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Abstract

This paper considers learning when the distinction between risk and ambigu-
ity (Knightian uncertainty) matters. Working within the framework of recursive
multiple-priors utility, the paper formulates a counterpart of the Bayesian model
of learning about an uncertain parameter from conditionally i.i.d. signals. Am-
biguous signals capture responses to information that cannot be captured by noisy
signals. They induce nonmonotonic changes in agent confidence and prevent am-
biguity from vanishing in the limit. In a dynamic portfolio choice model, learning
about ambiguous returns leads to endogenous stock market participation costs that
depend on past market performance. Hedging of ambiguity provides a new reason
why the investment horizon matters for portfolio choice.

*Department of Economics, U. Rochester, Rochester, NY, 14627, lepn@troi.cc.rochester.edu, and
Department of Economics, NYU, New York, 10003, ms1927@nyu.edu. Epstein acknowledges financial
support from NSF (grant SES-9972442). We are grateful to Hal Cole, Mark Grinblatt, Mark Machina,
Massimo Marinacci, Monika Piazzesi, Bryan Routledge, Pietro Veronesi and seminar participants at
Berkeley, Carnegie-Mellon, Chicago, Davis, the Federal Reserve Bank of Atlanta, Iowa, the NBER
Summer Institute, NYU, Northwestern, Rice, Rochester, Stanford and Wharton for helpful comments
and suggestions.



1 INTRODUCTION

Models of learning typically assume that agents assign (subjective) probabilities to all
relevant uncertain events.! These models leave no role for confidence in probability
assessments; in particular, the degree of confidence does not affect behavior. Thus,
for example, agents do not distinguish between risky situations, where the odds are
objectively known, and ambiguous situations, where they may have little information and
hence also little confidence regarding the true odds. The Ellsberg Paradox has shown that
this distinction is behaviorally meaningful in a static context: people treat ambiguous
bets differently from risky ones. This paper argues that the distinction matters also for
learning.

As a concrete example of the limitations of “probabilistic” learning, consider an agent
who prepares for the possibility of an earthquake. To determine the likelihood that a
major quake will occur in the next five years, he samples the opinions of several geolo-
gists. The experts disagree, but all provide numbers between 1% and 4%. If the agent
thinks in terms of probabilities, he forms a (possibly weighted) average of the different
estimates to arrive at a single probability of, say, 2%. Now suppose that there is news of
a breakthrough in geological research that leads all experts to agree that the probability
of a quake is in fact 2%. The agent will not react to this news at all. He will continue to
believe that the probability of an earthquake is 2% and any decisions — how much insur-
ance to buy, for example — will be made as before. However, the news is likely to make
most people feel more confident about having the “right” estimate and will conceivably
reduce their demand for insurance - after all, in light of the news they do not have to
worry at all about high estimates near 4%. This illustrates our motivation for modeling
learning under ambiguity - learning affects confidence and hence also behavior.

Our starting point is recursive multiple-priors utility, a model of utility axiomatized
in Epstein and Schneider [15], that extends Gilboa and Schmeidler’s [21] model of de-
cision making under ambiguity to an intertemporal setting. Under recursive multiple-
priors utility, learning is completely determined by a set of probability measures P, and
measure-by-measure Bayesian updating describes responses to data. The present paper
introduces a tractable class of sets P, designed to capture a decision-maker’s a priori
view that the data are independent, conditionally on an unknown (but fixed) parameter.
This a prior: view is commonly imposed on learners in a wide variety of economic ap-
plications.? We establish several distinctive properties of learning under ambiguity and
provide an application to portfolio choice to illustrate it in an economic setting.

The dynamics of learning under ambiguity are generally richer than for probabilistic
learning, since agent confidence changes along with beliefs. We focus in particular on
learning from ambiguous signals, that is, situations where agents are uncertain about the

IThis is true for models of rational learning, which typically follow a Bayesian approach, but also for
models of adaptive learning.

’In a Bayesian framework, one would assume that signals are i.i.d. with a distribution that depends
on an unknown parameter, and that the decision maker has a prior over the parameter. Equivalently,
the decision-maker’s subjective probability belief about the data is exchangeable.



distribution of the data, given the parameter. Ambiguous signals imply nonmonotonic
changes in confidence — they can induce ambiguity, rather than resolve it. They also
prevent ambiguity from vanishing in the limit: while the learning process always settles
down, it may do so in a state of permanent ambiguity. Ambiguous signals play an
important role in our intertemporal portfolio choice problem, where they are used to
model stock returns. Changes in investor confidence then give rise to history-dependent
market exit and entry rules even when there are no market frictions.

In our model, the set P is represented with the help of a tuple (6, Mg, £). A para-
meter space © represents features of the environment that are reflected in every signal
and that the agent therefore expects to learn. A set of priors M represents the agent’s
initial view of the parameters. When M, is not a singleton, it also captures (lack of)
confidence in the information upon which this initial view is based. Finally, a set of
likelihoods L represents the agent’s a priori view of the signals. When a signal is unam-
biguous, or noisy, the set £ is a singleton — the distribution of the signal conditional on a
parameter value is known. In this sense the meaning of a noisy signal is clear. However,
in many settings it is plausible that the agent is wary of a host of poorly understood or
unknown features of the environment that affect realized signals and obscure their mean-
ing. Such situations are modeled via multiple likelihoods in £: for ambiguous signals,
the distribution conditional on a parameter is not unique.

Ambiguous signals may provide information that reduces confidence. In the context
of the above earthquake example, imagine a further discovery, say of a new faultline, that
again induces disagreement among geologists. Such a signal would take away confidence.
To illustrate how a reduction in confidence is reflected in behavior, we describe a hypo-
thetical choice problem of ranking bets about which there is either ambiguous or noisy
information. We argue that this thought experiment reveals a failure of the Bayesian
model that is similar to - and inspired by - the Ellsberg Paradox, but that arises specifi-
cally in the context of learning. Our model captures the evolution of confidence through
changes in a set of posterior probabilities, denoted M,;. Signals that are unambiguous, or
that confirm current beliefs, shrink the set M; as confidence grows. In contrast, signals
that are perceived as ambiguous, or that are outliers relative to current beliefs, reduce
confidence and expand M;.

To study long run outcomes, we consider learning from a sequence of indistinguishable
experiments. The idea is that an agent perceives some features, modeled by parameters,
as common across a set of experiments, and others, modeled by the set of likelihoods,
as unknown and, in particular, variable across experiments in a way that he does not
understand. However, the extent to which the unknown features matter is the same
in every experiment, that is, the experiments are viewed as a prior: indistinguishable.
Formally, this is captured by a sequence of ambiguous signals described by the same,
time-invariant, set of likelihoods. We show that in this case learning eventually settles
down: in the long run, beliefs and confidence change little with every new observation.

We focus on representations of beliefs that are learnable: under regularity conditions,
beliefs become concentrated on one parameter value. In other words, the agent is able to



resolve ambiguity (in fact, any uncertainty) about those features of the environment that
affect all experiments. However, with ambiguous signals, there are time-varying unknown
features that remain impossible to know, even after many observations. Thus ambiguity
does not vanish in the long run. Instead, the agent moves towards an environment of
time-invariant ambiguity, where he has learned all that he can.?

We use our model to study portfolio choice and asset market participation by investors
who are ambiguity averse and learn over time about asset returns. Standard models
based on expected utility and rational expectations predict that investors should diversify
broadly. In fact, the typical U.S. investor participates in only a few asset markets. For
example, many households stay out of the stock market altogether, and those who do
hold equity often pick only a few individual stocks. This selective participation in asset
markets has been shown to be consistent with optimal static (or myopic) portfolio choice
by ambiguity averse investors.* What is new in the present paper is that we solve the
— more realistic — intertemporal problem of an investor who rebalances his portfolio in
light of new information that affects both beliefs and confidence.

We develop two main points. First, we show that with time-varying ambiguity in
returns, the investment horizon matters for asset allocation: the optimal myopic portfolio
need not be optimal for a long-horizon investor. The reason is that if the investor perceives
both returns in the short term and investment opportunities in the longer term to be
affected by a common unknown (ambiguous) factor, then a long-horizon investor will
have an implicit exposure to that factor. His optimal portfolio may try to hedge this
exposure. This hedging of ambiguity is distinct from the familiar hedging demand driven
by intertemporal substitution effects, stressed by Merton [31]. Indeed, we show that it
arises even when preferences over risky payoff streams are logarithmic, so that traditional
hedging demand is zero.

Second, the model delivers endogenous market exit and entry rules that depend on
past market performance as well as on the planning horizon. We illustrate such rules
in a calibrated example studying asset allocation between stocks and riskless bonds for
U.S. investors in the post-war period. Stock returns are modeled as ambiguous signals -
it is possible to learn about their distribution from new data, but they are affected also
by unknown factors that change over time and that cannot be learned. We propose a
way for an investor to determine his degree of ambiguity about returns and we calculate
optimal portfolios in real time. For reasonable parameter values, the model recommends
that U.S. investors hold virtually no stocks in the 1970s, entering the market only in the
late 1980s.

The paper is organized as follows. Section 2 presents a sequence of thought experi-
ments to argue that the Bayesian model is not a satisfactory model of learning. Section 3

3Existing applications of ambiguity to financial markets typically impose time-invariant ambiguity.
Our model makes explicit that this can be justified as the outcome of a learning process. See Epstein
and Schneider [16] for further properties of time invariant ambiguity.

4See Guiso and Haliassos [22] for a survey of the existing empirical and theoretical literature on
portfolio choice. Non-participation with multiple priors was first derived by Dow and Werlang [13]. The
argument is discussed in detail in Section 6.



briefly reviews recursive multiple-priors utility. Section 4 introduces the learning model.
Section 5 establishes properties of learning in the short and long run. Section 6 ap-
plies our setup to portfolio choice. Section 7 discusses related literature. The Appendix
contains proofs.

2 EXAMPLES

In this section, we argue that changes in confidence and the distinction between ambigu-
ous and noisy signals are important features of learning. We describe examples of decision
problems where (i) a Bayesian would behave differently than an ambiguity averse learner
and (i7) the behavior of the Bayesian learner appears counterintuitive. The examples are
based on the Ellsberg Paradox, a version of which is reviewed below. However, while
the Ellsberg Paradox refers to static or one-shot-choice, we focus on concerns that are
specific to learning and hence to dynamic settings.

The Ellsberg Paradox

Consider two urns, each containing four balls that are either black or white. The
agent is told that the first “risky” urn contains two balls of each color. For the second
“ambiguous” urn, he is told only that it contains at least one ball of each color. One ball
is to be drawn from each urn. In what follows, a bet on the color of a ball is understood to
pay one dollar (or one util) if the ball has the desired color and zero otherwise. Intuitive
behavior pointed to by Ellsberg is the preference to bet on drawing black from the risky
urn as opposed to the ambiguous one, and a similar preference for white. This behavior
is inconsistent with any single probability measure on the associated state space. The
intuition is that confidence about the odds differs across the two urns. This difference
matters for behavior, but cannot be captured by probabilities.

The multiple-priors model accommodates Ellsberg-type behavior. Formally, let the
state of the world be s = (s",s%) € S = {B,W} x {B,W}. Then s" (s*) denotes the
color of the ball drawn from the risky (ambiguous) urn and the indicator function 1,
(15a) denotes the corresponding bet. Given a set P of probability measures on S, the
multiple-priors utility of the bet 1. is

U(1ga) = min p(s?).

The model predicts the intuitive choices if P contains a probability measure that assigns
probability greater than % to black in the ambiguous urn and another measure that

assigns probability less than 3.
Example 1: Unambiguous Signals

A simple example of learning under ambiguity obtains if repeated sampling with re-
placement is permitted from the given ambiguous urn. Compare the choice of bets in
light of different sequences of draws. Two properties of learning are intuitive. First,
Ellsberg-type behavior should be exhibited in the short run, because a few draws cannot



Coin Balls

Figure 1: Experiment 2 — Risky urn on left, ambiguous urn on right.

plausibly resolve the initial ambiguity. Second, in the long run, learning should resolve
ambiguity, since the ambiguous urn remains unchanged. As the number of draws in-
creases, ambiguity should diminish and asymptotically the agent should behave as if he
knew the fraction of black balls were equal to their empirical frequency. In other words,
as one observes more draws, confidence in the odds increases and this is reflected in
behavior.

The Bayesian model cannot deliver Ellsberg-type behavior in the short run. It there-
fore cannot adequately capture learning dynamics. However, a model of learning under
ambiguity satisfying both properties can be constructed by augmenting multiple-priors
utility with specific assumptions on beliefs. In particular, suppose that beliefs about the
composition of the urn are represented by a set of probability measures (M in the formal
model below). If this set is large enough, Ellsberg-type behavior is accommodated in the
short run. As the set shrinks with time, confidence increases and ambiguity is resolved.

Example 2: Ambiguous Signals

Sampling with replacement from an Ellsberg urn is an example of learning from
unambiguous signals. Indeed, conditional on the composition of the urn, the distribution
of the signal is dictated by the physical environment and hence known. We now modify
the example to introduce ambiguous signals. Suppose that one ball is added to each of
the two urns (see Figure 1). Its color can be black or white, as determined by tossing a
fair coin. The ‘coin ball’ is black if the coin toss produces heads and it is white otherwise.
The two coin tosses that determine the color of the coin ball are independent across urns.
Modify also the type of bet. Instead of betting on the next draw, the agent is now invited
to bet on the color of the coin ball.

A priori, before any draw is observed, one should be indifferent between bets on the



coin ball from either urn - all these bets amount to betting on a fair coin. Suppose now
that one draw from each urn is observed and that both balls drawn are black. Neither
draw gives perfect information about the coin ball in the urn from which it is drawn.
Moreover, there is a difference between the information the draws provide about their
respective urns. It is intuitive that one would prefer to bet on a black coin ball in the
risky urn rather than in the ambiguous urn. The reasoning here could be something like
“if T see a black ball from the risky urn, I know that the probability of the coin ball
being black is exactly g On the other hand, I’'m not sure how to interpret the draw of a
black ball from the ambiguous urn. There may be 3 black non-coin balls or there may be
just 1 black non-coin ball. The posterior probability that the coin ball is black could be
anywhere between % and % So I'd rather bet on the risky urn.” By the same reasoning,
if both drawn balls are white, one should prefer to bet on a white coin ball in the risky
urn rather than in the ambiguous urn.

Could a Bayesian exhibit these choices? In principle, one can construct a subjec-
tive probabilistic belief about the composition of the ambiguous urn to rationalize these
choices. However, any such belief must imply that the colors of the non-coin balls in the
ambiguous urn depend on the color of the coin ball, directly contradicting the physical
description of the experiment. To see this, let p* (p*) denote the conditional probability
of drawing a black (white) ball from the non-coin balls in the ambiguous urn given that
the coin ball in the ambiguous urn is black (white). Independence of the coin ball from
the non-coin balls is respected only if p® = 1 — p.

For the Bayesian, the probability of winning the bet on a black coin-ball in the
ambiguous urn given that a black draw has been observed is
_ 3 (5 +50") _ 1+

s(E+H3p) +as(L—p) 5+40"—pv)

14+4p®
1+8p -
bet for the risky urn is simply % The intuitive choice between bets on black coin balls

given a black draw thus requires m < %, or p* > % By symmetry of the problem, the

intuitive choice between bets on white coin balls given a white draw requires p* > % But
then p® > 1 — p%, contradicting independence.

and, with independence, we have m = The probability of winning the corresponding

The above choices are intuitive, because the ambiguous signal (the draw from the
ambiguous urn) appears to be of lower quality than the noisy signal (the draw from
the risky urn). A perception of low quality arises because one cannot be completely
confident about the true distribution of the ambiguous signal. The problem with the
Bayesian model is that it cannot capture this dimension of information quality. The only
way a Bayesian can rationalize the choices is by introducing systematic bias into the
signal. This is not reasonable in the present context, because systematic bias was ruled
out in the description of the experiment. We conclude that the Bayesian model cannot
satisfactorily capture the difference between the two signals. The failure of the Bayesian
model here is related to its failure in the Ellsberg paradox. However, a key difference is
that here the prior belief about the color of the coin ball is unambiguous. Nevertheless,



ambiguity in the signal induces conditional Ellsberg-type behavior. Our model below will
accommodate this by permitting multiple likelihoods. Section 5 will revisit the current
example and discuss learning from a sequence of draws.

3 RECURSIVE MULTIPLE-PRIORS

We work with a finite period state space S; = 5, identical for all times. One element
s; € S is observed every period. At time ¢, an agent’s information consists of the history

st = (s1,...,8t). There is an infinite horizon, so S* is the full state space.” The agent
ranks consumption plans ¢ = (¢;), where ¢ is a function of the history s'. At any date
t = 0,1,..., given the history s’, the agent’s ordering is represented by a conditional

utility function Uy, defined recursively by

Uy(c;s') = min EP [U(Ct) + BU(c St;5t+1)}, (1)

pEP:(st)

where 8 and u satisfy the usual properties. The set of probability measures P;(s') models
beliefs about the next observation s, 1, given the history s’. Such beliefs reflect ambiguity
when P,(s') is a nonsingleton. We refer to {P;} as the process of conditional one-step-
ahead beliefs.

To clarify the connection to the Gilboa-Schmeidler model, it is helpful to rewrite
utility using discounted sums. In a Bayesian model, the set of all conditional-one-step-
ahead probabilities uniquely determine a probability measure over the full state space.
Similarly, the process {P;} determines a unique set of probability measures P on S

satisfying the regularity conditions specified in Epstein and Schneider [15].° Thus one
obtains the following equivalent and explicit formula for utility:
Ui(c;s') = min EP [S,5, 8 u(cy) | '] (2)

peP

This expression shows that each conditional ordering conforms to the multiple-priors
model in Gilboa and Schmeidler [21], with the set of priors for time ¢ determined by
updating the set P measure-by-measure via Bayes’ Rule.

Axiomatic foundations for recursive multiple-priors utility are provided in Epstein and
Schneider [15]. The essential axioms are that (i) conditional orderings satisfy the Gilboa-
Schmeidler axioms, and (77) conditional orderings are connected by dynamic consistency.
The analysis in [15] also clarifies the role of the set P in an intertemporal multiple-priors
model. In particular, P should not be interpreted as the “set of time series models

°In what follows, measures on S are understood to be defined on the product o-algebra on S and
those on any S; are understood to be defined on the power set of S;. While our formalism is expressed
for S finite, it can be justified also for suitable metric spaces S but we ignore the technical details needed
to make the sequel rigorous more generally.

6In the infinite horizon case, uniqueness obtains only if P is assumed also to be regular in a sense
defined in Epstein and Schneider [16], generalizing to sets of priors the standard notion of regularity for
a single prior.



that the agent contemplates”. Indeed, the axioms imply restrictions on P, although
they do not impose structure on agents’ beliefs. Instead, restrictions on P are needed
to capture aspects of dynamic behavior, such as backward-induction reasoning implied
by the dynamic consistency axiom. This observation is important for applications such
as learning: if P is selected on the basis of statistical criteria alone, this might have
unintended, or hard-to-understand, consequences for dynamic behavior.

Recursive multiple priors has some important features in common with the standard
expected utility model. Decision making after a history s’ is not only dynamically consis-
tent, but it also does not depend on unrealized parts of the decision tree. In other words,
utility given the history s, depends only on consumption in states of the world that can
still occur. To ensure such dynamic behavior in an application, it is sufficient to specify
beliefs directly via a process of one-step-ahead conditionals {P;} . In the case of learning,
this approach has additional appeal. Because {P;} describes how an agent’s view of the
next state of the world depends on history, it is a natural vehicle for modeling learning
dynamics. The analysis in [15] restricts {P;} only by technical regularity conditions. We
now proceed to add further restrictions to capture how the agent responds to data.

4 LEARNING

Our model of learning applies to situations where a decision-maker holds the a priori
view that data are generated by the same memoryless mechanism every period. This a
priori view also motivates the Bayesian model of learning about an underlying parameter
from conditionally i.i.d. signals.”

Bayesian Learning

The Bayesian model of learning about a memoryless mechanism can be summarized
by a triple (O, g, £), where © is a parameter space, 1, is a prior over parameters, and
¢ is a likelihood. The parameter space represents features of the data generating mecha-
nism that the decision-maker tries to learn. The prior p, represents initial beliefs about
parameters, perhaps based on unmodeled prior information. For a given parameter value
6 € O, the data are an independent and identically distributed sequence of signals {s;},~,,
where the distribution of any signal s; is described by the probability measure ¢ (:|6) on
S. The pair (p,¢) is the decision-maker’s theory of how data are generated. This theory
incorporates both prior information (through ) and a view of how the signals come
about (through 7).

Beliefs are equivalently represented by a probability measure p on sequences of signals
(that is, on S°°), or by the process {p; } of one-step-ahead conditionals of p. The dynamics
of Bayesian learning can be summarized by

"As an example of an environment where such a view is natural, consider data generated by sampling
with replacement from an urn that contains balls of various colors in unknown proportions. Here the
mechanism is the same every period because the urn is always the same. The mechanism is memoryless
because draws are independent.



pCls) = [ 10 dufols), ®
where 1, is the posterior belief about 6, defined recursively using Bayes’ Rule by

U(s: )

dp,(-) = To €(s, | 0) dp_, (0] ")

iy (1s") (4)

Ambiguous Priors and Signals

Turn now to learning about ambiguous memoryless mechanisms. The starting point
is again a parameter space © that represents features of the data the decision-maker
tries to learn. To accommodate ambiguity in initial beliefs about parameters, represent
those beliefs by a set M of probability measures on ©. The size of M, reflects the
decision-maker’s (lack of) confidence in the prior information on which initial beliefs are
based. To accommodate ambiguous signals, represent beliefs about the distribution of
signals by a set of likelihoods £. Every parameter value # € © is associated with a set
of probability measures L(- | 0) = {¢(-|0) : £ € L}. The size of this set reflects the
decision-maker’s (lack of) confidence in what an ambiguous signal means, given that the
parameter is equal to #. Signals are unambiguous only if there is a single likelihood,
that is £ = {¢}. Otherwise, the decision-maker feels unsure about how parameters are
reflected in data.

Beliefs about the signal s; are described by the same set £ for every ¢ — this captures
the perception that the same mechanism is at work every period. Moreover, for a given
parameter value # € ©, signals are assumed to be independent over time — the mechanism
is perceived to be memoryless. The agent perceives some factors, modeled by 6, as
common across time or experiments, and others, modeled by the multiplicity of L, as
variable across time in a way that he does not understand beyond the limitation imposed
by L. In particular, at any point in time, any element of £ might be relevant for
generating the next observation. Accordingly, because 6 is fixed over time, he can try to
learn the true 6, but he has decided that he will not try to (or is not able to) learn more.

Conditional independence implies that past signals s' affect beliefs about future sig-
nals (such as s;;1) only to the extent that they affect beliefs about the parameter. Let
M, (s), to be described below, denote the set of posterior beliefs about 6 given that the
sample s’ has been observed. The dynamics of learning can again be summarized by a
process of one-step-ahead conditional beliefs. However, in contrast to the Bayesian case
(3), there is now a (typically nondegenerate) set assigned to every history:

Pi(st) = {pt () = [ 10d0): 1 & M) c} , (5)

or, in convenient notation,
e

10



This process enters the specification of recursive multiple priors preferences (1).
Updating and Reevaluation

To complete the description of the model, it remains to describe the evolution of the
posterior beliefs M;. Imagine a decision-maker at time ¢ looking back at the sample s'. In
general, he views both his prior information and the sequence of signals as ambiguous. As
a result, he will typically entertain a number of different theories about how the sample
was generated. Adapting the notation used in the Bayesian case above, a theory is now
summarized by a pair (g, '), where ¢* = (¢1,..,4;) € L' is a sequence of likelihoods.
The decision-maker contemplates different sequences ¢! because he is not confident that
ambiguous signals are identically distributed over time.

We allow for different attitude towards past and future ambiguous signals. On the
one hand, L is the set of likelihoods possible in the future. Since the decision-maker has
decided he cannot learn the true sequence of likelihoods, it is natural that beliefs about
the future must be based on the whole set £ as in (5). On the other hand, the decision-
maker may reevaluate, with hindsight, his views about what sequence of likelihoods was
relevant for generating data in the past. Such revision is possible because the agent learns
more about # and this might make certain theories more or less plausible. For example,
some interpretation of the signals, reflected in a certain sequence ¢* = ({1, ..., ¢;), or some
prior experience, reflected in a certain prior yu, € M, might appear not very relevant if
it is part of a theory that does not explain the data well.

To formalize reevaluation, we need two preliminary steps. First, how well a theory
(o, ¢") explains the data is captured by the (unconditional) data density evaluated at s':

/ I_,0; (5,160) dol6).

Here conditional independence implies that the conditional distribution given 6 is simply
the product of the likelihoods ¢;. Prior information is taken into account by integrating
out the parameter using the prior . The higher the data density, the better is the
observed sample s explained by the theory (i, ¢*). Second, let u, (- ; s, iy, ¢*) denote
the posterior derived from the theory (u,,¢") by Bayes’ Rule given the data s'. This
posterior can be calculated recursively by adapting (4) to accommodate time variation
in likelihoods:

_ (st | )
f@ gt(‘st | 9,) d/“Lt—l (9/7 St_la Ko, gt_l

dpy (- 58", g, £') )dutfl(- st pg, (7). (6)

Reevaluation takes the form of a likelihood-ratio test. The decision-maker discards
all theories (p, ¢") that do not pass a likelihood-ratio test against an alternative theory
that puts maximum likelihood on the sample. Posteriors are formed only for theories
that pass the test. Thus posteriors are given by

11



M (s') = {py (5% 110, ') = o € M, 18 € L, (7)
/ _y0; (5;10) dpo(6) > o max / I\, (5,16) it}

uQGMo

stelt
Here « is a parameter, 0 < o < 1, that governs the extent to which the decision-maker
is willing to reevaluate her views about how past data were generated in the light of new
sample information. The likelihood-ratio test is more stringent and the set of posteriors
smaller, the greater is a. In the extreme case a = 1, only parameters that achieve
the maximum likelihood are permitted. If the maximum likelihood estimator is unique,
ambiguity about parameters is resolved as soon as the first signal is observed. More
generally, we have that o > o implies M C M®'. It is important that the test is
done after every history. In particular, a theory that was disregarded at time ¢ might
look more plausible at a later time and posteriors based on it may again be taken into
account.

Special Cases

In general, our model of learning about an ambiguous memoryless mechanism is
summarized by the tuple (0, My, £, a). As described, the latter induces, or represents,
the process {P;} of one-step-ahead conditionals via

- / C(- | 0) dM(0),
[C)

where M is given by (7). The model reduces to the Bayesian model when both the set
of priors and the set of likelihoods have only a single element.

An important special case occurs if M consists of several Dirac measures on the
parameter space in which case there is a simple interpretation of the updating rule:
M contains all 0’s such that the hypothesis § = 0 is not rejected by an asymptotic
likelihood ratio test performed with the given sample, where the critical value of the
x2 (1) distribution is —2log a. Since a > 0, parameter values are discarded or added
to the set, and P, varies over time. The Dirac priors specification is convenient for
applications — it will be used in our portfolio choice example below. Indeed, one may
wonder whether there is a need for non-Dirac priors at all. However, more general priors
provide a useful way to incorporate objective probabilities — Example 2 in Section 2 is
one concrete case.®

Learning from unambiguous signals is captured by a single likelihood, but a possibly
nondegenerate set of priors. In this case, beliefs can be summarized alternatively by a set
of exchangeable measures on S, together with the reevaluation parameter a. Indeed,
let P¢ denote a set of exchangeable measures. By the de Finetti Theorem, every p € P¢

8 Another example is in Epstein and Schneider (2004) where a representation with a single prior and
a = 0 is used to model the distinction between tangible (well-measured, probabilistic) and intangible
(ambiguous) information.

12



can be represented by a tuple (O, i, £) . Assume that all these representations share the
parameter space © and likelihood ¢, but that they differ in the priors, which make up a
set My. Then beliefs with representation (0, My, £, &) can be written equivalently as’

Py (st) = {pt(-]st) :pEeP p (St) > a(rel%xﬁ (st)} )
p *
In particular, if @ = 0, then P; (s*) coincides with the set of all conditional one-step-ahead
measures on S induced by P* and the sample s'.

5 PROPERTIES

In this section we illustrate properties of learning under ambiguity. Sections 5.1 and 5.2
consider the dynamics of beliefs and confidence in the short run, focusing on the cases of
unambiguous and ambiguous signals, respectively. In particular, we show that the model
rationalizes the intuitive choices in the examples of Section 2. Section 5.3 provides a
result on convergence of the learning process in the long run.

5.1 Unambiguous Signals

To see how unambiguous signals resolve ambiguity, consider again Example 1 from Sec-
tion 2. The natural period state space is S = { B, W} — a state corresponds to the color of
a drawn ball. Let § € © = {2, 3} denote the number of black balls in the ambiguous urn.
A prior over © can be described by the probability that § = 3. For simplicity, denote this

probability directly by 1, and let the initial set of priors be given by an interval [ﬁo’ ﬂo} .
The objective description of the environment implies the single likelihood
0+1

1

After t draws, n of which are black, the posterior probability that 6 = 3, based on the
prior i, is

0(Bl9) =

o ()" () e
o G ()4 () () ) Mot (L) 257

e = g (M o) = (8)

The effect of the sample on posteriors is captured by a single number, the number of
black balls, which is a sufficient statistic in the Bayesian case. For a = 0, the posterior

set is conveniently described by the interval [,ut(n, By)s e (1, ﬂo)} . The data density is

simply the denominator in (8). The maximum likelihood theory must be either 1, = i,
or iy = p,, depending on whether 2!37™ is smaller or larger than one. In the knife edge

9Here p (s') is short-hand for the marginal probability p ({s'} x 152, ,,5;), whereas p;
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case where 237" = 1, all priors are equally likely. It follows that the posterior interval
is always an interval with p,(n, p,) or p1, (n, fiy) as one of the bounds. The other bound
will typically be determined by the likelihood ratio test in (7). As a general rule, the
posterior interval will be larger the less informative is the sample, that is, the closer 2!3™"
is to one. It is natural that, with unambiguous signals, a single sufficient statistic can
determine how informative is the sample.

The posterior set M, is effectively the set of posteriors that would be obtained by
a collection of Bayesian estimations that are performed with different priors p,, but
with the same “model” ¢. As more data become available, every posterior places less
weight on the prior and more weight on the sample. Ambiguity about the parameter
thus shrinks as the posteriors become more similar — the agent becomes more and more
confident. Let the true data generating process be the i.i.d. measure implied by ¢ (.|6")
for some true parameter §*. Under standard regularity conditions (and it is obvious in
the present example), every posterior converges almost surely under the truth to dg+, the
Dirac measure that puts probability one on the true parameter.'® Thus ambiguity about
the data generating process is resolved in the limit.

5.2 Ambiguous Signals

The evolution of the posterior set M; in (7) shows how ambiguous signals tend to induce
ambiguity in beliefs about parameters. Indeed, suppose there is only a single prior,
Mo = {uy}, but that there is a nondegenerate set of likelihoods. In this case, even
though there is no ambiguity ex ante, the sets M; will be nondegenerate. Lack of
confidence when interpreting signals thus translates into lack of confidence in knowledge
about parameters. This feature is at the heart of Example 2 of Section 2. We now
demonstrate that a model with ambiguous signals can rationalize the intuitive choices
discussed there.

Beliefs

To define a general class of beliefs about the urns of Example 2, it is natural to let the
parameter be 0 = (6",0%) € © = {B, W} x {B, W}, where 6" (#*) denotes the color of
the coin ball in the risky (ambiguous) urn, and to assume the single prior 1, independent
across urns and satisfying p, (0° = B) = 1y (0" = B) = 3. Let A denote the number of
black non-coin balls in the ambiguous urn. The likelihood of drawing a black ball from
that urn is given by

. ML if g = B
EA(B‘G):{ i if 0% = W.

5
Given the symmetry of the environment, a natural set of likelihoods is

L={l:Ae2—e2+d), 9)

10See Marinacci [30] for a formal result.



where € is a parameter, 0 < e < 1.

In the special case € = 1, the set £, models an agent who attaches equal weight to
all logically possible urn compositions A = 1, 2, or 3. More generally, (9) incorporates
a subjective element into the specification. Just as subjective expected utility theory
does not impose connections between the Bayesian prior and objective features of the
environment, so too the set of likelihoods is subjective (varies with the agent) and is not
uniquely determined by the facts. For example, the agent might attach more weight to
the ‘focal’ likelihood corresponding to A = 2 as opposed to the more extreme scenarios
A = 1, 3. The parameter € can be interpreted as the weight attached to the latter scenarios,
as opposed to the focal likelihood. Indeed, £, can be rewritten as'!

Lo={(1—€¢)ls(-]0)+elrn(-]0): A=1,2, 3}

A Bayesian agent (¢ = 0) considers the focal case only, while in the intermediate range,
€ models the importance of ambiguity in beliefs and preference.

To complete the description of beliefs, assume the obvious likelihood for the risky urn
as well as independence across urns, and denote by L the set of likelihoods relevant for
the Cartesian product space defined by the two urns.

Inference from the First Draw

Suppose one draw from each urn has been observed, and that both drawn balls are
black. For any single likelihood ¢, for the ambiguous urn, the posterior probability of a
black coin-ball in the ambiguous urn is

3% A+l [3+4e 3-—¢
1AL LA 9N+ 1 T [54+2875—2¢]

For the risky urn, the posterior probability of a black coin ball corresponds to the case
€ = 0, and therefore equals % Since this is larger than the “worst-case” posterior for any
e > 0, a bet on a black coin ball in the risky urn will be strictly preferred. By symmetry,
the same is true for bets on white coin balls when both drawn balls are white.

Inference from Small Samples

Figure 2 depicts the evolution of beliefs about the ambiguous urn as more balls are drawn.
We set € = 1 so that the agent weighs equally all the logically possible combinations of
non-coin balls. The top panel illustrates the aggregation of ambiguous signals. It shows
the evolution of the posterior interval for a sequence of draws such that the number of
black balls is %, for t = 5,10, .... In particular, after the first 5 ambiguous signals, with
3 black balls drawn, the agent assigns a posterior probability between .4 and .8 to the
coin ball being black.

What happens if the same sample is observed again? There are two effects. First, a
larger batch of signals permits more possible interpretations. For example, having seen

"This is a form of the e-contamination model employed in robust statistics (see Walley [37], for
example). In economic modeling, it is used in Epstein and Wang [18], for example.
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ten draws, the agent may believe that all six black draws came about although each time
there were the most adverse conditions, that is, all but one non-coin ball was white.
This interpretation strongly suggests that the coin ball itself is black. The argument also
becomes stronger the more data are available - after only five draws, the appearance of
three black balls under ‘adverse conditions’ is not as remarkable. At the same time, the
story that all but one non-coin ball was always white is somewhat less believable if the
sample is larger: reevaluation limits the scope for interpretation, and more so the more
data are available. The evolution of confidence, measured by the size of the posterior
interval, thus depends on how much agents reevaluate their views. For an agent with
a = .001, the posterior interval expands between ¢ = 5 and ¢t = 20. In this sense, a
sample of ten or twenty ambiguous signals induces more ambiguity than a sample of five.
However, reevaluation implies that large enough batches of ambiguous signals induce less
ambiguity than smaller ones.

The lower panel of Figure 2 tracks the evolution of posterior intervals along a repre-
sentative sample. Taking the width of the interval as a measure, the extent of ambiguity
is seen to respond to data. In particular, a phase of many black draws (periods 5-11, for
example) shrinks the posterior interval, while an ‘outlier’ (the white ball drawn in period
12) makes it expand again. This behavior is reminiscent of the evolution of the Bayesian
posterior variance, which is also maximal if the fraction of black balls is one half.

5.3 Beliefs in the Long Run

To discuss what is learnable in the long run, we need to define a true data generating
process. Take this process to be i.i.d. corresponding to the measure ¢ on S. By analogy
with the Bayesian case, the natural candidate parameter value on which posteriors might
become concentrated maximizes the data density of an infinite sample. With multiple
likelihoods, any data density depends on the sequence of likelihoods that is used. In
what follows, it is sufficient to focus on sequences such that the same likelihood is used
whenever state s is realized. A likelihood sequence can then be represented by a collection
(s)seg- Accordingly, define the log data density after maximization over the likelihood
sequence by

H(0) = max > ¢ (s)log (s]6). (10)

s)seS
s

The following result (proven in the appendix) summarizes the behavior of the posterior
set in the long run.

Theorem 1 Suppose that
(i) © is finite and for every 6 € ©, p,(0) > 0 for some p, in M§; and
(i7) 0° = argmaxy H (0) is a singleton.
Then every sequence of posteriors from M$ converges to the Dirac measure dg+, almost

surely under the i.i.d. measure described by ¢.
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Figure 2: The Posterior Interval is the range of posterior probability that the coin ball
is black, p, (B). In the top panel, the sample is selected to keep fraction of black balls
constant. In the bottom panel, vertical lines indicate black balls drawn.

Condition (77) is an identification condition: it says that there is at least one sequence
of likelihoods (that is, the maximum likelihood sequence), such that the sample with
empirical frequency measure ¢ can be used to distinguish #* from any other parameter
value. If this condition holds, then in the long run only the maximum likelihood sequence
is a permissible scenario and the set of posteriors converges to a singleton. The agent
thus resolves any ambiguity about factors that affect all signals, captured by 6. At the
same time, ambiguity about future realizations s; does not vanish. Instead, beliefs in
the long run become close to £ (-|#*). The learning process settles down in a state of
time-invariant ambiguity.

As a concrete example, consider long run beliefs about the ambiguous urn of Example
2. Let ¢, denote the probability under the truth that a black ball is drawn. Suppose
also that beliefs are given by (9), with ¢ = 1: the agent views all possible combinations
of black and white non-coin balls as equally likely. Maximizing the data density with
respect to the likelihood sequence yields

Loy + A 5— 1go—p) — A
H(O) = ¢, maxlog =B T8 (1 _ ¢ Y maxlog 2 0=8 ~ AW
AB 5 Aw 5
lig—py +3 4 —1gp—p
= Goolog =2+ (1 = §) log —— .
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The first term captures all observed black balls and is therefore maximized by assuming
Ap = 3 black non-coin balls. Similarly, the likelihood of white draws is maximized by
setting Ay = 1. It follows that the identification condition is satisfied except in the knife-
edge case ¢, = % Moreover, 0" = B if and only if ¢, > % Thus the theorem implies
that an agent who reevaluates his views (o > 0) and observes a large number of draws
with a fraction of black balls above half believes it very likely that the color of the coin
ball is black. The role of « is only to regulate the speed of convergence to this limit. This
dependence is also apparent from the dynamics of the posterior intervals in Figure 2.

The example also illustrates the role of the likelihood ratio test (7) in ensuring learn-
ability of the representation. Suppose that ¢, — % The limiting frequency of % black
draws could be realized either because there is a black coin ball and on average one half
of the non-coin balls were black, or because the coin ball is white, but it happens to be
the case that all of the urns contained 3 black non-coin balls. If a = 0, both possibilities
are taken equally seriously and the limiting posterior set contains Dirac measures that
place probability one on either § = B or § = W. The convergence behavior is apparent
from Figure 2. In contrast, for a > 0, reevaluation eliminates the sequence where all urns
contain three black non-coin balls as unlikely.

With a stronger identification condition, the posterior set converges to a set containing
single Dirac measure concentrated on #*, even if « = 0. Indeed, we show in the appendix
that M? — {8y}, provided that for all 6 # 6",

Zqﬁ ) max log £<5|9*) < 0. (11)

The latter condition is stronger than condition (i¢) in the Theorem: it requires that " is
the most likely parameter under all sequences of likelihoods (s), not simply under the
maximum likelihood sequence. In the example, it reduces to

—\w
—\w

5}
¢, maxlog + (1 — ¢ ) maxlog <0,
AB Aw 4

B
1+ Ap
which satisfied if ¢, is greater than log (1/2) /log (3/8).

6 DYNAMIC PORTFOLIO CHOICE

Selective asset market participation is puzzling in light of standard models based on
expected utility and rational expectations. In contrast, it is consistent with optimal static
portfolio choice by investors who are averse to ambiguity in stock returns. Such investors
will take a nonzero (positive or negative) position in an asset only if it unambiguously
promises an expected gain. Dow and Werlang (1992) consider an investor who allocates
wealth between a riskless asset and one other asset with ambiguous return. They show
that if the range of premia on the ambiguous asset contains zero, it is optimal to invest
100% in the riskless asset. The intuition is that, when the range of premia contains zero,
the worst case expected excess return on both long and short positions is not positive.
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In practice, most investors do not make one-shot portfolio choices, but have long
investment horizons during which they repeatedly rebalance their portfolios. Here we
consider an intertemporal problem, where the investor updates his beliefs about future
returns. For simplicity, we follow Dow and Werlang by restricting attention to the case
of a single uncertain asset. However, the effects we emphasize are relevant more widely.
Indeed, work by Epstein and Wang [18] and Mukherji and Tallon [32] has clarified that
the basic nonparticipation result extends to selective participation when many assets are
available. The key observation is that the multiple-priors model allows confidence to
vary across different sources of uncertainty.!?> Investors will participate in a market only
if they are confident that they know how to make money in that particular market.

Suppose the investor cares about wealth T periods from now and plans to rebalance
his portfolio once every period. There is a riskless asset with constant gross interest
rate R/, as well as an asset with uncertain gross return R, = R (s') that depends on
the history s’ observed by the investor. Signals may consist of more than current excess
returns. Beliefs are given by a process of one-step-ahead conditionals {P;}. At date t,
given information s’, the investor selects a portfolio weight w (s*) for the risky asset by
solving the recursive problem

Vt(Wt,st) = max min FE? [Vtﬂ (Wt+1,st+1)j|

w  pr€P(st)
subject to
W, = (RF+(R(s") = RNw (s" ) Wimy,  t=1,.,T. (12)

This problem differs from existing work on portfolio choice with multiple-priors be-
cause beliefs are time-varying. We also emphasize the role of the investor’s planning
horizon T'. In Section 6.1, we discuss the nature of intertemporal hedging with recur-
sive multiple-priors. To distinguish intertemporal hedging due to time-varying ambiguity
from the intertemporal substitution effects stressed by Merton (1973), we focus on the
case of log utility, where traditional hedging demand is zero. In Section 6.2, we study a
calibrated example of asset allocation between stocks and riskless bonds for U.S. investors
in the post-war period.

6.1 Intertemporal Hedging and Participation

If future investment opportunities and future returns are affected by common unknown
(ambiguous) factors, then investors who have a longer planning horizon, and therefore

12For example, suppose that the set of excess return distributions for each available asset contains a
component with unknown mean that is uncorrelated with the return on other assets. The range of mean
excess returns for a particular asset now reflects investor confidence towards that asset only. If the range
is a large interval around zero, that is, investor confidence is low, it is optimal to allocate zero wealth to
the asset.

13This intuition fits well with evidence from surveys among practitioners, who participate in a market
only if they “have a view” about price movements of the asset in question. See Chew [11], Ch. 43 for a
discussion on this issue.
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care about future investment opportunities, will deal differently with ambiguity than
short term investors. For example, if expected returns in some market are perceived
to be highly ambiguous, the optimal myopic policy may be non-participation, to avoid
exposure to ambiguity. However, if returns are also a signal of future expected returns,
then a long-horizon investor is already exposed to the unknown (ambiguous) factor that
is present in returns even if he does not currently participate in the market. It may then
be better to take a position to offset existing exposure. We now derive intertemporal
hedging demand due to ambiguity for the log utility case. We then discuss how the
importance of hedging depends on the number of unknown factors, and what this implies
for the emergence of dynamic participation rules.

Hedging Ambiguity

In the expected utility case, it is well known that log investors act myopically; even if
the conditional distribution of future investment opportunities changes over time, the
income and substitution effects of these changes are exactly offsetting. As a result, the
investor’s asset demand depends only on current investment opportunities, captured by
the conditional one-period-ahead distribution of returns. The optimal weight after history
s and given the beliefs process {p;} is simply

w* (pi (")) = arg max Er(s') [log (Rf + (Rt+1 — Rf> w)} :

Consider next a myopic investor with nondegenerate beliefs process {P;} . Given the
history s!, such an agent solves

max min E7(5) [log <Rf + (Rt+1 — Rf> w)]

w  pe(st)EP(s")

= min B flog (R + (Ren = B) & ( () )] (13)

where we have used the minmax theorem to exchange the order of optimization. Denote

by /™" (s*) the minimizing (conditional-one-step-ahead) measure in (13). Then the
myopic

optimal policy of a myopic agent is w* (pt (st)) , the portfolio weights that are optimal
for the corresponding Bayesian.

For the intertemporal problem (12), conjecture the value functions V; (W;,s") =
log W + hy (s'), with hy = 0. Again using the minmax theorem, as well as the bud-
get constraint, we obtain

Vi (Wiys') = min  maxEP [V (Wi, s™)]

pe(st)ePi(st) w

= min {max EP [log (Rf + (RtH — Rf) w)] + EPt [ht+1 (s”l)]} + log W;.

pe(st)EPe(st) w

The first term depends only on time and s’, verifying the conjecture for V;. Denote by
p} (s') a minimizing measure in

he (st) = min E" [log (Rf + <}-2t+1 - Rf> w (pt (st))> + hyr (St+1)] ) (14)

prePi(st)
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Then w* (p; (s')) is an optimal policy for the intertemporal problem.

myopic

Comparison of (13) and (14) reveals that the supporting probabilities p; and p7,
and hence the optimal policies in the myopic and intertemporal problems, need not agree.
This motivates a decomposition of optimal portfolio demand w; in the intertemporal

problem: ' ‘
wp =W (P () + (@7 (7 (5) — et (" (1))

N
' '

myopic demand intertemporal hedging demand

It is clear that the concept of intertemporal hedging demand identified here is unique to
the case of ambiguity. With a singleton set P = {p}, we have p;"'" (s') = p; (s') =
p¢ (s') and there is no intertemporal hedging.

Independent Unknown Factors

Intuitively, the intertemporal hedging demand should still be zero if returns are driven by
factors that are completely unrelated to future investment opportunities. Under risk, this
is captured by conditional independence of returns and the state variables that represent
opportunities. The intuition carries through to the ambiguity case. However, indepen-
dence is now required for sets of conditionals. In particular, if the set of conditional
distributions for returns and state variables can be expressed as a Cartesian product of
sets of independent marginal distributions, then myopic portfolio choice remains opti-
mal. To see this, consider a simple example. Let S = X x Y. Assume that, at date
t, the investor observes s; = (z;,v;). Here z; is a state variable that matters for future
investment opportunities, but not for current returns, and y, is a shock that affects only
current returns, i.e., R; = R (21 y;). Then define conditionals

Pi(s") = {prop!:p; P (a'), pl € P/}
= Pr(af) ®P, (15)

where PZ (z!) and P} are sets of probability measures on X and Y, respectively.!* We
thus allow both the signal and the shock to be ambiguous.

With these beliefs, (14) becomes

he (') = min EP [log (R' + (R (2", y141) — RN w ()] + min EP [k (2],
plePy prEPE (at)
and myopic behavior is clearly optimal. The key here is the separation into two minimiza-
tion problems. This may no longer be possible if returns depend also on x;;. In that
case, the set P} may represent concern with common factors that affect both future op-
portunities and returns, or put alternatively, with “correlation" between the ambiguities
perceived for future opportunities and returns.

To summarize, an investor who optimizes intertemporally is also concerned about
future investment opportunities. As a result, he may be exposed to unknown factors

4The fact that P/ does not depend on history here is not restrictive since predictability of returns is
permitted through the function R.
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that affect the distribution of A, 1, even if he does not invest in the uncertain asset over
the next period."> However, it makes sense to react to such an exposure by changing
portfolio strategy (and to deviate from the optimal myopic portfolio) only if the unknown
factors that affect future opportunities have something to do with returns. Then selection
of the worst case belief takes into account both terms in (14) and will typically end up
at a different belief than in the myopic case, where only the first term matters.

Learning

The previous paragraph has shown that hedging demand depends on the nature of
ambiguity. We now illustrate when it is important in the context of learning. We present
two examples where beliefs are given by representations (0, My, £, ). One has indepen-
dent unknown common factors, and the other common factors (correlated ambiguity).
The latter case is also relevant for the calibrated example of the next subsection.

To construct an example of learning with independent unknown factors, assume again
S=XxY and R, = R (2", ). Let beliefs have a representation with likelihood set

L={0:0(s]0) =" (x]0) " (y); €* € Ly, Y € Ly},

where £, and £, are sets of likelihoods on X and Y. The interpretation is that returns
contain short term noise about which the investor does not expect to learn anything.
Unknown factors that affect returns in the short run correspond to parameters that
describe the set £,. At the same time, the investor can learn about conditional moments
that depend on 6 via the distribution of x. Unknown factors that affect learning are
captured by £, and are independent of those that affect returns in the short run. With
this structure for £, terms involving ¢¥ will cancel out of the updating equation (6) and
M¢ (s') depends only on z'. Moreover, since ¥ does not depend on the parameter 6,
the one-step-ahead conditionals P; (s') will be a special case of (15). Myopic portfolio
choice is therefore optimal. This example illustrates that the presence of learning does
not invalidate the basic intuition for non-participation.

To obtain an example of learning with common unknown factors, modify the above
setup by setting R; = R (x;), thus eliminating the shock y. For simplicity, let the signal
x be unambiguous (£, = {¢*}) and assume that the set M is a one-parameter family
of priors, parametrized by the prior mean of 6, say 0, € ©y. Every set of one-step-ahead
conditionals is then also a one-parameter family 0P; (s') = {pt (st; @0) : G € (:)0}. The
parameter 0, effectively describes a single common factor: since it affects all posteriors,
it directly matters both for one-period-ahead returns and for later returns, and hence
for future investment opportunities. When beliefs are parametrized this narrowly, one
can construct examples where hedging demand will lead to participation at all times
except in the final period. Indeed, non-participation requires that EP* [R; 1] = 0 for a
conditional p; that achieves the minimum in (14). If distributions are chosen such that

there is just one value 6, for which fre(s':00) [Ry+1] = 0, then this value will typically not

I5Exposure requires that (i) the realization s;y; typically provides news about future opportunities,
that is, it affects future belief sets Py ; (s“‘]) and (77) that the news is payoff-relevant, so that the value
function hyyq (st"’l) depends on S;41.
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achieve the minimum for the sum in (14). The minimizing value will in turn not set the
mean excess return to zero.

It is difficult to make general statements beyond these examples. The importance of
intertemporal hedging due to ambiguity depends on the precise factor structure. This is
the case even when the analysis focuses on learning, as opposed to general time-variation
in beliefs. In this respect, the situation is similar to hedging demand due to intertemporal
substitution, where the literature contains few general results beyond Merton’s (1973)
decomposition, and progress has been mostly through calibrated examples. We proceed
to develop such an example in the next section.

6.2 Learning and Stock Market Participation: A Calibrated
Example

Suppose the investor allocates wealth to a riskless bond and a broad U.S. stock index once
every quarter. To approximate the distribution of U.S. stock returns, assume that the
state can take two values every period, s; € {0,1}, and let R (1) = 1.14 and R(0) = .92.
If s is i.i.d. with Pr{s; =1} = 1, then the mean and variance of NYSE returns from
1927:Q3 to 2001:Q2 are matched exactly. We fix the riskless rate at Rf — 1 = .01 per
quarter.'® The investor’s utility function exhibits constant relative risk aversion with risk
aversion parameter 7.

Beliefs are defined by a representation (©, My, £, «). The investor thinks that some-
thing can be learned about the distribution of returns by looking at past data. This is
captured by a parameter § € © = ﬁ, 1— X}, where \ < % However, he also believes
that there are many poorly understood factors driving returns. These are captured by
multiple likelihoods, where the set £ consists of all £ (- | §) such that

0(1]0) =0+ A\, for some \ € [-X, ).

Given our assumptions on ©, ¢ (1|¢) is between zero and one. The set of priors M, on ©
is given by all the Dirac measures. For simplicity, we write § € M, if the Dirac measure
on 6 is included. If A\ > 0, returns are ambiguous signals: \; € [—\, \] parametrizes the
likelihood ¢;. Since the set of priors consists of Dirac measures, reevaluation (o > 0) is
crucial for nontrivial updating; if a = 0, then M; = M, for all t.

Belief Dynamics

The above belief structure is convenient because the posterior set M depends on the
sample only through the fraction ¢, of high returns observed prior to ¢t. More specifically,
it is shown in the appendix that

Mi (') = {9 €0:g(t¢) > réleaécg(é; ¢;) + lofa} : (16)

16Here we follow much of the finance literature and consider nominal returns.
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where g (0, ¢,) = ¢, log (0 + X) + (1 — ¢,) log (1 — 6 + X). The function g (.; ¢) is strictly

concave and has a maximum at 6 = ¢ + 2\ (d) — %) .

Using (16), it is straightforward to determine the limiting behavior of the one-step-
ahead beliefs P; (s*) as t becomes large. Suppose that the empirical frequency of high
returns converges to ¢.,,. Then M collapses to the single number %, where

A if¢m<%
0" =3 0u T2 (0 —4) if b € |55 5]
1—A if ¢oo > 1155

Thus P; (s*) collapses to the set £ (.|6"), which consists of all probabilities on S = {0,1}
with B _
Pr(s=1)e[0" -\ 0"+ A (17)

The agent thus learns the true parameter value 6%, in the sense that in the limit he
behaves as if he had been told that it equals 6*. If the realized empirical distribution
is symmetric (¢, = %), then 0 = ¢_. We use this fact below to calibrate the belief
parameters.

Bellman Equation

The problem (12) can be rewritten using the fraction ¢, of high returns as a state variable:

Vi (Wi, ) = max min E” [Vtﬂ (Wt+17 ¢t+1)]

w  p€Pi(s?)

= maXA n[li%ﬂ{ (04 X) Vipr (W1 (1), 0444 (1))
Wi tE[—A,
M

+ (1= 0= X) Vira(Wisa (0), 6,14 (0))) 1,

subject to the transition equations

Wit (si41) = (R + (R (s141) — BY) wi) W4,
to, + s
¢t+1 <3t+1) = ;Tltﬂ .

Preference Parameters

We specify § = .99 and set the coefficient of relative risk aversion v equal to 2. It
remains to specify the belief parameters o and X. The parameter A determines how much
the agent thinks that he will learn in the long run. To determine a value, he could pose
the following question: “Suppose I see a large amount of data and that the fraction of
high returns is ¢, = % How would I compare a bet on a fair coin with a bet that next
quarter’s returns are above or below the median?” By the Ellsberg Paradox, we would
expect the agent to prefer the fair bet. He could then try to quantify this preference
by asking: “What is the probability of heads that would make me indifferent between
betting on heads in a coin toss and betting on high stock returns?” In light of the range
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of limiting probabilities given in (17), the result is % — X. We present results for values
of X ranging from 0 to 2%. Even the upper bound of 2% leaves substantial scope for
learning: in terms of mean returns, it implies that the investor believes that the range of
equity premia be reduced below 1% (88 basis points, to be exact) in the limit.

The parameter o determines how fast the set of possible models shrinks. Here it can
be motivated by reference to classical statistics. If signals are unambiguous (A = 0), there
is a simple interpretation of our updating rule: M$ contains all parameters 0 such that
the hypothesis # = 0" is not rejected by an asymptotic likelihood ratio test performed
with the given sample, where the critical value of the x? (1) distribution is —2log «. For

a 5% significance level, a = .14, which is the value we use below.

6.3 Numerical Results

Our leading example is an investor in 1971:Q3 (¢t = 0), who plans over various horizons
(up to 30 years). He looks back on data starting in 1927:Q3. We generate a discretized
returns sample by letting s; = 1 if the NYSE return was above the mean in quarter ¢ and
s; = 0 otherwise. Figure 3 shows the optimal stock position as a fraction of wealth for a
5 year horizon if @ = .14 and A = 0. The axis to the right measures time in quarters ¢
up to the planning horizon of 120 quarters. The axis to the left measures the number of
high returns observed, H = t¢,. Thus only the surface above the region H <t (that is,
the region to the right to the diagonal H = ¢ in the plane) represents the optimal stock
position.

The slope of the surface suggests that the agent is by and large a momentum investor.
If low returns are observed (movements to the right, increasing ¢ while keeping H fixed),
the stock position is typically reduced. On the path above the time axis, which is taken if
low returns are observed every period, agents eventually go short in stocks. In contrast, if
high returns are observed (movements into the page, increasing H one for one with t), the
stock position is typically increased. On the ridge above the diagonal (H = t), which is
taken if high returns are observed every period, investors take ever larger long positions.
The optimal policy surface has also a flat piece at zero: when enough low returns are
observed, agents do not participate in the market. The terminal period of our model
corresponds to the static Dow-Werlang setup. In all earlier periods, participation and
the size of positions is in part determined by intertemporal hedging.

Hedging Ambiguity

In the present example, both # and A capture unknown factors that matter not only
for returns over the next period, but also for future investment opportunities. For the
reasons discussed in Section 6.1, participation is thus more likely earlier in the investment
period. In addition, hedging due to time-varying ambiguity implies that the agent follows
contrarian, as opposed to momentum, strategies when he is not sure about the size of
the equity premium. To illustrate this effect, Figure 4 focuses on an agent planning in
1928:QQ3, who has only one year of previous data as prior information. While the effects
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Figure 3: Optimal stock position for ambiguity-averse agents with o = .14 and A = 0,
for 30-year planning problem, beginning in 1971:Q3.

are qualitatively similar in later years (such as for our leading example), the effects of
hedging are most pronounced if there is a large amount of prior uncertainty. The left
hand panel of Figure 4 shows a representative ‘section’ of the optimal policy surface (for
t = 12, here 1931:Q2). The right hand panel shows the change in the stock position at
t = 12, as a function of the number of high returns, if the 13th observation was either a
high or a low return.

Investment behavior falls into one of three regions. A non-participation region is
reached if the absolute value of the sample equity premium is low, which occurs for ¢,
slightly below % If the equity premium has been either very high or very low, the agent
is in a momentum region. He is long in stocks if the sample equity premium is positive
and short otherwise. He also reacts to high (low) returns by increasing (decreasing) his
net position. If the absolute value of the equity premium is in an intermediate range,
the agent is in a contrarian region. He is short in stocks for a positive sample equity
premium and long otherwise. Moreover, he now reacts to high (low) returns by decreasing
(increasing) his net exposure. The contrarian region is also present in our leading example
(investment starting in 1971:Q3), but is very small; this is why it is not discernible in
Figure 3.

To understand why a contrarian region emerges, consider the dependence of contin-
uation utility on ¢,. The term h; (¢,) is typically U-shaped in ¢,. Intuitively, the agent
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Figure 4: Stock position and responses to arrival of a high or low return after 12 quarters
in 30-year planning problem beginning in 1928:Q3. Ambiguity averse investor with o =
14 and A = 0.

prefers to be in a region where either the lowest possible expected return is much higher
than the riskless rate or the highest possible return is far below the riskless rate, because
in both cases there is an equity premium (positive or negative, respectively) that can
be exploited. Suppose the lowest expected equity premium is positive. The agent must
balance two reasons for investing in the stock market. On the one hand, he can exploit
the expected equity premium by going long. On the other hand, he can insure himself
against bad news about investment opportunities (low returns) by going short. Which
effect is more important depends on how the size of the equity premium compares to the
slope of the h;’s. If the equity premium is small in absolute value, the hedging effect
dominates.

Participation over the last three decades

Figure 5 compares the positions that various investors would have chosen since 1971. An
investor who believes that returns are unambiguous signals (A = 0) should always holds
stocks, although his positions are quite small, barely reaching 30% even after the high
returns of the 1990s. As a reference point, an agent with rational expectations who is
sure that the equity premium is equal to its sample mean would hold 82% stocks every
period. The Bayesian learner in Figure 5 lies between these two, increasing his position

up to 80% toward the end of the sample.
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Figure 5: Optimal stock positions for ambiguity-averse agents with o = .14 and different
values of A (here denoted \) as well as for Bayesian agent with uniform prior. All planning
problems are over 30 years beginning in 1971:Q3.

The plot also shows that small amounts of signal ambiguity can significantly reduce
the optimal stock position. The investor with A\ = .01 already holds essentially no stocks
throughout most of the 1970s. An investor with A = .02 does not go long in stocks until
1989. Both of these investors participate in the market in the 1970s, but spend most
of the time in their contrarian region, where they take tiny short positions. As long
as the investor remains in a region where he is long in stocks, changes in the ambiguity
parameters a and \ for a given sample tend to affect the level of holdings, with a negligible
effect on changes. Comparison of the Bayesian and ambiguity-averse solutions reveals
that the supporting measure’s means are essentially vertically shifted versions of each
other. Of course, the Bayesian model cannot generate non-participation, so changes will
look very different in states where the ambiguity averse investor moves in and out of the
market.

7 RELATED LITERATURE

We are aware of only two formal treatments of learning under ambiguity. Marinacci
[30] studies repeated sampling with replacement from an Ellsberg urn and shows that
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ambiguity is resolved asymptotically. This is a special case of our model in which signals
are unambiguous. The statistical model proposed by Walley [37, pp. 457-72] differs in
details from ours, but is in the same spirit; in particular, it also features what we call
ambiguous signals. An important difference, however, is that our model is consistent
with a coherent axiomatic theory of dynamic choice between consumption processes.
Accordingly, it is readily applicable to economic settings.!?

With ambiguous signals, learning ceases without all ambiguity having been resolved.
Our model thus proposes a way to model incomplete learning in complicated environ-
ments that is quite different from existing Bayesian approaches. One such approach starts
from the assumption that the true data generating measure is not absolutely continuous
with respect to an agent’s belief.!® This generates situations where beliefs do not con-
verge to the truth even though agents believe, and behave as if, they will.'? In contrast,
agents in our model are aware of the presence of hard-to-describe factors that prevent
learning and their actions reflect the residual uncertainty.

Our setup is also different in spirit from models with persistent hidden state variables,
such as regime switching models. In these models, learning about the state variable never
ceases because agents know that the state variable is forever changing. Agents thus
track a known data generating process that is not memoryless. In contrast, our model
applies to memoryless mechanisms. Accordingly, learning about the fixed true parameter
does eventually cease, and agents know this. Nevertheless, because of ambiguity, the
agent reaches a state where no further learning is possible although the data generating
mechanism is not yet understood completely.

There exist a number of applications of multiple-priors utility or the related robust
control model to portfolio choice or asset pricing. None of these is concerned with learn-
ing. Multiple-priors applications typically employ a constant set of one-step-ahead prob-
abilities (Epstein and Miao [14], Routledge and Zin [33]). Similarly, existing robust
control models (Hansen, Sargent, and Tallarini [23], Maenhout [28], Cagetti et al. [9])
do not allow the ‘concern for robustness’ to change in response to new observations.
Neither is learning modeled in Uppal and Wang [35] that pursues a third approach to
accommodating ambiguity or robustness.

Our paper contributes to a growing literature on learning and portfolio choice. Bawa,
Brown, and Klein [7] and Kandel and Stambaugh [26] first explored the role of parame-
ter uncertainty in a Bayesian framework.?’ Several authors have solved intertemporal
portfolio choice problems with Bayesian learning.?! The main results are conservative

I7A similar remark applies to Huber [25], who also points to the desirability of admitting ambiguous
signals and outlines one proposal for doing so.

18This violates the Blackwell-Dubins [8] conditions for convergence of beliefs to the truth. See Feldman
[19] for an economic application.

19 As a simple example, if the parameter governing a memoryless mechanism were outside the support
of the agent’s prior, the agent could obviously never learn the true parameter.

20There are alternatives to a Bayesian approach to the parameter uncertainty problem. See Ang and
Bekaert [1] for a classical econometric strategy.

21Detemple [12], Gennotte [20], and Barberis [3] have considered the case of learning about mean
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investment recommendations and optimal ‘market timing’ to hedge against changes in
beliefs. While these effects reappear in our setup, our results are qualitatively different
since multiple-priors preferences lead to non-participation.

Non-participation can be derived also from preferences with first-order risk aversion,
as in Ang, Bekaert and Liu [2]. A key difference between first-order aversion and am-
biguity aversion is that the latter allows different attitudes towards different sources of
uncertainty. In applications, this is relevant for modeling participation in some assets
markets and non-participation in others. Barberis and Huang [4, 5] generate selective
participation by combining first-order risk aversion with narrow framing. In their model,
agents derive utility directly from individual asset positions, so that risk aversion can
differ by position. This is different in spirit from our model where ambiguity aversion
differs by source of uncertainty — it differs by position only if different positions represent
exposure to different sources of uncertainty. In addition, our learning process links ambi-
guity aversion directly to information: ambiguity aversion is smaller towards sources of
uncertainty that are more familiar. This is consistent with evidence on investor behavior
cited above.

Empirical work on stock market participation has considered agents with expected
utility preferences that face a fixed per period participation cost. For example, Vissing-
Jorgensen [36] estimates levels of per period fixed costs that would be required to ra-
tionalize observed participation rates in the U.S. Her approach exploits the tight link
between wealth and participation predicted by fixed cost models. While modest fixed
costs do help explain the lack of participation among poor households that have little
financial assets in the first place, she also concludes that “it is not reasonable to claim
that participation costs can reconcile the choices of all nonparticipants”. This conclusion
follows because participation is not as widespread among wealthy households as a fixed
cost model would imply.

8 CONCLUSION

This paper has proposed a tractable framework for modelling learning under ambiguity.
The key new property of learning is that confidence varies over time, together with beliefs.
Ambiguous signals describe pieces of information that may reduce confidence. They also
prevent ambiguity from vanishing in the long run. Our setup can thus be used to model
decision making in complicated environments, where agents know that some features of
the environment remain forever ambiguous, whereas others can be learnt over time. Asset
markets are one example of such an environment, but the structure is likely to be useful
in other contexts as well.

Our results on optimal portfolio choice suggest that learning under ambiguity could
be a building block in a successful model of the cross section of asset holdings. While

returns, while Barberis [3] and Xia [38] have studied learning about predictability. See Ang and Bekaert
[1] for portfolio choice in a regime-switching model.
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more work is required to distinguish an ambiguity aversion story from one based on a
technological participation cost, it is already clear that the two models have very different
implications. For example, consider the issue of investing a social security fund in the
stock market. If the participation cost is technological, then the government could reduce
it by exploiting economies of scale. In contrast, if non-participation is due to ambiguity
underlying preferences, then agents could not gain from being forced to invest.

Participation rules driven by learning from past returns may be relevant also for un-
derstanding the dynamics of selective participation in particular markets. For example,
it has been noted that the decline in equity home bias ceased in the late 1990s although
transaction costs were reduced further. Increases in the implicit participation cost in-
duced by ambiguity after recent financial crises abroad provide a candidate explanation.
Other examples include the increased participation by small investors in “hot” stocks or
mutual funds after a period of high returns.

A APPENDIX

Proof of Theorem 1. For any sequence s* = (si,5s,...), denote by ¢, the empirical
measure on S corresponding to the first ¢ observations. We focus on the set €2 of sequences
for which ¢, — ¢; this set has measure one under the truth. Fix a sequence s> € ). For
any likelihoods (¢;),. s and 6 € ©, and for any probability measure A on S, define

H () Z A(s)log s (s]6),
ses

Below we take A to be ¢, or ¢.

Given p and the likelihood sequence ¢!, then the data density for the first ¢ periods

t
Pr(s"; pi, £ ZNU HKJ $510).-
j=1

0cO

is

In choosing a likelihood sequence that maximizes Pr(s’; u, /), it is wlog to focus on
sequences such that ¢; = ¢, if s; = s;. Any such likelihood sequence can be identified
with a collection (¢;), o and we can write

max Pr(s*; i, ¢" maxz Lo H(du.(L:).0)
) heo

By definition of H and the identification condition, there exists ¢ > 0 such that
maz ) H (¢, (€),0) < H(0%) — ¢, for all § # 6.
Thus the Maximum Theorem implies that, for some sufficiently large T,

maz () H (9, () ,0) < mazq,) H (¢, (4).07) = e, (18)
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for all  # 6 and t > T.
We claim that

o+ =

lim (maXPr(s ,uo,ft)) = H),

t—00 \ po,f*

or equivalently, that

1
max,, g Pr(st; py, 04)7*
NO,Ztl N( 71“07 ) 1 (19)
etmaxey) H(e,(Ls),0%) ’
Rewrite the latter in the form
1
t
[ma% “ ZM el 0o )] — 1, where (20)
9o

1 I7 *
Tt (9>N0>€t) = ;Z;leag@ (sj |6) — I?Za)x H (¢, (L5),0%).

From (18), deduce that

max,, e i (0°) ™ (6% 110:)

< max,, o Z,uo (9) et (o)
6eo

< may, oo (0%) et (07 mo ') 4 (1 — po (07)) e,
for all £ > T'. But
[mcwsuo,gt fo (67%) emt(e*’”m”)} KRN 1,
which proves (20).

Now consider any admissible ‘theory’ (p, £*). By the definition of M, (1, ¢*) must
satisfy

o+ =
o=

(maXPr(s 11, " ))% > (Pr(s'; o, ')

po, Lt

> ot (maxPr(s to, O )>

po Lt

Thus (19) implies that

1
Pr(st;u(),gt) t
[etm“(&s) T | L (21)

for any admissible theory.
The posterior derived from (p,, £*) satisfies
po (0% 14
Zaee o (6) etn:(?)

Mt(‘g*"gtv Hos gt) =

-1

= 110 (0%) | 120 (07) + ) g (8) D=0}
0£6*

32



here and below we suppress the dependence of 7, on (p, ") because the latter is fixed.
Thus we are done if we can show that

Z 1o (0) et O=m(07) _,
00

This follows from two claims.

Claim 1: For any € > 0 and all 8 # 6%, n,(0) < —e for all t > T (¢). To maximize
220 logl; (s; | ), it is wlog to focus on sequences such that £; = ¢, if s; = 5. Therefore,

_ilogl; (s; | 0) < max (¢t7< s).0)

The claim follows from (18).

Claim 2: n, (¢*) — 0. By construction, 7, (%) < 0. Suppose that 7, (6*) < —6 for some §
and all ¢ > T". Then claim 1 (with € = §) implies that

Pr(s’; p ‘
07 7] -5
ctmax(,, (o (L )9* ] (Z,u e’ ) <e <1

0cO

for all sufficiently large t, contradicting (21). =

Proof of (11). Refer to the i.i.d. measure with one-period distribution ¢ as the ‘truth’.
Every posterior in MY (s!) corresponds to some ji, and ¢ :

1o (67) H;:l C;(s;0%)

> oce Ho () H;=1 l;(s510)
1

li(s;]0
1 + dee 9*)) exp (t ( Z 1 log 7 ((sj\‘ﬁ*))>>
By (11), then a.s. under the truth and for all 6 # 6%,

: l; (5510 €(s410)
(1 2o ) - s 17

¢(s19)
_Zgb maxlog;g< 7) <0

sES

:ut (9*|St7 /1“07 fi) =

(22)

where the last equahty follows from the law of large numbers because the stochastic

process maxy log s 7‘9*)) is i.i.d. under the truth. It follows that the sum in the denomi-

nator of (22) converges to 0 a.s. under the truth and hence that p, (0%|s, g, 05) — 1.

Proof of (16). Write the likelihood of a sample s* under some theory, here identified with
a pair (Q,At), as

t
L(s"0,X) =T (0+X)" (1=6—x)". (23)
7j=1
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Let X' denote the sequence that maximizes (23) for fixed 6. This sequence is independent
of 0 and has \; = Nif s; = 1 and \; = =X if s; = 0, for all j < ¢. It follows

that L (st, 0, ;\t> depends on the sample only through the fraction ¢, of high returns
observed. The set M can be expressed in terms of L (st, 0, 5\t>, because § € M if and
only if the theory (9, 5\t> passes the likelihood ratio criterion. Indeed, if # € M$, then

there exists some \' such that the theory (6’, )\t) passes the criterion. Thus (9, 5\t> must

also pass it, since its likelihood is at least as high. In contrast, if ¢ M, then there is
no A such that the theory (9, )\t) passes the criterion. Finally, one can use

9(0,0,) = %bgL <st, 0, Xt)

to express the criterion in (16).
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