (using Ky — Ky = sF (K, L) —
5Kt) If KO < K*, show that K* > Kt+1 > Kt Vit > 0.

(3) We have concluded that K; is a monotonic sequence, and that it is also bounded.
Now use a math theorem: a monotone bounded sequence has a limit.

]

The proof of this theorem establishes not only global convergence but also that conver-
gence is monotonic. The result is rather special in that it holds only under quite restrictive
circumstances (for example, a one-sector model is a key part of the restriction).

2.2 Applications

2.2.1 Growth

The Solow growth model is an important part of many more complicated models setups
in modern macroeconomic analysis. Its first and main use is that of understanding
why output grows in the long run and what forms that growth takes. We will spend
considerable time with that topic later. This involves discussing what features of the
production technology are important for long-run growth and analyzing the endogenous
determination of productivity in a technological sense.

Consider, for example, a simple Cobb-Douglas case. In that case, « - the capital share
- determines the shape of the law of motion function for capital accumulation. If « is
close to one the law of motion is close to being linear in capital; if it is close to zero (but
not exactly zero), the law of motion is quite nonlinear in capital. In terms of Figure 2.1,
an « close to zero will make the steady state lower, and the convergence to the steady
state will be quite rapid: from a given initial capital stock, few periods are necessary to
get close to the steady state. If, on the other hand, « is close to one, the steady state is
far to the right in the figure, and convergence will be slow.

When the production function is linear in capital - when « equals one - we have no
positive steady state.? Suppose that sA+41—¢ exceeds one. Then over time output would
keep growing, and it would grow at precisely rate sA + 1 — §. Output and consumption
would grow at that rate too. The “Ak” production technology is the simplest tech-
nology allowing “endogenous growth”, i.e. the growth rate in the model is nontrivially
determined, at least in the sense that different types of behavior correspond to different
growth rates. Savings rates that are very low will even make the economy shrink - if
sA+1— 0 goes below one. Keeping in mind that savings rates are probably influenced
by government policy, such as taxation, this means that there would be a choice, both
by individuals and government, of whether or not to grow.

The “Ak” model of growth emphasizes physical capital accumulation as the driving
force of prosperity. It is not the only way to think about growth, however. For example,

2This statement is true unless sA + 1 — ¢ happens to equal 1.

11



Figure 2.2: Random productivity in the Solow model

one could model A more carefully and be specific about how productivity is enhanced
over time via explicit decisions to accumulate R&D capital or human capital - learning.
We will return to these different alternatives later.

In the context of understanding the growth of output, Solow also developed the
methodology of “growth accounting”, which is a way of breaking down the total growth of
an economy into components: input growth and technology growth. We will discuss this
later too; growth accounting remains a central tool for analyzing output and productivity
growth over time and also for understanding differences between different economies in
the cross-section.

2.2.2 Business Cycles

Many modern studies of business cycles also rely fundamentally on the Solow model.
This includes real as well as monetary models. How can Solow’s framework turn into a
business cycle setup? Assume that the production technology will exhibit a stochastic
component affecting the productivity of factors. For example, assume it is of the form

F=AF(K, L),

where A, is stochastic, for instance taking on two values: Agy, Ar. Retaining the assump-
tion that savings rates are constant, we have what is depicted in Figure 2.2.

It is clear from studying this graph that as productivity realizations are high or low,
output and total savings fluctuate. Will there be convergence to a steady state? In the
sense of constancy of capital and other variables, steady states will clearly not be feasible
here. However, another aspect of the convergence in deterministic model is inherited
here: over time, initial conditions (the initial capital stock) lose influence and eventually
- “after an infinite number of time periods” - the stochastic process for the endogenous

12



variables will settle down and become stationary. Stationarity here is a statistical term,
one that we will not develop in great detail in this course, although we will define it and
use it for much simpler stochastic processes in the context of asset pricing. One element
of stationarity in this case is that there will be a smallest compact set of capital stocks
such that, once the capital stock is in this set, it never leaves the set: the “ergodic set”.
In the figure, this set is determined by the two intersections with the 45°line.

2.2.3 Other topics

In other macroeconomic topics, such as monetary economics, labor, fiscal policy, and
asset pricing, the Solow model is also commonly used. Then, other aspects need to be
added to the framework, but Solow’s one-sector approach is still very useful for talking
about the macroeconomic aggregates.

2.3 Where next?

The model presented has the problem of relying on an exogenously determined savings
rate. We saw that the savings rate, in particular, did not depend on the level of capital
or output, nor on the productivity level. As stated in the introduction, this course
aims to develop microfoundations. We would therefore like the savings behavior to be
an outcome rather than an input into the model. To this end, the following chapters
will introduce decision-making consumers into our economy. We will first cover decision
making with a finite time horizon and then decision making when the time horizon is
infinite. The decision problems will be phrased generally as well as applied to the Solow
growth environment and other environments that will be of interest later.

13
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Chapter 3
Dynamic optimization

There are two common approaches to modelling real-life individuals: (i) they live a finite
number of periods and (ii) they live forever. The latter is the most common approach,
but the former requires less mathematical sophistication in the decision problem. We will
start with finite-life models and then consider infinite horizons.

We will also study two alternative ways of solving dynamic optimization problems:
using sequential methods and using recursive methods. Sequential methods involve maxi-
mizing over sequences. Recursive methods - also labelled dynamic programming methods
- involve functional equations. We begin with sequential methods and then move to re-
cursive methods.

3.1 Sequential methods

3.1.1 A finite horizon

Consider a consumer having to decide on a consumption stream for 7" periods. Con-
sumer’s preference ordering of the consumption streams can be represented with the
utility function

U(Co,Cl, ...,CT) .

A standard assumption is that this function exhibits “additive separability”, with
stationary discounting weights:

T

U(co,C1y.eeycr) = Zﬁtu(ct).

t=0

Notice that the per-period (or instantaneous) utility index u () does not depend on
time. Nevertheless, if instead we had wu; (+) the utility function U (¢, ¢4, ..., ¢r) would still
be additively separable.

The powers of 3 are the discounting weights. They are called stationary because the
ratio between the weights of any two different dates ¢t = ¢ and t = j > 7 only depends on
the number of periods elapsed between ¢ and j, and not on the values of ¢ or j.

15



The standard assumption is 0 < 3 < 1, which corresponds to the observations that hu-
man beings seem to deem consumption at an early time more valuable than consumption
further off in the future.

We now state the dynamic optimization problem associated with the neoclassical
growth model in finite time.

T

max . [lu(c)

{Ct,kt+1}tT:0 t=0
St b < F (k) = F (ko N) 4+ (1= 0) kWt = 0, ., T
¢G>0Vt =0, T
ktJrl Z O,Vt - O, ,T
ko > 0 given.

This is a consumption-savings decision problem. It is, in this case, a “planning prob-
lem”: there is no market where the individual might obtain an interest income from his
savings, but rather savings yield production following the transformation rule f (k).

The assumptions we will make on the production technology are the same as before.
With respect to u, we will assume that it is strictly increasing. What’s the implication
of this? Notice that our resource constraint ¢; + ki1 < f (k) allows for throwing goods
away, since strict inequality is allowed. But the assumption that w is strictly increasing
will imply that goods will not actually be thrown away, because they are valuable. We
know in advance that the resource constraint will need to bind at our solution to this
problem.

The solution method we will employ is straight out of standard optimization theory for
finite-dimensional problems. In particular, we will make ample use of the Kuhn-Tucker
theorem. The Kuhn-Tucker conditions:

(i) are necessary for an optimum, provided a constraint qualification is met (we do not
worry about it here);

(ii) are sufficient if the objective function is concave in the choice vector and the con-
straint set is convex.

We now characterize the solution further. It is useful to assume the following:
lir% uw' (¢) = oo. This implies that ¢, = 0 at any ¢ cannot be optimal, so we can ig-
CcC—
nore the non-negativity constraint on consumption: we know in advance that it will not
bind in our solution to this problem.

We write down the Lagrangian function:

T

L= Zﬁt [ (c) — A [ee 4 ke — f (k)] + pekesa]

t=0

where we introduced the Lagrange/Kuhn-Tucker multipliers A, and 'y, for our con-
straints. This is formulation A of our problem.

The next step involves taking derivatives with respect to the decision variables ¢; and
ki1 and stating the complete Kuhn-Tucker conditions. Before proceeding, however, let
us take a look at an alternative formulation (formulation B) for this problem:

16



T
L= Zﬁt [u [f (ke) = k] + ek -
t=0

Notice that we have made use of our knowledge of the fact that the resource constraint
will be binding in our solution to get rid of the multiplier 3')\;. The two formulations
are equivalent under the stated assumption on u. However, eliminating the multiplier
B*A\; might simplify the algebra. The multiplier may sometimes prove an efficient way of
condensing information at the time of actually working out the solution.

We now solve the problem using formulation A. The first-order conditions are:

oL
% ﬁt [U,(Ct)—)\t] :0, tIO,,T
t
oL ¢ t t+1 '
BT =B8N+ B + 87 Aeyr [ (kyyr) =0, £ =0,...,T — 1.
t+1
For period T,
oL T T
=0 =0.
Dk B A+ B pr
The first-order condition under formulation B are:
oL
ak: —ﬁtul (Ct) + ﬁt/it + Bt+1ul (Ct+1) f, (kt+1) = 0, t = 0, ceey T — ]_
t+1
oL
Okr41 -t (er) + BT#T =0

Finally, the Kuhn-Tucker conditions also include
/‘Ltkt-f—l == 0, t= O, ,T

)\tZO, tZO,,T
kt-ﬁ-l ZO, tZO,,T
/,LtZO, tZO,,T

These conditions (the first of which is usually referred to as the complementary slackness
condition) are the same for formulations A and B. To see this, we use v’ (¢;) to replace
A in the derivative %ﬁl in formulation A.

Now noting that v’ (¢) > 0 Ve, we conclude that pr > 0 in particular. This comes

from the derivative of the Lagrangian with respect to kpyq:
—3"' (er) + B ur = 0.

But then this implies that kr,; = 0: the consumer leaves no capital for after the last
period, since he receives no utility from that capital and would rather use it for consump-
tion during his lifetime. Of course, this is a trivial result, but its derivation is useful and
will have an infinite-horizon counterpart that is less trivial.

The summary statement of the first-order conditions is then the “Euler equation”:

u' [f (kt> - ktJrl] = ﬁul [f (ktJrl) - kt+2] f, (ktJrl) , U= 07 7T -1
kO given, kTJrl = 07

17



where the capital sequence is what we need to solve for. The Euler equation is sometimes
referred to as a “variational” condition (as part of “calculus of variation”): given to
boundary conditions k; and k;. o, it represents the idea of varying the intermediate value
k:11 so as to achieve the best outcome. Combining these variational conditions, we
notice that there are a total of 7'+ 2 equations and T + 2 unknowns - the unknowns
are a sequence of capital stocks with an initial and a terminal condition. This is called
a difference equation in the capital sequence. It is a second-order difference equation
because there are two lags of capital in the equation. Since the number of unknowns is
equal to the number of equations, the difference equation system will typically have a
solution, and under appropriate assumptions on primitives, there will be only one such
solution. We will now briefly look at the conditions under which there is only one solution
to the first-order conditions or, alternatively, under which the first-order conditions are
sufficient.

What we need to assume is that u is concave. Then, using formulation A, we know

T
that U = Y u(c¢) is concave in the vector {¢;}, since the sum of concave functions is
=0

concave. Moreover, the constraint set is convex in {c¢;, k;1}, provided that we assume
concavity of f (this can easily be checked using the definitions of a convex set and a
concave function). So, concavity of the functions u and f makes the overall objective
concave and the choice set convex, and thus the first-order conditions are sufficient.
Alternatively, using formulation B, since u(f(k;) — ki11) is concave in (ky, kyy1), which
follows from the fact that u is concave and increasing and that f is concave, the objective
is concave in {k;y1}. The constraint set in formulation B is clearly convex, since all it
requires is k;1q > 0 for all ¢.

Finally, a unique solution (to the problem as such as well as to the first-order con-
ditions) is obtained if the objective is strictly concave, which we have if w is strictly
concave.

To interpret the key equation for optimization, the Euler equation, it is useful to break
it down in three components:

' (ct) = Bu’ (1) : S (ketr) -
N~ —— ——
Utility lost if you Utility increase Return on the
invest “one” more next period per invested unit: by how
unit, i.e. marginal unit of increase in ¢,y many units next period’s
cost of saving c can increase

Thus, because of the concavity of u, equalizing the marginal cost of saving to the
marginal benefit of saving is a condition for an optimum.

How do the primitives affect savings behavior? We can identify three component
determinants of saving: the concavity of utility, the discounting, and the return to saving.
Their effects are described in turn.

(i) Consumption “smoothing”: if the utility function is strictly concave, the individual
prefers a smooth consumption stream.

Ezample: Suppose that technology is linear, i.e. f (k) = Rk, and that RF = 1.

18



Then

Bf/ (kt+1) = ﬁR =1 = Ul (Ct) = Ul (Ct+1) = Ct = Ct41-

.

-
if u is strictly concave

(ii) Impatience: via (3, we see that a low 3 (a low discount factor, or a high discount

rate % — 1) will tend to be associated with low ¢;;1’s and high ¢;’s.

(iii) The return to savings: f’(kt+1) clearly also affects behavior, but its effect on con-
sumption cannot be signed unless we make more specific assumptions. Moreover,
k11 is endogenous, so when f” nontrivially depends on it, we cannot vary the return
independently. The case when f’ is a constant, such as in the Ak growth model, is
more convenient. We will return to it below.

To gain some more detailed understanding of the determinants of savings, let us study
some examples.

Example 3.1 Logarithmic utility. Let the utility index be
u(c) = loge,

and the production technology be represented by the function
f (k) = Rk.

Notice that this amounts to a linear function with exogenous marginal return R on in-
vestment.
The Fuler equation becomes:

U/(Ct) = ﬁul(ctﬂ)f/(ktﬂ)
R
1 _ BR
Ct Ct—l—l,
and so
Ci11 = ﬁRCt. (31)

The optimal path has consumption growing at the rate SR, and it is constant between
any two periods. From the resource constraint (recall that it binds):

Co +/€1 = Rko
C1 +/€2 = Rkl

cr + kT-i-l = RI{JT
kT+1 = 0

With repeated substitutions, we obtain the “consolidated” or “intertemporal” budget con-
straint:

1 1 1
Co + Ecl + ﬁc2 + ...+ ﬁCT = Rko

19



The left-hand side is the present value of the consumption stream, and the right hand
side is the present value of income. Using the optimal consumption growth rule ¢, 3 =

BRe,
1 L oo L o7
co—l—EBRCO—I—ﬁBRCO—f—...—I—ﬁBRCO = Rk
o[l+B8+ 68 +..+8"] = Rk.

This implies
B Rk
S+ B+ BT

We are now able to study the effects of changes in the marginal return on savings, R,
on the consumer’s behavior. An increase in R will cause a rise in consumption in all
periods. Crucial to this result is the chosen form for the utility function. Logarithmic
utility has the property that income and substitution effects, when they go in opposite
directions, exactly offset each other. Changes in R have two components: a change in
relative prices (of consumption in different periods) and a change in present-value income:
Rky. With logarithmic utility, a relative price change between two goods will make the
consumption of the favored good go up whereas the consumption of other good will remain
at the same level. The unfavored good will not be consumed in a lower amount since there
s a positive income effect of the other good being cheaper, and that effect will be spread
over both goods. Thus, the period 0 good will be unfavored in our example (since all other
goods have lower price relative to good 0 if R goes up), and its consumption level will
not decrease. The consumption of good 0 will in fact increase because total present-value
mcome is multiplicative in R.

Next assume that the sequence of interest rates is not constant, but that instead we

have {Rt}tho with Ry different at each t. The consolidated budget constraint now reads:
+ ! + ! + ! +...+
co+ —=c c Y i c
"R " RiRy ° " RiRyRy Ry...Ry

Plugging in the optimal path ¢y 1 = BRyi1¢¢, analogous to (3.1), one obtains
co[L+B+ 3+ ...+ 8"] = koRo,

Co

T — k?()Ro.

from which
_ ko Ro
0 1+B8+32+...+067
o — koRo 10
1+8+02+..+ 47
koRy...R: 3"
¢ =

1+8+32+..+57

Now note the following comparative statics:

R, T = co,c1,...,ci_1 are unaffected
= savings at 0, ..., t — 1 are unaffected.

In the logarithmic utility case, if the return between t and t + 1 changes, consumption
and savings remain unaltered until t — 1/
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Example 3.2 A slightly more general utility function. Let us introduce the most
commonly used additively separable utility function in macroeconomics: the CIES (con-
stant intertemporal elasticity of substitution) function:

This function has as special cases:

oc=0 linear utility,

o >0 strictly concave utility,

o=1 logarithmic utility,

o =00 not possible, but this is usually referred to as Leontief utility function.

Let us define the intertemporal elasticity of substitution (IES):

C
d( t+k>
Ct
Ct+k

IES = —2%——

ARy 41k
Ry ik

We will show that all the special cases of the CIES function have constant intertemporal
elasticity of substitution equal to % We begin with the Fuler equation:

' (c) = Bu’ (cer1) Revr.

Replacing repeatedly, we have

u' (cr) = ﬁkul(Ct+k)ﬁt+1Rt+2mRt+lg
= Rt,t+k;
u() = ¢ 7=¢" = ﬁkct_fth,tJrk
1 1
Ciif = ES
= (597 (R
t

This means that our elasticity measure becomes

(%)

Ci+k Ct+k

- B dlog o l
m—vtM d 10g Rt,t+/<: g
Ritvk

When o = 1, expenditure shares do not change: this is the logarithmic case. When
o > 1, an increase in Ry, would lead ¢; to go up and savings to go down: the income
effect, leading to smoothing across all goods, is larger than substitution effect. Finally,
when o < 1, the substitution effect is stronger: savings go up whenever R, . goes up.
When o = 0, the elasticity is infinite and savings respond discontinuously to Ryyy.
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3.1.2 Infinite horizon

Why should macroeconomists study the case of an infinite time horizon? There are at
least two reasons:

1. Altruism: People do not live forever, but they may care about their offspring. Let
u (¢;) denote the utility flow to generation t. We can then interpret ' as the weight
an individual attaches to the utility enjoyed by his descendants ¢ generations down

the family tree. His total joy is given by Z Btu(c). A B < 1 thus implies that the
individual cares more about himself than about his descendants.

If generations were overlapping the utility function would look similar:

o0

Zﬁt u (cy) + u (cot)] )

~
utility flow to generation ¢

The existence of bequests indicates that there is altruism. However, bequests can
also be of an entirely selfish, precautionary nature: when the life-time is unknown, as
it is in practice, bequests would then be accidental and simply reflect the remaining
buffer the individual kept for the possible remainder of his life. An argument for
why bequests may not be entirely accidental is that annuity markets are not used
very much. Annuity markets allow you to effectively insure against living “too
long”, and would thus make bequests disappear: all your wealth would be put into
annuities and disappear upon death.

It is important to point out that the time horizon for an individual only becomes
truly infinite if the altruism takes the form of caring about the utility of the descen-
dants. If, instead, utility is derived from the act of giving itself, without reference
to how the gift influences others’ welfare, the individual’s problem again becomes
finite. Thus, if I live for one period and care about how much I give, my utility
function might be u(c) + v(b), where v measures how much I enjoy giving bequests,
b. Although b subsequently shows up in another agent’s budget and influences his
choices and welfare, those effects are irrelevant for the decision of the present agent,
and we have a simple static framework. This model is usually referred to as the
“warm glow” model (the giver feels a warm glow from giving).

For a variation, think of an individual (or a dynasty) that, if still alive, each period
dies with probability m. Its expected lifetime utility from a consumption stream
{e}i2, is then given by

Z Bt (cp) .

t=0

This framework - the “perpetual-youth” model, or, perhaps better, the “sudden-
death” model - is sometimes used in applied contexts. Analytically, it looks like the
infinite-life model, only with the difference that the discount factor is gm. These
models are thus the same on the individual level. On the aggregate level, they
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are not, since the sudden-death model carries with it the assumption that a de-
ceased dynasty is replaced with a new one: it is, formally speaking, an overlapping-
generations model (see more on this below), and as such it is different in certain
key respects.

Finally, one can also study explicit games between players of different generations.
We may assume that parents care about their children, that sons care about their
parents as well, and that each of their activities is in part motivated by this altru-
ism, leading to intergenerational gifts as well as bequests. Since such models lead
us into game theory rather quickly, and therefore typically to more complicated
characterizations, we will assume that altruism is unidirectional.

2. Simplicity: Many macroeconomic models with a long time horizon tend to show
very similar results to infinite-horizon models if the horizon is long enough. Infinite-
horizon models are stationary in nature - the remaining time horizon does not
change as we move forward in time - and their characterization can therefore often
be obtained more easily than when the time horizon changes over time.

The similarity in results between long- and infinite-horizon setups is is not present
in all models in economics. For example, in the dynamic game theory the Folk
Theorem means that the extension from a long (but finite) to an infinite horizon
introduces a qualitative change in the model results. The typical example of this
“discontinuity at infinity” is the prisoner’s dilemma repeated a finite number of
times, leading to a unique, non-cooperative outcome, versus the same game repeated
an infinite number of times, leading to a large set of equilibria.

Models with an infinite time horizon demand more advanced mathematical tools.
Consumers in our models are now choosing infinite sequences. These are no longer ele-
ments of Euclidean space R", which was used for our finite-horizon case. A basic question
is when solutions to a given problem exist. Suppose we are seeking to maximize a function
U(x),z€ S. IfU (-) is a continuous function, then we can invoke Weierstrass’s theorem
provided that the set S meets the appropriate conditions: S needs to be nonempty and
compact. For § C R", compactness simply means closedness and boundedness. In the
case of finite horizon, recall that  was a consumption vector of the form (¢4, ..., ¢r) from
a subset S of RT. In these cases, it was usually easy to check compactness. But now
we have to deal with larger spaces; we are dealing with infinite-dimensional sequences
{ki}io,- Several issues arise. How do we define continuity in this setup? What is an
open set? What does compactness mean? We will not answer these questions here, but
we will bring up some specific examples of situations when maximization problems are
ill-defined, that is, when they have no solution.

Examples where utility may be unbounded

Continuity of the objective requires boundedness. When will U be bounded? If two
consumption streams yield “infinite” utility, it is not clear how to compare them. The
device chosen to represent preference rankings over consumption streams is thus failing.
But is it possible to get unbounded utility? How can we avoid this pitfall?
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Utility may become unbounded for many reasons. Although these reasons interact,
let us consider each one independently.

Preference requirements

Consider a plan specifying equal amounts of consumption goods for each period,
throughout eternity:
{ahZo = {ehs,-

Then the value of this consumption stream according to the chosen time-separable
utility function representation is computed by:

U=> pulc)=>Y Au@.

What is a necessary condition for U to take on a finite value in this case? The answer
is # < 1: under this parameter specification, the series >,° G () is convergent, and
has a finite limit. If u (-) has the CIES parametric form, then the answer to the question
of convergence will involve not only 3, but also o.

Alternatively, consider a constantly increasing consumption stream:

{eizo={c+7)'} .,

Is U= 352 Bu(c) = Y50 Bu (o (1 +7)") bounded? Notice that the argument in
the instantaneous utility index u (-) is increasing without bound, while for § < 1 §* is
decreasing to 0. This seems to hint that the key to having a convergent series this time
lies in the form of u (-) and in how it “processes” the increase in the value of its argument.
In the case of a CIES utility representation, the relationship between 3, o, and ~ is thus
the key to boundedness. In particular, boundedness requires 3 (1 + 7)170 < 1.

Two other issues are involved in the question of boundedness of utility. One is tech-
nological, and the other may be called institutional.

Technological considerations

Technological restrictions are obviously necessary in some cases, as illustrated indi-
rectly above. Let the technological constraints facing the consumer be represented by the
budget constraint:

¢t +kiy1 = Rk
ky 0.

v

This constraint needs to hold for all time periods ¢ (this is just the “Ak” case already
mentioned). This implies that consumption can grow by (at most) a rate of R. A given
rate R may thus be so high that it leads to unbounded utility, as shown above.

Institutional framework

Some things simply cannot happen in an organized society. One of these is so dear to
analysts modelling infinite-horizon economies that it has a name of its own. It expresses
the fact that if an individual announces that he plans to borrow and never pay back, then
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he will not be able to find a lender. The requirement that “‘no Ponzi games are allowed”
therefore represents this institutional assumption, and it sometimes needs to be added
formally to the budget constraints of a consumer.

To see why this condition is necessary, consider a candidate solution to consumer’s
maximization problem {c¢;},~,, and let ¢ < ¢ V¢; i.e., the consumption is bounded for
every t. Suppose we endow a consumer with a given initial amount of net assets, ao.
These represent (real) claims against other agents. The constraint set is assumed to be

¢+ a1 = Rat,Vt > 0.

Here a; < 0 represents borrowing by the agent. Absent no-Ponzi-game condition, the
agent could improve on {c}},-, as follows:

1. Put ¢y = ¢ + 1, thus making a; = a] — 1.
2. For every t > 1 leave ¢ = ¢ by setting ;41 = af; — R".

With strictly monotone utility function, the agent will be strictly better off under
this alternative consumption allocation, and it also satisfies budget constraint period-
by-period. Because this sort of improvement is possible for any candidate solution, the
maximum of the lifetime utility will not exist.

However, observe that there is something wrong with the suggested improvement,
as the agent’s debt is growing without bound at rate R, and it is never repaid. This
situation when the agent never repays his debt (or, equivalently, postpones repayment
indefinitely) is ruled out by imposing the no-Ponzi-game (nPg) condition, by explicitly
adding the restriction that:

.Gy
lim — > 0.
t—oo Rt —

Intuitively, this means that in present-value terms, the agent cannot engage in borrowing
and lending so that his “terminal asset holdings” are negative, since this means that he
would borrow and not pay back.

Can we use the nPg condition to simplify, or “consolidate”, the sequence of budget
constraints? By repeatedly replacing T' times, we obtain

d 1 a
thﬁ + I < a,oR.
t=0

RT —

By the nPg condition, we then have

T
. I ary L 1 . a1
i (et ) = g Yo g ()

_ 1 . ar41
= > e+ fim ().

and since the inequality is valid for every T', and we assume nPg condition to hold,

This is the consolidated budget constraint. In practice, we will often use a version of nPg
with equality.
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Example 3.3 We will now consider a simple example that will illustrate the use of nPg
condition in infinite-horizon optimization. Let the period utility of the agent u (c) = logec,
and suppose that there is one asset in the economy that pays a (net) interest rate of r.
Assume also that the agent lives forever. Then, his optimization problem is:

max Bt log ¢
{et,at+1120 =0
st ap =a(L+7),Yt>0
ag given
nPg condition.

To solve this problem, replace the period budget constraints with a consolidated one as
we have done before. The consolidated budget constraint reads

Ct (—> :a0(1+7").
— 1+r
With this simplification the first-order conditions are
1 1\’
L=\ — vt >0
g ¢ (1 +T> R

where X\ is the Lagrange multiplier associated with the consolidated budget constraint.
From the first-order conditions it follows that

e =[B(1+7)] eVt > 1.

Substituting this expression into the consolidated budget constraint, we obtain

> s d+r)
t=0

co = ap(l+r)

1
(1+7)
Cozﬁt = a0(1+7“).
t=0

From here, ¢y = ag (1 — 3) (1 4+ r), and consumption in the periodst > 1 can be recovered
from ¢, = [B (1 +7)]" .

Sufficient conditions

Maximization of utility under an infinite horizon will mostly involve the same mathemat-
ical techniques as in the finite-horizon case. In particular, we will make use of (Kuhn-
Tucker) first-order conditions: barring corner constraints, we will choose a path such that
the marginal effect of any choice variable on utility is zero. In particular, consider the
sequences that the consumer chooses for his consumption and accumulation of capital.
The first-order conditions will then lead to an Euler equation, which is defined for any
path for capital beginning with an initial value ky. In the case of finite time horizon it
did not make sense for the agent to invest in the final period 7', since no utility would be
enjoyed from consuming goods at time 7"+ 1 when the economy is inactive. This final
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zero capital condition was key to determining the optimal path of capital: it provided us
with a terminal condition for a difference equation system. In the case of infinite time
horizon there is no such final T the economy will continue forever. Therefore, the dif-
ference equation that characterizes the first-order condition may have an infinite number
of solutions. We will need some other way of pinning down the consumer’s choice, and
it turns out that the missing condition is analogous to the requirement that the capital
stock be zero at T + 1, for else the consumer could increase his utility.

The missing condition, which we will now discuss in detail, is called the transversality
condition. It is, typically, a necessary condition for an optimum, and it expresses the
following simple idea: it cannot be optimal for the consumer to choose a capital sequence
such that, in present-value utility terms, the shadow value of k; remains positive as ¢
goes to infinity. This could not be optimal because it would represent saving too much:
a reduction in saving would still be feasible and would increase utility.

We will not prove the necessity of the transversality condition here. We will, however,
provide a sufficiency condition. Suppose that we have a convex maximization problem
(utility is concave and the constraint set convex) and a sequence {kii1},-, satisfying the
Kuhn-Tucker first-order conditions for a given ko. Is {ki11},~, a maximum? We did not
formally prove a similar proposition in the finite-horizon case (we merely referred to math
texts), but we will here, and the proof can also be used for finite-horizon setups.

Sequences satisfying the Euler equations that do not maximize the programming
problem come up quite often. We would like to have a systematic way of distinguishing
between maxima and other critical points (in ®°°) that are not the solution we are looking
for. Fortunately, the transversality condition helps us here: if a sequence {kiy1},—,
satisfies both the Euler equations and the transversality condition, then it maximizes the
objective function. Formally, we have the following:

Proposition 3.4 Consider the programming problem

o)

max > BF (ke ki)
{kt+1}i20  t=0
s.t. kft+1 Z 0 Vt.

(An example is F(z,y) = u|[f (z) —y].)
[f {kzikl t=0’ {N:}fio SatiSfy
(i) K 2 0

(it) Buler Equation: Fy (ki, ki) + BF (kjy, ki) +pf =0Vt
(i) pi =0, pikiy, =0Vt
(iv) T 0 F (k. ki) b =0

and F (z,y) is concave in (x,y) and increasing in its first argument, then {k;,, —0
mazimizes the objective.

Proof. Consider any alternative feasible sequence k = {k;11},-, . Feasibility is tan-
tamount to k;y 1 > 0 V. We want to show that for any such sequence,

T—o00

T
lim Zﬁt [F (k;,ka k:ﬂ) — F (ki kt+1)] > 0.
t=0
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Define .
Ap(k) =) B [F (K}, ki) = F (ke k)] -
t=0

We will to show that, as T' goes to infinity, Ar(k) is bounded below by zero.
By concavity of F,

T
Ar (&) > 378 [Fy (K, ki) (5 — k) + By (K7, ki) (o — k)] -

t=0

Now notice that for each ¢, k;, 1 shows up twice in the summation. Hence we can rearrange
the expression to read

T-1
Ar (k) > Zﬁt {(k,;_l — kt+1) [F2 (k:a k;—l) + BF (k:—kl’ k:—l—Qﬂ} +
t=0

+Fy (g, K (kg — ko) + 87 Fa (K, Kjyy) (K — k) -
Some information contained in the first-order conditions will now be useful:

£ (k:;‘, k?;tkﬂ) + BF; (K7, k’:+2) =~/
together with k§ — ko = 0 (ko can only take on one feasible value), allows us to derive

T-1

A (k) > Y B (ks — ki) + 87 Fo (K3, Kg) Ky — ki) -
t=0

Next, we use the complementary slackness conditions and the implication of the Kuhn-
Tucker conditions that
pikiyr >0

to conclude that juf (ktﬂ — k;]rl) > 0. In addition, F5 (k;, k}ﬂ) = —0F (k;H, k}H) —
W, SO we obtain

T
Ar (k) > Zﬁt/ﬁ (kt-i-l - k‘,;_l) + BT [ﬁFl (k;“-i-la k’;+2) + /i;“] (kT+1 - k;:}-yl) .
t=0

Since we know that pf (ki1 — k7 ;) > 0, the value of the summation will not increase if
we suppress nonnegative terms:

AT (k) > BTHFl (@“4—17 k;“+2) (kTJrl - k;w-l) > _BTHFl (k;ﬂ, k:}+2) kffr_u-

In the finite horizon case, k7., ; would have been the level of capital left out for the day
after the (perfectly foreseen) end of the world; a requirement for an optimum in that
case is clearly k7., = 0. In present-value utility terms, one might alternatively require
k41 BTN = 0, where 3'A} is the present-value utility evaluation of an additional unit of
resources in period .

As T goes to infinity, the right-hand side of the last inequality goes to zero by the
transversality condition. That is, we have shown that the utility implied by the candidate
path must be higher than that implied by the alternative. m
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The transversality condition can be given this interpretation: F (ki kiyq) is the
marginal addition of utils in period ¢ from increasing capital in that period, so the
transversality condition simply says that the value (discounted into present-value utils)
of each additional unit of capital at infinity times the actual amount of capital has to
be zero. If this requirement were not met (we are now, incidentally, making a heuristic
argument for necessity), it would pay for the consumer to modify such a capital path and
increase consumption for an overall increase in utility without violating feasibility.

The no-Ponzi-game and the transversality conditions play very similar roles in dy-
namic optimization in a purely mechanical sense (at least if the nPg condition is inter-
preted with equality). In fact, they can typically be shown to be the same condition, if
one also assumes that the first-order condition is satisfied. However, the two conditions
are conceptually very different. The nPg condition is a restriction on the choices of the
agent. In contrast, the transversality condition is a prescription how to behave optimally,
given a choice set.

3.2 Dynamic programming

The models we are concerned with consist of a more or less involved dynamic optimization
problem and a resulting optimal consumption plan that solves it. Our approach up to
now has been to look for a sequence of real numbers {k:;‘ " :io that generates an optimal
consumption plan. In principle, this involved searching for a solution to an infinite
sequence of equations - a difference equation (the Euler equation). The search for a
sequence is sometimes impractical, and not always intuitive. An alternative approach is
often available, however, one which is useful conceptually as well as for computation (both
analytical and, especially, numerical computation). It is called dynamic programming.
We will now go over the basics of this approach. The focus will be on concepts, as opposed
to on the mathematical aspects or on the formal proofs.

Key to dynamic programming is to think of dynamic decisions as being made not once
and for all but recursively: time period by time period. The savings between ¢ and t + 1
are thus decided on at ¢, and not at 0. We will call a problem stationary whenever the
structure of the choice problem that a decision maker faces is identical at every point in
time. As an illustration, in the examples that we have seen so far, we posited a consumer
placed at the beginning of time choosing his infinite future consumption stream given
an initial capital stock ky. As a result, out came a sequence of real numbers {kf{ +1}:io
indicating the level of capital that the agent will choose to hold in each period. But
once he has chosen a capital path, suppose that we let the consumer abide it for, say, T'
periods. At t = T he will find then himself with the k% decided on initially. If at that
moment we told the consumer to forget about his initial plan and asked him to decide
on his consumption stream again, from then onwards, using as new initial level of capital
ko = k., what sequence of capital would he choose? If the problem is stationary then for
any two periods t # s,

ki = ks = by = koyj

for all j > 0. That is, he would not change his mind if he could decide all over again.

IThis necessity argument clearly requires utility to be strictly increasing in capital.
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This means that, if a problem is stationary, we can think of a function that, for every
period t, assigns to each possible initial level of capital k; an optimal level for next period’s
capital k41 (and therefore an optimal level of current period consumption): ki1 = g (ke).
Stationarity means that the function g (-) has no other argument than current capital.
In particular, the function does not vary with time. We will refer to ¢ (-) as the decision
rule.

We have defined stationarity above in terms of decisions - in terms of properties of
the solution to a dynamic problem. What types of dynamic problems are stationary?
Intuitively, a dynamic problem is stationary if one can capture all relevant information
for the decision maker in a way that does not involve time. In our neoclassical growth
framework, with a finite horizon, time is important, and the problem is not stationary:
it matters how many periods are left - the decision problem changes character as time
passes. With an infinite time horizon, however, the remaining horizon is the same at
each point in time. The only changing feature of the consumer’s problem in the infinite-
horizon neoclassical growth economy is his initial capital stock; hence, his decisions will
not depend on anything but this capital stock. Whatever is the relevant information for
a consumer solving a dynamic problem, we will refer to it as his state variable. So the
state variable for the planner in the one-sector neoclassical growth context is the current
capital stock.

The heuristic information above can be expressed more formally as follows. The
simple mathematical idea that max, , f(z,y) = max,{max, f(z,y)} (if each of the max
operators is well-defined) allows us to maximize “in steps”: first over x, given y, and then
the remainder (where we can think of = as a function of y) over y. If we do this over time,
the idea would be to maximize over {ky;1}22, first by choice of {k,1}32,,,, conditional
on ki1, and then to choose ki 1. That is, we would choose savings at ¢, and later the
rest. Let us denote by V' (k;) the value of the optimal program from period ¢ for an initial
condition k;:

[e.9]

V(k;) = max B (kg koy1), st ko1 € T(ks)Vs > t,

{ks-kl}?it s—t

where T'(k;) represents the feasible choice set for k;,; given k2. That is, V is an indirect
utility function, with k; representing the parameter governing the choices and resulting
utility. Then using the maximization-by-steps idea, we can write

_ s—t
Vi(k,) = kt+1?€ar>(<kt){F(kt, kt+l)+{kﬂi®§m g;l B F (kg koyr) (sit. koyy € D(ky)Vs > t41)},

which in turn can be rewritten as

max ){F(kt, kt+1)+ﬁ{ max { Z BS_(t+1)F(k35, k8+1) (St ks-i—l S F(k‘S)VS Z t+1)}}

ki+1 €D (ke ks1}22, 14 sl
But by definition of V' this equals
max ){F(kt, kt+1) + Bv(kt—i-l)}

ki+1€D (ke

2The one-sector growth model example would mean that F(z,y) = u(f(z) — y) and that I'(x) =
[0, f(z)] (the latter restricting consumption to be non-negative and capital to be non-negative).
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So we have:
Vi(k) = max {F(ks, k1) + BV (ki) }-
ker1€D(ke)

This is the dynamic programming formulation. The derivation was completed for a
given value of k; on the left-hand side of the equation. On the right-hand side, however,
we need to know V' evaluated at any value for k;;; in order to be able to perform the
maximization. If; in other words, we find a V' that, using k to denote current capital and
k' next period’s capital, satisfies

V(k) = 529};?){17% k') + BV (K} (3.2)

for any value of £, then all the maximizations on the right-hand side are well-defined. This
equation is called the Bellman equation, and it is a functional equation: the unknown is a
function. We use the function g alluded to above to denote the arg max in the functional
equation:
g(k) = arg max {F(k, k') + BV (K')},
k'€l (k)

or the decision rule for k’: k' = g(k). This notation presumes that a maximum exists and
is unique; otherwise, g would not be a well-defined function.

This is “close” to a formal derivation of the equivalence between the sequential formu-
lation of the dynamic optimization and its recursive, Bellman formulation. What remains
to be done mathematically is to make sure that all the operations above are well-defined.
Mathematically, one would want to establish:

e If a function represents the value of solving the sequential problem (for any initial
condition), then this function solves the dynamic programming equation (DPE).

e [f a function solves the DPE, then it gives the value of the optimal program in the
sequential formulation.

e If a sequence solves the sequential program, it can be expressed as a decision rule
that solves the maximization problem associated with the DPE.

o [f we have a decision rule for a DPE, it generates sequences that solve the sequential
problem.

These four facts can be proved, under appropriate assumptions.®> We omit discussion of
details here.

One issue is useful to touch on before proceeding to the practical implementation
of dynamic programming: since the maximization that needs to be done in the DPE
is finite-dimensional, ordinary Kuhn-Tucker methods can be used, without reference to
extra conditions, such as the transversality condition. How come we do not need a
transversality condition here? The answer is subtle and mathematical in nature. In the
statements and proofs of equivalence between the sequential and the recursive methods,
it is necessary to impose conditions on the function V: not any function is allowed.
Uniqueness of solutions to the DPE, for example, only follows by restricting V' to lie in a

3See Stokey and Lucas (1989).

31



restricted space of functions. This or other, related, restrictions play the role of ensuring
that the transversality condition is met.

We will make use of some important results regarding dynamic programming. They
are summarized in the following:

Facts

Suppose that F' is continuously differentiable in its two arguments, that it is strictly
increasing in its first argument (and decreasing in the second), strictly concave, and
bounded. Suppose that I' is a nonempty, compact-valued, monotone, and continuous
correspondence with a convex graph. Finally, suppose that 5 € (0,1). Then

1. There exists a function V (-) that solves the Bellman equation. This solution is
unique.

2. It is possible to find V' by the following iterative process:

i. Pick any initial V; function, for example V; (k) = 0 Vk.

ii. Find V,,44, for any value of k, by evaluating the right-hand side of (3.2) using
V.

The outcome of this process is a sequence of functions {VJ};’ZO which converges to
V.

3. V is strictly concave.
4. V is strictly increasing.
5. V' is continuously differentiable.

6. Optimal behavior can be characterized by a function g, with &' = g(k), that is
increasing so long as F5 is increasing in k.

The proof of the existence and uniqueness part follow by showing that the functional
equation’s right-hand side is a contraction mapping, and using the contraction mapping
theorem. The algorithm for finding V' also uses the contraction property. The assump-
tions needed for these characterizations do not rely on properties of F' other than its
continuity and boundedness. That is, these results are quite general.

In order to prove that V' is increasing, it is necessary to assume that F' is increasing
and that I' is monotone. In order to show that V' is (strictly) concave it is necessary to
assume that F is (strictly) concave and that I" has a convex graph. Both these results use
the iterative algorithm. They essentially require showing that, if the initial guess on V/,
Vo, satisfies the required property (such as being increasing), then so is any subsequent
V... These proofs are straightforward.

Differentiability of V' requires F' to be continuously differentiable and concave, and
the proof is somewhat more involved. Finally, optimal policy is a function when F' is
strictly concave and I' is convex-valued; under these assumptions, it is also easy to show,
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using the first-order condition in the maximization, that g is increasing. This condition
reads
—Fy(k, k') = BV'(K).

The left-hand side of this equality is clearly increasing in &', since F' is strictly concave,
and the right-hand side is strictly decreasing in k&, since V' is strictly concave under the
stated assumptions. Furthermore, since the right-hand side is independent of k but the
left-hand side is decreasing in k, the optimal choice of k" is increasing in k.

The proofs of all these results can be found in Stokey and Lucas with Prescott (1989).

Connection with finite-horizon problems

Consider the finite-horizon problem

T

max Y (u(c)

{ct}z;o t=0

S.t. kft+1 + Ct = F (kt) .

Although we discussed how to solve this problem in the previous sections, dynamic pro-
gramming offers us a new solution method. Let V,, (k) denote the present value utility
derived from having a current capital stock of k£ and behaving optimally, if there are n
periods left until the end of the world. Then we can solve the problem recursively, or by
backward induction, as follows. If there are no periods left, that is, if we are at t = T,
then the present value of utility next period will be 0 no matter how much capital is
chosen to be saved: Vj (k) = 0 Vk. Then once he reaches t = T' the consumer will face
the following problem:

Vi (k) = max {u[f (k) = K]+ 5Vo (K)} .

Since V; (k') = 0, this reduces to V; (k) = max {u[f (k) — K']}. The solution is clearly k' =

0 (note that this is consistent with the result k7,1 = 0 that showed up in finite horizon
problems when the formulation was sequential). As a result, the update is Vj (k) =
u[f (k)] . We can iterate in the same fashion T times, all the way to V.1, by successively
plugging in the updates V,,. This will yield the solution to our problem.

In this solution of the finite-horizon problem, we have obtained an interpretation of
the iterative solution method for the infinite-horizon problem: the iterative solution is
like solving a finite-horizon problem backwards, for an increasing time horizon. The
statement that the limit function converges says that the value function of the infinite-
horizon problem is the limit of the time-zero value functions of the finite-horizon problems,
as the horizon increases to infinity. This also means that the behavior at time zero in
a finite-horizon problem becomes increasingly similar to infinite-horizon behavior as the
horizon increases.

Finally, notice that we used dynamic programming to describe how to solve a non-
stationary problem. This may be confusing, as we stated early on that dynamic pro-
gramming builds on stationarity. However, if time is viewed as a state variable, as we
actually did view it now, the problem can be viewed as stationary. That is, if we increase
the state variable from not just including &, but ¢ as well (or the number of periods left),
then dynamic programming can again be used.
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Example 3.5 Solving a parametric dynamic programming problem. In this
example we will illustrate how to solve dynamic programming problem by finding a corre-
sponding value function. Consider the following functional equation:

V (k) = max {logc+ BV (K')}
s.t.c= Ak* — K.

The budget constraint is written as an equality constraint because we know that prefer-
ences represented by the logarithmic utility function exhibit strict monotonicity - goods
are always valuable, so they will not be thrown away by an optimizing decision maker.
The production technology is represented by a Cobb-Douglas function, and there is full
depreciation of the capital stock in every period:

F(k,1)+ (1 —0)k.

—— ——

Akall—«a 0

A more compact expression can be derived by substitutions into the Bellman equation:

Vi(k)= max {log [Ak* =K'+ BV (K')}.

We will solve the problem by iterating on the value function. The procedure will
be similar to that of solving a T-problem backwards. We begin with an initial ”quess”
Vo (k) =0, that is, a function that is zero-valued everywhere.

Vi(k) = max{log[Ak* — K]+ Vo (K)}

k'>0

= max {log [Ak* — K]+ -0}

k>0
a ot
max {log [Ak* — K]} .

This is mazimized by taking k' = 0. Then
Vi (k) =log A+ alogk.
Going to the next step in the iteration,

Vo (k) = max{log[Ak* — K]+ Vi (K')}

k>0
= hax {log [Ak* — K| + B [log A + alog k']} .

The first-order condition now reads
1 Ak®
L e opAn
Ake — kK 4 14 ap
We can interpret the resulting expression for k' as the rule that determines how much it

would be optimal to save if we were at period T'—1 in the finite horizon model. Substitution
implies

af Ak
14 ap

= (a+a’g)logk +log (A —

Vo(k) = log [Ak“ - } + 0 {logA—i— alog

afA
1+ ap

af Ak
1+ ozﬁ]
) + Blog A + aflog apbA

14+ af’
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We could now use Vs (k) again in the algorithm to obtain a V3 (k), and so on. We
know by the characterizations above that this procedure would make the sequence of value
functions converge to some V* (k). However, there is a more direct approach, using a
pattern that appeared already in our iteration.

Let

afA
1+ ap

afA
1+ ap

azlog(A— )—i—ﬁlogA—i—ozﬁlog

and
b= (04 + 0425) .

Then V (k) = a+blogk. Recall that Vi (k) = log A+ alogk, i.e., in the second step what
we did was plug in a function Vi (k) = a1 + by logk, and out came a function V, (k) =
as + bolog k. This clearly suggests that if we continue using our iterative procedure, the
outcomes Vs (k), Vi (k), ..., Vi (k), will be of the form V, (k) = a, + by logk for all n.
Therefore, we may already guess that the function to which this sequence is converging
has to be of the form:

V (k) =a+blogk.

So let us guess that the value function solving the Bellman has this form, and determine
the corresponding parameters a, b :

V(k)=a+blogk = max {log (Ak® — k') + B (a + blog k") } VE.

Our task is to find the values of a and b such that this equality holds for all possible values
of k. If we obtain these values, the functional equation will be solved.
The first-order condition reads:
Bb

1 3b
N V- S
Ak -k & T 1480

3b

1430
will be to save a constant fraction out of each period’s income.

Define

We can interpret as a savings rate. Therefore, in this setup the optimal policy

LHS =a+blogk
and

RHS = max {log (Ak® — k') + B (a+ blog k') } .

Plugging the expression for k' into the RHS, we obtain:

pb . Bb
1—|—ﬁbAk )—i—aﬁ—f—bﬁlog(l_i_ﬁbz‘lk‘ )

_ pb a LI
= log {(1—W)Ak}+aﬁ+bﬁlog<1+ﬁbz4k)
b

— (1+bﬁ)]ogA—|—lOg< )—i_aﬁ—i_bﬁlog(l—l—ﬁb

RHS = log (Ako‘ -

1
m ) + (a+ afb) log k.
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Setting LHS=RHS, we produce

a= (1+bﬁ)logA+log(1_:bﬁ) +af + bFlog (%)

b= a -+ afb,

which amounts to two equations in two unknowns. The solutions will be

a
b=
1—ap

and, using this finding,

1
so that . 1
0= 157 =qp e A+ (1—af)log (1= aB) + aplog (af)].
Going back to the savings decision rule, we have:
bB

/ — A (0%

K 1+03 g

K = aBAk*.

If we let y denote income, that is, y = Ak®, then k' = aBy. This means that the optimal
solution to the path for consumption and capital is to save a constant fraction af of
mcome.

This setting, we have now shown, provides a microeconomic justification to a constant
savings rate, like the one assumed by Solow. It is a very special setup however, one that
15 quite restrictive in terms of functional forms. Solow’s assumption cannot be shown to
hold generally.

We can visualize the dynamic behavior of capital as is shown in Figure 3.1.

Example 3.6 A more complex example. We will now look at a slightly different
growth model and try to put it in recursive terms. Our new problem is:

max > [fu(c)
{Ct}?io t=0

s.t. c + it =F (kt)

and subject to the assumption is that capital depreciates fully in two periods, and does
not depreciate at all before that. Then the law of motion for capital, given a sequence of
investment {is},-, is given by:

ke =41 + iy—2.

Then k = 1_1 +1i_o: there are two initial conditions i_; and i_o.
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9(k)

Figure 3.1: The decision rule in our parameterized model

The recursive formulation for this problem is:

V(ioy, i-2) = max{u(c)+V (i, i)}
s.t. C = f (i_l + i_g) — 1.

Notice that there are two state variables in this problem. That is unavoidable here; there
1s no way of summarizing what one needs to know at a point in time with only one
variable. For example, the total capital stock in the current period is not informative
enough, because in order to know the capital stock next period we need to know how much
of the current stock will disappear between this period and the next. Both i_1 and i_o
are natural state variables: they are predetermined, they affect outcomes and utility, and
neither is redundant: the information they contain cannot be summarized in a simpler
way.

3.3 The functional Euler equation

In the sequentially formulated maximization problem, the Euler equation turned out to
be a crucial part of characterizing the solution. With the recursive strategy, an Euler
equation can be derived as well. Consider again

V (k)= max {F (k. K)+ BV (K)) .

As already pointed out, under suitable assumptions, this problem will result in a function
k' = g(k) that we call decision rule, or policy function. By definition, then, we have

Vi(k) = F(k, g(k)) + BV [g (k)] (3.3)
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Moreover, g(k) satisfies the first-order condition
Fy (k, K'Y+ pV'(K') =0,
assuming an interior solution. Evaluating at the optimum, i.e., at k' = g(k), we have

Fy (k. g(k)) + BV (g(k)) = 0.

This equation governs the intertemporal tradeoff. One problem in our characterization
is that V'(+) is not known: in the recursive strategy, it is part of what we are searching for.
However, although it is not possible in general to write V(+) in terms of primitives, one
can find its derivative. Using the equation (3.3) above, one can differentiate both sides
with respect to k, since the equation holds for all £ and, again under some assumptions
stated earlier, is differentiable. We obtain

VI(k) = Fy [k, g(k)] + g'(k) {Fa [k, (k)] + BV [g(k)]}.

~
indirect effect through optimal choice of &’

From the first-order condition, this reduces to
VI(k) = Fi [k, g(k)],

which again holds for all values of k. The indirect effect thus disappears: this is an
application of a general result known as the envelope theorem.

Updating, we know that V' [g(k)] = Fi[g(k), g(g(k))] also has to hold. The first
order condition can now be rewritten as follows:

Fy [k, g(k)]+ BF[g(k), g(g(k))] =0 Vk. (3-4)

This is the Euler equation stated as a functional equation: it does not contain the un-
knowns ky, kyy1, and ki 0. Recall our previous Euler equation formulation

Fy [ky, ki) + BF [kia, kiso] = 0, V8,

where the unknown was the sequence {k:},~,. Now instead, the unknown is the function
g. That is, under the recursive formulation, the Euler Equation turned into a functional
equation.

The previous discussion suggests that a third way of searching for a solution to the
dynamic problem is to consider the functional Euler equation, and solve it for the function
g. We have previously seen that we can (i) look for sequences solving a nonlinear difference
equation plus a transversality condition; or (ii) we can solve a Bellman (functional)
equation for a value function.

The functional Euler equation approach is, in some sense, somewhere in between the
two previous approaches. It is based on an equation expressing an intertemporal tradeoff,
but it applies more structure than our previous Euler equation. There, a transversality
condition needed to be invoked in order to find a solution. Here, we can see that the
recursive approach provides some extra structure: it tells us that the optimal sequence
of capital stocks needs to be connected using a stationary function.
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One problem is that the functional Euler equation does not in general have a unique
solution for g. It might, for example, have two solutions. This multiplicity is less severe,
however, than the multiplicity in a second-order difference equation without a transver-
sality condition: there, there are infinitely many solutions.

The functional Euler equation approach is often used in practice in solving dynamic
problems numerically. We will return to this equation below.

Example 3.7 In this example we will apply functional Euler equation described above
to the model given in Example 3.5. First, we need to translate the model into “V-F
language”. With full depreciation and strictly monotone utility function, the function

F (-,-) has the form
F(k, k) =u(f(k) — g(k)).

Then, the respective derivatives are:

By (k K) =o' (f(k) = &) f' (k)
Fy (k, K) = =’ (f(k) — K').

In the particular parametric example, (3.4) becomes:

a—1
L Gedl)

Ak —g(k)  A(g(k)" — g (g(k))

This is a functional equation in g (k). Guess that g (k) = sAk®, i.e. the savings are a
constant fraction of output. Substituting this guess into functional Fuler equation delivers:

1 B aBA (sAk*)*
(1 —s)Ak>  A(sAk®)* — sA(sAk>)*

As can be seen, k cancels out, and the remaining equation can be solved for s. Collecting
terms and factoring out s, we get

s = af.

This is exactly the answer that we got in Example 3.5.

3.4 References

Stokey, Nancy L., and Robert E. Lucas, “Recursive Methods in Economic Dynamics”,
Harvard University Press, 1989.
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Chapter 4

Steady states and dynamics under
optimal growth

We will now study, in more detail, the model where there is only one type of good, that
is, only one production sector: the one-sector optimal growth model. This means that
we will revisit the Solow model under the assumption that savings are chosen optimally.
Will, as in Solow’s model, output and all other variables converge to a steady state?
It turns out that the one-sector optimal growth model does produce global convergence
under fairly general conditions, which can be proven analytically. If the number of sectors
increases, however, global convergence may not occur. However, in practical applications,
where the parameters describing different sectors are chosen so as to match data, it has
proven difficult to find examples where global convergence does not apply.
We thus consider preferences of the type

Z Bu(c)

and production given by

e+ ke = f(ke),

where

f(kt):F(kta N)+(1_5)k’t

for some choice of N and § (which are exogenous in the setup we are looking at). Under
standard assumptions (namely strict concavity, § < 1, and conditions ensuring interior
solutions), we obtain the Euler equation:

u' () = Bu (1) ' (Kyr) -
A steady state is a “constant solution”:

ki, = k*Vt
¢ = ¢Vt

This constant sequence {¢;},~, = {¢*},-, will have to satisfy:
u' (¢") = Bu’ (") [ (k).
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Here u’ (¢*) > 0 is assumed, so this reduces to
Bf (k) =1

This is the key condition for a steady state in the one-sector growth model. It requires
that the gross marginal productivity of capital equal the gross discount rate (1/0).

Suppose ko = k*. We first have to ask whether k; = k* Vt - a solution to the
steady-state equation - will solve the maximization problem. The answer is clearly yes,
provided that both the first order and the transversality conditions are met. The first
order conditions are met by construction, with consumption defined by

= f(k")—Ek".
The transversality condition requires
tlirgﬁtFl ki, Kepa] ke = 0.
Evaluated at the proposed sequence, this condition becomes
Yim B°F [k, kK =0,

and since F [k*, k*| k* is a finite number, with 5 < 1, the limit clearly is zero and the
condition is met. Therefore we can conclude that the stationary solution k; = k* Vit
does maximize the objective function. If f is strictly concave, then k; = k* is the unique
strictly positive solution for ky = k*. It remains to verify that there is indeed one solution.
We will get back to this in a moment.

Graphically, concavity of f(k) implies that 5f'(k) will be a positive, decreasing func-
tion of k, and it will intersect the horizontal line going through 1 only once as can be
seen in Figure 4.1.

Figure 4.1: The determination of steady state
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4.1 Properties of the capital accumulation function

Capital accumulation is given by &' = g(k). In order to characterize the path of capital
accumulation, it is therefore important to characterize g as much as possible. The present
section presents a sequence of results on g, all of which are implications from the dynamic-
programming analysis. These results are interesting from various perspectives. Taken
together, they also have implications for (global) convergence, which will be discussed in
the following section.

Throughout, we will use the following assumptions on primitives:

(i)
(i)
(i)
(iv)

u and f are strictly increasing, strictly concave, and continuously differentiable.
f(0) =0, lim f'(k) = oo, and lim f'(k) =b < 1.

lim u/(¢) = oc.

c—0

ge (0, 1).

We thus have the following problem:

V(K = max {ulf(k) = K]+ 0V (K)}.

leading to k' = g(k) satisfying the first-order condition

u'[f (k) — KT = BV'(K).

Notice that we are assuming an interior solution. This assumption is valid since assump-
tions (ii), (iii), and (iv) guarantee interiority.

Properties of g(k):

(1)

g(k) is single-valued for all k.

This follows from strict concavity of u and V' (recall the theorem we stated previ-
ously) by the Theorem of the Maximum under convexity.

9(0) = 0.
This follows from the fact that f(k) — k" > 0 and f(0) = 0.

There exists k s.t. g(k) < k for all k < k. Moreover, k exceeds (f')~1(1/8).

The first part follows from feasibility: because consumption cannot be negative,
k' cannot exceed f(k). Our assumptions on f then guarantee that f(k) < k for
high enough values of k: the slope of f approaches a number less than 1 as k
goes to infinity. So g(k) < k follows. The characterization of k follows from
noting (i) that k must be above the value that maximizes f(k) — k, since f(k) is
above k for very small values of k and f is strictly concave and (ii) that therefore

B> ()71 > (f)71(1/8).

Tt is not necessary for the following arguments to assume that %ir% f'(k) = oo. They would work

even if the limit were strictly greater than 1.
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(iv)

(v)

g(k) is continuous.

This property, just as Property 1, follows from the Theorem of the Maximum under
convexity.

g(k) is strictly increasing.

We argued this informally in the previous section. The formal argument is as
follows.

Proof. Consider the first-order condition:
u' [f(k) — K] = pV'(K).

V’(-) is decreasing, since V(-) is strictly concave due to the assumptions on u and
f. Define

LHS (k) = o [f(k)— K]
RHS (K) = BV'(K).

Let k > k. Then f(k) — kK > f(k) — k. Strict concavity of u implies that
u [f(l;) — k’} < [f(k) — K']. Hence we have that

k>k= LHS(k,K)< LHS (k).

As a consequence, the RH S (k') must decrease to satisfy the first-order condition.
Since V'(+) is decreasing, this will occur only if &” increases. This shows that k& >

k= g(k) > g(k).
The above result can also be viewed as an application of the implicit function
theorem. Define

H(k,K) = [f(k) — K] — BV'(K) = 0.

Then
OH (k, k")
ok ok
ok OH (k, k")
ok’

o [F(k) — K] '(8)
— [F (k) = ] — V()
L

_ TR -FTE

L) K]+ V)
=) )

where the sign follows from the fact that since u and V' are strictly concave and f
is strictly increasing, both the numerator and the denominator of this expression
have negative signs. This derivation is heuristic since we have assumed here that
V' is twice continuously differentiable. It turns out that there is a theorem telling
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(vii)

us that (under some side conditions that we will not state here) V' will indeed be
twice continuously differentiable, given that u and f are both twice differentiable,
but it is beyond the scope of the present analysis to discuss this theorem in greater
detail. m

The economic intuition behind g being increasing is simple. There is an underlying
presumption of normal goods behind our assumptions: strict concavity and addi-
tivity of the different consumption goods (over time) amounts to assuming that
the different goods are normal goods. Specifically, consumption in the future is a
normal good. Therefore, a larger initial wealth commands larger savings.

c(k) = f(k) — g(k) is strictly increasing and, hence, the marginal propensities to
consume and to save out of income are both strictly between 0 and 1.

Proof. In line with the previous proof, write the first-order condition as

u'[c] = BV'(f (k) —c).

V'() is decreasing, since V(-) is strictly concave due to the assumptions on v and

f. Define

LHS (¢) = u'[]]
RHS (k,¢) = BV'(f(k) - o).

Let k > k. Then f(k) —c¢ > f(k) —c. Strict concavity of V implies that
Vv’ [f(l;:) - c} < V'[f(k) — ¢]. Hence we have that

k>k= RHS(k,c) < RHS (k,c).

As a consequence, ¢ must change to ¢ in response to a change from k to k so as to
counteract the decrease in RHS. This is not possible unless ¢ > ¢. So, by means
of contradiction, suppose that ¢ < c¢. Then, since u is strictly concave, LHS would
rise and, since V' is also strictly concave, RHS would decrease further, increasing
rather than decreasing the gap between the two expressions. It follows that c(k)
must be (globally) increasing. Together with the previous fact, we conclude that an
increase in k£ would both increase consumption and investment. Put in terms of an
increase in output f(k), an increase in output would lead to a less than one-for-one
increase both in consumption and investment. m

g(k*) = k*, where k* solves B f'(k*) = 1.

The functional Euler equation reads

u'(f(k) — g(k)) = Bu'(f(g(k)) — g(g(K))) [ (9(K)).

It is straightforward to verify that the guess solves this equation at k*. However,
is this the only value for g(k*) that solves the equation at k& = k*?7 Suppose, by
means of contradiction, that g(k*) > k* or that g(k*) < k*. In the former case,
then, relative to the case of our prime candidate g(k*) = k*, the left-hand side of
the equation rises, since u is strictly concave. Moreover, the right-hand side falls,
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for two reasons: f(y) — ¢g(y) is increasing, as shown above, so strict concavity of
u implies that u'(f(g(k*)) — g(g(k*))) < o' (f(k*) — g(k*)); and strict concavity of
f’ implies that f'(g(k*)) < f'(k*). Using parallel reasoning, the latter case, i.e.,
g(k*) < k*, leads to an increase in the right-hand side and a decrease in the left-
hand side. Thus, neither case allows the Euler equation to be satisfied at £*. Hence,
since g(k*) exists, and since it must satisfy the Euler equation, it must equal k*.

(viii) g(k), if differentiable, has slope less than one at k*.

Differentiation and evaluation of the functional Euler equation at k* delivers
u//(f/ o g/) — ﬁ (u//(f/ o g/)g/f/ + u/f//g/)
from which follows, since #f’ = 1, that

B u/f// ,

(f' =gl —g) = i

This means, since we have shown above that ¢’ and f' — ¢’ are above zero, that
g’ < 1 must hold.

4.2 Global convergence

In order to discuss convergence to a unique steady state, we will first make somewhat
heuristic use of the properties of g established above to suggest that there is global
convergence to k*. We will then offer a full, and entirely independent, proof of global
convergence.

We know that g(k) has to start out at 0, be continuous and increasing, and satisfy
g(k) < k (the latter, in fact, with inequality, because u/'(0) = 00). Now let us consider
some different possibilities for the decision rule. Figure 4.2 shows three decision rules
which all share the mentioned properties.

Line 1 has three different solutions to the steady-state condition k' = k, line 2 has
only one steady state and line 3 has no positive steady state.

Line 1 can be ruled out because if there is a steady state, it is unique, due to strict
concavity of uw. Similarly, this argument rules out any decision rule with more than one
positive crossing of the 45° line.

Line 3, with no positive steady state, can be ruled out since it contradicts property
(vii): there is a steady state at k*. Similarly, a decision rule that starts, and remains,
above the 45° line over the entire domain [0, k] would not be possible (though we also
know that g(k) must be below k to ensure positive consumption).

Has any possibility been ruled out, or is the only remaining possibility line 27 In fact,
there is one more possibility, namely, that g(k) starts out below the 45° line, increases
toward the steady state k*, then “touches” k* and, for £ > k*, again falls below the
45° line. Is this possibility ruled out by the facts above? It is: it would require that
g(k), at least in a left neighborhood of £*, increases more than one-for-one. But we have
established above, with result (viii), that its slope must be smaller than one at the steady
state.
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-.=="" Line 2

— |ine 3

Line 1 k* Line 1 k* Line 1 k*
Line 2 k*

Figure 4.2: Different decision rule candidates

Having ruled out all alternatives, line 2 is clearly above the 45° line to the left of £*,
and below to the right. This implies that the model dynamics exhibit global convergence.

The convergence will not occur in finite time. For it to occur in that manner, the
decision rule would have to be flat at the steady state point. This, however, cannot be
since we have established that g(k) is strictly increasing (Property 2).

Let us now, formally, turn to a significantly more elegant proof of global convergence.
From the fact that V is strictly concave, we know that

(V'(k) = V'(g(k))) (k — g(k)) <0

with strict equality whenever k& # g(k). Since V'(k) = u/(f
envelope theorem and, from the first-order condition, 5V’(g(
obtain

(k) — g(k))f'(k) from the
k)) = w(f(k) = g(k)), we

(Bf' (k) =1) (k= g(k)) <0
using the fact that «/(¢) > 0. Thus, it follows directly that g(k) exceeds k& whenever k is
below k* (since f is strictly concave), and vice versa.

4.3 Dynamics: the speed of convergence

What can we say about the time it takes to reach the steady state? The speed of global
convergence will depend on the shape of g(k), as Figure 4.3 shows.

Capital will approach the steady state level more rapidly (i.e., in “a smaller number
of steps”) along trajectory number 2, where it will have a faster speed of convergence.
There is no simple way to summarize, in a quantitative way, the speed of convergence for
a general decision rule. However, for a limited class of decision rules - the linear (or affine)
rules - it can be measured simply by looking at the slope. This is an important case, for

47



kD

Figure 4.3: Different speeds of convergence

it can be used locally to approximate the speed of convergence around the steady state
k*.

The argument for this is simple: the accumulation path will spend infinite time arbi-
trarily close to the steady state, and in a very small region a continuous function can be
arbitrarily well approximated by a linear function, using the first-order Taylor expansion
of the function. That is, for any capital accumulation path, we will be able to approxi-
mate the speed of convergence arbitrarily well as time passes. If the starting point is far
from the steady state, we will make mistakes that might be large initially, but these mis-
takes will become smaller and smaller and eventually become unimportant. Moreover, if
one uses parameter values that are, in some sense, realistic, it turns out that the resulting
decision rule will be quite close to a linear one.

In this section, we will state a general theorem with properties for dynamic systems
of a general size. To be more precise, we will be much more general than the one-sector
growth model. With the methods we describe here it is actually possible to obtain the
key information about local dynamics for any dynamic system. The global convergence
theorem, in contrast, applies only for the one-sector growth model.

The first-order Taylor series expansion of the decision rule gives

o= gk)~ g(k") +g' (k) (k—k)

——
k.*
-k = gk (k-k).
—— ——
Next period’s gap Current gap

This shows that we may interpret ¢’(k*) as a measure of the rate of convergence (or
rather, its inverse). If ¢/(k*) is very close to zero, convergence is fast and the gap decreases
significantly each period.
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4.3.1 Linearization for a general dynamic system

The task is now to find ¢'(k*) by linearization. We will use the Euler equation and
linearize it. This will lead to a difference equation in k;. One of the solutions to this
difference equation will be the one we are looking for. Two natural questions arise: 1)
How many convergent solutions are there around k*? 2) For the convergent solutions,
is it valid to analyze a linear difference equation as a proxy for their convergence speed
properties? The first of these questions is the key to the general characterization of
dynamics. The second question is a mathematical one and related to the approximation
precision.

Both questions are addressed by the following theorem, which applies to a general
dynamic system (i.e., not only those coming from economic models):

Theorem 4.1 Let z; € R". Given x441 = h(x,) with a stationary point T : & = h(z). If
1. h is continuously differentiable with Jacobian H(Z) around T and
2. I — H(Z) is non-singular,

then there is a set of initial conditions xg, of dimension equal to the number of eigenvalues
of H(Z) that are less than 1 in absolute value, for which xy — Z.

The idea behind the proof, and the usefulness of the result, relies on the idea is
that, close enough to the stationary point, the nonlinear dynamic system behaves like its
linear(ized) counterpart. Letting H(z) = H, the linear counterpart would read x;11 —7 =
H(xy — ). Assuming that H can be diagonalized with distinct eigenvalues collected in
the diagonal matrix A(Z), so that H = B7'AB with B being a matrix of eigenvectors,
the linear system can be written

B(zy41 — %) = AB(2y — )

and, hence,
B(z, — ) = A'B(z¢ — 7).

Here, with distinct eigenvalues it is straightforward to see that whether B(x; — ) will go
to zero (and hence z; converge to z) will depend on the size of the eigenvalues and on
the initial vector xg.

We will describe how to use these results with a few examples.

Example 4.2 (n = 1) There is only one eigenvalue: A = h'(Z)

1. |[A\| > 1 = no initial condition leads to x; converging to Z.

In this case, only for xo = T will the system stay in Z.

2. A\ < 1= 2z, — T for any value of xy.

Example 4.3 (n =2) There are two eigenvalues Ay and Az.

1.\, A2 =21 = No initial condition xy leads to convergence.
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2. M| <1, |A2| > 1 = Dimension of xo’s leading to convergence is 1. This is called
"saddle path stability”.

3.\, A < 1 = Dimension of xy’s leading to convergence is 2. x; — T for
any value of xg.

The examples describe how a general dynamic system behaves. It does not yet,
however, quite settle the issue of convergence. In particular, the set of initial conditions
leading to convergence must be given an economic meaning. Is any initial condition
possible in a given economic model? Typically no: for example, the initial capital stock
in an economy may be given, and thus we have to restrict the set of initial conditions to
those respecting the initial capital stock.

We will show below that an economic model has dynamics that can be reduced to a
vector difference equation of the form of the one described in the above theorem. In this
description, the vector will have a subset of true state variables (e.g. capital) while the
remainder of the vector consists of various control, or other, variables that are there in
order that the system can be put into first-order form.

More formally, let the number of eigenvalues less than 1 in absolute value be denoted
by m. This is the dimension of the set of initial xy’s leading to . We may interpret m
as the degrees of freedom. Let the number of (distinct) economic restrictions on initial
conditions be denoted by m. These are the restrictions emanating from physical (and
perhaps other) conditions in our economic model. Notice that an interpretation of this
is that we have m equations and m unknowns. Then the issue of convergence boils down
to the following cases.

1. m = m = there is a unique convergent solution to the difference equation system.
2. m < m = No convergent solution obtains.
3. m > m = There is “indeterminacy”, i.e., there are many convergent solutions (how

many? dim = 1m — m).

4.3.2 Solving for the speed of convergence

We now describe in detail how the linearization procedure works. The example comes
from the one-sector growth model, but the general outline is the same for all economic
models.

1. Derive the Euler equation: F' (k¢, kyy1, ko) =0

W [f (k) = kea] — BU [ (k1) — Kevo] [ (K1) = 0.

Clearly, k* is a steady state < F (k*, k*, k*) = 0.

2. Linearize the Euler equation: Define k; = k; — k* and using first-order Taylor ap-
proximation derive ag, a1, and ay such that

a2]%t+2 + &112?t+1 + aol;’t = 0.
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3. Write the Euler equation as a first-order system: A difference equation of any order
can be written as a first order difference equation by using vector notation: Define

Xp = ( k;gl > and then

t

T = Hury.

4. Find the solution to the first-order system: Find the unknowns in

1y = i A\ vy + e by, (4.1)

where ¢; and ¢y are constants to be determined, A; and A, are (distinct) eigenvalues
of H, and v; and v, are eigenvectors associated with these eigenvalues.

5. Determine the constants: Use the information about state variables and initial con-
ditions to find ¢; and ¢o. In this case, z consists of one state variable and one
lagged state variable, the latter used only for the reformulation of the dynamic
system. Therefore, we have one initial condition for the system, given by koy; this
amounts to one restriction on the two constants. The set of initial conditions for
Zp in our economic model has therefore been reduced to one dimension. Finally, we
are looking for convergent solutions. If one of the two eigenvalues is greater than
one in absolute value, this means that we need to set the corresponding constant
to zero. Consequently, since not only kg but also k; are now determined (i.e., both
elements of xg), and our system is fully determined: all future values of k (or z)
can be obtained.

If both eigenvalues are larger than one, the dynamics will not have convergence to
the steady state: only if the system starts at the steady state will it remain there.

If both eigenvalues are less than one, we have no way of pinning down the remain-
ing constant, and the set of converging paths will remain of one dimension. Such
indeterminacy - effectively an infinite number of solutions to the system - will not
occur in our social planning problem, because (under strict concavity) it is guaran-
teed that the set of solutions is a singleton. However, in equilibrium systems that
are not derived from a planning problem (perhaps because the equilibrium is not
Pareto optimal, as we shall see below), it is possible to end up with indeterminacy.

The typical outcome in our one-sector growth model is 0 < Ay < 1 and Ay > 1,
which implies m = 1 (saddle path stability). Then the convergent solution has
co = 0. In other words, the economics of our model dictate that the number of
restrictions we have on the initial conditions is one, namely the (given) initial level
of capital, kg, i.e. m = 1. Therefore, m = m, so there is a unique convergent path
for each k¢ (close to k*).

Then ¢, is determined by setting co = 0 (so that the path is convergent) and solving
equation (4.1) for the value of ¢; such that if ¢ = 0, then k; is equal to the given
level of initial capital, k.

We now implement these steps in detail for a one-sector optimal growth model.
First, we need to solve for H. Let us go back to

W [f (k) = kea] — BU [f (Kesr) — Kevo] [ (K1) = 0.
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In order to linearize it, we take derivatives of this expression with respect to k;, k;y1 and
k1o, and evaluate them at £*. We obtain

Bu" () f (K ko — |u" (") + Bu" () [f/ (k) + W(C*)f"(k*)] kit

+u" () f' (k) = 0.
Using the steady-state fact that g f'(k*) = 1, we simplify this expression to

W Vhea = [0(€) 4+ 57 () 4 () [T | R + B () =0

Dividing through by u”(c*), we arrive at

. 1 u/(c*) f”(k*) ) 1. B

ez = [1 - 3 * u"(c*) f'(k*)} fnt ghe =0
Then .

(@t+2):H(kl§\+l)
ki1 ky
with L w1
ulc
g | TRt v@ e B

This is a second-order difference equation. Notice that the second row of H delivers
ki1 = kiy1, so the vector representation of the system is correct. Now we need to look
for the eigenvalues of H, from the characteristic polynomial given by

|H — \| = 0.

As an interlude before solving for the eigenvalues, let us now motivate the general
solution to the linear system above with an explicit derivation from basic principles.
Using spectral decomposition, we can decompose H as follows:

A0
H=VAV = A= :
0 X

where A\, and ), are eigenvalues of H and V' is a matrix of eigenvectors of H. Recall that
Ty = Hry.

A change of variables will help us get the solution to this system. First premultiply both
sides by V71

Vﬁll'prl = VﬁlHl't
= VWAV g,
= AV_I:Et.
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Let 2z, = V12, and 2.1 = V'24,1. Then, since A is a diagonal matrix

Zp = Az
2 = Az
= A= 20\
21t = CAL = 210
t
2ot = 220)\2.

We can go back to x; by premultiplying z, by V:

Ty = VZt

Vi Vi
_ t 11 t 12
= A ( Vay ) ey ( Vas )
= l%’i“
k; '
The solution, therefore must be of the form
I%t == /C\l)\li _'_/C\Q)\;,

where ¢; and ¢, are to be determined from initial conditions and values of A; and \s.
Let us now go back to our example. To find the eigenvalues in our specific setting,
we use |H — AI| = 0 to obtain

) 1 u/f// 1_
jA—[1+E+J7]A+E—O, (4.2)

where v/, v”, f', f" denote the corresponding derivatives evaluated at k*. Let
1 u/ f//

1
= 2_ J— - J—
F(A)=A [1+ﬁ+u,,f,]A+ﬁ.

F(0) = %>o
F(1) = —%%w

Therefore, the mean value theorem implies that 3A; € (0,1) : F'(A;) = 0. That is, one of
the eigenvalues is positive and smaller than one. Since )\lim F ()\) = +00 > 0, the other

eigenvalue (Ay) must also be positive and larger than 1.
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We see that a convergent solution to the system requires co = 0. The remaining
constant, ¢, will be determined from

]Aft = /C\l)\ti
1230 = k?() — k¥

= /C\lzkfo—k?*.

The solution, therefore, is

ke = k" 4+ M (ko — k7).

Recall that
kft+1 — k"= gl(k’*) (kt — k*) .

Analogously, in the linearized system,
ktJrl - k* - )\1 (kt - k*) .

It can thus be seen that the eigenvalue \; has a particular meaning: it measures the
(inverse of the) rate of convergence to the steady state.
As a different illustration, suppose we were looking at the larger system

kt = Cl)\ti -+ Cz)\g -+ Cg)\g -+ C4)\i,

ko given.

That is, some economic model with a single state variable leads to a third-order difference
equation. If only one eigenvalue A\; has || < 1, then there is a unique convergent path
leading to the steady state. This means that cs, c3, ¢4, Will need to be equal to zero
(choosing the subscript 1 to denote the eigenvalue smaller than 1 in absolute value is
arbitrary, of course).

In contrast, if there were, for example, two eigenvalues A\, Ay with |A], [A2| < 1,
then we would have m = 2 (two “degrees of freedom”). But there is only one economic
restriction, namely kg given. That is, m = 1 < m. Then there would be many convergent
paths satisfying the sole economic restriction on initial conditions and the system would
be indeterminate.

4.3.3 Alternative solution to the speed of convergence

There is another way to solve for the speed of convergence. It is related to the argument
that we have local convergence around k* if the slope of the g(k) schedule satisfies ¢'(k*) €

(—=1,1).
The starting point is the functional Euler equation:

u'[f (k) — g(k)] = Bu'[f(g(k)) — g(g(k))]f (g(k)), VE.

Differentiating with respect to k yields

u"If(k) = g(R)[f' (k) —g'(k)] = pu"[f(g(k)) — g(g()ILf (9(k))g' (k) — g'(g(k))g (k)] x
)



Evaluating at the steady state and noting that g(k*) = k*, we get
u" (@) (K°) + g/ (k)] = pu" () (K)g' (k) = (¢’ (k)1 (k) + Bu' (") £ (k) g (k7).

This equation is a quadratic equation in ¢'(k*). Reshuffling the terms and noting that
Bf'(k*) = 1, we are lead back to equation (4.2) from before with the difference that we
have now ¢'(k*) instead of A. Using the same assumptions on u(-) and f(-), we can easily
prove that for one of the solutions ¢f(k*) € (—1,1). The final step is the construction of
g(k) using a linear approximation around k*.
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Chapter 5

Competitive Equilibrium in
Dynamic Models

It is now time to leave pure maximization setups where there is a planner making all
decisions and move on to market economies. What economic arrangement, or what al-
location mechanism, will be used in the model economy to talk about decentralized, or
at least less centralized, behavior? Of course, different physical environments may call
for different arrangements. Although many argue that the modern market economy is
not well described by well-functioning markets due to the presence of various frictions
(incomplete information, externalities, market power, and so on), it still seems a good
idea to build the frictionless economy first, and use it as a benchmark from which exten-
sions can be systematically built and evaluated. For a frictionless economy, competitive
equilibrium analysis therefore seems suitable.

One issue is what the population structure will be. We will first look at the infinite-
horizon (dynastic) setup. The generalization to models with overlapping generations
of consumers will come later on. Moreover, we will, whenever we use the competitive
equilibrium paradigm, assume that there is a “representative consumer”. That is to say
we think of it that there are a large (truly infinite, perhaps) number of consumers in the
economy who are all identical. Prices of commodities will then have to adjust so that
markets clear; this will typically mean (under appropriate strict concavity assumptions)
that prices will make all these consumers make the same decisions: prices will have to
adjust so that consumers do not interact. For example, the dynamic model without
production gives a trivial allocation outcome: the consumer consumes the endowment
of every product. The competitive mechanism ensures that this outcome is achieved by
prices being set so that the consumer, when viewing prices as beyond his control, chooses
to consume no more and no less than his endowments.

For a brief introduction, imagine that the production factors (capital and labor) were
owned by many individual households, and that the technology to transform those factors
into consumption goods was operated by firms. Then households’ decisions would consist
of the amount of factors to provide to firms, and the amount of consumption goods to
purchase from them, while firms would have to choose their production volume and factor
demand.

The device by which sellers and buyers (of factors and of consumption goods) are
driven together is the market, which clearly brings with it the associated concept of
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prices. By equilibrium we mean a situation such that for some given prices, individual
households’ and firms’ decisions show an aggregate consistency, i.e. the amount of factors
that suppliers are willing to supply equals the amount that producers are willing to take,
and the same for consumption goods - we say that markets clear. The word “competi-
tive” indicates that we are looking at the perfect competition paradigm, as opposed to
economies in which firms might have some sort of “market power”.

Somewhat more formally, a competitive equilibrium is a vector of prices and quantities
that satisfy certain properties related to the aggregate consistency of individual decisions
mentioned above. These properties are:

1. Households choose quantities so as to maximize the level of utility attained given
their “wealth” (factor ownership evaluated at the given prices). When making
decisions, households take prices as given parameters. The maximum monetary
value of goods that households are able to purchase given their wealth is called the
budget constraint.

2. The quantity choice is “feasible”. By this we mean that the aggregate amount of
commodities that individual decision makers have chosen to demand can be pro-
duced with the available technology using the amount of factors that suppliers are
willing to supply. Notice that this supply is in turn determined by the remunera-
tion to factors, i.e. their price. Therefore this second condition is nothing but the
requirement that markets clear.

3. Firms chose the production volume that maximizes their profits at the given prices.

For dynamic economic setups, we need to specify how trade takes place over time:
are the economic agents using assets (and, if so, what kinds of assets)? Often, it will
be possible to think of several different economic arrangements for the same physical
environment that all give rise to the same final allocations. It will be illustrative to
consider, for example, both the case when firms rent their inputs from consumers every
period, and thus do not need an intertemporal perspective (and hence assets) to fulfill
their profit maximization objective, and the case when they buy and own the long-lived
capital they use in production, and hence need to consider the relative values of profits
in different periods.

Also, in dynamic competitive equilibrium models, as in the maximization sections
above, mathematically there are two alternative procedures: equilibria can be defined
and analyzed in terms of (infinite) sequences, or they can be expressed recursively, us-
ing functions. We will look at both, starting with the former. For each approach, we
will consider different specific arrangements, and we will proceed using examples: we
will typically consider an example without production (“endowment economy”) and the
neoclassical growth model. Later applied chapters will feature many examples of other
setups.

5.1 Sequential competitive equilibrium

The central question is the one of determining the set of commodities that are traded.
The most straightforward extension of standard competitive analysis to dynamic models
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is perhaps the conceptually most abstract one: simply let goods be dated (so that, for
example, in a one-good per date context, there is an infinite sequence of commodities:
consumption at ¢ = 0, consumption at t = 1, etc.) and, like in a static model, let the trade
in all these commodities take place once and for all. We will call this setup the date-0 (or
Arrow-Debreu-McKenzie) arrangement. In this arrangement, there is no need for assets.
If, for example, a consumer needs to consume both in periods 0 and in future periods,
the consumer would buy (rights to) future consumption goods at the beginning of time,
perhaps in exchange for current labor services, or promises of future labor services. Any
activity in the future would then be a mechanical carrying out of all the promises made
at time zero.

An alternative setup is one with assets: we will refer to this case as one with sequential
trade. In such a case, assets are used by one or more agents, and assets are traded every
period. In such a case, there are nontrivial decisions made in every future period, unlike
in the model with date-0 trade.

We will now, in turn, consider a series of example economies and, for each one, define
equilibrium in a detailed way.

5.1.1 An endowment economy with date-0 trade

Let the economy have only one consumer with infinite life. There is no production, but
the consumer is endowed with w; € R units of the single consumption good at each date t.
Notice that the absence of a production technology implies that the consumer is unable
to move consumption goods across time; he must consume all his endowment in each
period, or dispose of any balance. An economy without a production technology is called
an exchange economy, since the only economic activity (besides consumption) that agents
can undertake is trading. Let the consumer’s utility from any given consumption path
{ei}i2, be given by

Z B () -

The allocation problem in this economy is trivial. But imagine that we deceived the
consumer into making him believe that he could actually engage in transactions to buy
and sell consumption goods. Then, since in truth there is no other agent who could act
as his counterpart, market clearing would require that prices are such that the consumer
is willing to have exactly w; at every t.

We can see that this requires a specific price for consumption goods at each different
point in time, i.e. the commodities here are consumption goods at different dates, and
each commodity has its own price p;. We can normalize (py = 1) so that the prices will
be relative to ¢ = 0 consumption goods: a consumption good at ¢ will cost p; units of
consumption goods at ¢ = 0.

Given these prices, the value of the consumer’s endowment is given by

o0
E brwyi.
t=0
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The value of his expenditures is
ZPtCt
t=0

and the budget constraint requires that

o0 o0
Zptct < Zptwt-
t=0 t=0

Notice that this assumes that trading in all commodities takes place at the same time:
purchases and sales of consumption goods for every period are carried out at ¢t = 0. This
market structure is called an Arrow-Debreu-McKenzie, or date-0, market, as opposed to
a sequential market structure, in which trading for each period’s consumption good is
undertaken in the corresponding period. Therefore in this example, we have the following:

Definition 5.1 A competitive equilibrium is a vector of prices (p:);~, and a vector
of quantities (c}),2, such that:

1. (¢))2, = arg max{ 3 ﬁtu(ct)}

(et)i2o =0

o0 o0
s.t. Zptct < Zptwt
t=0 t=0

Cyt ZOVt

2. ¢ = wy Yt (market clearing constraint).

Notice, as mentioned earlier, that in this trivial case market clearing (condition 2) re-
quires that the agent consumes exactly his endowment in each period, and this determines
equilibrium prices.

Quantities are trivially determined here but prices are not. To find the price sequence
that supports the quantities as a competitive equilibrium, simply use the first-order con-
ditions from the consumer’s problem. These are

B (wy) = Apy Vt,

where we have used the fact that equilibrium consumption ¢; equals w;, and where \ de-
notes the Lagrange multiplier for the budget constraint. The multiplier can be eliminated
to solve for any relative price, such as

p_ 1 u(w)
Pe+1 54 U'(wtﬂ)

This equation states that the relative price of today’s consumption in terms of tomorrow’s
consumption - the definition of the (gross) real interest rate - has to equal the marginal
rate of substitution between these two goods, which in this case is inversely proportional
to the discount rate and to the ratio of period marginal utilities. This price is expressed in
terms of primitives and with it we have a complete solution for the competitive equilibrium
for this economy (remember our normalization: py = 1).
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5.1.2 The same endowment economy with sequential trade

Let us look at the same exchange economy, but with a sequential markets structure. We
allow 1-period loans, which carry an interest rate of

Rt =1+ Tt
~~~ ~~~
gross rate net rate

on a loan between periods t — 1 and t. Let a; denote the net asset position of the agent
at time ¢, i.e. the net amount saved (lent) from last period.

Now we are allowing the agent to transfer wealth from one period to the next by
lending 1-period loans to other agents. However, this is just a fiction as before, in the
sense that since there is only one agent in the economy, there cannot actually be any
loans outstanding (since lending requires both a lender and a borrower). Therefore the
asset market will only clear if aj = 0 V¢, i.e. if the planned net asset holding is zero for
every period.

With the new market structure, the agent faces not a single, but a sequence of budget
constraints. His budget constraint in period ¢ is given by:

*
Cc + A1 = ath +w;
—— —
uses of funds sources of funds

where R} denotes the equilibrium interest rate that the agent takes as given. With this
in hand, we have the following:

[e.9]

Definition 5.2 A competitive equilibrium is a set of sequences {c}},-,, {afﬂ}t:(),

{R;}.2, such that:

1. {cj,ajﬂ}zoz arg max { ﬁtu(ct)}
=0

{et,arv1}i2y =
s.t. ¢+ a1 = o Ry + wy V1
CtZO\V’t;CLQZO

~ 1
tlim Ayi1 (H Rt+1) =0 (no-Ponzi-game condition).
o0 t=0

2. Feasibility constraint: af = 0 Vt (asset market clearing).

3. ¢f = wy Yt (goods market clearing).

Notice that the third condition necessarily follows from the first and second ones, by
Walras’s law: if n — 1 markets clear in each period, then the n'* one will clear as well.

To determine quantities is as trivial here (with the same result) as in the date-0 world.
Prices, i.e. interest rates, are again available from the first-order condition for saving, the
consumer’s Euler equation, evaluated at ¢; = wy:

u'(wy) = 5U,(Wt+1)RZ<+1>

so that
. 1w/ (wy)

t+1 Bu/(wﬂ_l)'
Not surprisingly, this expression coincides with the real interest rate in the date-0 econ-
omy.
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5.1.3 The neoclassical growth model with date-0 trade

Next we will look at an application of the definition of competitive equilibrium to the
neoclassical growth model. We will first look at the definition of competitive equilibrium
with a date-0 market structure, and then at the sequential markets structure.

The assumptions in our version of the neoclassical growth model are as follows:

1.

The consumer is endowed with 1 unit of “time” each period, which he can allocate
between labor and leisure.

The utility derived from the consumption and leisure stream {c;, 1 — n; },—, is given

by
U{er, T=ni}2) = > Blule).

That is, we assume for the moment that leisure is not valued; equivalently, labor
supply bears no utility cost. We also assume that w (-) is strictly increasing and
strictly concave.

The consumer owns the capital, which he rents to firms in exchange for r; units of
the consumption good at t per unit of capital rented. Capital depreciates at rate §
each period.

. The consumer rents his labor services at t to the firm for a unit rental (or wage)

rate of wy.

The production function of the consumption/investment good is F(K,n); F is
strictly increasing in each argument, concave, and homogeneous of degree 1.

The following are the prices involved in this market structure:

- Price of consumption good at every ¢: p;

py: intertemporal relative prices; if po = 1, then p, is the price of consumption goods
at t relative to (in terms of) consumption goods at t = 0.

- Price of capital services at t: p;ry

r;: rental rate; price of capital services at ¢ relative to (in terms of) consumption
goods at t.

- Price of labor: p,w;

wy: wage rate; price of labor at t relative to (in terms of) consumption goods at ¢.

Definition 5.3 A competitive equilibrium is a set of sequences:

Prices: {p;}oo, {77 oo {W5 oo

Quantities: {c}},o, {K;Zrl}:io, {n; 2, such that
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1A }e {Ki )y Ani Y, solve the consumer’s problem:

{c}f, K} 4, nf}zo = argmax {g)ﬁtu (ct)}

{et, Kty1,ne}io, =
st 3o pi e+ Kipa] = 30 pr [ Ky + (1 = 6) Ky + ngwy]
t=0 t=0

c > 0Vt, ky given.

At every period t, capital is quoted in the same price as the consumption good. As
for labor, recall that we have assumed that it has no utility cost. Therefore w; > 0
will tmply that the consumer supplies all his time endowment to the labor market:
wy >0 = ny =1Vt

2. {K;} 2, {ni}e, solve the firms’ problem:

Vi (K[, 1) = ar}g( max {p; F (K, n) — pyr; Ky — pjwin:}
ty Nt

The firm’s decision problem involves just a one-period choice - it is not of a dynam-
ical nature (for example, we could imagine that firms live for just one period). All
of the model’s dynamics come from the consumer’s capital accumulation problem.

This condition may equivalently be expressed as follows: ¥t : (r},w;) satisfy:
ri = Fg (K], 1) (5.1)
wy = F, (K], 1).

Notice that this shows that if the production function F (K,n) is increasing in n,
then n;y =1 follows.

3. Feasibility (market clearing):

¢ +Ki,=F(K1)+(1-96)K].

This is known as the one-sector neoclassical growth model, since only one type of
goods is produced, that can be used either for consumption in the current period or as
capital in the following. There is also a vast literature on multi-sector neoclassical
growth models, in which each type of physical good is produced with a different
production technology, and capital accumulation is specific to each technology.

Let us now characterize the equilibrium. We first study the consumer’s problem by
deriving his intertemporal first-order conditions. Differentiating with respect to ¢;, we
obtain

et B’ (c}) = pyAT,
where \* is the Lagrange multiplier corresponding to the budget constraint. Since the
market structure that we have assumed consists of date-0 markets, there is only one
budget and hence a unique multiplier.
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Consumption at ¢t + 1 obeys
cerr : BN () = pra AT
Combining the two we arrive at

pi _ 1w (e)
P Bu (CZK+1)

(5.2)

Pi s the real interest rate, and L —%(<)
Pita B8 u’(
rate of substitution of consumption goods between ¢ and t + 1.

Differentiating with respect to capital, one sees that

We can, as before, interpret

oy as the marginal

t+1)

Kipr : N'py = Ay [7";;1 +(1- 5)} :

Therefore,
t+1
Using condition (5.1), we also find that
D R (K7, 1) +1-0 (5.3)
Pty

The expression Fi (Kfﬂ, 1) + (1 — ¢) is the marginal return on capital: the marginal
rate of technical substitution (transformation) between ¢; and ¢;41. Combining expres-
sions (5.2) and (5.3), we see that

u'(cf) = Pu' (i) [Fr (Kig, 1) +1—10]. (5.4)

Notice now that (5.4) is nothing but the Euler Equation from the planner’s problem.
Therefore a competitive equilibrium allocation satisfies the optimality conditions for the
centralized economy: the competitive equilibrium is optimal. You may recognize this as
the First Welfare Theorem. We have assumed that there is a single consumer, so in this
case Pareto-optimality just means utility maximization. In addition, as we will see later,
with the appropriate assumptions on F'(K,n) (namely, non-increasing returns to scale),
an optimum can be supported as a competitive equilibrium, which is the result of the
Second Welfare Theorem.

5.1.4 The neoclassical growth model with sequential trade

The following are the prices involved in this market structure:

- Price of capital services at t: R;

R;: rental rate; price of capital services at ¢ relative to (in terms of) consumption
goods at t.

Just for the sake of variety, we will now assume that R; is the return on capital net
of the depreciation costs. That is, with the notation used before, Ry =7, + 1 — 4.
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- Price of labor: w;
wy: wage rate; price of labor at ¢ relative to (in terms of) consumption goods at t.

Definition 5.4 A competitive equilibrium is a sequence {Rf, wy, ¢f, Kiq, nj}zo
such that:

* * x| ’ .
1. {¢}, K}y, nt}t:O solves the consumer’s problem:

oo
* * *1° t
{ai. Kro i)y = angmax {52 0tu(an}
{ct, Kiy1,ne )72, \t=0
s.t. ¢+ Kt+1 = }'(tR;< + ntw:
ko given and a no-Ponzi-game condition.

(Note that accumulating K, 1 is analogous to lending at t.)
2. {K;*H, nf}zo solves the firms’ problem:

Vit (K[, 1) =argmax {F (Ky,n) — Ry Ky + (1 —0) Ky — wyn, }.

Ki,ny

3. Market clearing (feasibility):

Vi:c + Kj,=F(K{,1)+(1-9)K].

The way that the rental rate has been presented now can be interpreted as saying
that the firm manages the capital stock, funded by loans provided by the consumers.
However, the capital accumulation decisions are still in the hands of the consumer (this
might also be modeled in a different way, as we shall see later).

Let us solve for the equilibrium elements. As before, we start with the consumer’s
problem:

¢ B’ () = BN
With the current market structure, the consumer faces a sequence of budget constraints,
and hence a sequence of Lagrange multipliers {\;},°,. We also have

1 1
cerr : BN () = BN

Then
A d ()

— = ) (5.5)
A (C?H)
Differentiation with respect to capital yields
Ky ﬁt)\: = ﬁt+1R;k+1)‘:+1a
so that N
= R, (5.6)
t4+1
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Combining expressions (5.5) and (5.6), we obtain

u'(cf) e
W) o

From Condition 2 of the definition of competitive equilibrium,
R =F, (K, 1)+1-4. (5.8)
Therefore, combining (5.7) and (5.8) we obtain:
u'(ef) = B’ (cfy) [ (K7, 1) +1 - 0]

This, again, is identical to the planner’s Euler equation. It shows that the sequential
market equilibrium is the same as the Arrow-Debreu-McKenzie date-0 equilibrium and
both are Pareto-optimal.

5.2 Recursive competitive equilibrium

Recursive competitive equilibrium uses the recursive concept of treating all maximization
problems as split into decisions concerning today versus the entire future. As such, this
concept thus has no room for the idea of date-0 trading: it requires sequential trading.

Instead of having sequences (or vectors), a recursive competitive equilibrium is a set
of functions - quantities, utility levels, and prices, as functions of the “state”: the relevant
initial condition. As in dynamic programming, these functions allow us to say what will
happen in the economy for every specific consumer, given an arbitrary choice of the initial
state.

As above, we will state the definitions and then discuss their ramifications in the
context of a series of examples, beginning with a treatment of the neoclassical growth
model.

5.2.1 The neoclassical growth model

Let us assume again that the time endowment is equal to 1, and that leisure is not valued.
Recall the central planner’s problem that we analyzed before:

V(K) = max {u(e) + BV(K')}
st. c+K'=F(K,1)+(1-0)K.

In the decentralized recursive economy, the individual’s budget constraint will no
longer be expressed in terms of physical units, but in terms of sources and uses of funds at
the going market prices. In the sequential formulation of the decentralized problem, these
take the form of sequences of factor remunerations: {R;, w},-,, with the equilibrium
levels given by

R = Fe(Kf1)+1—6
wy = F, (K], 1).
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Notice that both are a function of the (aggregate) level of capital (with aggregate labor
supply normalized to 1). In dynamic programming terminology, what we have is a law
of motion for factor remunerations as a function of the aggregate level of capital in the
economy. If K denotes the (current) aggregate capital stock, then

R = R(K)
w = w(K).

Therefore, the budget constraint in the decentralized dynamic programming problem
reads

c+ K =R(K)K + w(K). (5.9)

The previous point implies that when making decisions, two variables are key to the

agent: his own level of capital, K, and the aggregate level of capital, K, which will de-

termine his income. So the correct “syntax” for writing down the dynamic programming
problem is:

V(K;K):C%%;{u@y+ﬁv(KQK0}, (5.10)

where the state variables for the consumer are K and K).

We already have the objective function that needs to be maximized and one of the
restrictions, namely the budget constraint. Only K’ is left to be specified. The economic
interpretation of this is that we must determine the agent’s perceived law of motion of
aggregate capital. We assume that he will perceive this law of motion as a function of the
aggregate level of capital. Furthermore, his perception will be rational - it will correctly
correspond to the actual law of motion:

K' = G(K), (5.11)

where G is a result of the economy’s, that is, the representative agent’s equilibrium capital
accumulation decisions.

Putting (5.9), (5.10) and (5.11) together, we write down the consumer’s complete
dynamic problem in the decentralized economy:

V (K, K) = max {u(c)+ g8V (K',K")} (5.12)

¢, K'>0
st. ¢+ K' = R(K)K + w(K)
K' = G(K).

(5.12) is the recursive competitive equilibrium functional equation. The solution will
yield a policy function for the individual’s law of motion for capital:

K =g¢(K,K) = arg max {u[R(K)K + w(K) — K'|+ BV (K',K') }
K'€[0,R(K) K +w(K)]

st. K'=G(K).

We can now address the object of our study:

Definition 5.5 A recursive competitive equilibrium is a set of functions:
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Quantities: G(K), g(K, K)
Lifetime utility level: V (K, K')

Prices: R(K), w(K) such that

1. V(K,K) solves (5.12) and g(K, K) is the associated policy function.

2. Prices are competitively determined:

R(K) = Fg(K,1)+1-6
w(K) = F,(K,1).

In the recursive formulation, prices are stationary functions, rather than sequences.

3. Consistency is satisfied: B o
G(K)=yg(K,K) VK.

The third condition is the distinctive feature of the recursive formulation of competi-
tive equilibrium. The requirement is that, whenever the individual consumer is endowed
with a level of capital equal to the aggregate level (for example, only one single agent in
the economy owns all the capital, or there is a measure one of agents), his own individual
behavior will exactly mimic the aggregate behavior. The term consistency points out the
fact that the aggregate law of motion perceived by the agent must be consistent with the
actual behavior of individuals. Consistency in the recursive framework corresponds to
the idea in the sequential framework that consumers’ chosen sequences of, say, capital,
have to satisfy their first-order conditions given prices that are determined from firms’
first-order conditions evaluated using the same sequences of capital.

None of the three conditions defining a recursive competitive equilibrium mentions
market clearing. Will markets clear? That is, will the following equality hold?

c+K =F(K,1)+(1-0)K,

where ¢ denotes aggregate consumption. To answer this question, we may make use of
the Euler Theorem. If the production technology exhibits constant returns to scale (that
is, if the production function is homogeneous of degree 1), then that theorem delivers:

FK, 1)+ (1 -6 K =R(K)K +w(K).

In economic terms, there are zero profits: the product gets exhausted in factor payment.
This equation, together with the consumer’s budget constraint evaluated in equilibrium
(K = K) implies market clearing.

Completely solving for a recursive competitive equilibrium involves more work than
solving for a sequential equilibrium, since it involves solving for the functions V' and g,
which specify “off-equilibrium” behavior: what the agent would do if he were different
from the representative agent. This calculation is important in the sense that in order to
justify the equilibrium behavior we need to see that the postulated, chosen path, is not
worse than any other path. V(K, K) precisely allows you to evaluate the future conse-
quences for these behavioral alternatives, thought of as one-period deviations. Implicitly
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this is done with the sequential approach also, although in that approach one typically
simply derives the first-order (Euler) equation and imposes K = K there. Knowing that
the F.O.C. is sufficient, one does not need to look explicitly at alternatives.

The known parametric cases of recursive competitive equilibria that can be solved fully
include the following ones: (i) logarithmic utility (additive logarithms of consumption
and leisure, if leisure is valued), Cobb-Douglas production, and 100% depreciation; (ii)
isoelastic utility and linear production; and (iii) quadratic utility and linear production.
It is also possible to show that, when utility is isoelastic (and no matter what form the
production function takes), one obtains decision rules of the form g(K, K) = M K)K +
u(K), where the two functions A\ and p satisfy a pair of functional equations whose
solution depends on the technology and on the preference parameters. That is, the
individual decision rules are linear in K, the agent’s own holdings of capital.

More in the spirit of solving for sequential equilibria, one can solve for recursive
competitive equilibrium less than fully by ignoring V' and ¢ and only solve for G, using
the competitive equilibrium version of the functional Euler equation. It is straightforward
to show, using the envelope theorem as above in the section on dynamic programming,
that this functional equation reads

v (RIK)K + w(K) — g(K,K)) = pu (R(G(K))g(K, K)+w(G(K))-
K))) (Fi(G(K),1)+1—10) VK, K.

Using the Euler Theorem and consistency (K = K) we now see that this functional
equation becomes
W (F(K,1)+(1-0)K -G(K)) = pu (F(G(K),1)+ (1-0)G(K)-
~G(G(K))) (Fi(G(K),1)+1-6) VK,

which corresponds exactly to the functional Euler equation in the planning problem. We
have thus shown that the recursive competitive equilibrium produces optimal behavior.

5.2.2 The endowment economy with one agent

Let the endowment process be stationary: w; = w, Vt . The agent is allowed to save in
the form of loans (or assets). His net asset position at the beginning of the period is given
by a. Asset positions need to cancel out in the aggregate: @ = 0, since for every lender
there must be a borrower. The definition of a recursive equilibrium is now as follows.

Definition 5.6 A recursive competitive equilibrium is a set of functions V (a), g(a),
R such that

1. V(a) solves the consumer’s functional equation:

V(a) = max {u(c)+ 8V (d)}

c>0,a’

st.c+d = aR+w.

2. Consistency:

9(0) = 0.
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The consistency condition in this case takes the form of requiring that the agent that
has a null initial asset position keep this null balance. Clearly, since there is a unique
agent then asset market clearing requires a = 0. This condition will determine R as the
return on assets needed to sustain this equilibrium. Notice also that R is not really a
function - it is a constant, since the aggregate net asset position is zero.

Using the functional Euler equation, which of course can be derived here as well, it is
straightforward to see that R has to satisfy

R=—,
p

since the u' terms cancel. This value induces agents to save zero, if they start with
zero assets. Obviously, the result is the same as derived using the sequential equilibrium
definition.

5.2.3 An endowment economy with two agents

Assume that the economy is composed of two agents who live forever. Agent i derives
utility from a given consumption stream {cé}z o as given in the following formula:

{ct i 0 Zﬁtuz ¢), i=1,2.

Endowments are stationary:
wy =w'Vt, i =1,2.

Total resource use in this economy must obey:
e+ =w +w? vt
Clearing of the asset market requires that:

a; =a; +a; =0Vt

Notice this implies a} = —a?; that is, at any point in time it suffices to know the

asset position of one of the agents to know the asset position of the other one as well.
Denote A; = a'. This is the relevant aggregate state variable in this economy (the time
subscript is dropped to adjust to dynamic programming notation). Claiming that it is
a state variable amounts to saying that the distribution of asset holdings will matter
for prices. This claim is true except in special cases (as we shall see below), because
whenever marginal propensities to save out of wealth are not the same across the two
agents (either because they have different utility functions or because their common utility
function makes the propensity depend on the wealth level), different prices are required
to make total savings be zero, as equilibrium requires.

Finally, let ¢ denote the current price of a one-period bond: ¢; =

R . Also, in what
t,t+1

follows, subscript denotes the type of agent. We are now ready to state the following:

Definition 5.7 A recursive competitive equilibrium of the two-agent economy is a
set of functions:

70



Quantities: gy (a1, A1), g2 (az, A1), G (Ar)
Lifetime utility levels: Vi (a1, A1), Va (ag, A1)

Prices: q(Ay) such that

1. Vi (a;, A1) is the solution to consumer i’s problem:
Vi(a;, A1) = max {uz (cz) + G:V; (al, A'l)}
ct>0, a}
st +alq(A) = a;+w.
Al = G(A1) — perceived law of motion for A;.

The solution to this functional equation delivers the policy function g; (a;, Ay).
2. Consistency:

G(Al) = 01 (Ah Al) VAl
—G(Al) = g2 (—Al,Al) \V/Al

The second condition implies asset market clearing:
g1 (A1, A1) + g2 (A1, A) =G (Ar) — G (A4) =0.

Also note that ¢ is the variable that will adjust for consistency to hold.

For this economy, it is not as easy to find analytical solutions, except for special
parametric assumptions. We will turn to those now. We will, in particular, consider the
following question: under what conditions will ¢ be constant (that is, independent of the
wealth distribution characterized by A;)?

The answer is that, as long as 3; = (2 and wu; is strictly concave, ¢ will equal # and
thus not depend on A;. This is easily shown by guessing and verifying; the remainder of
the functions are as follows: g¢;(a, A;) = a for all i and (a, A1) and G(A;) = A; for all A;.

5.2.4 Neoclassical production again, with capital accumulation
by firms

Unlike in the previous examples (recall the discussion of competitive equilibrium with
the sequential and recursive formulations), we will now assume that firms are the ones
that make capital accumulation decisions in this economy. The (single) consumer owns
stock in the firms. In addition, instead of labor, we will have “land” as the second factor
of production. Land will be owned by the firm.

The functions involved in this model are the dynamic programs of both the consumer
and the firm:
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K'=G(K) aggregate law of motion for capital.

_ . .1 . 1
q(K ) current price of next period’s consumption (7retum o stocks) .

V. (a, K ) consumer’s indirect utility as function of K and his wealth a.
a =g, (a, K) policy rule associated with V, (a, K') :

Vi (K , K ) market value (in consumption goods), of a firm with K units
of initial capital, when the aggregate stock of capital is K.

K' =gy (K, K) policy rule associated with V (K, f() .
The dynamic programs of the different agents are as follows:

1. The consumer:

V. (a, K) = max {u(c) + 8V, (¢, K') } (5.13)

c>0,a’
st.c+q(K)d =a
K'=G (K).
The solution to this dynamic program produces the policy rule
a = g.(a, K).
2. The firm:
72 o 7 % It
Vi (K, K) =max {F (K, 1)+ (1= 0) K — K"+ q(K) V; (K", ')} (5.14)
st. K'=G (K).
The solution to this dynamic program produces the policy rule
K =g; (K, K).
We are now ready for the equilibrium definition.
Definition 5.8 A recursive competitive equilibrium is a set of functions
Quantities: g. (a, K), g7 (K, K),G (K)
Lifetime utility levels, values: V, (a, K) Vi (K, K’)
Prices: q (K) such that

1.V, (a, K') and g, (a, K') are the value and policy functions, respectively, solving
(5.13).

2. Vg (K, K') and gf (K, K) are the value and policy functions, respectively, solving
(5.14).
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3. Consistency 1: g5 ([_(, [_() =G ([_() for all K.
4. Consistency 2: g. [Vf (l_(, I_() , l_q =V [G (l_() , G (l_()] VK.

The consistency conditions can be understood as follows. The last condition requires
that the consumer ends up owning 100% of the firm next period whenever he started up
owning 100% of it. Notice that if the consumer starts the period owning the whole firm,
then the value of a (his wealth) is equal to the market value of the firm, given by V7 (-).
That is,

a=V (K, K). (5.15)

The value of the firm next period is given by
ViK', K.

To assess this value, we need K’ and K’. But these come from the respective laws of
motion:

Vf(Klaf(/) = Vf [gf(Ka K)? G(K)] :

Now, requiring that the consumer owns 100% of the firm in the next period amounts to
requiring that his desired asset accumulation, a’, coincide with the value of the firm next
period:

a = Vf [gf(Kv K)a G(Kﬂ :

But o follows the policy rule g.(a, K). A substitution then yields
ge(a, K) = Vy [g4(K, K), G(K)]. (5.16)
Using (5.15) to replace a in (5.16), we obtain
9: [Vy (K, K) . K] = Vy [g/(K, K), G(K)]. (5.17)

The consistency condition is then imposed with K = K in (5.17) (and using the “Con-
sistency 1”7 condition g; [K , K } =G [K ]), yielding

9. Vi (K, K),K] =V; [G(K), G(K)].

To show that the allocation resulting from this definition of equilibrium coincides
with the allocation we have seen earlier (e.g., the planning allocation), one would have to
derive functional Euler equations for both the consumer and the firm and simplify them.
We leave it as an exercise to verify that the outcome is indeed the optimal one.
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Chapter 6

Uncertainty

Our program of study will comprise the following three topics:
1. Examples of common stochastic processes in macroeconomics
2. Maximization under uncertainty
3. Competitive equilibrium under uncertainty

The first one is closely related to time series analysis. The second and the third one are
a generalization of the tools we have already introduced to the case where the decision
makers face uncertainty.

Before proceeding with this chapter, it may be advisable to review the basic notation
and terminology associated with stochastic processes presented in the appendix.

6.1 Examples of common stochastic processes in macroe-
conomics

The two main types of modelling techniques that macroeconomists make use of are:
e Markov chains

e Linear stochastic difference equations

6.1.1 Markov chains

Definition 6.1 Let x; € X, where X = T1,To, ..., T, s a finite set of values. A sta-
tionary Markov chain is a stochastic process {x;}{2, defined by X, a transition matriz

P, and an initial probability distribution my for xo (the first element in the stochastic
nxn 1xn

process).

The elements of P represent the following probabilities:
nxn

Pij = Pl"[[L‘t+1 = fj|l‘t = EZ]
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Notice that these probabilities are independent of time. We also have that the probability
two periods ahead is given by

Prlzis =Fjloy =T;] = Y PyPiy
k=1
= [Py,

where [P?];; denotes the (i, 7)™ entry of the matrix P2
Given 7y, m is the probability distribution of xjas of time ¢t = 0 and it is given by

m = moP.
Analogously,
o = 7TQP2
I 7TOPt
and also

41 = 7TtP.

Definition 6.2 A stationary (or invariant) distribution for P is a probability vector
m such that
m=mnP.

A stationary distribution then satisfies
wl = 7P,
where [ is identity matrix and

T—7mP = 0
[l —P] = 0.

That is, 7 is an eigenvector of P, associated with the eigenvalue A = 1.

Example 6.3

(i) P = ( Z’:) = (7?1 o ) = (711 o ) ( g 2) You should verify that

(i 1)
@ P=(gg01) = 7= (4 1),

wl»—ld.\]

(iii) P = ( 11 % ) = 7= (1 0). The first state is said to be “absorbing”.
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(iv) P = ((1) (1)) = 7=(a 1—a), a€l0,1]. In this last case, there is a

continuum of invariant distributions.

The question now is whether 7m; converges, in some sense, to a number 7., as t — oo,
which would mean that 7., = 7o, P and if so, whether 7, depends on the initial condition
mo. If the answers to these two questions are “Yes” and “No”, respectively, then the
stochastic process is said to be “asymptotically stationary”, with a unique invariant
distribution. Fortunately, we can borrow the following result for sufficient conditions for
asymptotic stationarity:

Theorem 6.4 P has a unique invariant distribution (and is asymptotically stationary)

if Py >0 Vi, Vj.

6.1.2 Linear stochastic difference equations

Let z; € R", w, € ™,
Ty = Az + Cwpy.
nxn nxn

We normally assume

E, [wt—l—l] = L [wt+1 |wta W¢—1, ] =0
Et [thrlw;_’_l] = I

Example 6.5 (AR(1) process) Let

Yer1 = PYt + €141 + b

and assume

Eilera] = 0
E [, = o
E, [5t+k5t+k+1] = 0.

Even if yo is known, the {y:},, process will not be stationary in general. However,
the process may become stationary as t — oo. By repeated substitution, we get

b
Eo [y = plyo + i, (1-0")

b
<1 = limFE =—.
o] Jim Bo [y] = 37—
Then, the process will be stationary if |p| < 1. Similarly, the autocovariance function is
gien by

1— pt—k

v(t, k)= Eo[(ye — E[y) (yeei — E [yes])] = g2pk1_7p2
. 0'2 k
ol <1 = limy (¢, k) = "

The process is asymptotically weakly stationary if |p| < 1.
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We can also regard z (or g, in the case of an AR(1) process) as drawn from a dis-
tribution with mean po and covariance F [(xo — o) (xo — ,uo)'} = I'g. Then the following
are sufficient conditions for {z,},°, to be weakly stationary process:

(i) o is the eigenvector associated to the eigenvalue A\; = 1 of A:
1o = HoA.
(ii) All other eigenvalues of A are smaller than 1 in absolute value:

N <1 i=2 .. n
To see this, notice that condition (i) implies that

Tip1 — plo = A (2 — pio) + Cwiyy.
Then,
Lo=T(0)=E [(z — po) (z: — po)'] = AL (0) A’ + CC’

and
D (k) = B [(@0k — o) (0 — po)'] = AT (0).

This is the matrix version of the autocovariance function v (¢, k) presented above. Notice
that we drop t as a variable in this function.

Example 6.6 Letx; =y, € R, A=p, C =02 and w; = t_ we are accommodating the

o
AR(1) process seen before to this notation. We can do the following change of variables:

- (1)
~ p b\~ o
yt-‘rl - O 1 yt + O wt+1'
—_——
A
Then, using the previous results and ignoring the constant, we get

ro) = p°T(0)+o?

= I'(0)=

1—p2

6.2 Maximization under uncertainty

We will approach this topic by illustrating with examples. Let us begin with a simple
2-period model, where an agent faces a decision problem in which he needs to make the
following choices:

1. Consume and save in period 0.

2. Consume and work in period 1.
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The uncertainty arises in the income of period 1 through the stochasticity of the wage.
We will assume that there are n possible states of the world in period 1, i.e.

w? € {wy, ..., wn},

where m; = Pr{w? = wy|, fori =1, ..., n.
The consumer’s utility function has the von Neumann-Morgenstern type, i.e. he is an
expected utility maximizer. Leisure in the second period is valued:

U= ZWW (co, c11, 1) = E [u(co, c14, n4)] -
i=1

Specifically, the utility function is assumed to have the form

where v (n;) < 0.

Market structure: incomplete markets

We will assume that there is a “risk free” asset denoted by a, and priced ¢, such that
every unit of a purchased in period 0 pays 1 unit in period 1, whatever the state of the
world. The consumer faces the following budget restriction in the first period:

co+aq=1.
At each realization of the random state of the world, his budget is given by
Cc1; = a -+ w;n; 1= 1, .y N

The consumer’s problem is therefore

max  u(cy) + BZ 7 [u(c1i) + v (ng)]

co,a, {c1i,n1itiq

st. co+aqg=1
C1; = a + w;ny, 1= 1, .y N

The first-order conditions are

n

co U (c)=A= Z)‘ZR’

i=1
where R = %,
C1; 57%‘“/ (Cli) = A
ni; - —ﬁﬂz”Ul (nu) = \w;

= —u (Cli) W; = v (nll)
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u (cp) = BZ miu' (c13) R
= BE[U (cy)R].

The interpretation of the last expression is both straightforward and intuitive: on the
margin, the consumer’s marginal utility from consumption at period 0 is equated to the
discounted expected marginal utility from consuming R units in period 1.

1—

Example 6.7 Let u(c) belong to the CIES class; that is u(c) = <—=+. This is a common
assumption in the literature. Recall that o is the coefficient of relative risk aversion (the
higher o, the less variability in consumption across states the consumer is willing to
suffer) and its inverse is the elasticity of intertemporal substitution (the higher o, the
less willing the consumer is to experience the fluctuations of consumption over time). In
particular, let o =1, then u(c) = log(c). Assume also that v(n) = log(1 —n). Replacing

in the first-order conditions, these assumptions yield

C1i = W, (1 - nz)

and using the budget constraint at i, we get

a + w;
C1; = .

2

Therefore,

¢ oo 2
I—aq—ﬁ;ma—kwi'

From this equation we get a unique solution, even if not explicit, for the amount of
savings given the price q. Finally, notice that we do not have complete insurance in this
model (why?).

Market structure: complete markets

We will now modify the market structure in the previous example. Instead of a risk free
asset yielding the same payout in each state, we will allow for “Arrow securities” (state-
contingent claims): n assets are traded in period 0, and each unit of asset ¢ purchased
pays off 1 unit if the realized state is ¢, and 0 otherwise. The new budget constraint in

period 0 is
n
Co + Z gia; = 1.
i=1
In the second period, if the realized state is ¢ then the consumer’s budget constraint is:
C1; = a; + n;w;.

Notice that a risk free asset can be constructed by purchasing one unit of each aj.
Assume that the total price paid for such a portfolio is the same as before, i.e.

q = Z q;-
=1
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The question is whether the consumer will be better or worse off with this market
structure than before. Intuitively, we can see that the structure of wealth transfer across
periods that was available before (namely, the risk free asset) is also available now at
the same cost. Therefore, the agent could not be worse off. Moreover, the market
structure now allows the wealth transfer across periods to be state-specific: not only can
the consumer reallocate his income between periods 0 and 1, but also move his wealth
across states of the world. Conceptually, this added ability to move income across states
will lead to a welfare improvement if the w;’s are nontrivially random, and if preferences
show risk aversion (i.e. if the utility index w (-) is strictly concave).

Solving for a; in the period-1 budget constraints and replacing in the period-0 con-

straint, we get
n n
Co + Z gicri =1+ Z qiw;n;.
i=1 i=1

We can interpret this expression in the following way: ¢; is the price, in terms of ¢y, of
consumption goods in period 1 if the realized state is 7; g;w; is the remuneration to labor
if the realized state is i, measured in term of ¢ (remember that budget consolidation only
makes sense if all expenditures and income are measured in the same unit of account (in
this case it is a monetary unit), where the price of ¢y has been normalized to 1, and g¢; is
the resulting level of relative prices).

Notice that we have thus reduced the n + 1 constraints to 1, whereas in the previous
problem we could only eliminate one and reduce them to n. This budget consolidation
is a consequence of the free reallocation of wealth across states.

The first-order conditions are

= —u (Cli) W; = v (nll)

B

U (o) = —u (cy;), i=1,..n.

i

The first condition (intra-state consumption-leisure choice) is the same as with in-
complete markets. The second condition reflects the added flexibility in allocation of
consumption: the agent now not only makes consumption-saving decision in period 0,
but also chooses consumption pattern across states of the world.

Under this equilibrium allocation the marginal rates of substitution between consump-
tion in period 0 and consumption in period 1, for any realization of the state of the world,
is given by

MRS (co, c1i) = i,

and the marginal rates of substitution across states are

MRS (CM, C1j> = &

4q;
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Example 6.8 Using the utility function from the previous example, the first-order con-
ditions (together with consolidated budget constraint) can be rewritten as

=1
Ur
Cii = BCO_
qi
C15
n, =1——
wy

The second condition says that consumption in each period is proportional to con-
sumption in cy. This proportionality is a function of the cost of insurance: the higher g;
in relation to m;, the lower the wealth transfer into state i.

6.2.1 Stochastic neoclassical growth model
Notation

We introduce uncertainty into the neoclassical growth model through a stochastic shock
affecting factor productivity. A very usual assumption is that of a neutral shock, affecting
total factor productivity (TFP). Under certain assumptions (for example, Cobb-Douglas
y = AK°n!'~® production technology), a productivity shock is always neutral, even if it
is modelled as affecting a specific component (capital K, labor n, technology A).

Specifically, a neoclassical (constant returns to scale) aggregate production function
subject to a TFP shock has the form

Fy (ki 1) = 2 f (k)

where z is a stochastic process, and the realizations z; are drawn from a set Z: z;, € Z,
Vt. Let Z' denote a t-times Cartesian product of Z. We will assume throughout that
Z is a countable set (a generalization of this assumption only requires to generalize the
summations into integration - however this brings in additional technical complexities
which are beyond the scope of this course).

Let 2! denote a history of realizations: a t-component vector keeping track of the
previous values taken by the z; for all periods j from 0 to ¢:

t
Z = (Zt, L1y eees Zo) .
Notice that 2° = zy, and we can write 2 = (2, 2/71).

Let 7 (2") denote the probability of occurrence of the event (2, 21, ..., 20). Under
this notation, a first order Markov process has

T [(ZtJrla Zt) }Zt] = 7 [(2041, 2t) |2¢]
(care must be taken of the objects to which probability is assigned).
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Sequential formulation

The planning problem in sequential form in this economy requires to maximize the func-

tion . .
Z Z Bl (2 Zﬁtu ]
t=0

t=0 ztezt
Notice that as ¢ increases, the dimension of the space of events Z¢ increases. The choice
variables in this problem are the consumption and investment amounts at each date and
for each possible realization of the sequence of shocks as of that date. The consumer has
to choose a stochastic process for ¢; and another one for k;q:

C (zt) V2t Wt
kt-ﬁ-l (Zt) \V/Zt, Vt.

Notice that now there is only one kind of asset (k;y1) available at each date.

Let (¢, z') denote a realization of the sequence of shocks z' as of date t. The bud-
get constraint in this problem requires that the consumer chooses a consumption and
investment amount that is feasible at each (¢, 2):

¢t (zt) + kiyq (zt) <zuf [kt (zt’l)] +(1—=96)k (zt’l) )

You may observe that this restriction is consistent with the fact that the agent’s infor-
mation at the moment of choosing is z*.

Assuming that the utility index w (+) is strictly increasing, we may as well write the
restriction in terms of equality. Then the consumer solves

{ee(21), kt_H(zt joo OZ Z pim e (<)) (6.1)

t=0 ztezt
st e (2Y) F ke (2Y) = 2 f [k Y]+ (1= 0) ke (2171), V(¢ 2Y)
ko given.

Substituting the expression for ¢; (2*) from budget constraint, the first-order condition
with respect to ki (27) is

-7 (zt) u’ [ct (zt)] + Z B (Zt+1, zt) u’ [ctﬂ (Zt+1, zt)} X

Zt+1eZt+1

% [zt [kers ()] +1 - 6] =0.

Alternatively, if we denote 7 [(z,11, 2") [2'] = W(Z;(th’)zt), then we can write
V@] = X B[ ) [#] [ (s 2]
Zt+1eZt+1
X [Zt—l—lf/ [k:t—f—l (Zt)] + 1-— 5] s (62)

= Lt [Ul [Ct+1 (Zt+17 Zt)] Rt+1] )
where Ryi1 = ze01 [ [ken1 (2)] + 1 — 0 is the marginal return on capital realized for each

Rt41-
(6.2) is a nonlinear, stochastic difference equation. In general, we will not be able to
solve it analytically, so numerical methods or linearization techniques will be necessary.
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Recursive formulation

The planner’s problem in recursive version is

Vi(k, z) = mkgux{u[zf(k) — k' +(1—0)k| +BZ7T(2'|z)V(k', z’)}, (6.3)

z'eZ

where we have used a first order Markov assumption on the process {z},-,. The solution
to this problem involves the policy rule

K =gk, 2).
If we additionally assume that Z is not only countable but finite, i.e.

Z =Az1, .., Zn},

then the problem can also be written as
Vi () = max {u 2 f (R) = K+ (L= 8 K+ 8 7,V <k’>} ,
j=1

where ;; denotes the probability of moving from state 7 into state j, i.e.

Tij =T [z = 25 |20 = 2]

Stationary stochastic process for (k,z)

Let us suppose that we have g(k, z) (we will show later how to obtain it by linearization).
What we are interested is what will happen in the long run. We are looking for what
is called stationary process for (k, z), i.e. probability distribution over values of (k, z),
which is preserved at ¢ + 1 if applied at time . It is analogous to the stationary (or
invariant) distribution of a Markov process.

Example 6.9 Let us have a look at a simplified stochastic version, where the shock vari-
able z takes on only two values:

z€{z,2n}.

An example of this kind of process is graphically represented in Figure 6.1.

Following the set-up, we get two sets of possible values of capital, which are of signifi-
cance for stationary stochastic distribution of (k,z). The first one is the transient set,
which denotes a set of values of capital, which cannot occur in the long run. It is depicted
in Figure 6.1. The probability of leaving the transient set is equal to the probability of
capital reaching a value higher or equal to A, which is possible only with a high shock.
This probability is non-zero and the capital will therefore get beyond A at least once in
the long run. Thereafter, the capital will be in the ergodic set, which is a set, that
the capital will never leave once it is there. Clearly, the interval between A and B is an
ergodic set since there is no value of capital from this interval and a shock which would
cause the capital to take a value outside of this interval in the next period. Also, there is
a transient set to the right of B.
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high shock
capital line

/
low shock

capital line

transient set A ergodic set B transient set

Figure 6.1: An example of (k,z) stochastic process when z € {z, z, }

Let P(k,z) denote the joint density, which is preserved over time. As the stochastic
process has only two possible states, it can be represented by the density function P(k,z) =
(Py(k), P(k)). From the above discussion, it is clear to see that the density will be non-
zero only for those wvalues of capital that are in the ergodic set. The following are the
required properties of P(k, z):

1. Prob [k < k,z=z] = [, Pu(k)dk =

- [f’figh(k)élé Ph(k)dk} Thh + [fk:gl(k;)g; Pl(k)dk] Tih,
2. Prob [k <k,z=z]= [_;P(k)dk =

_ [ Jonto<i Ph(k:)dk:} T + [ Seair<i B(k)dk] .

Note that the above conditions imply that
1. [(Py(k)+ P(k))dk =1 and

2. fPh(k’)dk? = Tp
[ Bi(k)dk = m,

where m; and wy, are invariant probabilities of the low and high states.

Solving the model: linearization of the Euler equation
Both the recursive and the sequential formulation lead to the Stochastic Euler Equation
u'(er) = BE., [ (ci41) [zee1 f' (ki) + 1 = 6] (6.4)

Our strategy to solve this equation will be to use a linear approximation of it around
the deterministic steady state. We will guess a linear policy function, and replace the
choice variables with it. Finally, we will solve for the coefficients of this linear guess.
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We rewrite (6.4) in terms of capital and using dynamic programming notation, we get
uizf(k)+ (1 =0 k—K|=BE.[W[Zf(E)+ (1 -0k —K'] x
x[Zf (K +1-=4]]. (6.5)
Denote

LHS = u[z2f(k)+ (1 —0)k — k]
RHS = PBE, [W[Zf(K)+Q-8K —K'|[Zf (K)+1-14]].

Let k be the steady state associated with the realization {z},, that has z, = % for
all but a finite number of periods t. That is, Z is the long run value of z.

Example 6.10 Suppose that {z},2, follows an AR(1) process
21 = pz+ (1= p)Z + v,

where |p| < 1. If Ele)] =0, Ele}] = 0 < oo, and E[gie445] = 0 Vj > 1, then by the
Law of Large Numbers we get that

plim z, = Z.

Having the long run value of z, the associated steady state level of capital k is solved
from the usual deterministic Euler equation:

pu' (e) [zf(k) +1—¢]

u (

ol
~
I

;»% = zf(k)+1-06
=k = f‘l( _1__(1_5))
= ¢ = zf(k) -0k
Let
E = k—F
7 = 2-7%

denote the variables expressed as deviations from their steady state values. Using this
notation we write down a first order Taylor expansion of (6.5) around the long run values
as

LHS ~ LLHS=a;Z+bok+c k' +dy

RHS ~ LRHS=E. |agZ +bak' + cR%”] +dp,
where the coefficients ar, agr, by, etc. are the derivatives of the expressions LHS and
RHS with respect to the corresponding variables, evaluated at the steady state (for

example, a;, = u"(¢) f(k)). In addition, LLHS = LRHS needs to hold for 2 = 2’ = k=
k' = k" = 0 (the steady state), and therefore dj, = dg.
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Next, we introduce our linear policy function guess in terms of deviations with respect
to the steady state as R R
K = gik + g.2.
The coefficients gx, g, are unknown. Substituting this guess into the linearized stochastic
Euler equation, we get

LLHS = (IL/Z\—F bL?{?\ + CLgk/l% + Cng/Z\—f— dL

LRHS = Ez |:G,R/Z\l + bng/]; + bRgz/Z\—i- Cng/k\/ + CRgZ/Z\I + dR

= Ez |:G,R/Z\I + bRg]j{]\ + bRgz/Z\—i‘ CRgzif\ -+ Cnggz/Z\—F
+CRgZ?] —+ dR
= agrE. [Z]+ brgrk + brg.Z + crgik + crOrg.Z +
+CRngz [?] + dR
and our equation is

LLHS = LRHS. (6.6)

Notice that dj, dg will simplify away. Using the assumed form of the stochastic process
{z},~y, we can replace E, [Z'] by pZ.

The system (6.6) needs to hold for all values of k and 2. Given the values of the
coefficients a;, b;, ¢; (for i = L, R), the task is to find the values of g, g. that solve the
system. Rearranging, (6.6) can be written as

ZA+ E,[7] B+ kC =0,
where

A = arp +crg, — bRgz — CRULY:
B = —ag — cry.

C = by +cLgr — brgr — CrY;-

As C'is a second order polynomial in g, the solution will involve two roots. We know
that the value smaller than one in absolute value will be the stable solution to the system.

Example 6.11 Let {z},-, follow an AR(1) process, as in the previous example:

zer1 = pz+ (1= p)Z+ e

Then,
7 = -z
= pz+(1—p)z+e -z
pz—2)+¢.
It follows that



and
LRHS = app? + brgrk + brg.Z + crgik + Crgrg-Z + crg.pz + dg

We can rearrange (6.6) to
ZA+ kB =0,

where
A = ap+cLg. — arp — brg: — CRYKY: — CRY=P
B = b+ crgr — brgk — CrYi-
The solution to (6.6) requires
A =0
B = 0.

Therefore, the procedure is to solve first for gy from B (picking the value less than one)
and then use this value to solve for g. from A.

Simulation and impulse response

Once we have solved for the coefficients gi, g., we can simulate the model by drawing
values of {25}?:0 from the assumed distribution, and an arbitrary ky. This will yield a
stochastic path for capital from the policy rule

ki = grke + g:2%

We may also be interested in observing the effect on the capital accumulation path in
an economy if there is a one-time productivity shock Z, which is the essence of impulse
response. The usual procedure for this analysis is to set kg = 0 (that is, we begin
from the steady state capital stock associated with the long run value Z) and %, to some
arbitrary number. The values of Z; for ¢ > 0 are then derived by eliminating the stochastic
component in the {Z},_, process.

For example, let {2 },-, be an AR(1) process as in the previous examples, then:

Zir1 = %+ et

Let zyp = A, and set ¢, = 0 for all . Using the policy function, we obtain the following
path for capital:

ko = 0

ki = g¢g.A

ks = gkg:A+ g.pA = (grg. + g.p) A
ks = (9r9: + grg-p + g:0°) A

ke = (g +oi %+ o a2+ 07 g

and R
gl <1 & |p] <1 = lim ky = 0.

The capital stock converges back to its steady state value if |gx| < 1 and |p| < 1.
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Figure 6.2: An example of an impulse response plot, using g, = 0.8, gr = 0.9, p = —0.75

References and comments on the linear-quadratic setup

You can find most of the material we have discussed on the neoclassical growth model
in King, Plosser and Rebelo (1988). Hansen and Sargent (1988) discuss the model in a
linear-quadratic environment, which assumes that the production technology is linear in
z and k, and u is quadratic:

y(z, k) = ayz+byk
u(c) = —au(c—cy)? + b,

This set-up leads to a linear Euler equation, and therefore the linear policy function
guess is exact. In addition, the linear-quadratic model has a property called “certainty
equivalence”, which means that g, and g, do not depend on second or higher order
moments of the shock ¢ and it is possible to solve the problem, at all ¢, by replacing z;
with E; [244%] and thus transform it into a deterministic problem.

This approach provides an alternative to linearizing the stochastic Euler equation. We
can solve the problem by replacing the return function with a quadratic approximation,
and the (technological) constraint by a linear function. Then we solve the resulting
linear-quadratic problem

S~ BulF (k) + (1= 0) by — k)

~
Return function

The approximation of the return function can be done by taking a second order Tay-
lor series expansion around the steady state. This will yield the same results as the
linearization.

Finally, the following shortfalls of the linear-quadratic setup must be kept in mind:
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- The quadratic return function leads to satiation: there will be a consumption level with
zero marginal utility.

- Non-negativity constraints may cause problems. In practice, the method requires such
constraints not to bind. Otherwise, the Euler equation will involve Lagrange mul-
tipliers, for a significant increase in the complexity of the solution.

- A linear production function implies a constant-marginal-product technology, which
may not be consistent with economic intuition.

Recursive formulation issue

There is one more issue to discuss in this section and it involves the choice of state variable
in recursive formulation. Let us consider the following problem of the consumer:

o0

max (2 ) u(c (2
{Ct(ztmog Y Bia(ule(=")
st 2t = (21,2 0 (2 + @iz ani1(2Y) + @iz a1 (2) = wi(2h) + ag(2171)
2= (2,271 0 al2') + ane(2)ang+a (2) + @2 anen (2°) = wi(2') + ane (2
both constraints V¢, Vz' and no-Ponzi-game condition,

),

where z; follows a first order Markov process and even more specifically, we only have
two states, i.e. z; € {25, z1}. As can be seen, we have two budget constraints, depending
on the state at time ¢.

Let us now consider the recursive formulation of the above-given problem. To simplify
matters, suppose that

=z w2 = w
z=zn w(2Y) = wp.

What are our state variables going to be? Clearly, z; has to be one of our state
variables. The other will be wealth w (differentiate from the endowment w), which we
can define as a sum of the endowment and the income from asset holdings:

=21 w(2) = w+au(Z)
z=zp w(2) = wp+ ahﬂg(zt_l).
The recursive formulation is now

V(w, z) = Vi(w) =

= max ¢ u(w — ginaj, — qu@) + 0 | TinVi(wn + ap,) + maVilwr +ap) | ¢,
ap,ap, Hf_/ H,/—/

w w

h l

where the policy rules are now
a, = gin(w)
a, = gu(w), i =1,h.

Could we use a as a state variable instead of w? Yes, we could, but that would actually
imply two state variables - a; and ;. Since the state variable is to be a variable which
expresses the relevant information as succinctly as possible, it is w that we should use.

90



6.3 Competitive equilibrium under uncertainty

The welfare properties of competitive equilibrium are affected by the introduction of un-
certainty through the market structure. The relevant distinction is whether such structure
involves complete or incomplete markets. Intuitively, a complete markets structure allows
trading in each single commodity. Recall our previous discussion of the neoclassical
growth model under uncertainty where commodities are defined as consumption goods
indexed by time and state of the world. For example, if z! and z% denote two different
realizations of the random sequence {z; };:0, then a unit of the physical good ¢ consumed
in period t if the state of the world is 2! (denoted by ¢; (2%)) is a commodity different
from ¢; (25). A complete markets structure will allow contracts between parties to specify
the delivery of physical good ¢ in different amounts at (¢, z%) than at (¢, z5), and for a
different price.

In an incomplete markets structure, such a contract might be impossible to enforce
and the parties might be unable to sign a “legal” contract that makes the delivery amount
contingent on the realization of the random shock. A usual incomplete markets structure
is one where agents may only agree to the delivery of goods on a date basis, regardless
of the shock. In short, a contract specifying ¢; (2%) # ¢; (2%) is not enforceable in such an
economy.

You may notice that the structure of markets is an assumption of an institutional
nature and nothing should prevent, in theory, the market structure to be complete. How-
ever, markets are incomplete in the real world and this seems to play a key role in the
economy (for example in the distribution of wealth, in the business cycle, perhaps even
in the equity premium puzzle that we will discuss in due time).

Before embarking on the study of the subject, it is worth mentioning that the structure
of markets need not be explicit. For example, the accumulation of capital may supply
the role of transferring wealth across states of the world (not just across time). But
allowing for the transfer of wealth across states is one of the functions specific to markets;
therefore, if these are incomplete then capital accumulation can (to some extent) perform
this missing function. An extreme example is the deterministic model, in which there is
only one state of the world and only transfers of wealth across time are relevant. The
possibility of accumulating capital is enough to ensure that markets are complete and
allowing agents also to engage in trade of dated commodities is redundant. Another
example shows up in real business cycle models, which we shall analyze later on in
this course. A usual result in the real business cycle literature (consistent with actual
economic data) is that agents choose to accumulate more capital whenever there is a
“good” realization of the productivity shock. An intuitive interpretation is that savings
play the role of a “buffer” used to smooth out the consumption path, which is a function
that markets could perform.

Hence, you may correctly suspect that whenever we talk about market completeness
or incompleteness, we are in fact referring not to the actual, explicit contracts that agents
are allowed to sign, but to the degree to which they are able to transfer wealth across
states of the world. This ability will depend on the institutional framework assumed for
the economy.
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6.3.1 The neoclassical growth model with complete markets

We will begin by analyzing the neoclassical growth model in an uncertain environment.
We assume that, given a stochastic process {z; },-,, there is a market for each consumption
commodity ¢ (z%), as well as for capital and labor services at each date and state of the
world. There are two alternative setups: Arrow-Debreu date-0 trading and sequential
trading.

Arrow-Debreu date-0 trading

The Arrow-Debreu date-0 competitive equilibrium is
{ee(2"), kera (29, 1(2Y), pi(2"), me(2), wi(21) 122
such that

1. Consumer’s problem is to find {c¢;(2%), ki1(2"), Li(2%) }52, which solve

max t 1-1
{et(2Y),keq1(2?),1e(24)}52 Z Z ﬁ ) t( ))

0 =0 »tezt

Zzpt ) 4 ke (2 ZZpt (z) +1-10) x

t=0 steZt t=0 ztezt
X ky (ztfl) + w, (zt) ly (Zt)] .

2. First-order conditions from firm’s problem are

r(2') = aFi(k (27, L(2")
wi(2Y) = 2 F(k(27Y), 1(2Y).

3. Market clearing is

ci(2) + ki1 (2Y) = (1= 0) k("1 + 2" F (ke (2"71), 1(21)), Wt, V2.

You should be able to show that the Euler equation in this problem is identical to the
Euler equation in the planner’s problem.

In this context, it is of interest to mention the so-called no-arbitrage condition, which
can be derived from the above-given setup. First, we step inside the budget constraint
and retrieve those terms which relate to k1 (2"):

e From the LHS: ..p;(2")kiy1(2Y)...
o From the RHS: .37 prii(2e41, 2°) [T (2e41, 2°) + (1 = 0)] Ky (2°).-.
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The no-arbitrage condition is the equality of these two expressions and it says that in
equilibrium, the price of a unit of capital must equal the sum of future values of a unit
of capital summed across all possible states. Formally, it is

kHl(zt) pt(zt) - Zthrl(thrla Zt) [Tt+1(zt+1a Zt) +(1 - 5)} =0.

Zt+1

What would happen if the no-arbitrage condition did not hold? Assuming k;,1(2") > 0,
the term in the brackets would have to be non-zero. If this term were greater then zero,
we could make infinite “profit” by setting kyy1(2') = —oo. Similarly, if the term were
less than zero, setting ki 1(2") = oo would do the job. As neither of these can happen in
equilibrium, the term in the brackets must equal zero, which means that the no-arbitrage
condition must hold in equilibrium.

Sequential trade

In order to allow wealth transfers across dates, agents must be able to borrow and lend.
It suffices to have one-period assets, even with an infinite time horizon. We will assume
the existence of these one-period assets, and, for simplicity, that Z is a finite set with n
possible shock values, as is illustrated in Figure 6.3.

Zi1 =21 € Z
Ziy1 =2o € Z

Ziy1 =23 € V4

Zii=2Zne”l

Figure 6.3: The shock z can take n possible values, which belong to Z

Assume that there are ¢ assets, with asset j paying off ;; consumption units in ¢ + 1
if the realized state is z;. The following matrix shows the payoff of each asset for every
realization of z;,1:

al a/2 “ e aq
21 rma Ti2 -+ Tig
22 o1 Tog -+ Tyq
Z3 sy T32 -+ T3q = R.
Zn Tl Tn2 " Tng
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Then the portfolio a = (a4, as, ..., a;) pays p (in terms of consumption goods at t + 1),
where

p = R -_a 5
N ) N
nx1 nxq gx1

q
and each component p; = ) 7;;a; is the amount of consumption goods obtained in state
j=1
¢ from holding portfolio a.
What restrictions must we impose on R so that any arbitrary payoff combination
p € R" can be generated (by the appropriate portfolio choice)? Based on matrix algebra,
the answer is that we must have

1. ¢ > n.

2. rank(R) = n.

If R satisfies condition number (2) (which presupposes the validity of the first one), then
the market structure is complete. The whole space R" is spanned by R and we say that
there is spanning .

It is useful to mention Arrow securities which were mentioned before. Arrow security
1 pays off 1 unit if the realized state is ¢, and 0 otherwise. If there are ¢ < n different
Arrow securities, then the payoff matrix is

a; as Qq
Z1 1 0 0
Z9 0 1 0
23 0 O 0
2q o 0 - 1
Zn 0O 0 - 0

6.3.2 General equilibrium under uncertainty: the case of two
agent types in a two-period setting

First, we compare the outcome of the neoclassical growth model with uncertainty and
one representative agent with the two different market structures:

e Only (sequential) trade in capital is allowed. There is no spanning in this setup as
there is only one asset for n states.

e Spanning (either with Arrow-Debreu date-0, or sequential trading).

Will equilibria look different with these structures? The answer is no, and the reason
is that there is a single agent. Clearly, every loan needs a borrower and a lender, which
means that the total borrowing and lending in such an economy will be zero. This
translates into the fact that different asset structures do not yield different equilibria.

Let us turn to the case where the economy is populated by more than one agent to
analyze the validity of such a result. We will compare the equilibrium allocation of this
economy under the market structures (1) and (2) mentioned above.
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Assumptions

e Random shock: We assume there are n states of the world corresponding to n
different values of the shock to technology to be described as

z €421, 22y -ry Zn}

;= Prlz=z].

Let Z denote the expected value of z:
n
z = Z 7Tij.
j=1

e Tastes: Agents derive utility from consumption only (not from leisure). Preferences
satisfy the axioms of expected utility and are represented by the utility index u ().
Specifically, we assume that

Uy = u; () + 5279‘“2‘(0;) i=1,2.
j=1

where u;y () = x, and uy (z) is strictly concave (u) > 0, uj < 0). We also assume
that linéu’2 (x) = oco. In this fashion, agents’ preferences exhibit different attitudes
r—

towards risk: Agent 1 is risk neutral and Agent 2 is risk averse.

e Endowments: Each agent is endowed with wy consumption goods in period 0, and
with one unit of labor in period 1 (which will be supplied inelastically since leisure
is not valued).

e Technology: Consumption goods are produced in period 1 with a constant-returns-
to-scale technology represented by the Cobb Douglas production function

n 11—«
Yj = %j 9

where K, n denote the aggregate supply of capital and labor services in period 1,
respectively. We know that n = 2, so

Yy =z K%
Therefore, the remunerations to factors in period 1, if state j is realized, are given
by
ri = zjoakK a-l
w; = :@@K e,
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Structure 1 - one asset

Capital is the only asset that is traded in this setup. With K denoting the aggregate
capital stock, a; denotes the capital stock held by agent i, and therefore the asset market
clearing requires that

a1+ ay = K.

The budget constraints for each agent is given by

co+a; = wo

¢ = a;rj + wj.

To solve this problem, we proceed to maximize each consumer’s utility subject to his
budget constraint.

Agent 1:

The maximized utility function and the constraints are linear in this case. We therefore
use the arbitrage condition to express optimality:

—1 ‘f‘ﬁZﬂ'jT’j] a; = 0
j=1

For a; not to be infinite (which would violate the market clearing condition), that part
of the arbitrage condition which is in brackets must equal zero. Replacing for r;, we get
then

1=3) mozK*! (6.7)

j=1

=1= OéﬁKail Zﬂ'ij.

j=1

Therefore, the optimal choice of K from Agent 1’s preferences is given by
1
K* = (Zaf)l-«a .

Notice that only the average value of the random shock matters for Agent 1, consis-
tently with this agent being risk neutral.

Agent 2:

The Euler equation for Agent 2 is
uh (wo — az) = 3 Z miuy (agr +wh) rl. (6.8)
j=1

Given K* from Agent 1’s problem, we have the values of 77 and wj for each realization
j. Therefore, Agent 2’s Euler equation (6.8) is one equation in one unknown as. Since
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lin%u’2 (x) = oo, there exists a unique solution. Let aj be the solution to (6.8). Then the
Tr—

values of the remaining choice variables are

* * %
a; = K" —a;

7 _ *
Chp = Wo—a;.

More importantly, Agent 2 will face a stochastic consumption prospect for period 1, which
is
2
cj = ayr; +wj,

where 7} and w} are stochastic. This implies that Agent 1 has not provided full insurance
to Agent 2.

Structure 2 - Arrow securities

It is allowed to trade in n different Arrow securities in this setup. In this case, these
securities are (contingent) claims on the total remuneration to capital (you could think of
them as rights to collect future dividends in a company, according to the realized state of
the world). Notice that this implies spanning (i.e. markets are complete). Let a; denote
the Arrow security paying off one unit if the realized state is z; and zero otherwise. Let
q; denote the price of a;.

In this economy, agents save by accumulating contingent claims (they save by buying
future dividends in a company). Total savings are thus given by

S= gy +ay).
=1

Investment is the accumulation of physical capital, K. Then clearing of the savings-
investment market requires that:

Z q]' (alj + a,gj) =K. (69)
j=1

Constant returns to scale imply that the total remuneration to capital services in
state j will be given by 7, K (by Euler Theorem). Therefore, the contingent claims that
get activated when this state is realized must exactly match this amount (each unit of
“dividends” that the company will pay out must have an owner, but the total claims can
not exceed the actual amount of dividends to be paid out).

In other words, clearing of (all of) the Arrow security markets requires that

Q1 -+ Qo5 = K’I“j j = 1, .y N (610)

If we multiply both sides of (6.10) by g;, for each j, and then sum up over j’s, we get

D g (anj+az) = K> gjr.
P =1
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But, using (6.9) to replace total savings by total investment,

K= Kqurj.
j=1

Therefore the equilibrium condition is that
> g =1. (6.11)
j=1

The equation (6.11) can be interpreted as a no-arbitrage condition, in the following
way. The left hand side Z?Zl g;7; is the total price (in terms of foregone consumption
units) of the marginal unit of a portfolio yielding the same (expected) marginal return
as physical capital investment. And the right hand side is the price (also in consumption
units) of a marginal unit of capital investment.

First, suppose that Z?Zl g;r; > 1. An agent could in principle make unbounded
profits by selling an infinite amount of units of such a portfolio, and using the proceeds
from this sale to finance an unbounded physical capital investment. In fact, since no
agent would be willing to be on the buy side of such a deal, no trade would actually
occur. But there would be an infinite supply of such a portfolio, and an infinite demand
of physical capital units. In other words, asset markets would not be in equilibrium.
A similar reasoning would lead to the conclusion that Z?Zl g;7; < 1 could not be an
equilibrium either.

With the equilibrium conditions at hand, we are able to solve the model. With this
market structure, the budget constraint of each Agent ¢ is

Cé —+ Z qjaij = Wy
j=1
C;- = aij + wj.
Using the first order conditions of Agent 1’s problem, the equilibrium prices are
qj = pm;.
You should also check that )
K* = (zaf)l-o |
as in the previous problem. Therefore, Agent 1 is as well off with the current market

structure as in the previous setup.
Agent 2’s problem yields the Euler equation

uy (c§) = X =q; ' Brjuy (¢3) .
Replacing for the equilibrium prices derived from Agent 1’s problem, this simplifies to
uy () =uy () j=1, .., n
Therefore, with the new market structure, Agent 2 is able to obtain full insurance from
Agent 1. From the First Welfare Theorem (which requires completeness of markets)
we know that the allocation prevailing under market Structure 2 is a Pareto optimal

allocation. It is your task to determine whether the allocation resulting from Structure 1
was Pareto optimal as well or not.
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6.3.3 General equilibrium under uncertainty: multiple-period
model with two agent types

How does the case of infinite number of periods differ from the two-period case? In
general, the conclusions are the same and the only difference is the additional complexity
added through extending the problem. We shortly summarize both structures. As before,
Agent 1 is risk neutral and Agent 2 is risk averse.

Structure 1 - one asset

Agent 1:

Agent 1’s problem is

max » Y B'r(2h)e(z)

ztezt t=0
st c1i(2) + a1 (2h) = 1(2Nar (2771 + wi(2h).

Firm’s problem yields (using Cobb-Douglas production function)
r(2h) = zakiT () + (1= 0)

w() = zt<1;O‘) B (1),

Market clearing condition is
a141(2") + aggi1(2Y) = ke (2).
First-order condition w.r.t. aj,1(z") gives us

1 = ﬁz%rt-kl(zt-klazt)

=1 = ﬁEZt+1|Zt(7nt+l).

Zt+1

Using the formula for r;;; from firm’s first-order conditions, we get

1 = ﬁZW(zt+1|Zt) (zer1aki S () + (1—10)) =
= Bk () w(zlz)z +6(1 - 0)

Zt+1
~ 7

~—
E(zt41]2t)

Uﬁ_lﬂqﬁ. (6.12)

ty
= ktJrl(z ) - {aE(zt+1|zt)

Agent 2:
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Agent 2’s utility function is u(cg,(2")) and his first-order conditions yield

Ul(%t(zt)) = BEZt+1\Zt [UI(C2,t+1(2t+1))(1 -0+ a2t+1kgﬁl(zt))] .

Using the above-given Euler equation and (6.12) together with Agent 2’s budget con-
straint, we can solve for co(z") and as,11(2%). Subsequently, using the market clearing
condition gives us the solution for ¢; 4(2*).

The conclusion is the same as in the two-period case: Agent 2 does not insure fully
and his consumption across states will vary.

Structure 2 - Arrow securities

Agent 1:

The problem is very similar to the one in Structure 1, except for the budget constraint,
which is now

+qu _]t+1 2 = azl,t(ztil)jLwt(Zt)-

As we have more than one asset, the no-arbitrage condition has to hold. It can expressed
as

qu )@je01(2") = K (2)
aj, t+1(Z )= [1=0+ra(z,2")] ki (2)
ﬁl—Zq] [1—06+ria(z, 2]

Solving the first-order condition of Agent 1 wr.t. aj,,,(2") yields

qi(z") = ﬁ%;;) = Br(z|2"), (6.13)

which is the formula for prices of the Arrow securities.
Agent 2:

The first-order condition w.r.t. a3, (") yields

= —B'm(2")gja (=) (cf (")) + B (2, 2 (€ (2, 21)).
Substituting (6.13) gives us

t

m(z;, 2
= B T ) 4 B (e 2 e )
= /(cf(2")) = u'(ci1 (%, 2")
= i (2") = ¢}y (25, 2Y).
This result follows from the assumption that «/(.) > 0 and «”(.) < 0, and yields

the same conclusion as in the two-period case, i.e. Agent 2 insures completely and his
consumption does not vary across states.
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6.3.4 Recursive formulation

The setup is like that studied above: let Agent 1 have a different (say, lower) degree of risk
aversion than Agent 2’s (though allow more generality, so that Agent 1 is not necessarily
risk-neutral). We denote the agent type by superscript and the state of the world by
subscript. The stochastic process is a first order Markov process. Using the recursive
formulation knowledge from before, we use wealth (denoted by w to differentiate it from
wage, which is denoted by w) as the state variable. More concretely, there are three state
variables: individual wealth (w), the average wealth of risk neutral agents (@w;), and the
average wealth of risk averse agents (ws). The problem of consumer [ is then

Viw,w1,ws) = {m}ax {u(w — qu (@, wy)aj) +ﬁ27rij‘/]l[a;—l—
J

+ wj(Gi(wl,wg)), Dilj(wl, wg) + wj(Gi(wl, 52)), D?j(wl, wg) + W (Gi(wl, wg))]}, (614)

where
1 /— — 1 /— — — Lo
Dz’j(w17w2) = dz’j(wlawla(*UQ)a Vi, J, w1, W

Df](wl’w2) = d?j(w%wlan), v i,j,wl,wz

W1,CU2 Zqu (A)l,b&)g (wlaw2) +D (wlaEQ)); ViywlaEZ'

Let a} = dlij (w, w1, wy) denote the optimal asset choice of the consumer.
From the firm’s problem, we get the first-order conditions specifying the wage and
the interest rate as

w](k> = Zjﬂ(k,l),Vj,]{]
T’j(k?) = Z]Fk(k,l),VJ,k

Asseet-market clearing requires that

Z (@1, T) = (1 =064 rj(Gi(@1,2)))Gy(@1, ).

=1

The formulation is very similar to our previous formulation of recursive competitive
equilibrium, with some new unfamiliar notation showing up. Clearly, dl and Dl represent
individual and aggregate asset choices for agent [, respectively, Whereas the capltal stock
invested for the next period is denoted by G;. Notice also that capital is not a separate
state variable here; what value the capital stock has can, in fact, be backed out from
knowledge of i, Wy, and wy) (how?).

The following are the unknown functions: V;(.), di;, Di;(.), qi;(.), Gi(.), w;(.), 75(.). It
is left as an exercise to identify the elements from the recursive formulation with elements
from the sequential formulation.

In the special case where one agent is risk-neutral, it will transpire that ¢;;(wq,w,) =

1
fm;; and that G;(w,ws) = [M] “! for all i and (w1, w9).

aFE(zi41]z:)
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6.4 Appendix: basic concepts in stochastic processes

We will introduce the basic elements with which uncertain events are modelled. The
main mathematical notion underlying the concept of uncertainty is that of a probability
space.

Definition 6.12 A probability space is a mathematical object consisting of three ele-
ments: 1) a set S0 of possible outcomes w; 2) a collection F of subsets of ) that constitute
the “events” to which probability is assigned (a o-algebra); and 3) a set function P that
assigns probability values to those events. A probability space is denoted by

(Q, F, P).

Definition 6.13 A o-algebra (F) is a special kind of family of subsets of a space Q) that
satisfy three properties: 1) Q € F, 2) F is closed under complementation: £ € F =
Ec e F, 3) F is closed under countable union: if {E;};°, is a sequence of sets such that
Ei e F VZ, then (UfilEl) e F.

Definition 6.14 A random variable is a function whose domain is the set of events 2
and whose image is the real numbers (or a subset thereof):

x:Q— R
For any real number «, define the set
E,={w:z(w) <a}.

Definition 6.15 A function x is said to be measurable with respect to the o-algebra F
(or F-measurable) if the following property is satisfied:

VaoeR: E, e F.

Conceptually, if z is F-measurable then we can assign probability to the event z < «
for any real number «. [We may equivalently have used >, < or > for the definition of
measurability, but that is beyond the scope of this course. You only need to know that
if x is F-measurable, then we can sensibly talk about the probability of x taking values
in virtually any subset of the real line you can think of (the Borel sets).]

Now define a sequence of o-algebras as

{(Fa2, A CFHRC..CF

Conceptually, each o-algebra F; “refines” F; i, in the sense that distinguishes (in a
probabilistic sense) between “more” events than the previous one.

Finally, let a sequence of random variables x; be F;-measurable for each ¢, which
models a stochastic process. Consider an w € €2, and choose an a € R. Then for each t,
the set Ey = {w: x4 (w) < a} will be a set included in the collection (the o-algebra) F;.
Since F; C F for all ¢, E,; also belongs to F. Hence, we can assign probability to F,;
using the set function P and P [E,] is well defined.
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Example 6.16 Consider the probability space (2, F, P), where
e =10, 1].
e F = B (the Borel sets restricted to [0, 1]).
o P =) - the length of an interval: A ([a, b)) = b — a.

Consider the following collections of sets:

. . 1 2t—2 2t 1
S
2t7 2t . 2t
7=0
For every t, let F; be the minimum o-algebra containing A,. Denote by o (A;) the col-

lection of all possible unions of the sets in A, (notice that Q € o (A;)). Then F, =
{0, Ay, 0 (A1)} (you should check that this is a o-algebra).

For example,
Al = {[Oa 1]7 (bv [07 %)a [1 1}}
=F ={[0,1],0, [0,1), 3 1]}
A ={0.3). [z 32). 53 51}
=0 (4)={[0,3),[0.3), [z 3). [5: 1], [ 1], [0, ) vz 3}V
u{fo. Hulz 1], o) ulE ], [0 ) ulE 1], 52 vlE 1), 0 1]}

Now consider the experiment of repeated fair coin flips: ¢, € {0, 1}. The infinite
sequence {¢,},o, is a stochastic process that can be modeled with the probability space and
associated sequence of o-algebras that we have defined above. Each sequence {ci},o, is an
“outcome”, represented by a number w € (1.

For every t let y, = {Cj};:1 (this will be a t-dimensional vector of zeros and ones),

and to each possible configuration of y; (there are 2" possible ones), associate a distinct
interval in A;. For example, fort =1 and t = 2, let

1
2

L) = [0, 3)

L[1)] = [%7 1]
L0, 0] = [0,3)
L0, D] = [} 3)
L{1,0] = [33)
L[1,0] = [5 1],

For t = 3, we will have a three-coordinate vector, and we will have the following
restrictions on I5:

;](0,0,)] < [0, )
[3[(07 17 )] C [ia %)
L[(1,0,9] € [5 1)
L[(1,1,)] < [31]
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and so on for the following t.

Then a number w € § implies a sequence of intervals {1, },2, that represents, for every
t, the “partial” outcome realized that far.

Finally, the stochastic process will be modeled by a function x; that, for each t and
for each w € €, associates a real number; such that x; is F;-measurable. For example,
take w' = .7 and " = .8, then I [y}] = I [y{] = [5, 1] - that is, the first element of
the respective sequences c;, ¢/ is a 1 (say “Heads”). It holds that we must have x; (W) =
x1 (W) =0b.

We are now ready to answer the following question: What is the probability that the
first toss in the experiment is “Heads”? Or, in our model, what is the probability that
x1 (w) =07 To answer this question, we look at measure of the set of w that will produce

the value x1 (w) = b:
E={w:m W) =0b}=[51] (eFR)

The probability of the event [%, 1] 15 calculated using P ([%, 1]) =A ([%, 1]) = %
is, the probability that the event {c,},=, to be drawn produces a Head as its first toss is

That
1
2

Definition 6.17 Let B € F. Then the joint probability of the events
(Tis1, ooy Tign) € B is given by

Py tin(B)=Plw € Q: [ (W), ..., Tryn (w)] € B].

Definition 6.18 A stochastic process is stationary if Py . 1in(B) is independent of
t, Vt, Vn, VB.

Conceptually, if a stochastic process is stationary, then the joint probability distribu-

tion for any (x¢y1, ..., T11n) is independent of time.
Given an observed realization of the sequence {z; }j‘;l in the last s periods
(Tp—sy vy ) = (A4—s, ..., az), the conditional probability of the event

(Tg41y -y Tin) € B is denoted by
Pt+1,...,t+n [B |$t—s = Qt—sy oy Tt = at] .

Definition 6.19 A first order Markov Process is a stochastic process with the property
that

Pt+1,...,t+n [B |$t—s = Qt—sy ey Tt = at] = Pt+1,...,t+n [B |$t = at] .

Definition 6.20 A stochastic process is weakly stationary (or covariance stationary) if
the first two moments of the joint distribution of (xii1, ..., Tyrn) are independent of time.

A usual assumption in macroeconomics is that the exogenous randomness affecting
the economy can be modelled as a (weakly) stationary stochastic process. The task then
is to look for stochastic processes for the endogenous variables (capital, output, etc.)
that are stationary. This stochastic stationarity is the analogue to the steady state in
deterministic models.
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Example 6.21 Suppose that productivity is subject to a two-state shock

y = z2F(k)

z € {z1, zu}.

Imagine for ezample that the z’s are iid, with Pr [z = zy| = 3 = Pr[z = 21| Vt. The
policy function will now be a function of both the initial capital stock K and the realization
of the shock z, i.e. g(k, z) € {g(k, z), g(k, zu)} VK. We need to find the functions
g (k, ). Notice that they will determine a stochastic process for capital,i.e. the trajectory
of capital in this economy will be subject to a random shock. The Figure 6.4 shows an
example of such a trajectory.

high shock
capital line

/
low shock
capital line

A ergodic set B

Figure 6.4: Stochastic levels of capital. The interval (A, B) is the ergodic set: once the
level of capital enters this set, it will not leave it again. The capital stock will follow a
stationary stochastic process within the limits of the ergodic set.
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Chapter 7
Aggregation

The representative-agent model, which is the focus of much of the above discussion, is
very commonly used in macroeconomics. An important issue is whether the inclusion of
various forms of consumer heterogeneity leads to a model with similar properties. For
example, suppose that consumers have heterogeneous functions u(c), say, all within the
class of power functions, thus allowing differences in consumers’ degrees of intertemporal
substitution. Within the context of the neoclassical model and competitive trading,
how would this form of heterogeneity influence the properties of the implied aggregate
capital accumulation, say, expressed in terms of the rate of convergence to steady state?
This specific question is beyond the scope of the present text, as are most other, similar
questions; for answers, one would need to use specific distributional assumptions for the
heterogeneity, and the model would need to be characterized numerically. Moreover, the
available research does not provide full answers for many of these questions.

For one specific form of heterogeneity, it is possible to provide some results, however:
the case where consumers are heterogeneous only in initial (asset) wealth. That is, there
are “rich” and “poor” consumers, and the question is thus how the distribution of wealth
influences capital accumulation and any other aggregate quantities or prices. We will
provide an aggregation theorem which is a rather straightforward extension of known
results from microeconomics (Gorman aggregation) to our dynamic macroeconomic con-
text. That is, we will be able to say that, if consumers’ preferences are in a certain class,
then “wealth heterogeneity does not matter”, i.e., aggregates are not influenced by how
total wealth is distributed among consumers. Therefore, we can talk about robustness
of the representative-agent setting at least in the wealth dimension, at least under the
stated assumptions.

7.1 Inelastic labor supply

Consider the following maximization problem:

{13920 <=

max Z Bula + we — qag)
=0

with a, given. This problem will be used to represent a consumer’s problem in a neoclassi-
cal context, but it can also be viewed within a context with no intertemporal production.
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We will represent the problem recursively and let the aggregate state variable be A (for
now unspecified).
The dynamic-programming version is

V(a, A) = maxu(a + ew(A) — q(A)a’) + gV (d', A),
with A" = G(A) for some given G; thus, A is the aggregate variable (possibly a vector)
that determines the wage and the bond price.! Note that the consumer has e units of
labor to supply to the market; we will also discuss the case where consumers differ in
their values for e (consumer-workers have different labor productivity).

The task now is to show that with certain restrictions on preferences, this problem
has a solution with the feature that individual saving is linear in the individual state a,
so that the marginal propensities to save (and consume) are the same for all consumers
provided that they all have the same preferences. Given this, total saving cannot depend
on the distribution. The present model does not “explain” where initial asset inequality
comes from; it is a primitive of the environment. We will discuss this topic in a later
chapter of this text.

The preference class we consider has u(c) = u(A + Bc), where A and B are scalars
and 4 is (i) exponential, (ii) quadratic, or (iii) CEIS (i.e., 4(c) = (1 — o) (77 — 1));
moreover, we presume interior solutions.

What we need to show, thus, is the following: optimal saving, as summarized by the
decision rule g(a, A) to the above recursive problem, satisfies g(a, A) = u(A) + A\(A)a,
where p A are functions to be determined. Here, thus, A(A) is the marginal propensity to
save, and it is equal for agents with different values of a, i.e., for consumers with different
wealth levels. We will proceed by a guess-and-verify method; we will stop short of a full
proof, but at least provide the key steps.

We make the arguments based on the functional Euler equation, which reads, for all

(a’ A)?
q(A)u'(a + ew(A) — q(A)g(a, A)) = Su'(g(a, A) + ew(G(A)) — q(G(A))g(g(ad), G(A))).

For a given G, thus, this equation solves for g.

We will restrict attention to one of the preference specifications; the remaining cases
can be dealt with using the same approach. Thus, let u(c) = (1 — o)™ *(c!77 — 1), so that
we can write

B ) gla, A) +ew(G(A)) — q(G(A))g(9(ad), G(A))
Using the guess that the decision rule is linear, we see that the functional equation will
have a right-hand side which is a ratio of two functions which are affine in a:

(q<A>) - a+ ew(A) — q(A)g(a, A)

(q(A))%  By(A) + By(A)a
53 ) T ClA) + Ca(Aa

'Equivalently, one can think of the consumer as choosing “capital” at relative price 1 in terms of
consumption units, thus with an ex-post return r which equals 1/q or, more precisely, r(G(A)) = 1/q(A).
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with B;(4) = ew(A) — g(A)u(A), Ba(4) = 1 - g(AINA), C1(A) = u(A) + ew(G(A)) -
q(G(A))((G(A)) + MG(A))u(A)), and Co(A) = MA) — ¢(G(A))MG(A))A(A). The key
now is the following: for this functional equation to be met for all a, we need

By(A)  Co(A)
Bi(A)  Ci(A)

for all A, and for it to furthermore hold for all values of A, we need

1

( q(A) ) c_ By(4)

3 C2(A)

for all A. These two new functional equations determine p and A\. We will not discuss

existence; suffice it to say here that there are two functional equations in two unknown

functions. Given this, the key really is that we have demonstrated that the conjectured

linearity in a is verified in that the functional Euler equation of the consumer is met for
all a under the conjecture.

To obtain some additional insight, we see that the second of the functional equations
can be explicitly stated as

(M ) _ L — g(A)A(A)
E A(A) = g(GIANAGA)AA)

We thus see that the marginal propensity function, A, can be solved for from this equation
alone; p can then be solved recursively from the first of the functional equations.

Several remarks are worth making here. First, e does not appear in the equation for \.
Thus, consumers with different labor productivity but the same preferences have the same
marginal propensities to save and consume. Second, o and # do matter: consumers with
different values for these parameters will, in general, have different saving propensities.
They will, however, still have constant propensities. Third, suppose that we consider
o = 1, i.e., logarithmic preferences. Then we see that the functional equation is solved
by AM(A) = 3/q(A), i.e., the solution is independent of G and dictates that the marginal
savings propensity is above (below) one if the subjective discount rate is lower (higher)
than the interest rate. We also see, fourth and finally, that when the consumer is in a
stationary environment such that G(A) = A, then A\(A) = (8/q(A))"?. A special case
of this, of course, is the “permanent-income” case: when the subjective discount rate
equals the interest rate, then any additional initial wealth is saved and only its return is
consumed.

Looking at the neoclassical environment, suppose that A is the vector of asset holdings
of n different subgroups of consumers within each of which the initial asset holdings are
the same, as represented by the values A; at any arbitrary date. Let ¢; be the fraction of
consumers of type i. We know, since the economy is closed, that > " | ¢;A; = K. Thus,
we conjecture that © and A depend on K only, and we see that this conjecture is verified:
K = 37" 0i(u(K) + MK)A;) = ME)K + Y7, ¢ip(K), with X and p solving the
functional equations above. This explicitly shows aggregation over wealth: tomorrow’s
capital stock does not depend on anything but today’s capital stock, and not on how
it is distributed across consumers. Prices (¢ and w), of course, since they are given by
marginal products of aggregate production, also depend only on K in this case, which is
why p and A will only depend on K.
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7.2 Valued leisure

Does aggregation obtain when preferences allow leisure to be valued, so that potentially
different consumers supply different amounts of leisure? In this case, aggregation also
requires that the total amount of labor supplied depend on K only, and not on the wealth
distribution. As in the case of total saving, this will occur if consumers’ individual labor
supplies are linear in their individual asset (wealth) levels.

We will not provide full proofs; these would proceed along the lines of the above
arguments. There are two separate cases to look at. In one, there are wealth effects on
labor supply; in the other, there are no wealth effects. Both seem relevant, since it is not
clear how large such effects are.

7.2.1 Wealth effects on labor supply
Suppose that period utility satisfies

u(e,l) = a(A+g(c—¢,1—1))
where 4 is in the class above (exponential, quadratic, or with CEIS), g is homogeneous of
degree one in both arguments, and A, ¢, and [ are scalars. Then it is possible to show that
aggregation obtains. The reason why this preference formulation leads to aggregation is
that the first-order condition for the leisure choice will deliver

9201.2) _ ) a)e

g1 (17 z )
where z = (I—1)/(c—¢); thus, all consumers with the same preferences and es will have the
same value for z at any point in time. This means that there is aggregation: total labor
supply will be linear in total consumption. Formally, we let consumers first maximize
over the leisure variable and then use a “reduced form” g(c—¢,1—1) = (c—¢)g(1, z(A)),
which is of a similar form to that analyzed in the previous section.

The functional form used above allows us to match any estimated labor-supply elastic-

ity; the use of a ¢ which is homogeneous of degree one is not too restrictive. For example,
a CES function would work, i.e., one where plog g(z,y) = log (pz” + (1 — ¢)x”).

7.2.2 Wealth effects on labor supply

Now consider a case where u(c,l) = @(A + Bec+ v(l)). Here, the first-order condition
delivers

v'(l) = Bw(A)e.

The key here, thus, is that all consumers (with the same v and the same €) choose the
same amount of leisure, and therefore the same amount of hours worked. Again, we
obtain a reduced form expressed in terms of individual consumption of the type above.

Alternatively, consider u(c,l) = @ (c* + Bl™). If a. = oy we are in the first subclass
considered; if o, = 1, we are in the second.? With o, # «; and both coefficients strictly
between zero and one, we do not obtain aggregation.

2The case ag = 1 also delivers aggregation, assuming interior solutions, but this case has the unrealistic
feature that ¢ does not depend on wealth.
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Chapter 8

The overlapping-generations model

The infinite-horizon representative-agent (dynastic) model studied above takes a specific
view on bequests: bequests are like saving, i.e., purposeful postponements of consumption
for later years, whether that later consumption will be for the same person or for other
persons in the same “dynasty”. An obvious (radical) alternative is the view that people
do not value their offspring at all, and that people only save for life-cycle reasons. The
present chapter will take that view.

Thus, one motivation for looking at life-cycle savings—and the overlapping-generations,
or OG, economy—is as a plausible alternative, on a descriptive level, to the dynastic
model. However, it will turn out that this alternative model has a number of quite dif-
ferent features. Omne has to do with welfare, so a key objective here will be to study
the efficiency properties of competitive equilibrium under such setups. In particular,
we will demonstrate substantial modifications of the welfare properties of equilibria if
“overlapping-generations features” are allowed. Uncertainty will be considered as well,
since OG models with uncertainty demand a new discussion of welfare comparisons. An-
other result is that competitive equilibria, even in the absence of externalities, policy, or
nonstandard preferences or endowments, may not be unique. A third feature is that the
ownership structure of resources may be important for allocations, even when preferences
admit aggregation within each cohort. Finally, the OG economy is useful for studying a
number of applied questions, especially those having to do with intertemporal transfer
issues from the perspective of the government budget: social security, and the role of
government budget deficits.

8.1 Definitions and notation

In what follows, we will introduce some general definitions. By assuming that there is a
finite set H of consumers (and, abusing notation slightly, let H be an index set, such that
H = card(H)), we can index individuals by a subscript h = 1, ..., H. So H agents are
born each period ¢, and they all die in the end of period ¢ 4+ 1. Therefore, in each period
t the young generation born at ¢ lives together with the “old” people born at ¢t — 1.

Let c(t + ¢) denote consumption at date ¢ + i of agent h born at ¢ (usually we say
“of generation t”), and we have the following:
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Definition 8.1 A consumption allocation is a sequence

o0

h h h
¢ — {(Ct (t), it + 1))heH}t:0 U ("1(0)),p -
A consumption allocation defines consumption of agents of all generations from ¢t = 0
onwards, including consumption of the initial old, in the economy.
Let c(t) = > pcn [ch(t) + ¢4 (t)] denote total consumption at period ¢, composed of
the amount cf!(t) consumed by the young agents born at ¢, and the consumption ¢/ ,(#)

enjoyed by the old agents born at ¢ — 1. Then we have the following;:

Example 8.2 (Endowment economy) In an endowment economy, a consumption al-
location is feasible if

c(t) <Y(t) Vt.
Example 8.3 (Storage economy) Assume there is “intertemporal production” mod-
elled as a storage technology whereby investing one unit at t yields v units at t + 1. In
this case, the application of the previous definition reads: a consumption allocation is
feasible in this economy if there exists a sequence {K (t)},, such that

c(t) + K(t+1)<Y(t) + K()y Vi,
where Y (t) is an endowment process.

Example 8.4 (Neoclassical growth model) Let L(t) be total labor supply at t, and
the neoclassical function Y (t) represent production technology:

Capital is accumulated according to the following law of motion:
Kit+1)=(1-6)K()+1(t).

Then in this case (regardless of whether this is a dynastic or an overlapping generations
setup), we have that a consumption allocation is feasible if there exists a sequence {I(t)},2,
such that

c(t)+1(t) < F[K(t), L(t)] WVt

The definitions introduced so far are of physical nature: they refer only to the material
possibility to attain a given consumption allocation. We may also want to open judgement
on the desirability of a given allocation. Economists have some notions to accommodate
this need, and to that end we introduce the following definition:

Definition 8.5 A feasible consumption allocation c is efficient if there is no alternative
feasible allocation ¢ such that
c(t) > c(t) Vt, and

c(t) > c(t) for some t.
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An allocation is thus deemed efficient if resources are not wasted; that is, if there
is no way of increasing the total amount consumed in some period without decreasing
consumption in the remaining periods.

The previous definition, then, provides a tool for judging the “desirability” of an
allocation according to the aggregate consumption pattern. The following two defini-
tions allow an extension of economists’ ability to assess this desirability to the actual
distribution of goods among agents.

Definition 8.6 A feasible consumption allocation ca is Pareto superior to cg (or ca
“Pareto dominates” cp) if

1. No agent strictly prefers the consumption path specified by cg to that specified by
Ca’
CA -

[l

h,t CB Vh S H, Vt.
2. At least one agent strictly prefers the allocation c to cp :
dj € H,?: CA >;7CB-

Notice that this general notation allows each agent’s preferences to be defined on other
agents’ consumption, as well as on his own. However, in the overlapping-generations
model that we will study the agents will be assumed to obtain utility (or disutility) only
from their own consumption. Then, condition for Pareto domination may be further
specified. Define ¢ = {c}(t),cf(t+1)} if t > 0 and ¢f = {c}'(t + 1)} otherwise. Pareto
domination condition reads:

1. No agent strictly prefers his/her consumption path implied by cp to that implied
by ca:
CA? i:h,t CB? Vh € H, Vt.

2. At least one agent strictly prefers the allocation cy to cp:
Jj € H,t:caj =7 B3
Whenever cp is implemented, the existence of ¢4 implies that a welfare improvement
is feasible by modifying the allocation. Notice that a welfare improvement in this context
means that it is possible to provide at least one agent (and potentially many of them) with
a consumption pattern that he will find preferable to the status quo, while the remaining
agents will find the new allocation at least as good as the previously prevailing one.

Building on the previous definition, we can introduce one of economists’ most usual
notions of the most desirable allocation that can be achieved in an economy:

Definition 8.7 A consumption allocation c is Pareto optimal if:
1. It is feasible.

2. There is no other feasible allocation ¢ # ¢ that Pareto dominates c.
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Even though we accommodated the notation to suit the overlapping-generations
framework, the previous definitions are also applicable to the dynastic setup. In what
follows we will restrict our attention to the overlapping-generations model to study the
efficiency and optimality properties of competitive equilibria. You may suspect that the
fact that agents’ life spans are shorter than the economy’s horizon might lead to a differ-
ent level of capital accumulation than if agents lived forever. In fact, a quite general result
is that economies in which generations overlap lead to an overaccumulation of capital.
This is a form of (dynamic) inefficiency, since an overaccumulation of capital implies that
the same consumption pattern could have been achieved with less capital investment —
hence more goods could have been “freed-up” to be consumed.

In what follows, we will extend the concept of competitive equilibrium to the overlap-
ping generations setup. We will start by considering endowment economies, then extend
the analysis to production economies, and finally to the neoclassical growth model.

8.2 An endowment economy

We continue to assume that agents of every generation are indexed by the index set H.
Let wl(t+ 1) denote the endowment of goods at ¢ +i of agent h born at ¢. Then the total
endowment process is given by

Y(t) =) wi(t) + iy (0).

We will assume throughout that preferences are strongly monotone which means that
all inequality constraints on consumption will bind.

8.2.1 Sequential markets

We assume that contracts between agents specifying one-period loans are enforceable,
and we let R(t) denote the gross interest rate for loans granted at period ¢ and maturing
at t + 1. Then each agent h born at ¢ > 0 must solve

max u (c1, ¢3) (8.1)
C1,C2

st + 1< Wi,
co <wl(t+1)+1R(1),

and generation —1 trivially solves

213(%() ul [C}il(oﬂ (8.2)
st " (0) < wh (0).

Unlike the dynastic case, there is no need for a no-Ponzi game restriction. In the
dynastic model, agents could keep on building debt forever, unless prevented to do so.
But now, they must repay their loans before dying, which happens in finite time!.

I'Notice that in fact both the no-Ponzi-game and this “pay-before-you-die” restrictions are of an
institutional nature, and they play a key role in the existence of an inter-temporal market — the credit
market.
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Definition 8.8 A competitive equilibrium with sequential markets is a consump-
tion allocation ¢ and a sequence R = {R(t)},2, such that

1. (M(t), et +1)) solve generation t’s agent h (8.1) problem, and c"(0) solves (8.2)
problem.

2. Market clearing is satisfied. (Effectively, we need only to require the credit market
to be cleared, and Walras’ law will do the rest due to feasibility of c):

I =09t=0,...,+c0.

heH

In the initial setup of the model the agents were assumed to live for two periods.
Because of this, no intergenerational loan can be ever paid back (either a borrower, or a
lender is simply not there next period). Therefore, there is no intergenerational borrowing
in the endowment economy.

8.2.2 Arrow-Debreu date-0 markets

In this setup we assume that all future generations get together at date t = —1 in a
futures market and arrange delivery of consumption goods for the periods when they will
live?.

The futures market to be held at ¢ = —1 will produce a price sequence {p(t)},-, of
future consumption goods. Then each consumer (knowing in advance the date when he
will be reborn to enjoy consumption) solves

max ul (¢, ). (8.3)

st. p(t)er + p(t+ 1)ey < p(H)w () + p(t + Dwl(t + 1)

whenever his next life will take place at ¢ > 0, and the ones to be born at t = —1 will
solve
max up (c) (8.4)

[

st. p(0)e < p(0)w™,(0).

Definition 8.9 A competitive equilibrium with Arrow-Debreu date-0 markets
is a consumption allocation ¢ and a sequence p = {p(t)},o, such that

1. (Mt), M (t+1)) solve generation t’s agent h (8.3) problem, and c"(0) solves (8.4)
problem.

2. Resource feasibility is satisfied (markets clear).

2You may assume that they all sign their trading contracts at ¢ = —1, thereafter to die immediately
and be reborn in their respective periods — the institutional framework in this economy allows enforcement
of contracts signed in previous lives.
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Claim 8.10 The definitions of equilibrium with sequential markets and with Arrow-
Debreu date-0 trading are equivalent. Moreover, if (¢, p) is an Arrow-Debreu date-1
trading equilibrium, then (c, R) is a sequential markets equilibrium where

p(t)

R(t) = 2 (8.5)

p(t+1)
Proof. Recall the sequential markets budget constraint of an agent born at ¢:
e+ 1= wi(t),
co = w(t+1)+IR(),

where we use the strong monotonicity of preferences to replace the inequalities by equal-
ities. Solving for [ and replacing we obtain:

o Wit +1)
Cl+R(t) _wt(t>+7R(t)

Next recall the Arrow-Debreu date-0 trading budget constraint of the same agent:
p(t)er +p(t + Dea = p(t)wy' (t) + p(t + Dwy (¢ + 1),
Dividing through by p(t), we get

o+ B, g 4+ 2L
p(t) p(t)
As can be seen, with the interest rate given by (8.5) the two budget sets are identical.
Hence comes the equivalence of the equilibrium allocations.
An identical argument shows that if (¢, R) is a sequential markets equilibrium, then
(¢, p) is an Arrow-Debreu date-0 trading equilibrium, where prices p(t) are determined
by normalizing p(0) = py (usual normalization is py = 1) and deriving the remaining ones
recursively from

wi(t+1).

p(t+1) = ==.

Remark 8.11 The equivalence of the two equilibrium definitions requires that the amount
of loans that can be drawn, 1, be unrestricted (that is, that agents face no borrowing
constraints other than the ability to repay their debts). The reason is that we can switch
from
c1+ 1= wh(t)
co =wl(t+1)+1R(t)
to ,
wy'(t+1)
R(t)

C
¢ 4 — = wh(t) +

R(t)
only in the absence of any such restrictions.
Suppose instead that we had the added requirement that l > b for some number b such
that b > —<2UD - Iy his case, (8.11) and (8.6) would not be identical any more®.

(8.6)

R(t)
- h
3f b = 7%};:;1)’ then this is just the “pay-before-you-die” restriction - implemented in fact by
h
non-negativity of consumption. Also, if b < — wflgz:gl), then [ > b would never bind, for the same reason.
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8.2.3 Application: endowment economy with one agent per
generation

We will assume that H = 1 (therefore agents are now in fact indexed only by their birth
dates), and that for every generation ¢t > 0 preferences are represented by the following
utility function:

u (¢y, ¢o) = logc, + logc,.

Similarly, the preferences of generation t = —1 are represented by utility function
u_1 (c) =logec.
The endowment processes are given by:

wt(t) = Wy
wt(t—l—l) = Wy-

for all t. Trading is sequential, and there are no borrowing constraints other than solvency.
Agent t > 0 now solves
max logc, + logc,

Cy, Co

s.t.
CO wO

cy—i—m:quLR(t).

We can substitute for ¢, to transform the agent’s problem into:

max log ¢, + log {(wy + % - cy) R(t)] .

Taking first-order conditions yields:

1 R(t) Ly
(Wy + R Cy) R(t)
Cy = wy + W;) — Cy.

Then, from first-order condition and budget constraint we get:
B 1 . Wo
@ = 9 \" TRy )
1
C = 3 (wyR(t) + w,) -

Market clearing and strong monotonicity of preferences require that the initial old
consume exactly their endowment:

c_1(0) = w,.
Therefore, using the feasibility constraint for period ¢t = 0, that reads:

c0(0) + ¢c_1(0) = wy + w,,
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follows:
co(0) = wy*.

Repeating the market clearing argument for the remaining ¢ (since ¢y(0) = w, will
imply ¢o(1) = w,), we obtain the following equilibrium allocation, Vt:

Ct(t> = Wy,
at+1) = w,.

Given this allocation, we solve for the prices R(t¢) that support it. You may check that

these are
wO

This constant sequence supports the equilibrium where agents do not trade: they just
consume their initial endowments.
Let us now use specific numbers to analyze a quantitative example. Let

wy = 3,
W =
This implies the gross interest rate of R(t) = 3 The net interest rate is negative:
2
r(t)=R(t)—1= -3
The natural question, hence, is whether the outcome R(t) = 3 is a) efficient; and b)

optimal:

a) Efficiency: Total consumption under the proposed allocation is ¢(t) = 4, which is
equal to the total endowment. It is not possible to increase consumption in any
period because there is no waste of resources. Therefore, the allocation is efficient.

b) Optimality: To check whether the allocation is optimal, consider the following
alternative allocation:

(0 = 2,
alt) = 2,
Gt+1) =

That is, the allocation ¢ is obtained from a chain of intergenerational good transfers
that consists of the young in every period giving a unit of their endowment to the
old in that period. Notice that for all generations ¢ > 0, this is just a modification
of the timing in their consumption, since total goods consumed throughout their
lifetime remain at 4. For the initial old, this is an increase from 1 to 2 units of
consumption when old. It is clear, then, that the initial old strictly prefer ¢ to c.
We need to check what the remaining generations think about the change. It is

4Notice that the same result follows from clearing of the loans market at t = 0: Iy = 0. This, together
with ¢y(0) + lp = wy, implies the same period 0 allocation.
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clear that since utility is concave (the log function is concave), this even split of the
same total amount will yield a higher utility value. In fact,

u (¢) =log2+1log2=2-log2 =1log4 > log3+logl =log3 =wu(c)-.
Therefore, ¢ Pareto dominates ¢, which means that ¢ can not be Pareto optimal.

Suppose instead that the endowment process is reversed in the following way:

wy = 1,

W, = 3.

There is the same total endowment in the economy each period, but the relative assign-
ments of young and old are reversed. From the formula that we have derived above, this
implies

R(t) = 3.

The “no trade” equilibrium where each agent consumes his own endowment each
period is efficient again, since no goods are wasted.

Is it Pareto optimal? This seems a difficult issue to address, since we need to compare
the prevailing allocation with all other possible allocations. We already know that an allo-
cation having (2, 2) will be preferred to (1, 3) given the log utility assumption. However,
is it possible to start a sequence of intergenerational transfers achieving consumption of
(¢y, o) from some ¢ (> 0) onwards, while keeping the constraints that all generations
receive at least log 3 units of utility throughout their lifetime, some generation is strictly
better off, and the initial old consume at least 3 units? (If any of these constraints is vi-
olated, the allocation thus obtained will not Pareto dominate the “no trade” allocation.)
We will provide an answer to this question.

We will first restrict attention to alternative stationary allocations. Let us introduce
a more formal definition of this term.

Definition 8.12 (Stationary allocation) A feasible allocation c is called stationary

if V-

Ct(t> = Gy,
Ct(t+1) = Co.

With this definition at hand, we can pose the question of whether there is any station-
ary allocation that Pareto dominates (2, 2). Figure 8.1 shows the resource constraint of
the economy, plotted together with the utility level curve corresponding to the allocation
(2, 2):

The shaded area is the feasible set, its frontier given by the line ¢, +¢, = 4. It is clear
from the tangency at (2, 2) that it is not possible to find an alternative allocation that
Pareto dominates this one. However, what happens if we widen our admissible range
of allocations and think about non-stationary ones? Could there be a non-stationary
allocation dominating (2, 2)7

In order to implement such a non-stationary allocation, a chain of inter-generational
transfers would require a transfer from young to old at some arbitrary point in time .
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Figure 8.1: Pareto optimality of (2, 2) allocation

Figure 8.2: Impossibility of Pareto improvement over (2, 2) allocation
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These agents giving away endowment units in their youth would have to be compen-
sated when old. The question is how many units of goods would be required for this
compensation.

Figure 8.2 illustrates that, given an initial transfer ¢; from young to old at ¢, the
transfer 5 required to compensate generation ¢ must be larger than ¢, given the concave
utility assumption. This in turn will command a still larger €3, and so on. Is the sequence
{ei}io, thus formed feasible?

An intuitive answer can be seen in the chart: no such transfer scheme is feasible in the
long run with stationary endowment process. Therefore, for this type of preferences the
stationary allocation (2, 2) is the Pareto optimal allocation. Any proposed non-stationary
allocation that Pareto dominates (2, 2) becomes unfeasible at some point in time.

Somewhat more formally, let us try to use the First Welfare Theorem to prove Pareto
optimality. Notice that our model satisfies the following key assumption:

e Preferences exhibit local non-satiation (since u is strictly increasing).

Proof (Pareto optimality of competitive equilibrium). Let an economy’s pop-
ulation be indexed by a countable set I (possibly infinite), and consider a competitive
equilibrium allocation = that assigns x; to each agent i (x; might be multi-dimensional).

If z is not Pareto optimal, then there exists Z that Pareto dominates z, that is, a
feasible allocation that satisfies:

VZE[/Z'\ZEZ.I'Z,
EleIIEL'\j >-jl'j.
Then we can use local non-satiation to show that

pT; > pr;

must hold.
Summing up over all agents, we get

pT; > ZP«%’,

el el
p r;, > P E Z;.
el i€l

The last inequality violates the market clearing condition, since the market value of
goods (with local non-satiation) must be equal to the market value of endowments in an
equilibrium. m

This proof is quite general. In the specific case of infinite-horizon models, overlapping
generations, we have two peculiarities: p and x are infinite-dimensional vectors. Do they
cause problems in the proof? As long as the px products and the summations are finite,
no. In fact, in any competitive equilibrium of the dynastic model of previous chapters,
these products are by definition finite, since they define consumers’ budget sets, and the
“maximization” part of their problems would not be met were budgets infinite.
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In a two-period-life overlapping-generations economy, individuals’ budgets are finite
as well: the x vector contains just two (finite) elements, with the remaining entries
set at zero. However, a new complication arises: there is an infinite set of consumers.

Therefore, the series > pZ; and > pr; might take on an infinite value, in which case the
el el
last comparison in tﬁ: proof milgeht not hold. We need to specify further conditions to
ensure that the first welfare theorem will hold, even with the “correct” assumptions on
preferences. Thus, in a competitive equilibrium of an OG economy where the states sums
are well defined, the above proof can be used. But there are other cases as well, and for
these cases, more analysis is needed.
To this effect, let us assume that the following conditions are met by the economy:

1. Regularity conditions on utility and endowments.

2. Restrictions on the curvature of the utility function — that has to be “somewhat”
curved, but not too much. An example of curvature measure is (one over) the
elasticity of intertemporal substitution:

_f”(x)x ;
f(x)

3. Other technical details that you may find in Balasko and Shell (1980).

Then we have the following:

Theorem 8.13 (Balasko and Shell, Journal of Economic Theory, 1980) A com-
petitive equilibrium in an endowment economy populated by overlapping generations of
agents s Pareto optimal if and only if

where p(t) denote Arrow-Debreu prices for goods delivered at time t.

Recall our example. The allocation (2, 2) implied R(t) = 1, and from the equivalence
of sequential and Arrow-Debreu date-0 trading equilibria, we have that

p<t+1>=%,

which implies
SRR S
—~p(t) = p(0)

In the case of (3, 1), we have

p(t) = 3" p(0).

5This ratio is also called the coefficient of relative risk aversion whenever the environment involves
uncertainty. In the expected utility framework the same ratio measures two aspects of preferences:
intertemporal comparison, and degree of aversion to stochastic variability of consumption.
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Then

And finally for (1, 3),

=1 = 3
;m:;pm)_

Therefore, by applying the theorem we conclude that (2, 2) and (1, 3) are Pareto
optimal allocations, whereas (3, 1) can be improved upon, which is the same conclusion
we had reached before.

So, what if the economy in question can be represented as (3, 1) type of situation?
How can a Pareto improvement be implemented? Should the government step in, and if
so, how?

A possible answer to this question is a “pay-as-you-go” type of social security system
that is used in many economies worldwide. But a distinct drawback of such a solution is
the forced nature of payments, when social security becomes “social coercion”. Is there
any way to implement Pareto superior allocation with the help of the market?

One of the solutions would be to endow the initial old with (intrinsically useless) pieces
of paper called “money”. Intuitively, if the initial old can make the young in period ¢ = 0
believe that at time ¢ = 1 the next young will be willing to trade valuable goods for
these pieces of paper, a Pareto improvement can be achieved relying solely on the market
forces. We will examine this issue in the following section in greater detail.

8.3 Economies with intertemporal assets

In the previous section, we have looked at overlapping-generations economies in which
only consumption goods are traded. A young agent selling part of his endowment to an
old one obviously needs something which serves the purpose of a storage of value, so that
the proceeds from the sale performed at time ¢ can be used to purchase goods at ¢ + 1.
A unit of account is therefore implicit in the framework of the previous section, which
is obvious from the moment that such thing as “prices” are mentioned. However, notice
that such units of account are not money, they exist only for convenience of quoting
relative prices for goods in different periods.

We will now introduce intertemporal assets into the economy. We will consider in
turn fiat money and real assets.

8.3.1 Economies with fiat money

In this section we introduce “fiat” money to the economy. To this end, any paper with
a number printed on it will fulfill the need of value storage, provided that everybody
agrees on which are the valid papers, and no forgery occurs. We have assumed away
these details: agents are honest.

As before, consider an overlapping-generations economy with agents who live for two
periods, one agent per generation. An endowment process is given by:

(we(t),wi(t + 1)) = (wy, w,), VL.

123



The preferences will once again be assumed to be logarithmic:
uy (¢y, o) = log e, + logc,, Vt.

In contrast to the previous setup, let the initial old be endowed with M units of fiat
currency. A natural question to address is whether money can have value in this economy.
A bit of notation: let p,,; denote a value of a unit of money at time ¢ in terms of

1
consumption goods at time t. Also let p, = — be “price level” at time ¢, that is, the

mt
price of a unit of consumption goods at time ¢ in terms of money. Notice the difference

between p; in this model and Arrow-Debreu date-0 prices denoted p(t).
Assume for the moment that p; < co. Then, the maximization problem of generation
t agent is:

max logc, + logc, (8.7)
Cy,Co M’
M/
s.t. ¢+ — = w,,
Y pe ]\;’
Co =W+ —,
Pe+1
M > 0.

And the agent of generation —1 trivially solves:

log c_1 (0
max logc 1(0)

M/
st ¢c-1(0) =w, + —.
Po
The meaning of the last constraint in (8.7) is that agents cannot issue money, or,
alternatively, sell it short. Combining the constraints from (8.7), the consolidated budget
constraint of an agent born at period t is:
Co Wo
e Wt e
Pt+1 bt+1
wy — ¢y = 0.

cy +

The budget set under these constraints is presented in Figure 8.3. As can be seen,
the real return on money is pf«tkl =7 +;t+1. Here 7,1 denotes the inflation rate. From
first-order Taylor approximation it follows that net real return on one dollar invested in
money is ~ —m;41 (for small values of 7).

Momentarily ignore w, — ¢, > 0. Then the solution to (8.7) is:

1 pt+1)

Cy = = |\wyt+we— |,

Y 2 ( Y Dt
1

CO — — (wy +wozﬁ) &
2 Dt DPt+1
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Co

Figure 8.3: Budget set in the economy with fiat money

Having found ¢,, we can recover the real demand for money of the young at ¢:

Mt+1:w — C :lw_lwzﬂ
e 2 27

Imposing market clearing condition on the money market,
My =MV t,

we can recover the law of motion for prices in this economy:

Dt 2T 27,
wy 2M
Pt+1 = Pt— — .
Wo Wo

Consider the following three cases:

w
o Y >1:
Wo
w.
o—yzl;
wO
w.
o Y 1.
wO

The solution to this first-order difference equation is presented graphically on the
Figure 8.4.

As can be seen, the only case consistent with positive and finite values of p, is the
first one, when w, > w,.

The following solutions can be identified:
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Pt

Figure 8.4: Dynamics of price level

1. If wy > w, we can observe the following: there exists a solution p; = p > 0 . So,
money can have real value!

(a)

(b)
(c)

(d)

Money can “overcome suboptimality” when w, > w, and consumption level is
constant (¢, = ¢, = 23%2) since -2 = 1 implies that MRS = 1, and the
resulting allocation is Pareto optimal by Balasko-Shell criterion.

There is no equilibrium with py < p, which means that one unit of money at

t = 0 has value at most %.
If po > p, there is an equilibrium, which is the solution to

Wy 2M
Pt+1 = — Pt — )
Wo Wo

with po given. In this equilibrium, p, — oo (p,: — 0), and % increases
monotonically to :—Z This is an equilibrium with hyperinflation. Money loses

value in the limit.

Pmo = 0 (“py = 00”) is also an equilibrium.

So, there is a continuum of equilibria. The fact that money has value may be seen
as a “rational bubble”: what people are willing to “pay” for money today depends
on what they expect others will “pay” for it tomorrow. The role of money here is
to mitigate the suboptimality present in the economy. It is the suboptimality that
gives money positive value.

If we add borrowing and lending opportunities, we get from the no-arbitrage con-
dition and market clearing in loans that:

Rt — &, lt — 0, Vt
DPi+1

So, real interest rate is non-positive, and (real) money holdings are still present.
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2. If w, < w, there is no equilibrium with p, < co. (However, autarky, p, = oo, is still
an equilibrium.)

Money, in this model, is a store of value. It helps overcome a basic friction in the
overlapping-generations model. As we shall see, its role can be filled by other forms of
assets as well. This is an important reason why this model of money, though valuable
because it is the first model that lets us assign a positive value to an intrinsically useless
object (which money is, since it is not backed by gold or other objects in any modern
economies), has not survived as a core model of money. A second reason is that, if one
were to introduce other assets, such as a “bond”, money and bonds would serve similar
roles and they would need to carry the same equilibrium return. In reality, however,
money has zero (nominal) return, and in this sense bonds dominate money. Thus, this
model does not capture another important property of real-world money: its value as a
medium of exchange (and its being superior to—more “liquid” than) other assets in this
regard.

8.3.2 FEconomies with real assets

In this subsection we will consider the assets that are real claims, rather than fiat money.
That is, they will be actual rights to receive goods in the following periods. Two different
kinds of assets are of interest:

- A tree that produces a given fruit yield (dividend) each period.

- Capital, that can be used to produce goods with a given technology.

8.3.3 A tree economy

We assume that the economy is populated by one agent per generation, and that each
agent lives for two periods. Preferences are represented by a logarithmic utility function
as in previous examples:
Ut (CZ, ) =log ¢, +logc,.
Agents are endowed with (w,, w,) consumption units (fruits) when young and old,
respectively, and there is also a tree that produces a fruit yield of d units each period.
Therefore total resources in the economy each period are given by:

Y(t) = wy +w, +d.

Ownership of a given share in the tree gives the right to collect such share out of the
yearly fruit produce. Trading of property rights on the tree is enforceable, so any agent
that finds himself owning any part of the tree when old will be able to sell it to the young
in exchange for consumption goods. The initial old owns 100% of the tree.

Let a;11 denote the share of the tree purchased by the young generation at ¢, and p;
denotes the price of the tree at t. It is clear that asset market clearing requires a;41 = 1
for all ¢. Generation ¢ consumer solves:

max log ¢! + log ¢!
ot et Y
Y1 “o

127



s.t. prage + cty = wy,
Chp = Wo + g1 (D1 + d).
Notice that the returns on savings are given by

Pi+1 + d
P
The first order conditions yield

1 Dt
d=-|w +7wo>,
Y 2( Y pei1 +d

which implies that generation t’s savings satisfy:

tUt41 2 Y Diit i d o] -
Imposing the market clearing condition and rearranging we get the law of motion for

prices:
Wo
pt+1 = Oy 2 — d
pt

This is a first order (non-linear) difference equation in p;. Figure 8.5 shows that it
has two fixed points, a stable negative one and an unstable positive one.

Figure 8.5: Fixed points for price of the tree

What is the equilibrium {p;},-, sequence? It must be a constant sequence since any
deviation from the positive fixed point leads directly into the negative one or creates a
“bubble” that eventually collapses due to infeasibility. So, p; = p* V¢, where p* is the

positive solution to
* wO 6
p = %5 d.
p

SNotice that for the case d = 0 we are back in fiat money economy, and the constant positive value
. . 1 Wy — Wo
of money is once again p,,s = — = 5 for M = 1.
p
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Is this competitive equilibrium Pareto optimal? We can answer this question by
checklng whether the Balasko-Shell criterion is satisfied. First notice that if we multiply

(t=1)p(=2)...p(1)p(0) .
by Z(t Dp(t— )Z(l)g(O) we can write:

p(t

1 _p@—lmﬁ—2) (1)p
p(t)  pt)p(t—1)..p(1)p(0 H Rg o115

where p(0) = 1, and R, ;41 denotes the interest rate between periods s and s + 1:

p(s)
p(s+1)

But we already know that the return on savings is given by:

Rs,s+1 =

pry1 +d
Dt

Therefore, the interest rate for each period, using equilibrium prices, is

pt+d

*

Rs,erl =

1
Replacing for —, we get that:

p(t)
S0 E (e 2)

=0 =0
The limit of this series is infinity for any d > 0. The Balasko-Shell criterion is met;
hence, the competitive equilibrium allocation supported by these prices is Pareto optimal.
Finally, notice that the optimality of the result was proven regardless of the actual
endowment process; therefore, it generalizes for any such process.
Now consider two cases of economies with production: a simple model with CRS
technology that uses only capital, and a more complicated neoclassical growth model.

8.3.4 Storage economy

We will assume the simplest form of production, namely constant marginal returns on
capital. Such a technology, represented by a linear function of capital, is what we have
called “storage” technology whenever no labor inputs are needed in the production pro-
cess. Let the yield obtained from storing one unit be equal to one. That is, keeping
goods for future consumption involves no physical depreciation, nor does it increase the
physical worth of the stored goods.

Let the marginal rates of substitution between consumption when old and when young
be captured by a logarithmic function, as before, and assume that the endowment process
is (wy, w,) = (3, 1). Generation t’s problem is therefore:

max log c +log ¢!

cy,c
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t
s.t. s Fcy = Wy,
t
c, = St + Wo.

ct—lw—l—&
vo2\Y R/

The return on storage is one, R; = 1. So, using the values assumed for the endowment
process, this collapses to

The first order conditions yield

C

Q™+ &

C

St =

Notice that the allocation corresponds to what we have found to be the Pareto optimal
allocation before: (2, 2) is consumed by every agent. In the previous case where no real
intertemporal assets existed in the economy, such an allocation was achieved by a chain
of intergenerational transfers (enforced, if you like, by the exchange in each period of
those pieces of paper dubbed fiat money). Now, however, agent buries his “potato” when
young, and consumes it when old.

Is the current allocation Pareto optimal? The answer is clearly no, since, to achieve
the consumption pattern (2, 2), the potato must always be buried on the ground. The
people who are born at ¢ = 0 set aside one unit of their endowment to consume when
old, and thereafter all their descendance mimic this behavior, for a resulting allocation

c=(H)U{(22)}2,-

However, the following improvement could be implemented. Suppose that instead of
storing one, the first generation (¢ = 0) consumed its three units when young. In the
following period the new young would give them their own spare unit, instead of storing
it, thereafter to continue this chain of intergenerational transfers through infinity and
beyond. The resulting allocation would be:

c=1uE,2)u{2 2}z,

a Pareto improvement on c.

In fact, ¢is not only a Pareto improvement on ¢, but simply the same allocation ¢ plus
one additional consumption unit enjoyed by generation 0. Since the total endowment of
goods is the same, this must mean that one unit was being wasted under allocation c.

This problem is called “overaccumulation of capital”. The equilibrium outcome is
(dynamically) inefficient.

8.3.5 Neoclassical growth model

The production technology is now modelled by a neoclassical production function. Capital
is owned by the old, who put it to production and then sell it to the young each period.
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Agents have a labor endowment of w, when young and w, when old. Assuming that
leisure is not valued, generation ¢’s utility maximization problem is:

max v, (¢, )
ct,ct Y
y7 o

¢ _
s.t. Cy + 8¢ = WyWy,
Co = StTt41 T Woltt1-

If the utility function is strictly quasiconcave, the savings correspondence that solves
this problem is single-valued:

si=nh [’wt, Tt41, wt+1] .
The asset market clearing condition is:
st = Kiy1.

We require the young at ¢ to save enough to purchase next period’s capital stock, which
is measured in terms of consumption goods (the price of capital in terms of consumption
goods is 1).

The firm operates production technology that is represented by the function F(K, n).
Market clearing condition for labor is

Ng = Wy + Wo.

From the firm’s first order conditions of maximization, we have that factor remuner-
ations are determined by

ry = Fl(Ktawy+wo>7
wy = Fy (K, wy +w,).

If we assume that the technology exhibits constant returns to scale, we may write

F(K, n) = nf (%)

where f (%) =F (ﬁ, 1). Replacing in the expressions for factor prices,

K
re = f/<w _'_tw)a
y o

K K K
w = 1(5w) a (Ghs)
Wy + Wy Wy + Wo Wy + Wo

Let &k, = wy{?wo denote the capital/labor ratio. If we normalize w, + w, = 1, we have

that K; = k;. Then

e = f,(kt)v
wy = f(kt)_ktf/(kt)'
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Substituting in the savings function, and imposing asset market equilibrium,

ktJrl =h [f(kt> - ktf/(kt>7 f/(kt>7 f(ktJrl) - ktJrlf/(ktJrl)] :

We have obtained a first order difference equation. Recall that the dynastic model
lead to a second order equation instead. However, proving convergence to a steady state
is usually more difficult in the overlapping generations setup. Recall that the steady state
condition with the dynastic scheme was of the form

Bf (k) =1
In this case, steady state requires that

ko= h[f(E") =k f/(k7), f1(k7), fOR) = k7 f/(K7)].

8.4 Dynamic efficiency in models with multiple agents

We have analyzed the welfare properties of consumption allocations arising from a mul-
tiple agent environment under the form of a population consisting of overlapping genera-
tions of individuals. The purpose of this section is to generalize the study of the dynamic
efficiency of an economy to a wider range of modelling assumptions. In particular, we
will present a theorem valid for any form of one-sector growth model.

We assume that the technology is represented by a neoclassical production function
that satisfies the following properties:

- f(0) =0,
- J'() >0,
- () <0,
- f € C? (C? denotes the space of twice continuously differentiable functions),

- lim f'(z) = oo,

z—0

- lim f'(x) = 0.

Notice that since we define f(z) = F(z,1) + (1 — d)z, the last assumption is not
consistent with the case of § < 1. This assumption is implicit in what follows. Then we
can show the following:

Theorem 8.14 A steady state k* is efficient if and only if R* = f'(k*) > 1.

*

Intuitively, the steady state consumption is ¢* = f(k*) — k*. Figure 8.6 shows the
attainable levels of steady state capital stock and consumption (k*, ¢*), given the as-
sumptions on f. The (kG, CG) locus corresponds to the “golden rule” level of steady
state capital and consumption, that maximize €.

Proof.
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(1)

(i)

flk)<1

f(K) -k

F Efficient Inefficient

k° K
Figure 8.6: Efficiency of the steady state

R* < 1: k* is inefficient.
Assume that k* is such that f/(k*) < 1. Let ¢* denote the corresponding level of
steady state consumption, let ¢y = ¢*. Now consider a change in the consumption

path, whereby ki is set to ky = k* — ¢ instead of k; = k*. Notice this implies an
increase in cg. Let k; = k1 VE > 1. We have that

C1 — ¢ = f(]i]l) — kl - f(k*> + k*
= F(k* —e)— (K —¢e) — f(k*) + k",

Notice that strict concavity of f implies that
JE) < f(E"—e) + [k = (k" =) /' (k" —¢)
for € € (O, k* — kG), and we have that [’ (k* —e) < 1. Therefore,
fE) < f(k"—¢e)+ k" — (k" —¢).

This implies that
cp—c >0,

which shows that a permanent increase in consumption is feasible.

R* > 1: k* is efficient.

Suppose not, then we could decrease the capital stock at some point in time and
achieve a permanent increase in consumption (or at least increase consumption at
some date without decreasing consumption in the future). Let the initial situation
be a steady state level of capital kg = k* such that f'(k*) > 1. Let the initial ¢,
be the corresponding steady state consumption: ¢y = ¢* = f(k*) — k*. Since we
suppose that £* is inefficient, consider a decrease of capital accumulation at time 0:
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ki1 = k* — €1, thereby increasing c¢g. We need to maintain the previous consumption
profile ¢* for all ¢ > 1: ¢; > ¢*. This requires that

c1 = f(k1) — ko = f(K) — k" = ¢,

ko < fky) = f(K") + K7,
ko — k7 < fki) — f(E7).

€2

Concavity of f implies that
flky) = f(B) < f'(k7) [k = E].

——
7
Notice that g5 = ky — k* < 0. Therefore, since f'(k*) > 1 by assumption, we have
that
|€2| > |€1| .

The size of the decrease in capital accumulation is increasing. By induction, {e:},~,
is a decreasing sequence (of negative terms). Since it is bounded below by —k*, we
know from real analysis that it must have a limit point e, € [—k*, 0). Consequently,
the consumption sequence converges as well:

Coo = [ (K" —€00) — (K" —€00) -
It is straightforward to show, using concavity of f, that

Coo < C".

Then the initial increase in consumption is not feasible if the restriction is to main-
tain at least ¢* as the consumption level for all the remaining periods of time.

]
We now generalize the theorem, dropping the assumption that the economy is in
steady state.

Theorem 8.15 (Dynamic efficiency with possibly non-stationary allocations) Let
both {ki},2, and the associated sequence { R, (ki) = f| (ki) },oo be uniformly bounded above
and below away from zero. Let 0 < a < —f' (k) < M < oo Vt, Vk;. Then {ki},, is

efficient if and only if
t=0

t

15 ()

s=1

= OQ.

Recall that

0 t [e%s}
> TR e =
t=0 Ls=1 —o Pt

The Balasko-Shell criterion discussed when studying overlapping generations is then a
special case of the theorem just presented.
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8.5 The Second Welfare Theorem in dynastic set-
tings

From our discussion so far, we can draw the following summary conclusions on the ap-
plicability of the first and second welfare theorems to the dynamic economy model.

First Welfare Theorem

1. Owerlapping generations: Competitive equilibrium is not always Pareto optimal.
Sometimes it is not even efficient.

2. Dynastic model: Only local non-satiation of preferences and standard assumption
[ < 1 are required for competitive equilibrium to be Pareto optimal.

Second Welfare Theorem

1. Owerlapping generations: In general, there is no applicability of the Second Welfare
Theorem.

2. Dynastic model: Only convexity assumptions are required for any Pareto optimal
allocation to be implementable as a competitive equilibrium.

Therefore with the adequate assumptions on preferences and on the production tech-
nology, the dynastic model yields an equivalence between competitive equilibrium and
Pareto optimal allocations. Of course, the restrictions placed on the economy for the
Second Welfare Theorem to apply are much stronger than those required for the First
one to hold. Local non-satiation is almost not an assumption in economics, but virtually
the defining characteristic of our object of study (recall that phrase talking about scarce
resources, etcetera).

In what follows, we will study the Second Welfare Theorem in the dynastic model.
To that effect, we first study a 1-agent economy, and after that a 2-agents one.

8.5.1 The second welfare theorem in a 1-agent economy

We assume that the consumer’s preferences over infinite consumption sequences and
leisure are represented by a utility function with the following form:

Ul{er, i} = Zﬁtu (ct),

where 0 < § < 1 and the utility index w (-) is strictly increasing and strictly concave. For
simplicity, leisure is not valued.

This is a one-sector economy in which the relative price of capital in terms of con-
sumption good is 1. Production technology is represented by a concave, homogeneous of
degree one function of the capital and labor inputs:

Y(t)=F (K ny).
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Then the central planner’s problem is:

V(Ky) = max {Z Biu (ct)}

{ee, Ko, mediZo | 4

s.t. Ct + Kt+1 =F (Kta nt) ,\V/t

The solutions to this problem are the Pareto optimal allocations. Then suppose
we have an allocation {c;f, K}, ”t}:io solving this planner’s problem and we want to
support it as a competitive equilibrium. Then we need to show that there exist sequences

{pitso, {R 2o, {w)}2, such that:

(i) {cjf, Kf 4, nt}zo maximizes consumer’s utility subject to the budget constraint
determined by {p;, R}, w;},o,-

(ii) {K, ni},o, maximize firm’s profits.
(iii) Markets clear (the allocation {c}, Kttrl};io is resource-feasible).

Remark 8.16 FEwven though n; can be treated as a parameter for the consumer’s problem,
this is not the case for the firms. These actually choose their amount of labor input each
period. Therefore, we must make the sequence n; part of the competitive equilibrium, and
require that the wage level for each t support this as firms’ equilibrium labor demand.

A straightforward way of showing that the sequences {p;},~, {R; } 0, {w} }1op exist
is directly by finding their value. Notice that from concavity of F (-, ),

Ri = Fi (K7, ),

w;,k = FQ(K:7 nt)
will ensure that firms maximize profits (or if you like, that the labor and capital services
markets clear each period). In addition, homogeneity of degree 1 implies that these
factor payments completely exhaust production, so that the consumer ends up receiving
the whole product obtained from his factor supply.

Then the values of pf remain to be derived. Recall the first order conditions in the
planner’s problem:

ﬁtul(cf) = )‘:7
AN=F (KZ‘H, nt+1) A:Jrla
which lead to the centralized Euler equation
UI(C:) = 5”'(Cf+1)F1 (K:_H, nt+1) .

Now, since A; is the marginal value of relaxing the planner’s problem resource con-
straint at time ¢, it seems natural that prices in a competitive equilibrium must reflect
this marginal value as well. That is, p; = A seems to reflect the marginal value of the
scarce resources at t. Replacing in the planner’s Euler equation, we get that

Fy (K:H, nt—l—l) = p—t'
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Replacing by R;, this reduces to

. _ D
R =2 (8.8)
! Pit

It is straightforward to check that (8.8) is the market Euler equation that obtains from
the consumer’s first order conditions in the decentralized problem (you should check this).
Therefore these prices seem to lead to identical consumption and capital choices in both
versions of the model. We need to check, however, that the desired consumption and
capital paths induced by these prices are feasible: that is, that these are market clearing
prices. To that effect, recall the planner’s resource constraint (which binds due to local
non-satiation):

¢+ Kfyy = F (K, ), Vi

The equality remains unaltered if we premultiply both sides by pj:
pi e + K] = piF (K, nusa) , VE

And summing up over ¢, we get:

dovi e K] =Y i F (K nea).
=0

t=0

Finally, homogeneity of degree 1 of F' (-, -) and the way we have constructed R; and
w; imply that

o0 o0
Yovile + Kin] =) pf [RIKT +wing.
t=0 t=0
Therefore the budget constraint in the market economy is satisfied if the sequence
{c, KZ‘H}ZO is chosen when the prevailing prices are {p;, w;, Rf},~,.
Next we need to check whether the conditions for {c}, K}, , n¢, p}, wy, RZ‘}:ZO to be
a competitive equilibrium are satisfied or not:

(i) Utility mazximization subject to budget constraint: We have seen that the budget
constraint is met. To check whether this is in fact a utility maximizing consumption-
capital path, we should take first order conditions. But it is straightforward that
these conditions lead to the Euler equation (8.8) which is met by the planner’s
optimal path {K:Jrl}:io‘

(ii) Firms’ mazimization: By construction of the factor services prices, and concavity of
the production function, we have that {K;, n;},-, are the firms’ profit maximizing
levels of factor inputs.

(iii) Market clearing: We have discussed before that the input markets clear. And
we have seen that if the consumer’s decentralized budget constraint is met, this
implies that the planner’s problem resource constraint is met for the corresponding
consumption and capital sequences. Therefore the proposed allocation is resource-
feasible.
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Recall we mentioned convexity as a necessary assumption for the Second Welfare
Theorem to hold.

Convexity of preferences entered our proof in that the first order conditions were
deemed sufficient to identify a utility maximizing consumption bundle.

Convexity of the consumption possibilities set took the form of a homogeneous of
degree one, jointly concave function F'. Concavity was used to establish the levels of
factor remunerations R;, w; that support K; and n; as the equilibrium factor demand
by taking first order conditions on F. And homogeneity of degree one ensured that with
R} and w; thus determined, the total product would get exhausted in factor payment -
an application of the Euler Theorem.

8.5.2 The second welfare theorem in a 2-agent economy

We now assume an economy with the same production technology and inhabited by
two agents. Each agent has preferences on infinite-dimensional consumption vectors
represented by the function

Uillen)Zol = ) Blui(ea) i=1, 2,

where ; € (0, 1), and w; (+) is strictly increasing, concave, for both i = 1, 2.
For some arbitrary weights p;, po, we define the following welfare function:

Wil(er) 2o s (car)imol = Ut [(cre)iZ] + p2Ua [(car) =] -

Then the following welfare maximization problem can be defined:

{c1t,cat, Ke11}io,

V (Kyp) = max {m Z Biug (1) + po Z Bus (C2t)}
t=0 t=0

S.t. C1t -+ Cot —+ Kt+1 S F (Kta nt) 7Vt7

where n; = ny; + ng; denotes the aggregate labor endowment, which is fully utilized for
production since leisure is not valued.

If we restrict uy and py to be nonnegative and to add up to 1 (then W is a convex
combination of the U;’s), we have the Negishi characterization: by varying the vector
(p1, p2), all the Pareto optimal allocations in this economy can be obtained from the
solution of the problem V'(Kj).

That is, for every pair (1, p2) such that uy, g2 > 0, g + o = 1, we obtain a Pareto
optimal allocation by solving V' (Kj). Now, given any such allocation (c*{t, Chyo Kfﬂ)zo,
is it possible to decentralize the problem V(Kj) so as to obtain that allocation as a
competitive equilibrium outcome? Will the price sequences necessary to support this as
a competitive equilibrium exist?

In order to analyze this problem, we proceed as before. We look for the values of
{p;, R}, w;},2, and we guess them using the same procedure:

;= A
Ry = B (K ),
wy = Fy (K[, ng).
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The planner’s problem first order conditions yield

Mlﬁfull (Clt) = A,
MQB;UIQ (C2t) = A
At = AN B (Kpgn, nega)

Does the solution to these centralized first order conditions also solve the consumers’
decentralized problem? The answer is yes, and we can verify it by using p, = A to
replace in the previous expression for consumer 1 (identical procedure would be valid for
consumer 2):

M15§U,1 (Clt) = Ds,
t+1, 1 .
,ulﬁl Uy (Clt+1) = Dt+1-
So, dividing, we obtain
D
Ull (C1t) = ﬁlull (01t+1) — .
Pt+1

This is the decentralized Euler equation (notice that the multiplier p; cancels out).
Next we turn to the budget constraint. We have the aggregate expenditure-income
equation:

Zpt [c1t + cor + K] = Zpt [R: K} + wing) .

=0 t=0

By homogeneity of degree 1 of F'(-, -), the factor remunerations defined above im-
ply that if the central planner’s resource constraint is satisfied for a {cys, o, KHl}in
sequence, then this aggregate budget constraint will also be satisfied for that chosen
consumption-capital accumulation path.

However, satisfaction of the aggregate budget constraint is not all. We have an addi-
tional dilemma: how to split it into two different individual budget constraints. Clearly,
we need to split the property of the initial capital between the two agents:

k1o + koo = K.

Does kip contain enough information to solve the dilemma? First notice that from
the central planner’s first order condition

At = A1 Fy (Kiga, niega)
we can use the pricing guesses R; = Fy (K3, ny), pr = A, and replace to get

Pt = pt+1Rt+1~

Therefore, we can simplify in the aggregate budget constraint

Pl = pr R K

for all t. Then we can rewrite

Zpt [c1t + car] = poRo (k1o + kao) + Zptwtnt-
t=0

t=0
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And the individual budgets (where the labor endowment is assigned to each individual)
read:

Zptclt = poLRokio + Zptwtnlta (8.9)
=0 t=0
ZptCZt = poLRokao + Zptwtn%- (8.10)
t=0 t=0

Notice that none of them include the capital sequence directly, only indirectly via ws.
Recall the central planner’s optimal consumption sequence for Agent 1 {cj,},~, (the one
we wish to implement), and the price guesses: {w; = Fy (K}, ny)},~, and {p;j = \j}2,.
Inserting these into (8.9), we have:

> pici = pyRikio+ > piwiny.

t=0 t=0

The left hand side .7, p;ci, is the present market value of planned consumption
path for Agent 1. The right hand side is composed of his financial wealth pjRjk10 and his
“human wealth” endowment Zfio p;winye. The variable kyq is the adjustment factor that
we can manipulate to induce the consumer into the consumption-capital accumulation
path that we want to implement.

Therefore, kyo contains enough information: there is a one to one relation between the
weight 1 and the initial capital level (equivalently, the financial wealth) of each consumer.
The Pareto optimal allocation characterized by that weight can be implemented with the
price guesses defined above, and the appropriate wealth distribution determined by k;,.
This is the Second Welfare theorem.

8.6 Uncertainty

The case with uncertainty is of special interest, because it raises the question of how
Pareto domination should be defined. Let, as in the case above, the economy be composed
of two-period-lived individuals, and let their utility functions be a special case of that
considered in the dynastic model: utility is additively separable and of the expected-utility
variety. Le., as of when a person is born, his/her utility is some u(c,) plus SE(u(c,)),
where the expectation is taken over whatever uncertainty occurs in the next period.
Also as in the dynastic model, let allocations be indexed by the history of shocks, z'.
Thus, with Z* denoting the set of possible histories at ¢, a consumption allocation is a
(stochastic) sequence ¢ = {{(cy(2"), cot(zt“))}ztezt}zo U ¢o.—1(20)-

We define feasibility as before, and for every possible history: for all 2!, ¢, (z") +
Cot—1(2") must be constrained either by endowments at (¢, z*) or by a similar requirement
if there is (intertemporal) production. However, what does it mean that one feasible
allocation, ¢, Pareto dominates another feasible allocation, ¢Z?

There are two quite different ways of defining Pareto domination. In the first defini-
tion, we require for ¢ to dominate ¢ that, for all (¢, 2), u(c); (")) +BE(u(ch(21)]2") >
u(ch (") + BE(u(ch(2")]2") (and ¢ 1(20) > 5 1(20)), with strict inequality for some
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(t,2"). In the second definition, we require that, for all , E(u(cjy(2"))+Bu(coy(z"*1))]z0) >

E(u(chi (") + fu(ch(2))|20) (and )1 (20) > ¢l _1(20)), with strict inequality for some
t.

There is a sharp difference between these definitions: the first one treats cohorts born
under different histories as different individuals, whereas the second definition defines
the utility of cohort ¢ in an ex ante sense. Thus, for illustration, imagine an endowment
economy with constant per-capita endowments over time, normalized to 1. Thus, there
is actually no aggregate uncertainty in the environment. Also, suppose that g = 1 for
simplicity. Let ¢ be an allocation where all consumers have ¢, = ¢, = 1, so that the
total endowment at all times is split equally between young and old. Let ¢ be an
allocation where we introduce randomness: suppose that, from period 1 and on, either
the young consume twice the amount of the old (c,:(2") = 4/3 = 2¢,—1(%"), or vice versa,
with a 50-50 coin flip determining which case applies. Does ¢ dominate ¢?? With the
second definition of Pareto dominance, the answer is yes, given that w is strictly concave:
introducing uncertainty must deliver lower ex-ante utility for all cohorts. Formally, we
need to simply check that u(1) 4+ w(1) = 2u(l) > 0.5(u(2/3) + u(4/3)) + 0.5(u(2/3) +
u(4/3)) = u(2/3) +u(4/3) for cohorts ¢ > 1, which is true from strict concavity of u, and
that w(1) + u(1) = 2u(1) > u(1) + 0.5(u(2/3) + u(4/3)) for cohort 1, which also follows
from strict concavity of u.

Turning to the first definition, however, ¢* does not Pareto dominate c¢?, because for
Pareto domination we would need to require that for any sequence of outcomes of the
coin flips, the allocation without randomness be better, and clearly, it would not be (at
least with limited curvature of w). In particular, for any ¢ and z; such that the current
young is lucky (i.e., gets 2/3 of the total endowment), this young person would be worse
off consuming (1,1): u(4/3) + 0.5(u(4/3) +u(2/3) < u(1l) +u(1), unless u has very high
curvature.”

What is the argument for the first definition? It is that allocations which differ across
realizations as of when a person is born cannot be compared based revealed-preference
reasoning: noone ever has the ex-ante choice, where ex-ante refers to “prior to birth”.
Therefore, according to this definition, we need to remain agnostic as to how to make this
comparison, and the formal implementation of this idea is to simply not ever allow one
allocation to be better than another unless it is better for all realizations.® The second
definition takes an explicit stand, one which possibly could be based on introspection: if
I could have had a choice before being born, I would have preferred whatever is given by
the ex-ante utility. However, note that it is hard to decide what such a utility measure
would be; what would distinguish the evaluation of E(u(c;(2")) + Bu(ciy(2"11))]20) from
the evaluation of E([u(cjy(2")) + BE(u(ch(2))|2")]%|20), for example, for any «? Since
there is no revealed-preference measurement of o, we could for example set it to a large
positive number, in effect making the ex-ante perspective be “risk-loving”, instead of
assuming, as does the second definition, that o has to equal 1.

"The case of logarithmic curvature, for example, gives log(4/3) +0.5(log(4/3) +1og(2/3)) = log((4/3)-

(8/9)) = log((4/9) - v/8) > 0 = 2u(1), since 16 - 8 = 128 > 81.

80f course, the first definition does handle uncertainty as of the second period of people’s lives, since
it uses expected utility over those realizations.
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8.7 Hybrids

In this section a “hybrid model”, and a variant of it, will be presented which shares
features of the dynastic and the finite-life models above. The model is often referred
to as the “perpetual-youth model”, because the key assumption is that every period, a
fraction 1 — p of the consumers die randomly and are replaced by newborns, and the
death event is independently distributed across consumers of all age groups. lL.e., from
the perspective of any individual alive at t, the probability of survival until the next
period is p. This simplifies the analysis relative to the overlapping-generations setting
above, because it makes all consumers have the same planning horizon. We will also
specialize preferences to the class that allows aggregation in wealth, which then makes all
consumers—independently not only of their wealth levels but also of their ages—have the
same marginal propensities to save and consume out of wealth. This is in sharp contrast
to the overlapping-generations setting, where consumers of different ages have different
propensities to save. There, if consumers live for two periods, the old have a zero savings
propensity, since only the young save; in a version of the model where people live for
more than one period, each age group in general must have a distinct marginal savings
propensity, and this propensity typically declines with age.

The new model, however, shares important features with the overlapping-generations
setting above. One of these features is that it allows for a nontrivial determination of
long-run real interest rates. The second, related, feature is that it allows government
budget deficits to have real effects, even when taxes are lump-sum; for a discussion of
this topic, see the chapter on fiscal policy below.

8.7.1 The benchmark perpetual-youth model

We will first focus on a stationary environment, i.e., on one where prices and aggregate
quantities are constant and where the economy is in a steady state. Thereafter, we
consider transition paths.

Steady state

We assume that all consumers have the same income, e, accruing every period. Thus the
consumer’s problem is to maximize

S 1—0’_1

tCt

2 Bp) ——
subject to az41+¢; = (R/p)ay+e for all t > 0, with ag = 0: people are born without asset
wealth. Here, R is the risk-free rate of return, and consumers obtain a higher return on
lending (or pay it for loans), R/p. In other words, a lending consumer obtains a higher
return than R if he survives, but loses the entire amount if he does not survive (in which he
does not need the resources). Thus, in expectation the return is p-(R/o)+(1—p)-0 = R.
The higher return can be viewed as an efficient use of an annuity market.

The population is size one, with an age structure as follows: there is fraction 1 — p of
newborns, a fraction (1 — p)p of one-year-olds, and more generally a fraction (1 — p)p® of
s-year-olds. In order to determine the equilibrium interest rate R, we need to also model
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“asset supply”. We will consider two economies, one with no production, in which total
savings will have to equal zero, and one with neoclassical production.
In order to calculate total savings, let us solve the consumer’s problem by solving his

functional Euler equation. The sequential Euler equation reads

Ct+1 1

L ( ﬁ R)a ,

Ct

so the functional equivalent, using ' = A+ Ba, which implies ¢ = (R/p)a+e—(A+ Ba),
reads

Q=

e—A+(§—B)(A+Ba):(BR) (e—A+(§—B)a).

From this it follows, by equating coefficients, that

B = (8R)"
and that )
(BR)* —1
A=e 5
P

To find total savings, note that a consumer just having turned s years of age has
accumulated a; = A(1 — B*)/(1 — B) (if B # 1, and zero otherwise). Thus, total savings
equal

Sl G S e - ()

s=0 s=0 p

so long as R # 1, and zero otherwise.

Turning to the equilibrium determination of R, first consider an endowment economy.
Since total savings now have to equal zero, we see that = 1 must hold; no other value for
R than 1/ makes total savings zero. Thus, in an endowment economy where consumers
have constant endowments, the interest rate has to equal the subjective discount rate,
just like in the dynastic model. Other endowment structures can deliver other outcomes,
however.

In the neoclassical growth context, say with a production function of the k%n!'=®
variety where each consumer has one unit of labor per period, a steady state would make
e = (1 — a)k® (since n =1 in equilibrium) and R = ak*~! 4+ 1 — ¢. Thus, requiring that
total savings equal k, we must have

(R—1+5)‘111: e < 1—p _1>
a 2~ 1\1-p(BR)" |

This equation determines the equilibrium interest rate R. Since capital has to be positive,
we see that BR > 1 must follow; otherwise the term in parenthesis on the right-hand side
is negative. The interpretation of this condition is that, since consumers need to hold
capital, the interest rate has to rise relative to 1/ to induce people to accumulate so that
the capital stock can be held. We also note that SR < p~? must hold. It is straightforward
to show that there is a solution R to this equation such that SR € (1,p7).7

9The demonstration that R only has one solution in this interval should be possible too; this task
remains to be completed. ...
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Transition

Along a transition path, it is possible to derive a second-order difference equation for k.
1
Here, note that although ¢;.1 = (6R)< ¢; holds for all individuals born at ¢ and surviving

until £ + 1, we will not have that average consumption at ¢t + 1 will be (ﬁR)% times
consumption today: it will be lower than that, because those consumers who die are
replaced by poorer ones (given that consumption paths are rising over time). To derive
the difference equation, first ... (details left out, since this will be a “homework”).

8.7.2 Introducing a life cycle

It is possible to use the same structure to introduce life-cycle patterns, for example via
earnings. Say that, upon birth, people face a constant probability, 1 — p, of becoming
“old”, and upon becoming old they face a constant probability, 1 — p, of death. Thus,
the second phase of their life is just like for consumers in the model just described, but
the first phase is now different. Supposing, thus, that consumers have endowments e, in
the first phase of their life and e, in their second, we can solve their consumption-saving
problems at different ages and with different wealth holdings using recursive methods as
follows ... (details left out, since this will be another “homework”).
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Chapter 9

Growth

Growth is a vast subject within, and its first-order aim is to explain basic facts about
the long-term behavior of different economies. The current chapter is an introduction to
this subject, and it is divided into three sections. In the first section, we set forth the
motivation for the theory: the empirical regularity which it seeks to explain. The second
section is about exogenous growth models, i.e., models in which an exogenous change in
the production technology results in income growth as a theoretical result. Finally, the
third section introduces technological change as a decision variable, and hence the growth
rate becomes endogenously determined.

9.1 Some motivating long-run facts in macroeconomic
data

9.1.1 Kaldor’s stylized facts

The first five “facts” refer to the long-run behavior of economic variables in an economy,
whereas the sixth one involves an inter-country comparison.

1) The growth rate of output g, is roughly constant over time.
2) The capital-labor ratio % grows at a roughly constant rate.

3) The capital-income ratio % is roughly constant (presumes that capital is measured
as accumulated foregone consumption).

4) Capital and labor shares of income are close to constant.
5) Real rates of return are close to constant.

6) Growth rates vary persistently across countries.

9.1.2 Other facts

In addition to these classical facts, there are also other empirical regularities that guide
our study of long-run growth. These are:
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1)

2)

7)

% is very dispersed across countries; a factor of over 30 separates the richest country
from the poorest country.

The distribution of % does not seem to spread out (although the variance has
increased somewhat, but then moving mass toward the corners).

Countries with low incomes in 1960 did not show on average higher subsequent
growth (this phenomenon is sometimes referred to as “no absolute () conver-
gence”).

There is “conditional convergence”: within groups classified by 1960 human capital
measures (such as schooling), 1960 savings rates, and other indicators, a higher
initial income yo (in 1960) was positively correlated with a lower growth rate g,.
This is studied by performing the “growth regression”:

g, = a4 Blogyo; + ylogedug; + &5, i=1, .., n.

Then controlling for the initial level of education, the growth rate was negatively
correlated with initial income for the period 1960-1990: 3 < 0. If the regression is
performed without controlling for the level of education, the result for the period
is # =0, i.e., no absolute convergence, as mentioned above.

Growth in factor inputs (capital, labor) does not suffice in explaining output growth.
The idea of an “explanation” of growth is due to Solow, who envisaged the method
of “growth accounting”. Based on a neoclassical production function

y=z2F(K,L),

the variable z captures the idea of technological change. If goods production is per-
formed using a constant-returns-to-scale technology, operated under perfect com-
petition, then (by an application of the Euler Theorem) it is possible to estimate
how much out of total production growth is due to each production factor, and
how much to the technological factor z. The empirical studies have shown that the
contribution of z (the Solow residual) to output growth is very significant.

In terms of raw correlations, and partial correlations, there are many findings in
the growth-regression literature; to mention a few often-discussed variables, out-
put growth correlates positively with the growth of the foreign trade volume and
measures of human capital (education levels), and output per capita correlates
positively with investment rates and measures of openness and negatively with
population growth rates.

Workers of all skill classes tend to migrate to high-income countries.

We will revisit these facts below in various ways.
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9.2 Growth theory I: exogenous growth

In this section we will study the basic framework to model output growth by introducing
an exogenous change in the production technology that takes place over time. Mathe-
matically, this is just a simple modification of the standard neoclassical growth model
that we have seen before.

We will separate the issue of growth into two components. One is a technological
component: is growth feasible with the assumed production technology? The second
one is the decision making aspect involved: will a central planner, or the decentralized
economy, choose a growing path? Which types of utility function allow for what we will
call a “balanced growth path”?

This section is split into three subsections. The first and second ones address the
technological and decision making issues, respectively. In the third one, we will study a
transformation to the exogenous growth model that will help us in the analysis.

9.2.1 Exogenous long-run growth
Balanced growth under labor-augmenting technological change

Given the assumptions regarding the production technology on the one hand, and re-
garding the source of technological progress on the other, we want to analyze whether
the standard neoclassical growth model is really consistent with sustained output growth.
From the point of view of the production side, is sustainable output growth feasible?

The standard case is that of labor-augmenting technological change (a la Solow). The
resource constraint in the economy is:

a+i=EFK, ) = F(Kt,tht%

hours “efficiency units”

where F' represents a constant returns to scale production technology and v > 1. The
capital accumulation law is
kt-ﬁ-l - (]_ - 5) kt + it‘

Given the constant returns to scale assumption on F', sustained growth is then possible.
Let us analyze this setup in detail.

Our object of study is what is called balanced growth: all economic variables grow at
constant rates (that could vary from one variable to another). In this case, this would
imply that for all ¢, the value of each variable in the model is given by:

Yt = Yogy

¢ = cogt balanced growth path -

ki = kog, all variables grow at constant
iy = dog! (but possibly different) rates.
ng = nogl.

In a model with growth, this is the analogue of a steady state.
Our task is to find the growth rate for each variable in a balanced growth path, and
check whether such a path is consistent. We begin by guessing one of the growth rates,
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as follows. From the capital accumulation law
ktJrl - (1 - (S) ]{Jt + Z-t.

If both 7; and k; are to grow at a constant rate, it must be the case that they both grow at
the same rate, i.e., gr = g;. By the same type of reasoning, from the resource constraint

¢ + iy = Fy(ky, ny) = F(ky, ”Ytnt) =Yt

we must have that g, = g. = g;.
Next, using the fact that F' represents a constant-returns-to-scale technology (and
hence it is homogenous of degree one), we have that

k
F(kta ’Ytnt) = ’ytntF (t—ta 1)
YN

I ﬁ, 1)
”Ytnt ”Ytnt

Since we have postulated that k; and y, grow at a constant rate, we must have that

—' — constant.
Vi
In addition, since the time endowment is bounded, actual hours can not grow beyond a
certain upper limit (usually normalized to 1); hence g, = 1 must hold.
This results in g = v, and all other variables also grow at rate . Hence, it is possible
to obtain constant growth for all variables: a balanced growth path is technologically
feasible.

The nature of technological change

From the analysis in the previous section, it seems natural to ask whether the assumption
that the technological change is labor-augmenting is relevant or not. First, what other
kinds of technological change can we think of? On a more general level than that described
above, ignoring labor input for a moment, an intertemporal production possibility set
(through the accumulation of capital) involves some function of consumption outputs at
different points in time, such as

G(Co,Cl,...) = O,

and technological change—or “productivity growth”—implies that G is asymmetric with
respect to its different arguments, in effect tilting the production possibility set towards
consumption in the future. Such tilting can take many forms, and a general discussion
of how data can allow us to distinguish different such forms is beyond the scope of
the discussion here. In practical modeling, one typically encounters parameterizations
of technological change of the sort described above: a constantly shifting factor, say,
multiplying one production input. The purpose of the ensuing discussion is to describe
some commonly used such forms of technological change and the feasibility of balanced
growth in these cases.
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Let us first write the economy’s resource constraint, with all the technology shift
factors that are most commonly emphasized in the literature (maintaining ki = (1 —
Nk + 1p):

Ct + Yitly = Var k' (thkt, Vntnt) .

The associated nomenclature is as follows.

- vu: Labor-augmenting technological change: a rise in this parameter from one period
to the next raises the effective value of the total labor input.

- Y Capital-augmenting technological change: a rise in this parameter raises the ef-
fective value of any given capital stock.

- 7. Neutral (or Hicks-neutral) technological change: a rise in this parameter raises
output proportionally, for given inputs.

vie: Investment-specific technological change: a fall in this parameter makes it cheaper
to produce capital; thus, it makes additions to the capital stock easier to obtain (as
opposed to a change in 7 ;1 which raises the value of the entire stock of capital).

Given the assumption of constant returns to scale, one can subsume ., in vy, and vy,
so we will set v,; = 1 for all £ from here and on. Also, given that both investment-specific
and capital-augmenting technological change operate through the capital stock, they are
closely related: an increase in 7, would appear very similar to appropriately increasing
the prior sequence of ~,s, for given values of i, s < t, although changes in the latter
will influence the stock of capital at dates after ¢. Formally, we can define i = 14Yie s
investment in consumption units, and similarly k, = k¢vi+—1 and write the economy as

¢ +ip=F (’Ath/Afta ’Yntnt> )
with the new capital accumulation equation
l%t—‘,—l =i+ (1- 5t)l%ta

where Yir = Yit/Vin—1 and 8 = 6(Vir/Vit—1) + 1 — (7it/Vit—1), which is in (0,0) when-
ever v < 7Yit—1 and § € (0,1). Thus, this formulation makes clear that we can think
of investment-specific technological change in terms of depreciating the existing capital
stock, measured in consumption units, at a higher rate than the physical wear-and-tear
rate J; in other respects, capital-augmenting and investment-specific technological change
are identical, since they both effectively enhance the stock of capital, measured in con-
sumption units, and thus improve the consumption possibilities over time (provided that
Vit > 1> vir).

Now suppose that we consider balanced growth paths, with restricted attention to
technology factors growing at constant rates: v = v, ', Y = 7%, and v, = 7L, with 7,
Yk, and v, all greater than or equal to 1. Can we have balanced growth in this economy
when one or several of these growth factors are strictly larger than one? We have the
following result.

Theorem 9.1 For exact balanced growth, v; = v, = 1 need to hold (thus, only allowing
Yn > 1), unless F' is a Cobb-Douglas function.

149



Proof. In one of the directions, the proof requires an argument involving partial
differential equations which we shall not develop here. However, we will show that if F’
is a Cobb-Douglas function then any of the s can be larger than 1, without invalidating
a balanced growth path as a solution.

If F'is a Cobb-Douglas function, the resource constraint reads:

11—«

e+ e = (Veke) ™ (Vi) (9.1)

Notice that we can define N

T = V% Ym

so that we can rewrite the production function:

(VZkt)a (sznt)lia = ki (%nt)lia . (9.2)

We will use this formulation later.
Now consider the capital accumulation equation:

ktJrl - (1 - (S) ]{Jt + Z-t.
Dividing through by ~f, we obtain

ktJrl kt Z’t
e PSS R AN
At YAk

We can define .
7 ke ~ &
and, replacing k, in (9.1), we obtain:

T ~\¢ 11—«
e+ = <%ﬁfkt> (%tznt)
Et+1%‘ = (1 —5)Et + 1.

The model has been transformed into an equivalent system in which %t+1, instead of
ki1, is the object of choice (more on this below). Notice that since F' is Cobb-Douglas,

~s multiplying k; can in fact be written as labor-augmenting technological growth factors
(see (9.2)). Performing the transformation, the rate of growth in labor efficiency units is

8] 8]

e P

and we have seen above that this is also the growth rate of output and consumption. m

Convergence in the neoclassical growth model

Consider first Solow’s model without population growth, i.e., let the savings rate be
exogenously given by s. In transformed form, so that g, = y;/7", where v is the growth
rate of labor-augmenting technology, we obtain

Jrir =7 FVF(sE (k4 + (1= 0)ky, v+ = F(y 'sF(ky, 1) + (1 — 0)ky, 1)
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so that

Jeer = f(y s+ (1= 08)f ().
Assuming that F'is Cobb-Douglas, with a capital share of o, we can obtain a closed-form
solution for dg,.1/dy, evaluated at steady state. Taking derivatives we obtain

A1 ,5‘1”(1_5)% B sa(j/k)+1—16 B a(’y—1+5)+1—5_a+(1_a)1—5
diy gl Y Y v
where we also used the balanced-growth relation ”yl% =sy+ (1— 5)]% Notice that we
could alternatively have derived this as dk;.1/dk;.
The growth regression reported above was stated in terms of dlog(y,11/y:)/dlogy;.
We can write

N\ Yt J Y41 R
legy;—jl e _ y7 d< Yt ) _ y; (dytJrli B yt+1) B dytﬂl_ Ayt _
dlog y; dur Yey1 Ay, Yi+1

_ 1= g g
dye i Y} dys dyq

Thus, the sought regression coefficient is a4 (1 — a)% — 1. Since a € (0,1), this object

lies in (HT*”,O). Taking a period to be a year, one would set v = 0.02 and § = 0.10,
so with an a = 0.3, roughly as in U.S. data, we obtain a coefficient of close to -0.08.
Available regression estimates indicate a number less than half of this amount. I.e., the
data suggests that a calibrated version of Solow’s model implies convergence that is too
fast.

Turning to a setting where s is chosen endogenously, the derivations above need to be
complemented with an analysis of how a change in ke (or ¢;) changes s. The analysis in
Section 4.3.2 shows that, in the case without exogenous growth, dy,.1/dy; = dkiy1/dky
at steady state is given by the smallest solution to

9 1o f 1
R A e o
where the derivatives of u and f are evaluated at the steady-state point. The case with
growth is straightforward to analyze, because in that case preferences do not influence the
steady-state level of capital. So consider the case u(c) = (1—0)7*(c!77 —1). Study of the

second-order polynomial equation yields that the lowest root decreases in the expression

ul f‘//

u” 17
be sfhown to become (1;72‘(1 —B(1=9))(1—pB(1 —ad)). Thus, a higher o raises A, making
y move more slowly toward steady state. Intuitively, if there is significant curvature in
utility, consumers do not like sharp movements in consumption, and since convergence
precisely requires consumption to change, convergence will be slow. Slower convergence
also follows from a high «, a high 3, or a low 4.

which under the functional forms assumed (recall that f(k) = k* + (1 — )k) can

9.2.2 Choosing to grow

The next issue to address is whether an individual who inhabits an economy in which there
is some sort of exogenous technological progress, and in which the production technology
is such that sustained growth is feasible, will choose a growing output path or not.
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Initially, Solow overlooked this issue by assuming that capital accumulation rule was

determined by the policy rule

1y = SYt,
where the savings rate s € [0, 1] was constant and exogenous. It is clear that such a rule
can be consistent with a balanced growth path. Then the underlying premise is that the
consumers’ preferences are such that they choose a growing path for output.

However, this is too relevant an issue to be overlooked. What is the generality of
this result? Specifically, what are the conditions on preferences for constant growth to
obtain? Clearly, the answer is that not all types of preferences will work. We will restrict
our attention to the usual time-separable preference relations. Hence the problem faced
by a central planner will be of the form:

max {Z B (cy, nt)} (9.3)

{it,ct, Ker1,me oo

S.t. Ct + Z't = F (Kt7 ’Ytnt)
Kt+1 - Z't ‘I— (1 - 5) Kt

Ky given.
For this type of preference relations, we have the following result:

Theorem 9.2 Balanced growth is possible as a solution to the central planner’s problem

(9.4) if and only if
A v (l—n)—1

1—0

u(c, n) = ;

where time endowment is normalized to one as usual and v(-) is a function with leisure
as an argument.

Proving the theorem is rather endeavored in one of the two directions of the double
implication, because the proof involves partial differential equations. Also notice that we
say that balanced growth is a possible solution. The reason is that initial conditions also
have an impact on the resulting output growth. The initial state has to be such that
the resulting model dynamics (that may initially involve non-constant growth) eventually
lead the system to a balanced growth path (constant growth). Arbitrary initial conditions
do not necessarily satisfy this.

Comments:

1. Balanced growth involves a constant n.

2. v(1 —n) = constant fits the theorem assumptions; hence, non-valued leisure is
consistent with balanced growth path.

3. What happens if we introduce a “slight” modifications to u (¢, n), and use a func-
tional form like )
(c—2) 7-1

l1—0

u(c, n) = ?
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¢ can be interpreted as a minimum subsistence consumption level. When c gets
large with respect to ¢, risk aversion decreases. Then for a low level of consumption
¢, this utility function representation of preferences will not be consistent with a
balanced growth path; but, as ¢ increases, the dynamics will tend towards balanced
growth. This could be an explanation to observed growth behavior in the early
stages of development of poor countries.

9.2.3 Transforming the model

Let us now describe the steps of solving a model for a balanced growth path.

1) Assume that preferences are represented by the utility function

c=v(l—-n)—-1

1—0

2) Take first order conditions of the central planner’s problem (9.4) described above
using this preference representation.

3) Next assume that there is balanced growth, and show that the implied system of
equations can be satisfied.

4) After solving for the growth rates transform the model into a stationary one.

We will perform these steps for the case of labor-augmenting technology under con-
stant returns to scale. The original problem is

max {i ok G v(l—n)—1 } (9.4)

(i, ee, K, }20 | 45 l-o

K
s.t. c + it = ’ytntF (t—t, 1)
L
Kt+1 - Z't ‘I— (1 - 5) Kt
Ky given.
We know that the balanced growth solution to this Growth Model (9.5) has all vari-

ables growing at rate 7y, except for labor. We define transformed variables by dividing
each original variable by its growth rate:

~ Ct
G = —
t
e
~ it
it = —
t
e
~ Kt
Kt - VR
Y
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and thus obtain the transformed model:

1—0o t( U) _ _
max {Zﬁtc " _(10 n) 1}

{Zt Ct, Kz+1 nt}oo

s.t. (&} —I—/z\t> V= F (K;w , 1)
Y
Kyt = [/Z\t +(1-9) IA(t] ~t
Ky given.
Notice that we can write
lat(l o)y (1—n;)— 0 /\10

¢ Ct Atl_
Zﬁ l—-0o Z Zﬁ l-0o

=0

where B = 3v(1=9) Then we can cancel out 7’s to get:

_ 1 _ t(l o)
max {Zﬁtct (1= n) Zﬁtl 15 } (9.5)

<~ o0
{Zt,Ctth+1ynt}t:O

~ K

S.t. /C\t + Z't = ntF <—t, 1)
Ny

0 K,

Kipry =" + (1-
K, given.

Now we are back to the standard neoclassical growth model that we have been dealing
with before. The only differences are that there is a v factor in the capital accumulation
equation, and the discount factor is modified.

We need to check the conditions for this problem to be well defined. This requires
that 37179 < 1. Recall that v > 1, and the usual assumption is 0 < 3 < 1. Then:

1. If o > 1,477 < 1s0 fy'79 < 1 holds.
2. If 0 = 1 then $7'7° = 3 < 1 holds.

3. If 0 < 0 < 1, then for some parameter values of v and 3, we may run into an
ill-defined problem.

Next we address the issue of the system behavior. If leisure is not valued and the
production technology

f(k)zF(%, 1)+(1—5)%
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satisfies the Inada conditions (f(0) =0, f'(-) > 0, f"(:) <0, klim f'()=0, /lﬁinéf’() = 00)
then global convergence to steady state obtains for the transformed model (9.5):

lim¢ = ¢, limi, =1, lim k =k
t—o0 t—o0 t—o0

This is equivalent to saying that the original variables ¢;, 7;, and k; grow at rate ~y
asymptotically.

Therefore with the stated assumptions on preferences and on technology, the model
converges to a balanced growth path, in which all variables grow at rate . This rate
is exogenously determined; it is a parameter in the model. That is the reason why it is
called “exogenous” growth model.

9.2.4 Adjustment costs and multisector growth models

e Convergence is influenced by adjustment costs.

Consumption and investment sectors: special case with oscillations. Balanced
growth.

More sectors more generally: no general results.

Structural change: agriculture, services, and manufacturing; can there be balanced
growth?

Other forms of changing technology.

9.3 Growth theory II: endogenous growth

The exogenous growth framework analyzed before has a serious shortfall: growth is not
truly a result in such model - it is an assumption. However, we have reasons (data) to
suspect that growth must be a rather more complex phenomenon than this long term
productivity shift v, that we have treated as somehow intrinsic to economic activity.
In particular, rates of output growth have been very different across countries for long
periods; trying to explain this fact as merely the result of different +’s is not a very
insightful approach. We would prefer our model to produce v as a result. Therefore, we
look for endogenous growth models.

But what if the countries that show smaller growth rates are still in transition, and
transition is slow? Could this be a plausible explanation of the persistent difference in
growth? At least locally, the rate of convergence can be found from

logy’ —log = A (logy — log¥),

where A is the eigenvalue smaller than one in absolute value found when linearizing the
dynamics of the growth model (around the steady state). Recall it was the root to
a second degree polynomial. The closer A is to 1 (in absolute value), the slower the
convergence. Notice that this equation can be rewritten to yield the growth regression:

logy' —logy =— (1 —A)logy + (1 — \)log¥ + a,
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where — (1 — A) is the (§ parameter in the growth regressions, logy shows up as log yo;
(1 — ) is the ~, and log7 is the residual z; finally « (usually called vy) is the intercept
that shows up whenever a technological change drift is added.

In calibrations with “reasonable” utility and production functions, A tends to become
small in absolute value - hence not large enough to explain the difference in growth rates
of e.g. Korea and Chad. In general, the less curvature the return function shows, the
faster the convergence. The extreme special cases are:

1. wlinear = A =0 - immediate convergence.

2. f linear = A =1 - no convergence.

The more curvature in wu, the less willing consumers are to see their consumption
pattern vary over time - and growth is a (persistent) variation. On the other hand, the
more curvature in f, the higher the marginal return on capital when the accumulated
stock is small; hence the more willing consumers are to put up with variation in their
consumption stream, since the reward is higher.

9.3.1 The AK model

Let us recall the usual assumptions on the production technology in the neoclassical
growth model: F' was constant returns to scale, and also the “per capita” production
function f satisfied: f(0) =0, f'(-) > 0, () <0, lirr(l)f’(-) = 00, and lim f'(-) = 0, with
the global dynamics as depicted in Figure 9.1 (with a “regular” utility function).

t+1)

K- K

Figure 9.1: Global dynamics
Long run growth is not feasible. Notice that whenever the capital stock k exceeds

the level k*, then next period’s capital will decrease: £’ < k. In order to allow long run
growth, we need the introduce at least some change to the production function: We must
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dispose of the assumption that lim f'(-) = 0. What we basically want is that f does not
cross the 45° line. Then lim f’(-) > 0 seems necessary for continuous growth to obtain.
If we have that lim f’(-) = 1 (that is, the production function is asymptotically

parallel to the 45° line), then exponential growth is not feasible - only arithmetic growth
is. This means that we must have lim f/(-) > 1 for a growth rate to be sustainable over

T—00

time.
The simplest way of achieving this is to assume the production technology to be
represented by a function of the form:

F(k) = Ak

with A > 1. More generally, for any depreciation rate J, we have that the return on
capital is

(1-0)k+ f(k) = (1-9)k+ Ak
= 1-0+A)k
= Avk:,

so the requirement in fact is A > ¢ for exponential growth to be feasible (when 6 < 1).
The next question is whether the consumer will choose growth, and if so, how fast. We
will answer this question assuming a CIES utility function (needed for balanced growth),
with non-valued leisure. The planner’s problem then is:
00 Cl—a
U= max pt—t— }
{et k1), {tzo 1—0
S.t. Ct ‘I— kft+1 = Akt,

where ¢ > 0. The Euler Equation is
¢ 7 = P A

Now we have that the growth rate of consumption must satisfy:

1
= (B4)°
Ct

The growth rate of consumption is a function of all the parameters in the utility
function and the production function. Notice that this implies that the growth rate is
constant as from ¢ = 0. There are no transitional dynamics in this model; the economy
is in the balanced growth path from the start. There will be long-run growth provided
that

1
(BA)o > 1. (9.6)
This does not quite settle the problem, though: an issue remains to be addressed. If

the parameter values satisfy the condition for growth, is utility still bounded? We must
evaluate the optimal path using the utility function:

r-3 s [(ﬁA)ﬂl_T il

l1—0
t=0
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So the sufficient condition for boundedness is:
1 1—0o
I} [(ﬁa)a} < 1. (9.7)

The two conditions (9.6) and (9.7) must simultaneously hold for us to obtain a bal-
anced growth path.

Remark 9.3 (Distortionary taxes and growth) Notice that the competitive alloca-
tion in this problem equals the central planner’s (why?). Now suppose that the government
levies a distortionary tax on (per capita) capital income and uses the proceeds to finance
a lump-sum transfer. Then the consumer’s decentralized problem has the following budget
constraint:

et + ki = (1 — ) Reky + 73,

while the government’s budget constraint requires that
Tthkt = T¢.

This problem is a little more endeavored to solve due to the presence of the lump-sum
transfers .. Notwithstanding, you should know that T (the distortionary tax on capital
income) will affect the long run growth rate.

Remark 9.4 (Explanatory power) Let us now consider how realistic the assumptions
and the results of the model are:

x Assumptions The AK production function could be interpreted as a special case of
the Cobb-Douglas function with o =1 - then labor is not productive. However, this
contradicts actual data, that shows that labor is a hugely significant component of
factor input. Clearly, in practice labor is important. But this is not captured by the
assumed production technology.

We could tmagine a model where labor becomes unproductive; e.qg. assume that
Ft (Kta nt) = AKftntl—Ott'

Then if tlim ay = 1, we have asymptotic linearity in capital. But this is unrealistic.

x Results The growth has become a function of underlying parameters in the economy,
affecting preferences and production. Could the dispersion in cross-country growth
rates be explained by differences in these parameters? Country i’s Fuler Equation
(with a distortionary tax on capital income) would be:

c L
() -mao-
But the problem with the AK model is that, if parameters are calibrated to mimic the
data’s dispersion in growth rates, the simulation results in too much divergence in
output level. The dispersion in 1960-1990 growth rates would result in a difference
i output levels wider than the actual.

Remark 9.5 (Transitional dynamics) The AK model implies no transitional dynam-
ics. However, we tend to see transitional dynamics in the data (recall the conditional
convergence result in growth regressions).
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9.3.2 Romer’s externality model

The intellectual precedent to this model is Arrow (1962). The basic idea is that there
are externalities to capital accumulation, so that individual savers do not realize the
full return on their investment. Each individual firm operates the following production
function:

F(K, L, K)=AK*L' K",
where K is the capital operated by the firm, and K is the aggregate capital stock in the
economy. We assume that p = 1 — « so that in fact a central planner faces an AK-model
decision problem. Notice that if we assumed that o + p > 1, then balanced growth path

would not be possible.
The competitive equilibrium will involve a wage rate equal to:

wy = (1—a) AK* LK, “.

Let us assume that leisure is not valued and normalize the labor endowment L; to one
in every t. Assume that there is a measure one of representative firms, so that the
equilibrium wage must satisfy

w; = (1 —a) AK,.

Notice that in this model, wage increases whenever there is growth, and the wage as
a fraction of total output is substantial. The rental rate, meanwhile, is given by:

Rt = aA.

The consumer’s decentralized Euler Equation will be (assuming a CIES utility function
and § = 1):
c 1
- = (BRit1)e -
Ct
Substituting for the rental rate, we can see that the rate of change in consumption is
given by:
1
9cF = (Bad)7 .

It is clear that since a planner faces an AK model his chosen growth rate should be:

4CP = (BA)7 .

Then &7 > ¢g“%: the competitive equilibrium implements a lower than optimal growth
rate, which is consistent with the presence of externalities to capital accumulation.

Remark 9.6 (Pros and cons of this model) The following advantages and disadvan-
tages of this model can be highlighted:

+ The model overcomes the “labor is irrelevant” shortfall of the AK model.

— There is little evidence in support of a significant externality to capital accumulation.
Notice that if we agreed for example that o = 1/3, then the externality effect would
be immense.

— The model leads to a large divergence in output levels, just as the AK model.
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9.3.3 Human capital accumulation

Now let “labor hours” in the production function be replaced by “human capital”. Human
capital can be accumulated, so the technology does not run into decreasing marginal
returns. For example, in the Cobb-Douglas case, we have:

F(K, H)=AK*H"™,
There are two distinct capital accumulation equations:
Hi = (1=6")H,+ 1]
Kiyp = (1-0%) K+ IS,
and the resource constraint in the economy is:
o+ 11+ 18 = AKPH .

Notice that, in fact, there are two assets: H and K. But there is no uncertainty;
hence one is redundant. The return on both assets must be equal.

Unlike the previous model, in the current setup a competitive equilibrium does im-
plement the central planner’s solution (why can we say so?). Assuming a CIES utility
function and a general production function F'(-,-), the first order conditions in the central
planner’s problem are:

e Pl =N\
Kign @0 M= Mp [1 — 0% + Fg (K41, Ht+1)}
Hipr 0 =M1 [1 — 6"+ Fy (Kt Ht—i—l)} )

which leads us to two equivalent instances of the Euler Equation:
1
Cit1 K K o

LR ) P L ( 1)}) 08

Ct (ﬁ l K Hiq (9:8)

1
Ct+1 _ <H Ky ;
w5 (K0 )]) 59)

Notice that if the ratio g:—ii remains constant over time, this delivers balanced growth.

Let us denote z; = % Then we have
1— 0% + Fy(zy, 1) =1—6" + Fy (24, 1). (9.10)

But then the equilibrium in the asset market requires that x; = T be constant for all ¢
(assuming a single solution to (9.10)); and T will depend only on 67, 6% and parameters
of the production function F.

Example 9.7 Assume that 6% = 6%, and F (K, H) = AK“H'=®. Then since RHS of
(9.8) must equal RHS of (9.9) we get:

aAz®t = (1 — ) Az®
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From t =1 onwards, K; = xH;. Then
AKMH = A(cH)“H}™®
— gHt
== A\Kt,

where A = Az®, and A=Az, In any case, this reduces to an AK model.

Remark 9.8 (Pros and cons of this approach) We can highlight the following ad-
vantages and disadvantages of this model:

+ Labor is treated seriously, and not resorting to “tricks” like externalities.

— The law of motion of human capital is too mechanistic:

Ht+1 - (1 —5H) Ht‘f‘_[tj—l

Arguably, knowledge might be bounded above at some point. This issue could be
counter-arqued by saying that H; should be interpreted as general formation (such
as on-the-job training, etcetera), and not narrowly as schooling.

LUCAS’S MODEL HERE

—  This model implies divergence of output levels; it is an AK model in essence.

9.3.4 Endogenous technological change

Product variety expansion

Based on the Cobb-Douglas production function F (K, L) = AK“L'~®, this model seeks
to make A endogenous. One possible way of modelling this would be simply to make
firms choose the inputs knowing that this will affect A. However, if A is increasing in K
and L, this would lead to increasing returns, since for any A > 1

A(MNK, AL) (AK)* (\L)"™™ > MAK®L'™.

An alternative approach would have A being the result of an external effect of firm’s
decisions. But the problem with this approach is that we want A to be somebody’s choice;
hence, an externality will not work.

One way out of this dilemma is to drop the assumption of perfect competition in
the economy. In the model to be presented, A will represent “variety” in production
inputs. The larger A, the wider the range of available production (intermediate) goods.
Specifically, let capital and consumption goods in this economy be produced according

to the function )
t
w=1f [l di
0
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where ¢ is the type of intermediate goods, and x,(i) is the amount of good i used in
production at date t. Therefore, there is a measure A, of different intermediate goods.
You may notice that the production function exhibits constant returns to scale.

The intermediate goods z;(i) are produced with capital goods using a linear technol-

ogy: .,
/ nzy (i) di = Ky,
0

i.e., n units of capital are required to produce 1 unit of intermediate good of type i, for
all 1.
The law of motion and resource constraint in this economy are the usual:

Kt+1 == (1 - 5) Kt+[t
¢+ It = ys.

We will assume that an amount Ly, of labor is supplied to the final goods production
sector at time ¢. In addition, we temporarily assume that A; grows at rate 7 (since growth
in A; is actually endogenous):

A = A

Given this growth in A, is long run output growth feasible? The key issue to an-
swer this question is to determine the allocation of capital among the different types of
intermediate goods. Notice that this decision is of a static nature: the choice at ¢ has
no (dynamic) consequences on the future periods’ state. So the production maximizing
problem is to:

max {Li OAt z; 7P (i) di}
1 (4)
s.t. fOAt nx(i) di = K.

Since the objective function is concave, the optimal choice has z;(i) = x; for all 7. This
outcome can be interpreted as a preference for “variety” - as much variety as possible is
chosen.

Substituting the optimal solution in the constraint:

A
/ nrydi = K,
0

Atl'tn = Kt' (911)

Maximized production is:

Ay
0
= LPAu " (9.12)
Using (9.11) in (9.12),
K\’
= LA | —-
o . t(TIAt>

Lﬂ
nlitﬁ APK}P.
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Clearly Atﬂ grows if A; grows at rate 7. If we conjecture that K, also grows at rate
7, then the production function is linear in the growing terms. Therefore, the answer to
our question is “yes”: a balanced growth path is feasible; with K;, y; and A; growing at
rate 7.

The next issue is how to determine +, since we are dealing with an endogenous growth
model. We will make the following assumption on the motion equation for A;:

A1 = Ay + Lyd Ay,

where Lo; denotes labor effort in research and development, and L6 is the number of
new “blueprints” that are developed at time ¢, as a consequence of this R&D. This motion
equation resembles a learning by doing effect.

Exercise 9.9 Let the consumer have the standard CIES preferences
-0

Ul(c) = ith.
t=0

l1—0

Assume that leisure is not valued, and total time endowment is normalized to 1. Then
the amount of labor effort allocated to the production and to the REID sectors must satisfy
the constraint:

Ly + Loy = 1.

Solve the planning problem to obtain (an equation determining) the balanced growth rate

.

The decentralized economy

We will work with the decentralized problem. We assume that there is perfect competition
in the final output industry. Then a firm in that industry solves at time ¢:

At At
max {Lft/ 278 (i) di —w Ly — / qr (1) zy (7) di} :
x¢(i), L1t 0 0

Notice that the firm’s problem is a static one - w; and ¢, () are taken as given. Equilibrium
in the final goods market then requires that these are:

Ay
w = BIO / 27 (i) di
0

a (i) = (1=0) Lyz,” (i). (9.13)

As for the intermediate goods industry, instead of perfect, we will assume that there
is monopolistic competition. There is only one firm per type i (a patent holder). Each
patent holder takes the demand function for its product as given. Notice that (9.13) is
just the inverse of this demand function. All other relevant prices are also taken as given
- in particular, the rental rate R; paid for the capital that is rented to consumers. Then
the owner of patent 7 solves:

(i) = max {a: (@) x; (1) — R }
st. z(i)n =K, (9.14)
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or equivalently, using (9.13) and (9.14),

7 (i) = max {(1 —-B) L7, (%) o RtK;‘} .

Ki
The first-order conditions for this problem are:
(1) L™~ (K7) " = R.

Observe that 7 (i) > 0 is admissible: the firm owns a patent, and obtains a rent from
it. However, this patent is not cost free. It is produced by “R&D firms”, who sell them
to intermediate goods producers. Let pf’ denote the price of a patent at time ¢. Then
ideas producers solve:

max {pf (At+1 — At) — thQt}
Agy1, Lot

S.t. At+1 = At + Lgt(;At.

We will assume that there is free entry in the ideas industry. Hence, there must be zero
profits from engaging in research and development. Notice that there is an externality
(sometimes called “standing on the shoulders of giants”). The reason is that the decision
involving the change in A, A, — A, affects production at ¢+ j via the term 0A,;; in the
equation of motion for A;;;. But this effect is not realized by the firm who chooses the
change in A. This is the second reason why the planner’s and the decentralized problems
will have different solutions (the first one was the monopoly power of patent holders).

The zero profit condition in the ideas industry requires that the price p!” be determined
from the first-order condition

pf 0A; = wy,

where w; is the same as in the market for final goods.
Once this is solved, if p© denotes the date-0 price of consumption (final) goods at ¢,

then we must have -

pipf = ) m (i) S
s=t+1
As a result, nobody makes profits in equilibrium. The inventors of patents appropri-
ate the extraordinary rents that intermediate goods producers are going to obtain from
purchasing the rights on the invention.

Balanced growth

Next we solve for a (symmetric) balanced growth path. We assume that all variables
grow at (the same, and) constant rates:

Ky = 7K,
A1 = YA,
Ctt1 = VG
Ly = Iy
Ly = Ly
Wep1 = YWy
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With respect to the intermediate goods z; (i), we already know that an equal amount
of each type of them is produced each period: z; (i) = x;. In addition, we have that this
amount must satisfy:

Atﬁxt = Kt.

Since both A; and K, (are assumed to) grow at rate -, then z; must remain constant for
this equation to hold for every ¢. Hence,

Ky
xt:x:—

A '

Then the remaining variables in the model must remain constant as well:

R, = R
(i) = 7
pr = p"
(i) = ¢

It is up to you to solve this problem:

Exercise 9.10 Given the assumptions on consumer’s preferences as in exercise 9.9, write
down a system of n equations and n unknowns determining -y, Ly, Lo, etc. After that,
compare the growth rate in decentralized economy with the planner’s growth rate v which
you have already found. Which one is higher?

Product ladders

AGHION-HOWITT STYLE SETTINGS, BUT WITHOUT SOLVING. INVESTMENT-
SPECIFIC MODEL.

9.3.5 Directed technological change
9.3.6 Models without scale effects

9.4 What explains long-run growth and the world
income distribution?

9.4.1 Long-run U.S. growth

9.4.2 Assessing different models

Based on the observation that we have not seen a large fanning out of the distribution of
income over countries it is hard to argue that an endogenous-growth model, with countries
growing at different rates in the long run, is approximately right. Thus, the key is to find
a model of (i) relative income levels and (ii) world growth. In the discussion below, we
will focus on the former, though making some brief comments on the latter.
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The degree of convergence

One of the key elements of testing the explanatory power of both the exogenous and the
endogenous growth models is their implications regarding convergence of growth rates
across different countries. Recall the sixth of the Kaldor’s stylized facts: growth rates
are persistently different across countries. The models discussed above imply:

Exogenous growth vs. Endogenous growth

AK* L AK
leads to divergence in

does not lead to divergence. o
relative income levels.

Is it possible to produce divergence (or at least slow convergence) in the exogenous
growth framework through appropriate calibration? Using a = 1/3, the exogenous growth
model leads to too fast convergence. A “brilliant” solution is to set & = 2/3. The closer
to 1 « is set, the closer is the exogenous growth model to the AK model.

However, we are not so free to play around with a. This parameter can be measured
from the data:

KFy KR
y v

A possible solution to this problem is to introduce a “mystery capital”, S, so that the

production function looks like:

(0%

y=AK L S0,

Or, alternatively introduce “human capital” as the third production factor, besides phys-

ical capital and labor:
y=AK*LPH"F,

Income differences and investment return differences

We will explore the argument developed by Lucas to study the implications of the growth
model for cross-country differences in rates of return on investment. This will allow us
to study how actual data can be used to test implications of theoretical models.

There is a significant assumption made by Lucas: suppose that it was possible to
export U.S. production technology (or “know how”) to other countries. Then the pro-
duction function, both domestically and abroad, would be

Y= AKaLlfa

with a different level of K and L in each country, but the same A, «, and capital depre-
ciation level §. Then imagine a less developed country whose annual (per capita) output

is a seventh of the US output:
YrLpC

1
Yus 7
Using per capita variables (Lys = Lipc = 1),
ment in the US is calculated as:

(9.15)

the marginal return on capital invest-

Rys = aAKS5! =,
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where the parameters o and 0 take values of 1/3 and .1, respectively.
The net rate of return on capital in the US can be estimated to be 6.5% per annum,
so the net rate is:

Rys = 0.065.
Manipulating the Cobb-Douglas expression a little,
_ AKp Yus
QAKS = a—Y = o :
vs Kus Kys

What is the return on capital in the less developed country?

Yoc _ s
Kipce

Ripc =«

We have that

AK Kus \°
7= S _ £US —( US) . (9.16)

yipe  AK$pe  \Krpc
So, from (9.15) and (9.16),

Yoo _ T yus
KLDC 7-& ‘KUS
11—«
- Ta . yU_S,
Kys

and, using o = 1/3,
YLoc 72 Yus

Kipe Kys
We know from the data that
I yus
065 =—-- 22— 11
3 Kys
Yus
= Z—— = 495.
Kys
Therefore,
ILDC  _ y9. IUS _ 9. 495
Kipc USs

= 24.255,

which implies that the (net) rate of return on capital in the less developed country

should be: |
Ripc = 3 24.255 — .1 = 7.985.

This is saying that if the US production techniques could be exactly replicated in less
developed countries, the net return on investment would be 798.5%. This result is striking
since if this is the case, then capital should be massively moving out of the US and into
less developed countries. Of course, this riddle might disappear if we let A;pc < Aps'.

IThe calculation also assumes away the differences in riskiness of investment, transaction costs, etc.
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Exercise 9.11 Assume that rates of return on capital are in fact the same in the US
and in LDC. Assume also that ays = arpc, dus = Orpc, but Ays # Arpc. Under
these assumptions, what would be the difference in capital and total factor productivity
(A) between the US and LDC' given that 25 =77

HUMAN CAPITAL EXTERNALITIES HERE

Other ideas
9.4.3 Productivity accounting
9.4.4 A stylized model of development
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