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ON ADJUSTING THE HODRICK-PRESCOTT FILTER FOR THE FREQUENCY OF OBSERVATIONS

Morten O. Ravn and Harald Uhlig*

Abstract—This paper studies how the Hodrick-Prescot t � lter should be
adjusted when changing the frequency of observations . It complements
the results of Baxter and King (1999) with an analytica l analysis , dem-
onstrating that the � lter parameter should be adjusted by multiplying it
with the fourth power of the observation frequency ratios. This yields an
HP parameter value of 6.25 for annual data given a value of 1600 for
quarterly data. The relevance of the suggestion is illustrated empirically.

I. Introduction

THE Hodrick and Prescott (1980, 1997) � lter (hereafter,
the HP � lter) has become a standard method for remov-

ing trend movements in the business cycle literature. The
� lter has been applied both to actual data (Backus & Kehoe,
1992; Blackburn & Ravn, 1992; Brandner & Neusser, 1992;
Danthine & Donaldson, 1993; Danthine & Girardin, 1989;
Fiorito & Kollintzas, 1994; Kydland & Prescott, 1990) and
in studies in which arti� cial data from a model are com-
pared with the actual data (Backus, Kehoe, & Kydland,
1992; Cooley & Hansen, 1989; Hansen, 1985; Kydland &
Prescott, 1982).

Although the use of the HP � lter has been subject to
heavy criticism (Canova, 1994, 1998; Cogley & Nason,
1995; Harvey & Jaeger, 1993; King & Rebelo, 1993; Söder-
lind, 1994), it has withstood the test of time and the � re of
discussion remarkably well. Thus, although elegant new
bandpass � lters are being developed (Baxter & King, 1999;
Baxter, 1994; Christiano & Fitzgerald, 1999), it is likely that
the HP � lter will remain one of the standard methods for
detrending.

Most applications of this � lter have been to quarterly
data, but data is often available only at the annual frequency,
whereas in other cases monthly data might be published.
This raises the question of how one can adjust the HP � lter
to the frequency of the observations so that the main
properties of the results are conserved across alternative
sampling frequencies. Although most researchers have fol-
lowed Hodrick and Prescott (1980, 1997) and used the value
of 1600 for the smoothing parameter when using quarterly
data, there is less agreement in the literature when moving
to other frequencies. Backus and Kehoe (1992) use a value
of 100 for annual data, whereas Correia, Neves, and Rebelo
(1992) and Cooley and Ohanian (1991) suggest a value of
400.

Baxter and King (1999) have recently shown that a value
of around 10 for annual data is much more reasonable. They
arrive at this value by visually inspecting the transfer
function of the HP � lter for annual data and comparing it to
a bandpass � lter. Hassler et al. (1992) had already obtained
a similar value by investigating the average cycle length
obtained in a time series of output.

This paper complements these insights using two differ-
ent analytical approaches. The � rst approach uses the time
domain and focuses on the ratio of the variance of the
cyclical component to the variance of the second difference
of the trend component: this ratio is often used for calcu-
lating the smoothing parameter. For a particular benchmark
stochastic process, it is shown that time aggregation changes
this ratio by the fourth power of the observation frequency.
The second approach uses the frequency domain and inves-
tigates the transfer function of the HP � lter, thereby obtain-
ing a general result. Again, a change-of-variable argument
shows that one should adjust the HP parameter with approx-
imately the fourth power of the frequency change. Both
approaches therefore yield a value of approximately 1600/
44 5 6.25 for annual data, which is close to the value of 10
given by Baxter and King (1999).

We then show that our recommendations work extremely
well on U.S. GDP data: using a value of the smoothing
parameter of 6.25 for annual data and 1600 for quarterly
data produces almost exactly the same trend. This leads us
to reconsider the business cycle “facts” reported in earlier
studies. As an example, we cast doubt on a � nding by
Backus and Kehoe (1992) on the historical changes in
output volatility and return instead to older conventional
wisdom (Baily, 1978; Lucas, 1977): output volatility turns
out to have decreased after World War II.

The remainder of the paper is organized as follows.
Section II presents the HP � lter and provides the � rst, time
domain-based approach, whereas section III provides the
second, frequency domain-based approach. In section IV,
we recompute some facts about business cycles. Finally,
section V concludes.

II. A Time Domain Perspective

The HP � lter removes a smooth trend t t from some given
data y t by solving

min
t t t51

T

~~yt 2 tt!
2 1 l~~tt11 2 tt! 2 ~tt 2 tt21!!

2!.

The residual y t 2 t t (the deviation from the trend) is then
commonly referred to as the business cycle component.
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The � lter involves the smoothing parameter l, which
penalizes the acceleration in the trend relative to the busi-
ness cycle component. Researchers typically set l 5 1600
when working with quarterly data. However, data does not
always come at quarterly intervals. It may even be desirable
to move to annual, monthly, or some other time interval of
observation instead.

Thus, the question arises how the HP � lter should be
adjusted for the frequency of observations, and this question
is the focus of this paper. We do not investigate whether the
HP � lter is desirable per se or aim at a comparison to some
optimal bandpass � lter as in Baxter and King (1999).
Rather, we take it as granted that a researcher wishes to � lter
the data using the HP � lter, and ask how the parameter l
should be adjusted when changing the sampling frequency.

A popular perspective on the smoothing parameter in the
literature is to consider the decomposition of some given
time series y t into a trend t t and a cycle ct:

yt 5 t t 1 c t (1)

If c t as well as the second difference of t t are normally and
independently distributed, then the HP � lter is known to be
optimal, and l is given as the ratio of the two variances, l 5
sc

2/sD2tt
2 (Hodrick & Prescott, 1980, 1997; King & Rebelo,

1993). However, even if the HP � lter is optimal for equation
(1), it is unlikely to be optimal when time aggregating the
process (1) because time aggregation usually introduces
moving average terms. As our focus is on adjusting l, when
changing the frequency of observation, we shall however
ignore the issue of optimal � ltering and instead simply focus
on the question of how the ratio of the variances change.

It is convenient to consider a benchmark continuous-time
version of equation (1) that satis� es the conditions previ-
ously stated, that is, where the cycle as well as the second
difference of the trend are independently and normally
distributed, taking the form of Brownian motion incre-
ments.1 We then analyze the change in the variances when
observing the process at discrete time intervals. Let yt be the
“� ow” dz t of some stochastic process zt with

dz t 5 t t dt 1 scdW t
1 (2)

where

dtt 5 m t dt, dm t 5 stdW t
2 (3)

and dW t
1 and dW t

2 are two independent Brownian motions.
There are two possibilities for observing the process at some
discrete time interval a: these observations may be time
aggregated (or time averaged) or they may be sampled at
these discrete time intervals. (See Christiano and Eichen-
baum (1986).)

Consider time aggregation � rst; that is, for some length
a . 0, consider observing

yt;a 5
s50

a

dz t2s 5 tt;a 1 c t;a

where

tt;a 5
s50

a

m t2sds,

c t;a 5
s50

a

scdW t
1.

For any stochastic process x t, de� ne the a-differencing
operator

Dax t 5 xt 2 x t2a.

We are interested in how

la 5
s2~c t;a!

s2~Da
2t t;a!

changes with a.2

Clearly,

s2~c t;a! 5 asc
2 5 as2~ct;1!.

For Da
2tt;a, introduce � rst x t 5 Datt;a and write it as

xt 5
s150

a

~m t2s1 2 m t2a2s1!ds1

5
s150

a

s250

a

dm t2s12s2ds1.

Substitute dm t2s12s2
5 x t2s12s2

ds2 and repeat this calcula-
tion to obtain an expression of the second a difference,

Da
2t t;a 5 st

s150

a

s250

a

s350

a

dW t2s12s22s3

2 ds2ds1

5 st

s50

3a

A~s; a!dW t2s
2 ,

where

1 See the appendix of Ravn and Uhlig (2001) for a discrete time analysis
and for an extended discussion of the links with optimal � ltering.

2 One can equally well divide the processes by a to obtain time
averaging rather than time aggregation : this makes no difference for la

and the calculation is very similar.
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A~s; a! 5
s150

a

s250

a

1@0,a#~s 2 s1 2 s2!ds2ds1

and where the last equality was obtained by a change of
variables, s 5 s1 1 s2 1 s3. The variance is therefore given
by

s2~Da
2tt;a! 5 st

s50

3a

A~s; a!2ds. (4)

Although one could calculate A(s; a), one does not have
to. Simply observe that

A~s; a! 5 a2A~s/a; 1!.

With one more change of variable to s̃ 5 s/a in equation
(4), we � nally � nd

s2~Da
2tt;a! 5 a5st

s̃50

3

A~s̃; 1!2ds̃ 5 a5s2~D1
2tt;1!,

and hence

la 5
1

a4 l1.

That is, the HP parameter l should be adjusted with the
fourth power of the frequency change. This � nding will be
recon� rmed in section III, using another approach.

For sampling at discrete time intervals a, the calculations
become simpler yet. Suppose we observe the � ow y t 5 dz t

at intervals a.3 The diffusion part still has variance sc
2dt.

What needs to be calculated is the variance of Da
2t t. The

same calculation as before leads to

Da
2t t 5

s150

a

s2

a

stdW t2s12s2

2

5
s50

2a

B~s; a!dW t2s,

where

B~s; a! 5
s150

a

1@0,a#~s 2 s1!ds1 5 aB~s/a; 1!

Similar to the calculation above,

la
~s! 5

sc
2dt

s2~Da
2tt!

5
1

a3 l1
~s!.

That is, the smoothing parameter for the HP � lter should be
adjusted using the third power of a. This result differs from
the fourth-power result for the previous time-averaged data,
but it also differs from the literature suggestion of adjusting
with the second or the � rst power of a.

In practice, one may therefore wonder whether adjust-
ment with the fourth or the third power is more appropriate.
Our recommendation here is to always use the fourth power
rather than the third. First, most macroeconomic time series
are time averaged, so that the preceding calculation would
suggest adjusting with the fourth power anyhow. But, even
for the sampling case, simulations of this process shows that
adjusting with the fourth power rather than the third pro-
duces essentially the same trend. The next section can be
read as an explanation why this is the case.

III. A Frequency Domain Perspective

An alternative way to look at the issue is from a fre-
quency domain perspective, which allows us to provide a
general result, as we no longer need to assume the special
structure (2) and (3). The transfer function of the HP � lter is
given by (King & Rebelo, 1993)

h~v; l! 5
4l~1 2 cos ~v!!2

1 1 4l~1 2 cos ~v!!2 (5)

This � lter is similar to a high-pass � lter. (See, for exam-
ple, Ravn and Uhlig (1997) or Baxter and King (1999) for
a plot of the transfer function.) Choosing different values for
l is comparable to choosing different values for the cutoff
point of the high-pass � lter.

Let h(v; l1) be the � lter representation for quarterly data
and let h(v/s; ls) be the � lter representation for an alter-
native sampling frequency, s, where we let s be the ratio of
the frequency of observation compared to quarterly data
(s 5 1/4 for annual data or s 5 3 for monthly data). Then,
ideally, we would like to have

h~v; l1! h~v/s; ls!. (6)

Although this cannot hold exactly for all v, it should hold at
least approximately.4 To derive the appropriate adjustment

3 Observing should be understood here in the sense that the continuous -
time limit approximates some discrete time process at very small time
intervals.

4 By this equation we do not mean to say that the HP � lter is “optimal”
in any sense; rather, it says that, as the frequency of the observation s is
altered, the � lter—being optimal or not—should have approximatel y the
same properties .

TABLE 1.—OPTIMAL POWER ADJUSTMENT AT FREQUENCY v FOR AN

ADJUSTMENT LOCALLY AROUND A QUARTERLY SAMPLING RATE

v 0 p/20 p/10 p/5

m(1, v) 4 3.992 3.967 3.868

As one can see, the optimal adjustment is generally between 3.8 and 4.0 at the relevant frequencies.
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rule ls, one could, in principle, � nd ls as to minimize some
distance metric between h(v; l1) and h(v/s; ls). However,
we take a shortcut to this and specify a simple functional
rule for this adjustment process: we apply the simple crite-
rion to multiply l with some power of the frequency
adjustment, that is, to choose

ls 5 sml1. (7)

Thus, the problem is to choose m so as to � t equation (6).
Consider a marginal change in the observation frequency

ratio s around s 5 1, and look at its differential impact on
the HP � lter. For the correct adjustment, it should be the
case that

d

ds
h~v/s; ls! 0 (8)

where
d

ds
denotes the total derivative with respect to s. For

each v and s , this equation can be solved for the parameter
m 5 m(s, v): one � nds that

m~s , v! 5 2
v/s sin ~v/s!

1 2 cos ~v/s!
. (9)

If the power speci� cation is appropriate, then this expres-
sion should be approximately constant over the range of
“relevant” frequencies, v. Inspection of the transfer func-
tion shows that it suf� ces to restrict attention to values 0 #
v # p/5 (Ravn & Uhlig, 1997). Table 1 lists values of m 5
m(1, v) 5 m(s, vs) for v in this range. The values in this
table suggest that m 5 4 (or something close to it) is an
excellent choice if one wishes to make the transfer function
invariant to the frequency of observation, thereby recon-
� rming the results of section II for time-aggregated data.
The analysis furthermore shows that m 5 4 is the exact
outcome only at v 5 0: otherwise, a slightly lower number
between, say, m 5 3.8 and m 5 4 might be more
appropriate.

Thus, for lquarterly 5 1600, this implies that lannual 5
1600/44 5 6.25 (or 8.25 for m 5 3.8) and lmonthly 5
1600 z 34 5 129600 (104035 for m 5 3.8).

Given these results, we now check how well this adjust-
ment rule works in practice. We examine U.S. real GDP
from the Bureau of Economic Analysis for the period
1947–2000 sampled at the quarterly and the annual fre-
quency. We compare the trend component of the quarterly
data using lquarterly 5 1600 with the trend components of
the annual data using lannual 5 400, 100, 25, or 6.25. The
results are shown in � gure 1.5 This � gure clinches our case
once more: the trend component of the quarterly data using
lquarterly 5 1600 and the trend component of the annual
data using lannual 5 6.25 are practically identical, whereas
large differences are visible for lannual 5 400, 100, or 25.

IV. Recomputing the Facts

Based on the preceding analysis, it seems natural to ask
whether the modi� cation of the rule for adjusting the
smoothing parameter matters for reported business cycle
“facts.” For an application, we recompute some of the

5 To make the results visually clearer, we have removed a linear trend
from the HP � lter trend components .

TABLE 2.—OUTPUT VOLATILITY

Standard Deviations (%) n 5 4 n 5 2*

I. Prewar II. Interwar III. Postwar I/III II/III I/III II/III

Australia 3.77 (0.37) 2.47 (0.35) 1.40 (0.14) 2.69 1.77 3.3 2.5
Canada 3.13 (0.27) 5.06 (0.77) 1.50 (0.21) 2.09 3.38 2.0 4.4
Denmark 2.20 (0.17) 2.45 (0.37) 1.35 (0.15) 1.63 1.82 1.6 1.8
Germany 2.32 (0.21) 5.26 (0.88) 1.80 (0.24) 1.29 2.92 1.5 4.4
Italy 2.13 (0.20) 2.60 (0.30) 1.51 (0.14) 1.41 1.72 1.2 1.8
Japan 2.10 (0.27) 2.47 (0.38) 1.45 (0.18) 1.45 1.70 0.8 1.0
Norway 1.07 (0.09) 2.89 (0.56) 1.06 (0.12) 1.01 2.72 1.1 2.0
Sweden 1.73 (0.22) 2.41 (0.47) 1.03 (0.09) 1.68 2.34 1.7 2.6
United Kingdom 1.54 (0.16) 2.50 (0.30) 1.27 (0.17) 1.21 1.97 1.3 2.1
United States 3.30 (0.35) 4.91 (0.70) 1.58 (0.17) 2.09 3.11 1.9 4.1

Numbers from Backus and Kehoe (1992). Numbers in parentheses are standard errors computed from GMM estimations of the unconditiona l moments.

FIGURE 1.—TREND COMPONENTS OF US REAL GDP

The � gure illustrates the HP � lter trend components of U.S. real GDP sampled either at the quarterly
frequency and using lquar ter ly 5 1600 (the solid line) or at the annual frequency using alternative values
for lannual. For lannual 5 6.25, the trend components are practically identical. To make the � gure clearer,
we have taken a linear trend out of the HP � lter trend components.
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results reported by Backus and Kehoe (1992) for a cross
section of OECD countries using historical annual data.
These authors used lannual 5 100, whereas we shall use
lannual 5 6.25.

One of Backus and Kehoe’s (1992) most interesting
� ndings was that output volatility was higher in the interwar
period than during the postwar period, but that there is no
general rule as far as a comparison of the postwar period
with the prewar (prior to World War I) period is concerned.
This result is in contrast to the conventional wisdom of, for
example, Burns (1960), Lucas (1977), and Tobin (1980) that
output volatility declined after World War II relative to both
earlier periods. Another interesting result was that prices
changed from generally being procyclical before World War
II to being countercyclical thereafter.

Table 2 lists the results for output volatility when using
our recommended value for the smoothing parameter. We
� nd that the difference in volatility between the prewar and
the postwar period generally narrows and that, for most
countries, there has been a decline in volatility in the
postwar period relative to either the interwar period or the
prewar period.6 In contrast to Backus and Kehoe (1992),
these results are in line with the traditional wisdom previ-
ously quoted. This is an important result that Baily (1978)
and Tobin (1980) have interpreted in terms of stabilization
policy.

Table 3 reports the results for the cyclical behavior of the
price level. There, and except for Norway, our results
recon� rm the � nding of Backus and Kehoe (1992), that
prices have become countercyclical in the postwar period
and that the interwar period historically was the period in
which procyclicality was most pronounced. That is, this
result seems to be fairly robust to the choice of the smooth-
ing parameter. These results are also in line with other
studies, such as Cooley and Ohanian (1991) and Ravn and
Sola (1995).

V. Conclusions

This paper provides an analytic investigation into how the
smoothing parameter, l, of the HP � lter should be adjusted
when changing the frequency of observation. The major
conclusion is that the l parameter should be adjusted
according to the fourth power of a change in the frequency
of observations. For annual observations, this suggests set-
ting l 5 6.25, which is close to the value found in Baxter
and King (1999), but different from the value l 5 100 or
l 5 400 typically found in the literature. Some well-known
comparisons of business cycles moments across countries
and time periods have been recomputed using the recom-
mended fourth-power adjustment. In particular, we cast
doubt on a � nding by Backus and Kehoe (1992) and return
instead to older conventional wisdom (Baily, 1978; Lucas,
1977; Tobin, 1980): based on the new HP � lter adjustment
rule, output volatility turns out to be lower in the postwar
period compared to the prewar period.
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IDIOSYNCRATIC RISK AND VOLATILITY BOUNDS, OR CAN MODELS WITH IDIOSYNCRATIC RISK
SOLVE THE EQUITY PREMIUM PUZZLE?

Martin Lettau*

I. Introduction

RECENTLY, there has been of lot of interest in comput-
ing asset prices in incomplete market models; see, for

example, Constantinides and Duf� e (1996), Heaton and
Lucas (1996), den Haan (1996), Krusell and Smith (1997)
and Storesletten, Telmer, and Yaron (1997). These papers
have shown that market incompleteness can affect prices of
� nancial assets qualitatively. In this paper, I propose a
simple method to check whether these effects are quantita-
tively important enough to solve the equity premium puzzle.

The main argument is as follows. Most incomplete market
models specify endogenous endowment (labor income)
shocks that are not fully insurable. Agents are allowed to
trade in a small number of securities and solve for their
optimal portfolio and consumption policies. It is dif� cult to
test these types of models directly because the quality of
household-level consumption data is very poor.1 Instead of
this direct approach using consumption data, I use data on
individual income, which is measured more precisely than is
individual consumption. In other words, I assume that
agents cannot smooth idiosyncratic income shocks at all and
are forced to consume their endowment. If agents were
allowed to trade using some restricted set of securities, they
would be able to smooth, at least partially, their individual
shocks. Hence, the income process provides an upper bound
on the volatility of individual consumption. If models with
idiosyncratic risk are not able to generate large risk premia,
they will most likely not be able to perform better with
consumption data. I � nd even very volatile income shocks
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are not able to quantitatively to generate high-enough risk
premia.

The paper is organized as follows. First, I brie� y dem-
onstrate how idiosyncratic shocks can affect the Sharpe
ratio.2 Intuitively, idiosyncratic shocks can affect asset
prices if their distribution depends on aggregate state vari-
ables (Mankiw, 1986; Constantinides & Duf� e, 1996). Sec-
ond, I use the estimated processes for idiosyncratic income
estimated by Heaton and Lucas (1996), Krusell and Smith
(1997), and Storesletten et al. (1997) and compute the
Sharpe ratios as if agents had to consume their endowment.
I � nd that none of the idiosyncratic income processes is able
to generate a Sharpe ratio that is found in the data.3

II. The Sharpe and Idiosyncratic Shocks

Let C t
j denote consumption of consumer j in period t.

Lowercase letters denote log variables, so c t
j is log con-

sumption of agent j. M t11
j is the stochastic discount factor

(SDF) of agent j, R t11 is the return of an asset, and RP t11

is the risk premium. The � rst-order condition is

E t@M t11
j R t11# 5 1. (1)

The Sharpe ratio is de� ned as the price of risk of the market
portfolio and depends on the volatility of the SDF and its
correlation with the market portfolio:

SR~Mt11
j ! 5 max

all assets

Et@RPt11#

st@RPt11#
(2)

5 2rt~M t11
j , RP t11

m !
st@M t11

j #

Et@M t11
j #

#
st@M t11

j #

Et@M t11
j #

.

Note that, in an economy with complete markets, the SDF
of the representative agent is perfectly negatively correlated
with the market portfolio, so that the Sharpe ratio is deter-
mined only by the volatility of the SDF. This is, however, no
longer true in a model with idiosyncratic shocks because
returns on aggregate assets cannot be correlated with idio-
syncratic shocks. Hence, despite the fact that the SDF of an
individual might be very volatile, the net effect on the
Sharpe ratio is ambiguous.

I assume that consumption growth is of the form

Dc t11
j 5 E tDc t11

j 1 et11 1 h t11
j ,

with e t11 ; N(2s e
2/ 2, s e

2) and h t11
j ; N(s h,t11

2 / 2,
s h,t11

2 ). To illustrate that it is crucial that the variance of
idiosyncratic shocks depends on the aggregate state, I con-
sider the simplest example:

sh,t11
2 5 a0 1 a1e t11. (3)

Lettau (2001) shows that

SR~M t11
j ! gse 1 2 a1

1 1 g

2
.

The Sharpe ratio increases if the variance of idiosyncratic
shocks depends negatively on the aggregate state. This is the
same mechanism highlighted by Mankiw (1986) and Con-
stantindes and Duf� e (1996).

III. Volatility Bounds with Income Data

Next, I evaluate the empirical importance of the mecha-
nism presented in the previous section. The problem with a
direct empirical analysis of this channel is that individual
consumption data (for example, in the PSID) is known to be
of poor quality. In addition, consumption data in the PSID
span only a short time series. Hence, estimating equations
like equation (3) directly from consumption data is � awed
with measurement error. However, individual income data
in the PSID is of much higher quality, and there is a large
empirical literature that estimates income processes for
individual households (Abowd & Card, 1989; Carroll, 1992;
MaCurdy, 1982). As an alternative to a direct test using
consumption data, I use these income processes instead of
evaluating the volatility bounds on an individual level. This
strategy is appropriate if individual consumption is
smoother than individual income. Of course, because there
is no data set with a long time series of high-quality
household consumption data, it is impossible to check
directly whether individual consumption is indeed smoother
than income. However, we can � nd theoretical conditions
under which we expect this to be the case. I will argue next
that these conditions are likely to be ful� lled in the data.4

Start with an individual who consumes her permanent
income. This is a useful point of departure because much of
the consumption literature is cast in this framework. (See
Deaton (1992) for a survey.) Intuitively, if income growth is
negatively autocorrelated, consumption is smoother than
income because a shock to income has less than a one-to-
one effect on permanent income. On the other hand, if
income growth is positively autocorrelated, then permanent
income is more volatile than current income. Because,
theoretically, permanent income can be more or less volatile
than income, it is an empirical question which case is more
realistic. The evidence in the empirical literature points
overwhelmingly in the direction of negatively autocorre-
lated income growth on the household level (Abowd &
Card, 1989; Carroll, 1992; MaCurdy, 1982; Pischke, 1995).
In this case, permanent income is smoother than current

2 I focus on the Sharpe ratio instead of the equity premium because it is
a measure of the risk-return tradeoff that is independen t of any speci� c
asset. Computing prices of individual asset would require the speci� cation
of a dividend process.

3 The working-pape r version of this paper, Lettau (2001), contains a
more detailed analysis.

4 Lettau (2001) contains a more detailed derivation of the following
statements.
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income, and therefore consumption of a permanent income
agent will be smoother than her income.5

If consumption is indeed smoother than income, then risk
premia and volatility bounds computed using income data
provide a useful lower bound. If risk premia are low for
income data, then there is surely little hope in generating
higher-risk premia using smoother consumption data.
Hence, this approach provides a straightforward benchmark
to evaluate the potential of models with idiosyncratic risk.
The punchline is that risk premia are too small even if
individual income data are used to compute them. The
reason is that the covariance of the volatility of idiosyncratic
income risk and the aggregate state is too small to increase
risk premia, even when income is used instead of consump-
tion.

Because agents receive different income in each period
and they cannot trade with each other, they will in general
disagree on asset prices. One agent might require an ex-
pected return of 5% for some asset given her particular
income process, and another agent might require only a 3%
expected return for the same asset. If there were open asset
markets, they would trade the asset and smooth their con-
sumption paths so that in equilibrium they agree on ex-
pected returns of all assets. Because I abstract from any
asset trading in this paper, I compute the expected returns
implied by the consumption process (which is equal to the
income process by assumption) of each individual agent. To
obtain an upper bound for the ability of idiosyncratic risk to
increase risk premia, I consider the highest expected return
of a given asset across all agents. In terms of the Sharpe
ratio, using the individual income processes as consumption
will result in different Sharpe ratios for different agents. An
upper bound for the Sharpe ratio that would result from
trading is given by the highest Sharpe ratio computed from
the individual income processes. To give the models the best
possible shot, I report this maximal Sharpe ratio across
agents. The Sharpe ratio, estimated from postwar data using
S&P 500 excess returns, is 0.27 per quarter or 0.54 per
annum.

A. Income Process from Heaton and Lucas

Heaton and Lucas (1996) (hereafter, HL) present a model
with idiosyncratic labor income shocks, transaction costs,
borrowing, and short-sale constraints with eight discrete
states. Table 1 summarizes the results for idiosyncratic
income shocks estimated by HL. They estimate sh ,t11 5
ã0 1 ã1 log(g t11

a ), where ga is the growth rate of aggregate

income.6 HL consider three sets of estimates: ã0 5 0.251,
ã1 5 20; ã0 5 0.360, ã1 5 21.064; and ã0 5 0.290,
ã1 5 24.450. The second set of parameters corresponds to
the PSID regressions results. The aggregate shocks are
chosen to match the moments of aggregate consumption. In
each of the eight states, I compute the Sharpe ratio for both
types of agents. Then I compute the average Sharpe ratio
(weighted with the probabilities of the stationary distribu-
tion) across states using the higher of the two Sharpe ratios.
The transitions probabilities are taken from HL, who con-
sider two cases: one with aggregate dividends and one
without.

For low risk aversion of unity, the picture looks very
bleak. None of the three cases reach a Sharpe ratio of 0.1.
Note that the effect of dividend uncertainty is very small. It
is clear that higher risk aversion is needed to match the
Sharpe ratio in the data. The bottom panel uses g 5 5. Here,
Sharpe ratios increase substantially when ã1 is negative. For
the case corresponding to the PSID data, the Sharpe ratio is
approximately 0.18. This value is still only about one-third
of the Sharpe ratio in the data. Only if ã1 5 24.45 (that is,
more than four times the PSID value) is the Sharpe ratio
high enough to be consistent with the data.

Is this a success? As mentioned before, this analysis
computes only a very loose upper limit for the Sharpe ratio:
consumers cannot trade against their idiosyncratic labor
shocks at all; the Sharpe ratio of the poor agents is used
despite the fact that those agents are likely to be borrowing
constraint and hence do not determine asset prices; and,
lastly, the required value for ã1 is approximately four times
the value found in the data. Only in this case does the model
generate a reasonable Sharpe ratio. Thus, it is not surprising
that HL found low Sharpe ratios and risk premia once they
allow agents to trade. The model is not able to produce
higher risk premia even if agents are forced to consume
their labor income.

5 One possible objection to these arguments is that consumption behav-
ior in models with incomplete markets might deviate from permanent
income behavior. But, even in more-complex models, it is unlikely that
consumption is more volatile than current income if income growth is
negatively autocorrelated .

6 HL specify the standard deviation of the idiosyncrati c shock as a linear
function of the aggregate growth rate. This implies s h ,t11

2 5 ã 0
2 1 2ã0ã1

log(g t11
a ) 1 ã 1

2(log(g t11
a ))2.

TABLE 1.—THE SHARPE RATIO WITH HEATON-LUCAS INCOME SHOCKS

Income Process

Heaton and Lucas

With Dividends No Dividends

g 5 1

HL1: ã1 5 0 0.0110 0.0111
HL2: ã1 5 21.064 0.0299 0.0301
HL3: ã1 5 24.450 0.0767 0.0769

g 5 5

HL1: ã1 5 0 0.0552 0.0553
HL2: ã1 5 21.064 0.1813 0.1820
HL3: ã1 5 24.450 0.5773 0.5785

Table reports the average Sharpe ratio across the eight states of the economy weighted with the
probabilities of the stationary distribution. The maximal Sharpe ratio across agents is used in each state.
The model is calibrated for annual data.
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B. Income Process from Krusell and Smith

Krusell and Smith (1997) (hereafter, KS) propose a
model in which agents have a higher probability to become
unemployed when aggregate times are bad. This yields
again a negative covariance of idiosyncratic uncertainty and
state aggregate that has the potential to increase risk premia.
Let aggregate output per capita be given by Ya. If an agent
becomes unemployed, she receives unemployment insur-
ance of gYa. Hence, an employed agent’s income is (1 2
g)Ya. Aggregate income can take on two values, so that
each agent has four possible states.

KS calibrate the model as follows. The unemployment
rate in the good aggregate state is 4% and 10% in the low
state. Unemployed agents receive g 5 9% unemployment
insurance. The Markov transition probabilities are chosen so
that unemployment shocks are fairly persistent: that is, an
unemployed agent today has a smaller probability to � nd a
job tomorrow than an agent who is employed today. Again,
I refer to KS for the exact transition probabilities. All other
parameters are taken from KS, who calibrate the model for
quarterly data.

Table 2 reports the Sharpe ratios in this economy. (Recall
that the Sharpe ratio in quarterly data is 0.27.) Unemployed
agents have a much higher Sharpe ratio than do employed
agents because their current and expected future income is
much lower. Note that the Sharpe ratio of both types is
higher in good aggregate times; that is, it is procyclical. This
comes from the speci� c choice of the transition probabili-
ties. However, the lowest Sharpe ratio (of the unemployed
agents in bad times) just matches the Sharpe ratio in the
data.

C. Income Process from Storesletten, Telmer, and Yaron

Storesletten, Telmer, and Yaron (1997) (hereafter, STY)
study an OLG model with idiosyncratic income shocks and
borrowing constraints. They calibrate various Markov pro-
cesses for idiosyncratic shocks to match the PSID data.
Labor supply of agent j, Nj, is determined by (potentially
multiple) idiosyncratic shocks: N t

j 5 exp(h t
j). The labor

input is supplied inelastically and combined with a aggre-
gate Cobb-Douglas production function to produce the con-
sumption good.

STY propose different processes for h t
j. Their � rst three

processes differ mainly in the persistence of the idiosyn-
cratic shocks, which turns out to be important for the risk

sharing in their OLG model. In their fourth version, they
allow the aggregate state to affect the variance of the
idiosyncratic shock. They estimate equation (3) using PSID
data. Using two different estimation techniques, they esti-
mate the coef� cients as â0 5 0.054, â1 5 20.011; and
â0 5 0.054, â1 5 20.046. Both slope coef� cients are not
negative enough to increase the Sharpe ratio. Finally, STY
propose a different technique to estimate cross-sectional
dispersion: they estimate a model with a high and low
idiosyncratic variance regime depending on whether the
aggregate economy is above or below trend. STY � nd that
the variance of idiosyncratic shocks is 0.032 when the
aggregate economy is above trend and 0.184 when it is
below trend. Table 3 reports the Sharpe ratio for all � ve
cases considered by STY. Again, all other parameters are
taken from STY.

The case without any idiosyncratic shocks generates a
Sharpe ratio of 0.0594. The following three cases produce
the same Sharpe ratio as without idiosyncratic risk. Here,
the distribution of the idiosyncratic shocks are assumed to
be independent of the aggregate state. The next two versions
incorporate the dependence of the variance of the idiosyn-
cratic shock on the aggregate state as estimated from the
PSID data set. Because the estimated a1’s are negative, the
Sharpe ratio increases, but the increase is only minute
because the parameters are not negative enough. The Sharpe
ratio in the case with the changing variance regime is
approximately 0.1, which is still only one-� fth of the re-
quired value. None of the income processes considered by
STY can produce high Sharpe ratios even if agents cannot
smooth them.

IV. Conclusion

To evaluate the empirical relevance of idiosyncratic un-
certainty, I compute Sharpe ratios using individual income
processes from the PSID data set. Using income data pro-
vides an upper bound for individual consumption data in the
absence of reliable consumption data. I take the estimated
income processes from recent studies of Heaton and Lucas
(1996), Krusell and Smith (1997), and Storesletten, Telmer,

TABLE 2.—THE SHARPE-RATIO WITH KRUSELL-SMITH INCOME SHOCKS

Agent

Aggregate State

Bad Good

Employed 0.0641 0.1088
Unemployed 0.1759 0.2840
No employment shocks 0.0037 0.0037

Table reports the Sharpe ratio with KS unemployment shocks. The model is calibrated for quarterly
data.

TABLE 3.—THE SHARPE-RATIO WITH STORESLETTEN, TELMER,
AND YARAN INCOME SHOCKS

Income Process Sharpe Ratio

No idiosyncratic shocks 0.0594
Unit root 0.0594
High persistence 0.0594
Moderate persistence 0.0594
Low persistence 0.0594
PSID a1 5 20.011 0.0604
PSID a1 5 20.046 0.0635
High/low variance regimes 0.1013

Table reports the Sharpe ratio for income processes considered by Storesletten, Telmer, and Yaron
(1997). The parameters for the different AR1 income shocks are as follows. STY approximate the
processes with discrete Markov chains. Let r be the AR1 coef� cient and sh the innovation standard
deviation. Unit root: r 5 1, sh 5 0.201; high persistence: r 5 0.929, sh 5 0.230; moderate persistence:
r 5 0.529, sh 5 0.251. The two PSID cases use the unit root parameters and the estimated coef� cients
in equation (3). The last case assumes a variance of 0.032 when the economy is in the high-aggregate
state and 0.184 when the aggregate state is low. The model is calibrated for annual data.
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and Yaron (1997) and compute Sharpe ratios as if agents had
to consume their endowment. Because there is no market
that equilibriates the SDF of different agents, they will
disagree on asset prices. To obtain an upper bound on
Sharpe ratios, I compare the Sharpe ratio in the data to that
of the maximal Sharpe ratio across agents. I � nd that Sharpe
ratios are generally smaller than in the data; only some
extreme cases just reach the data equivalent. Hence, it
seems unlikely that idiosyncratic consumption risk can
generate an SDF that pass the Hansen-Jagannathan bounds
test.
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