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Abstract

This paper considers learning when the distinction between risk and ambigu-
ity (Knightian uncertainty) matters. Working within the framework of recursive
multiple-priors utility, the paper formulates a counterpart of the Bayesian model
of learning about an uncertain parameter from conditionally i.i.d. signals. Am-
biguous signals capture differences in information quality that cannot be captured
by noisy signals. They may increase the volatility of conditional actions and they
prevent ambiguity from vanishing in the limit.
Properties of the model are illustrated with two applications. First, in a dy-

namic portfolio choice model, stock market participation costs arise endogenously
from preferences and depend on past market performance. Second, ambiguous
news induce negative skewness of asset returns and may increase price volatility.
Shocks that trigger a period of ambiguous news induce a price discount on impact
and are likely to be followed by further negative price changes.
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1 INTRODUCTION

1.1 Motivation and Outline of the Model

Models of learning describe economic agents whose actions are based on out-of-sample
forecasts subject to model uncertainty. In contrast to agents with rational expectations,
who know the true data generating process at all times, learning agents behave more like
economists themselves. This is appealing when thinking about complicated environments
such as financial markets, where the true model is hard to come by. Thus asset prices
should be driven by the dynamics of agents’ out-of-sample forecasts and portfolio choice
recommendations should take model uncertainty explicitly into account.

But how do (or should) agents process information to arrive at forecasts? Most ex-
isting models of rational learning have taken a Bayesian approach. This precludes a
distinction between risky situations, where the odds are known, and ambiguous situa-
tions, where the odds are not known with precision. The Ellsberg Paradox has shown
that this distinction is behaviorally meaningful in a static context: people treat ambigu-
ous bets differently from risky ones. This paper argues that the distinction matters also
for learning. Ambiguous signals are processed differently from noisy (or risky) ones, and
ambiguity perceived about the environment changes over time and may never be fully
resolved. We propose a model of learning under ambiguity and provide applications to
portfolio choice and asset pricing to illustrate its properties in economic settings.

Our starting point is (recursive) multiple-priors utility, a model of utility axiomatized
in Epstein and Schneider [18], that extends Gilboa and Schmeidler’s [23] model of decision
making under ambiguity to an intertemporal setting. Learning is completely determined
by specification of an initial set of probability measures P consistent with regularity
conditions. ‘Measure-by-measure’ Bayesian updating describes subsequent responses to
observations. In the present paper, we provide further structure on P to capture an
agent’s a priori view that data are generated by the same memoryless mechanism every
period. This is the same a priori view that motivates the Bayesian model of learning
about an underlying parameter from conditionally i.i.d. signals.1 In both models, there
is a parameter space representing a feature of the environment that the agent tries to
learn and a sequence of signals that provide information.

Our model captures three important aspects of learning about a memoryless mecha-
nism that are missed by the Bayesian approach. First, it broadens the notion of informa-
tion quality. For a noisy signal, the distribution conditional on the parameter is known.
In this sense, the meaning of the signal is clear. However, in many settings it is plausible
that the agent is wary of a host of poorly understood or unknown factors that underlie
realized signals and that obscure their meaning. This type of low information quality

1One stylized environment where this a priori view is reasonable is data generated by sampling
with replacement from an urn that contains balls of various colors in unknown proportions. Here the
mechanism is ‘the same every period’ because the urn is always the same. It is memoryless because
draws are independent.
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can be captured via ambiguous signals, where the conditional distribution given the pa-
rameter is unknown (or nonunique). Second, ambiguity may change nonmonotonically
over time. The set of conditional probabilities used for forecasting can shrink or expand
with new data as signals either resolve or induce ambiguity. Third, agents facing an
ambiguous memoryless mechanism need not expect to be able to identify a simple i.i.d.
data generating process as the ‘truth’, not even in the long run. While their learning
process does settle down, the presence of poorly understood or unknown factors may
prevent ambiguity perceived about the environment from vanishing in the limit.

To illustrate, suppose the agent participates in a trial for a new drug. In the beginning,
he is told that, with equal probability, he will receive either the medication or a placebo.
Ex ante, a bet on receiving medication is risky - it is equivalent to a bet on a fair coin.
Consider next the agent’s view of the environment after the first day of the trial. He
will consider a change in his health as an informative signal. For example, if his health
improves, it is more likely that he is receiving medication. However, given the lack of
information about how the drug works, the agent will typically not know the likelihood.
Therefore, a bet on receiving treatment is no longer purely risky ex post: the signal
induces ambiguity. To describe adequately the quality of this signal, the standard risk
measure (precision) is inappropriate. Our model represents ambiguous signals by a set
of likelihoods; the size of this set captures information quality.

Ambiguous signals affect what agents expect to learn in the long run. When signals
are noisy, the agent views the memoryless mechanism as a sequence of experiments held
under identical conditions. Thus he plausibly expects to learn a true i.i.d. process that
generated the data. However, the a priori view that there is a memoryless mechanism
applies also to situations where the hypothesis of ‘identical conditions’ is not intuitive.
Consider again the drug trial example. Suppose the agent knows that any persistent
changes to his condition must arise from the medication.2 At the same time, he is aware
of many other factors that affect his health. These factors are not only hard to describe,
but also changing over time and in a way that he does not understand. A reasonable
agent might (i) every day, view tomorrow’s change in health as ambiguous, and (ii)
given the lack of day-specific information about the other factors, perceive the degree of
ambiguity to be the same every day. The mechanism is thus a series of indistinguishable
experiments, where equally little is known about each of them.

For an agent faced with such a mechanism, it is plausible that the learning process
‘settles down’: beliefs should eventually change little with every new observation. How-
ever, ambiguity about the data may persist forever. For one thing, the next signal will
always be viewed as ambiguous. In addition, ambiguity about the parameter need not
vanish. In the example, ambiguity induced by the other factors might make it altogether
impossible for the agent to be confident about whether or not he is receiving medication.
Our model provides a flexible structure that allows the learning dynamics to depend on
the agent.

2The thrust of the argument does not depend on this assumption, but the model would have to be
more complicated if it were to be relaxed.
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Ambiguous signals also affect the choice of actions. According to the multiple-priors
model, an ambiguity averse agent evaluates an action using the (updated) probability
measure from the set P that minimizes the payoff from that action.3 This entails an
asymmetric response to news: ambiguous signals that convey ‘good news’ for a given
action are viewed as less precise and hence less reliable than signals conveying bad news.
Ambiguity also affects the link between information quality and the volatility of actions.
The typical result in the Bayesian case is that, with lower information quality, actions are
less volatile since signals are given less weight. In contrast, if a decrease in information
quality is captured by an increase in signal ambiguity, then actions may become more
volatile. That is because a more ambiguous signal admits more possible interpretations
and the volatility of the ‘worst case’ interpretation, and hence also the associated action,
may increase.

The paper is organized as follows. The remainder of this introduction outlines our
applications. Section 2 presents a sequence of thought experiments to argue that the
Bayesian model is not a satisfactory model of learning. Section 3 briefly reviews recursive
multiple-priors utility. Section 4 introduces the learning model. The next two sections
contain the portfolio choice application and our model of asset pricing with ambiguous
news. Section 7 discusses related literature. Some proofs are collected in an appendix.

1.2 Applications

As our first application, we study the portfolio choice and stock market participation
decisions of an agent who is learning about mean stock returns. Among U.S. households,
non-participation in the stock market is both widespread and variable over time. At this
point, a satisfactory model of the cross section of holdings does not exist.4 One problem
is that, in the standard frictionless portfolio choice model based on expected utility,
zero holdings of risky assets are almost never optimal. In contrast, with multiple-priors
utility, zero holdings of ambiguous assets are often optimal. Intuitively, if the interval
of expected excess returns contemplated by the agent contains zero, then the worst case
payoff for both long and short positions is at most zero. This result was shown in a static
setting by Dow and Werlang [16].

What is new in our analysis is that we consider a dynamic model with learning where
agents hedge changes in the investment opportunity set that arise from changes in beliefs.
We examine when non-participation is optimal in this setting. Learning endogenizes the
interval of expected excess returns and links the participation decision explicitly to past
market performance. Ambiguity averse investors tend to be momentum investors, buying
(or entering the market) on good news and selling (or exiting) on bad news. We propose
a way for an investor to determine his degree of ambiguity about returns and we calculate
optimal portfolios in real time. For reasonable parameter values, the model recommends

3The min operator in the functional form is justified by axioms that formally capture ambiguity
aversion. Section 2 illustrates how it helps to describe intuitive behavior, such as arises in the Ellsberg
Paradox.

4See Guiso and Haliassos [24] for a survey of the existing empirical and theoretical literature.
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that U.S. investors hold no stocks in the 1970s, entering the market only in the late
1980s.5

As a second application, we formulate a simple model of asset pricing in times of
“ambiguous news”. It is motivated by consideration of a shock that simultaneously (i)
increases uncertainty about fundamentals and (ii) changes the nature of signals relevant
for forecasting fundamentals. One example is the terrorist attack of September 11, 2001.
This shock both increased uncertainty about future growth and shifted the focus to
hitherto “unfamiliar” news about foreign policy and terrorism. The shock could also
be idiosyncratic: for example, a merger announcement often increases uncertainty about
future performance and changes the set of signals used for valuation. Since the shock
increases uncertainty, it marks the start of a learning process that affects prices. Since
the news are unfamiliar, it is natural to model this process as learning from signals with
ambiguous precision. This approach gives rise to two important effects.

First, before seeing a signal, agents want to be compensated for the ambiguity that it
will induce. The prospect of ambiguous news thus leads to a price discount for securities
even if there is no change in expected payoffs or in risk premia. This requires reevaluation
of conclusions commonly drawn from event studies. For example, a negative abnormal
return after a merger announcement need not imply that the market views the merger
as a bad idea. Instead it might simply reflect the market’s discomfort in the face of
the upcoming period of ambiguous news. Importantly, a discount due to low future
idiosyncratic information quality cannot be captured by the Bayesian model: if lower
information quality is captured by higher risk, then it should be diversified away.6

Second, after seeing a signal, agents react asymmetrically: bad news are taken more
seriously than good news. The distribution of returns thus becomes more negatively
skewed than the distribution of signals. As a result, the initial shock can have a drawn
out negative effect on prices even if there is no long term negative change in fundamentals.
This can help to explain price movements in the aftermath of 9/11. The initial drop in
the stock market when it reopened on September 17 was followed by more losses over the
following week, before a gradual rebound occurred. We calibrate a representative agent
model with learning to compare Bayesian and multiple-priors accounts of this period.
Our working hypothesis is that no long term structural change occurred.

A Bayesian model with known precision then has problems explaining the initial slide
in prices. Roughly, if precision is high, the arrival of enough bad news to explain the
first week is highly unlikely, while with low precision bad news will not be incorporated
into prices in the first place. With ambiguous precision, bad news are taken especially
seriously and hence a much less extreme sequence of signals suffices to account for prices

5The main point may be relevant more widely. For example, it has been noted that the decline in
equity home bias ceased in the late 1990s although transaction costs were reduced further. Increases
in the implicit participation cost induced by ambiguity after recent financial crises abroad provide a
candidate explanation.

6In a risky world, the law of large numbers says that a portfolio of many independent and securities
has zero risk. In an ambiguous world, the return on a portfolio of many independent securities may still
be ambiguous. See Marinacci [35] for a version of the law of large numbers under ambiguity.
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in the first week. In this sense, the ambiguity aversion model outperforms the Bayesian
model. In addition, it attributes most of the initial drop in prices to the prospect of
ambiguous news. In contrast, the Bayesian model relies on large movements in expected
growth to rationalize price movements.7

2 SOME STYLIZED EXAMPLES

In this section we present a series of examples to illustrate limitations of the Bayesian
approach and to introduce our model informally.8 In one way or another, they are all
based on the Ellsberg Paradox, a version of which is reviewed below. While the Ellsberg
Paradox applies also in static settings, we focus on concerns that are specific to the
Bayesian model of learning and hence to dynamic settings. Three stylized examples
below exhibit behavior that is intuitive, yet at odds with the Bayesian model. We use
them to motivate the building blocks of our model and then we argue that the key
principles behind the examples are applicable more widely in economic settings.

2.1 The Ellsberg Paradox

Consider two urns, each containing four balls that are either black or white. The agent is
told that the first “risky” urn contains two balls of each color. For the second “ambigu-
ous” urn, he is told only that it contains at least one ball of each color. Suppose one ball
is to be drawn from each urn. In what follows, a bet on the color of a ball is understood to
pay one dollar (or one util) if the ball has the desired color and zero otherwise. Intuitive
behavior pointed to by Ellsberg is the preference to bet on drawing black from the risky
urn as opposed to the ambiguous one, and a similar preference for white. This behavior
is inconsistent with any single probability measure on the associated state space, but can
be explained by the multiple-priors model.

Formally, let the state of the world be s = (sr, sa) ∈ S = {B,W}2. Then sa denotes
the color of the ball drawn from the ambiguous urn and the indicator function 1sa denotes
the corresponding bet. Similarly for the other urn and bets. Given a set P of probability
measures on S, the multiple-priors utility of the bet 1sa is

U(1sa) = min
p∈P

p (sa) .

Thus Ellsberg-type behavior is accommodated if P contains a probability measure that
7More precisely, a Bayesian story attributes movements in prices to changes either in expected future

growth or in risk. If the relevant news are mainly about medium term effects of the attack, changes in
risk, that is, in the conditional covariance between consumption and returns, are small.

8More formal treatments follow in Section 3, where recursive multiple-priors utility is reviewed, and
in Section 4, where our learning model is described more precisely. Some readers may wish to proceed
directly from this informal description to the applications. Others may wish to skip this section and
proceed directly to the formalism.
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assigns probability greater than 1
2
to black in the ambiguous urn and another measure

that assigns probability less than 1
2
.

2.2 Sampling from Ellsberg Urns: Ambiguous Prior Beliefs

A simple example of learning obtains if repeated sampling with replacement is permitted
from the given ambiguous urn. Compare the choice of bets in light of different sequences
of draws. Two properties of learning are intuitive. First, Ellsberg-type behavior should
be exhibited in the short run, because a few draws cannot plausibly resolve the initial
ambiguity. Second, in the long run, learning should resolve ambiguity, since the am-
biguous urn remains unchanged. As the number of draws increases, ambiguity should
diminish and asymptotically the agent should behave as if he knew the fraction of black
balls was equal to their empirical frequency. While the Bayesian model cannot deliver
the first property, a model of learning under ambiguity satisfying both properties can
be constructed by augmenting multiple-priors utility with specific assumptions on beliefs
along the lines of Marinacci [36].

To see this, it is helpful to describe first the natural Bayesian specification. Let
θ ∈ Θ = {2, 3} denote the number of black balls in the ambiguous urn. The agent has
prior µ0 over Θ. If ` (·|θ) is the likelihood function suggested by the objective features
of the setting described above, then after the t draws st1 = (s1, ..., st), beliefs about the
next draw are given by

pt(·|st1) =
Z
Θ

` (·|θ) dµt
¡
θ|st1, µ0, `

¢
. (1)

Here µt (·|st1, µ0, `) is the posterior over Θ determined by Bayes’ Rule.
Ambiguity can be introduced by permitting a set M0 of priors on Θ. The counterpart

of (1) is that conditional beliefs about the next draw are given by the set of 1-step-ahead
conditionals

Pt
¡
st1
¢
=

½Z
Θ

` (·|θ) dµt
¡
θ|st1, µ0, `

¢
: µ0 ∈M0

¾
. (2)

In other words, every prior inM0 is updated using the likelihood `. After finitely many
draws, there will still be a set of posteriors µt, and hence a nonsingleton set Pt of 1-step-
ahead beliefs. This accommodates Ellsberg-type behavior in the short run. However,
as time goes by, the influence of the priors diminishes and (under standard regularity
conditions) Pt converges to a singleton.9 Ambiguity is thus resolved in the long run.

2.3 Ambiguous Signals

The previous example is special because the physical environment suggests that the
conditional distribution of signals is known. We now modify it to introduce ambiguous

9See Marinacci [36] for details.

7



signals. Suppose that one ball is added to each of the two urns. Its color can be black
or white, as determined by tossing a fair coin: the ‘coin ball’ is black if the coin toss
produces heads and white otherwise. The two coin tosses that determine the color of the
coin ball are independent across urns. Modify also the type of bet. Instead of betting on
the next draw, the agent is now invited to bet on the color of the coin ball.

A priori, before any draw is observed, one should be indifferent among bets on the
coin ball from either urn - all these bets amount to betting on a fair coin. Suppose now
that one draw from each urn is observed and that both balls drawn are black. Neither
draw gives perfect information about the coin ball, but there is a difference between the
information provided about the two urns. In particular, it is intuitive that one would
prefer to bet on a black coin ball in the risky urn rather than in the ambiguous urn. The
reasoning here could be something like “if I see a black ball from the risky urn, I know
that the probability of the coin ball being black is exactly 3

5
. On the other hand, I’m not

sure how to interpret the draw of a black ball from the ambiguous urn. It may be due to
the presence of 3 black non-coin balls or alternatively, it may have occurred in spite of
the presence of only 1 black non-coin ball. Thus the posterior probability of the coin ball
being black could be anywhere between 4

7
and 2

3
. So I’d rather bet on the risky urn.” By

the same reasoning, if both drawn balls are white, one should prefer to bet on a white
coin ball in the risky urn rather than in the ambiguous urn.

The above rankings could be exhibited by a Bayesian agent who holds a single subjec-
tive probability belief about the composition of the ambiguous urn. However, his belief
must imply that the colors of the non-coin balls in the ambiguous urn depend on the
color of the coin ball.10 Since such a belief does not respect independence of the coin
ball, conclude that the Bayesian model cannot satisfactorily capture the difference be-
tween the two urns. A difference from the standard Ellsberg Paradox is that here the
prior belief about the color of the coin ball is unambiguous. Nevertheless, ambiguity in
the signal induces conditional Ellsberg-type behavior. Our model accommodates this by
permitting multiple likelihoods.

It is natural to let the parameter be θ = (θr, θa) ∈ Θ = {B,W}2, where θr (θa)
denotes the color of the coin ball in the risky (ambiguous) urn, and to assume the single
prior µ0, independent across urns and satisfying µ0 (θ

a = B) = µ0 (θ
r = B) = 1

2
. If the

ambiguous urn contains a black coin ball, then the likelihood of drawing a black ball
10To see this, let pb (pw) denote the conditional probability of drawing a black (white) ball from the

non-coin balls given that the coin ball is black (white). The probability of winning the bet on a black
coin-ball in the ambiguous urn after a black draw is

π =
1
2

¡
1
5 + 4

5p
b
¢

1
2

¡
1
5 + 4

5p
b
¢

+ 1
2

4
5 (1− pw)

=
1 + 4pb

5 + 4 (pb − pw)
.

Independence of the coin ball is respected iff pb = 1 − pw, which implies π = 1+4pb

1+8pb . Thus π < 3
5 , the

probability of winning the corresponding bet for the risky urn, iff pb > 1
2 . Argue similarly that p

w > 1
2 .

Hence pb > 1− pw, contradicting independence.
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from that urn is given by

`λ (B | B) = λ+1
5
,

where λ denotes the number of black non-coin balls; similarly for `λ (· | W ). Given the
symmetry of the environment, a natural set of likelihoods is

L²= {`λ : λ ∈ [2− ², 2 + ²]} , (3)

where ² is a parameter, 0 ≤ ² ≤ 1.
In the special case where ² = 1, the agent attaches equal weight to all logically

possible urn compositions λ = 1, 2, or 3. More generally, (3) incorporates a subjective
element into the specification. Just as subjective expected utility theory does not impose
connections between the Bayesian prior and objective features of the environment, so too
the set of likelihoods is subjective (varies with the agent) and is not uniquely determined
by the facts. For example, the agent might attach more weight to the ‘focal’ likelihood
corresponding to λ = 2 as opposed to the more extreme scenarios λ = 1, 3. The parameter
² can be interpreted as the weight attached to the latter scenarios, as opposed to the focal
likelihood. Indeed, L² can be rewritten as11

L² = {(1− ²) `2 (· | θ) + ²`λ (· | θ) : λ = 1, 2, 3}.

In the intermediate range, ²models the importance of ambiguity in beliefs and preference.
The Bayesian agent (² = 0) considers the focal case only.

Implicit is that the agent does not understand the mechanism underlying λ well
enough even to theorize about how its value is determined. Thus he considers the entire
set L² of likelihoods constructed as above (and assuming also the obvious likelihood for
the risky urn and independence across urns). Denote by L the set of likelihoods relevant
for the Cartesian product space defined by the two urns.

After one draw from each urn with outcome s1 = (sr1, s
a
1), updated beliefs about the

next draw are given by the set of 1-step-ahead conditionals,

P1 (s1)=
½Z

Θ

` (·|θ) dµ1 (θ|s1, µ0, `) : ` ∈ L
¾
. (4)

Thus the single prior has turned into a set of posteriors (compare with (2)). Conditional
Ellsberg-type behavior is accommodated in this way.

One may view the draw of a ball as an experiment that is conducted to learn the
color of the coin ball in an urn. For the risky urn, there is exactly one probability over
draws for every θ. In other words, the agent is sure about the connection between the
true parameter and the data generated by the experiment. This may be a tenable view
of controlled laboratory experiments. It seems less plausible for ‘experiments’ observed
11This is a form of the ²-contamination model employed in robust statistics (see Walley [48], for

example). In economic modeling, it is used in Epstein and Wang [20], for example.
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in economic settings, such as in asset markets where returns are influenced by a large
number of factors that are difficult to foresee and describe. Those factors obscure the
link between the underlying feature of the environment that is of interest (such as the
fundamental value of the security) and the data that are generated. Ambiguous signals
can capture this intuition. Noisy signals cannot.

2.4 Sequences of Ambiguous Signals:
Indistinguishable Experiments

Extend the preceding example to several draws. Assume that one ball from each urn is
drawn every period and then replaced. In addition, assume that all non-coin balls from
the ambiguous urn are replaced every period with a new set of non-coin balls, subject
still to the restriction that one ball of each color is present. The only other information
given to the agent about the replacement mechanism is that it is memoryless, that is, he
should not expect a pattern in the sequence of sets of non-coin balls. Because the next
urn always contains two new balls of unknown color, Ellsberg-type behavior is natural
and it should persist at any horizon. In particular, the Bayesian model does not apply.
However, our model with multiple-likelihoods captures intuitive features of this situation
with a sequence of ‘changing’ ambiguous urns.

The fact that the set of likelihoods is the same for each time period captures the agent’s
perception that every new set of non-coin balls is equally ambiguous. This is reasonable
because the description of the environment does not give any indication of patterns in the
sequence of ambiguous urns. Using language of Walley [48], the ambiguous signals here
are results of a sequence of independent and indistinguishable experiments. This is to be
contrasted with experiments that are identical, that is, held under identical conditions,
as illustrated by the example in Section 2.2 where the ambiguous urn was fixed through
time.12 Walley expresses the contrast also as one between “symmetry of evidence” and
“evidence of symmetry”. In the first case, there may be no reason to distinguish between
experiments. However, particularly in real world settings, available evidence may be so
meagre that there are no grounds for being confident that the experiments are identical -
think of there being many underlying and poorly understood factors that influence data
and that may vary over time. The Bayesian model is not able to distinguish between
these two cases, because both must be captured by conditionally i.i.d. signals.

Since the Bayesian model views signals as results of identical experiments, a Bayesian
learner is naturally very ambitious - he tries to, and eventually succeeds in, learning all
events of interest in a given environment. Again, this is reasonable in some transparent
environments, such as when sampling from the risky urn. For the ambiguous urn, and
more generally in economic environments, a more modest stance seems plausible. There
are often aspects of the environment that agents think are impossible to ever know.
Accordingly, agents concentrate on trying to learn about a limited set of features.
12See Epstein and Schneider [19] for more on this distinction.
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2.5 Beliefs in the Long Run

To see further desirable properties of a model of learning under ambiguity, contemplate
again beliefs about the coin ball, but now conditional on a large number of draws. Con-
sider a sequence of draws that leads to a limiting empirical frequency for black given by
φ∞. For φ∞ sufficiently large (small), the agent should become confident that the coin
ball is black (white). At issue are the meanings of ‘sufficiently large’ and ‘sufficiently
small.’ For a Bayesian agent, who assigns a

¡
1
2
, 1
2

¢
prior to the color composition of the

non-coin balls in every ambiguous urn, precisely as for the risky urn, there is a unique
cut-off value of 1

2
. He becomes certain asymptotically that the coin ball is black (white)

according as φ∞ > (<) 1
2
.

An ambiguity averse agent, however, takes into account the possibility that many or
all urns have more than 2 black non-coin balls and that this is what leads to more than
half the draws being black. Ambiguity aversion means that he attaches some weight to
this possibility, though not necessarily as much weight as he does to the ‘focal’ uniform
color composition. But given any positive weight to the above noted possibility, then it is
sensible to require stronger evidence than does the above Bayesian. Thus the ambiguity
averse agent is eventually confident that the coin ball is black if (and only if) φ∞ > φ∗∗

for some cut-off φ∗∗ > 1
2
. Similarly, confidence that the coin ball is white is sensible only

if the evidence is strong in the sense that φ∞ < φ∗ for some lower cut-off φ∗ < 1
2
.

This leaves the interval (φ∗,φ∗∗) where evidence is inconclusive. The size of this
interval presumably depends on the weight attached to alternative scenarios and thus
varies with the agent. (Because the Bayesian agent attaches zero weight, his interval is
degenerate.) For φ∞ in the inconclusive range, the agent might reason as follows: “If most
of the urns have 3 white non-coin balls, then I would be certain that the coin ball is black
and thus I would not be willing to pay any positive price for a bet on white. Similarly,
for the symmetric scenario and a bet on black. Because both scenarios are possible and
since I want to guard against the worst case, then I should not pay for a bet on either
color.” In other words, posterior beliefs about the color of the coin ball correspond to
the entire interval [0, 1], a situation that is sometimes referred to as complete ignorance.

Some agents might take this conservative stance. However, others might reason as
follows given 1

2
< φ∞ < φ∗∗: “I had incomplete prior information about the non-coin

balls, but now that I look back at the large number of draws I have seen, it seems
somewhat unlikely that in most cases there were 3 black non-coin balls. I conclude that
the coin ball is probably black.” In this way, reevaluation can eliminate the region where
evidence is inconclusive even in the limit.

It seems reasonable to permit both types of behavior. To this end, our model fea-
tures a parameter that measures the willingness to reevaluate views about how past data
were generated (the conservative agent above was totally unwilling to reevaluate). For-
mally, adopt the same parameter space, prior and set of likelihoods L² as in the previous
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example. The conservative agent’s 1-step ahead beliefs are represented by the set

Pt
¡
st1
¢
=

½Z
Θ

`t+1 (·|θ) dµt
¡
θ|st1, µ0, `t1

¢
: `τ ∈ L² for τ ≤ t+ 1

¾
, (5)

where µt now depends on a sequence `t1 = (`1, ..., `t) of likelihoods arbitrarily selected
from L². The set in (5) describes beliefs about the next ball to be drawn. Since `t+1
ranges over all of L² no matter how large is t, the model predicts that Ellsberg-type
behavior towards bets on the next ball will persist forever.

We have seen that, if all sequences of likelihoods in L² are permitted, the set of
posteriors {µt} stays nondegenerate forever if the fraction of black balls converges to the
appropriate interval. For the specifications of priors and likelihoods adopted, the cut-off
values are (see Section 4.4)

φ∗ =
log
¡
2+²
3+²

¢
log
¡
4−²2
9−²2

¢ and φ∗∗ =
log
¡
2−²
3−²
¢

log
¡
4−²2
9−²2

¢ . (6)

In particular, the corresponding interval shrinks monotonically about 1
2
as ² declines to

0. Thus a modeler who feels that complete ignorance in the long run is reasonable at
best for values of φ∞ sufficiently close to 1

2
, can ensure this by taking ² suitably small.

However, this comes at the cost of assuming that ambiguity aversion is small also in the
short run.

To eliminate complete ignorance about the coin ball in the long run without unduly
restricting ambiguity aversion in the short run, we model the less conservative attitude
described above and permit the agent to discard certain sequences of likelihoods as im-
plausible. A natural criterion is howwell the prior and the sequence of likelihoods explains
the observed history st1, as measured by the probability

Pr
¡
st1;µ0, `

t
1

¢
=

Z tY
j=1

`j (sj|θ) dµ0 (θ) .

In particular, assume that the agent retains only sequences of likelihoods such that

Pr
¡
st1;µ0, `

t
1

¢ ≥ α max
µ0, `

t
1

Pr
¡
st1;µ0, `

t
1

¢
,

where 0 ≤ α ≤ 1 is a parameter. The special case α = 0 captures the conservative agent.
With α > 0, an extreme sequence of likelihoods corresponding to “3 non-coin balls are
black” is excluded once the empirical frequency of black balls is small enough. (Such
a sequence may be readmitted subsequently if sufficiently many black balls are drawn.)
Theorem 1 below implies that for any α > 0, reevaluation leads to the cut-off values

φ∗ = φ∗∗ =
1

2
, (7)

just as for the benchmark Bayesian agent. Thus limiting posteriors regarding the coin ball
are identical for both agents. Nevertheless, these 2 agents behave differently, even in the
limit, if we consider the ranking of bets on the color of the next ball (rather than on the
color of the coin ball); only the ambiguity averse agent behaves in the intuitive Ellsbergian
fashion. Moreover, they differ also in the short-run dynamics of their posteriors.
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3 RECURSIVE MULTIPLE-PRIORS

We work with a period state space S, identical for all times, so that the (full) state space
is S∞ = Π∞t=1St, St = S all t ≥ 1. Our formalism is expressed for S finite; it can be
justified also for suitable metric spaces S, but we ignore the technical details needed to
make the sequel rigorous more generally. The agent observes the realization st in St at
time t. Thus her information at t consists of the history st1 = (s1, ..., st).13

The agent ranks (nonnegative real-valued and adapted) consumption processes c =
(ct). At any time t = 0, 1, ..., and given the history st1, her ordering is represented by
the conditional utility function Vt, defined recursively by

Vt(c) = min
Q∈Pt(st1)

EQ [ u(ct) + βVt+1(c) ] , (8)

where: β and u satisfy the usual properties, Pt(st1) is a set of 1-step-ahead measures
conditional on the history st1 and where the dependence of Vt(c) on s

t
1 is suppressed in

the notation. The set Pt(st1) embodies beliefs about the next step (about St+1) given the
history of observations st1. Such beliefs reflect ambiguity when Pt(st1) is a nonsingleton.
We refer to {Pt} as the process of conditional 1-step-ahead beliefs.

Recursive multiple-priors utility was introduced in [20] without axiomatic foundations,
but these have been provided recently in [18]. The latter also provides a reformulation
of utility that makes clearer the connection to the Gilboa-Schmeidler model. The key to
establishing this reformulation is to observe that the collection of all sets Pt(st1), as one
varies over times and histories, determines a unique set of priors P on S∞ satisfying the
regularity conditions specified in [18].14 Thus one obtains the following equivalent and
explicit formula for utility:

Vt(c) = min
Q∈P

EQ
£
Σs≥t βs−t u(cs) | st1

¤
. (9)

In particular, this expression shows that each conditional ordering conforms to the
multiple-priors model [23], with the set of priors for time t determined by updating
the set P prior-by-prior via Bayes’ rule.
Besides its simple and (in our view) appealing axiomatic foundations, recursive multiple-

priors utility is attractive also because dynamic consistency ensures that behavior is
determined, via preference maximization, without the need to resort to auxiliary and
invariably ad hoc assumptions about how intrapersonal conflicts are resolved. In addi-
tion, the model permits a natural way to describe “greater ambiguity aversion,” namely
through expansion of the set P.
An essential feature of recursive multiple-priors utility is that the process of condi-

tional 1-step-ahead beliefs {Pt} is restricted only by technical regularity conditions. This
13Measures on S∞ are understood to be defined on the product σ-algebra on S∞ and those on any St

are understood to be defined on the power set of St.
14In the infinite horizon case, uniqueness obtains only if P is assumed also to be regular in a sense

defined in Epstein and Schneider [19], generalizing to sets of priors the standard notion of regularity for
a single prior.
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is important for learning theory because, as a description of the way in which the agent’s
view of the next step or experiment depends on history, the process {Pt} is the natural
vehicle for modeling learning. It remains only to add restrictions on this process and
thus on how the agent responds to data. We proceed now to describe such restrictions.

4 THE MODEL

We present the model in two steps. Begin with processes {Pt} that permit what we call
a “statistical representation”. The general model follows.

4.1 A Special Case: Statistical Representations

Since we extend the Bayesian learning model based on (1), we first specify the latter
more precisely. To do so, denote by ∆(S) the set of all probability measures on S. Given
a measurable space (Θ,B), interpreted as the space of unknown parameters, refer to
` : Θ −→ ∆(S) as a likelihood function if

θ 7−→ `(A | θ) is B-measurable for every A ∈ S.

Beliefs of a subjective expected utility maximizer are represented by a probability measure
p on S∞. Any such p determines a process {pt} of 1-step-ahead conditional measures
and, in turn, it can be uniquely reconstructed from this process by the usual rules of
probability calculus. Thus beliefs may be represented equivalently by the process {pt}.
Say that (Θ,B, µ0, `) is a statistical representation for {pt}, and thus indirectly for p,

if: (Θ,B, µ0) is a probability space and ` is a likelihood function satisfying (1), which is
rewritten here for convenience:

pt (·) =
Z
Θ

`(· | θ) dµt(θ).

As mentioned earlier, µt is the posterior belief about Θ; it is defined recursively by

dµt(·) =
`(st | ·)R

Θ
`(st | θ0) dµt−1(θ0)

dµt−1 (·) . (10)

Refer to Θ as a (statistical) parameter space and to µ0 as the prior on Θ. The rep-
resentation suggests the interpretation that each θ ∈ Θ describes those features of the
environment about which the agent is uncertain at the start. Her uncertainty is modeled
by the subjective prior µ0. Note that the parameter θ is viewed as providing a com-
plete description of the environment in the sense that it determines a unique conditional
1-step-ahead probability law `(· | θ) on S. In particular, the likelihood embodies the
decision-maker’s view about how unknown parameters are reflected in finite samples of
data.
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Discussion in Section 2 pointed to the need for modifications of the Bayesian model.
We would like to permit the decision-maker to feel unsure about how parameters are
reflected in data, or equivalently, to feel uncertain about whether different trials of the
experiment are identical. Thus each θ should capture only some aspects of the data
generating mechanism, suggesting a need for multiple likelihoods. Second, there may
be a priori ambiguity about the true θ, suggesting a need for multiple-priors over the
parameter space.

To proceed more formally, for a given measurable space (Θ,B), say that
L : Θ Ã ∆(S)

is a likelihood correspondence if it admits a likelihood selection, by which we mean that
there exists a likelihood function ` such that

`(· | θ) ∈ L(· | θ) for every θ.
Abbreviate the latter by ` ∈ L. Thus every likelihood function can be identified with
a degenerate likelihood correspondence. The interpretation is that the agent perceives
some factors, modeled by θ, as common across time or experiments, and others, modeled
by the multiplicity of L, as variable across time in a way that she does not understand
beyond the limitation imposed by L. In particular, at any point in time, any element of
L might be relevant for generating the next observation. Accordingly, because θ is fixed
over time, she can try to learn the true θ, but she has decided that she will not try to
(or is not able to) learn more.

Initial beliefs about the parameter are given by M0 ⊂ ∆ (Θ), a set of measures on
(Θ,B). The evolution of these beliefs is represented by a sequence of sets of posteriorsMt.
The formation of beliefs about st+1 combines beliefsMt about parameters with beliefs (or
information) L about how these parameters impact data generation. A natural analogue
of the Bayesian model admits all posteriors that can be delivered by some likelihood
function and some prior, that is,

Mt

¡
st1
¢
=

½
µ : dµ(θ) =

`(st | θ)dµt−1(θ)R
Θ
`(st | θ0) dµt−1(θ0)

, µt−1 ∈Mt−1
¡
st−11

¢
, ` ∈ L

¾
. (11)

Now consider a collection {Pt} of conditional 1-step-ahead beliefs embodying the be-
liefs of an agent who conforms to recursive multiple-priors utility. Say that (Θ,B,M0,L)
is a statistical representation for {Pt}, and thus indirectly for the corresponding set of
priors P on S∞, if: (Θ,B) is a measurable space, M0 ⊂ ∆ (Θ) and L is a likelihood
correspondence satisfying

Pt(st1) = {pt (·) =
Z
Θ

`(· | θ) dµt(θ) : µt ∈Mt(s
t
1), ` ∈ L},

or in more compact notation,

Pt =
Z
Θ

L(· | θ) dMt(θ). (12)
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The case where Θ is a singleton has Pt = L for all times and histories, implying
therefore that there is no learning. This ‘IID’ case is studied in detail in [19].15

4.2 The General Model

Beliefs that permit statistical representations are special in that they shut off one channel
of learning that is unique to the ambiguous case. We have interpreted L as the set
of likelihoods possible in the future. Since the agent has decided he cannot learn the
true sequence of likelihoods, it is natural that beliefs about the future must be based
on the whole set L as in (12). On the other hand, we might expect her to revise,
with hindsight, her views about what sequence of likelihoods was relevant for generating
data in the past. Such revision is possible because the agent learns more about θ and
this might make certain sequences `t1 = (`1, ..., `t) of likelihoods more or less plausible.
Similarly,M0 describes ambiguity at time 0 about parameters to be learned, reflecting
the result of prior unmodeled observations, or, more generally, prior experience in similar
situations. With hindsight she might resolve some ambiguity about what generated these
prior observations and update her view about the relevance for the current situation of
prior experience.

Reevaluation of how patterns were reflected in past data and experience is important
for beliefs about the future because it can lead to a different view of which priors µ0,
and hence also, which posteriors are relevant. For example, if a prior belief is such that
the sample appears very unlikely under every conceivable likelihood sequence (together
with the given prior), then it is intuitive that the agent will consider the prior to be not
particularly relevant. She might even disregard the posteriors obtained from that prior.
Whether she actually does so presumably depends on an aspect of her a priori view of the
environment and on her willingness to reevaluate the extent of ambiguity with hindsight.
We now present a more general learning model where this willingness is a parameter.

View any pair (µ0, `
t
1) ∈M0 × Lt of initial beliefs and a sequence of likelihoods as a

theory at t about how the sample to that point was created. For every theory, the agent
can compute the likelihood assigned to the sample st1. If the sample appears very unlikely
given some theory about its creation, the agent might plausibly disregard posteriors based
on this theory. In addition, how ‘unlikely’ a sample appears is presumably judged not in
absolute terms, but relative to other available theories.

The preceding motivates the following definition of updating behavior: For any α, a
parameter in the unit interval, define
15In particular, we prove a strong LLN appropriate for recursive multiple-priors.
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Mα
t (s

t
1) = {µt

¡
st1;µ0, `

t
1

¢ ∈Mt :

Z
Πtj=1`j (sj|θ) dµ0(θ) ≥

α max
µ̃0∈M0
˜̀t
1∈Lt

Z
Πtj=1

˜̀
j (sj|θ) dµ̃0}, (13)

where µt (s
t
1;µ0, `

t
1) denotes the posterior obtained by updating µ0 via (10), given s

t
1 and

the ‘working hypothesis’ that the data were generated by `t1. The implied 1-step-ahead
beliefs about the state space are described by

Pαt =
Z
Θ

L(· | θ) dMα
t (θ),

which generalizes (12). Refer to (Θ,B,M0,L,α) as an α-ML (α-maximum likelihood)
representation. Thus any statistical representation is a 0-ML representation.

Essentially, the agent disregards posteriors based on theories that do not pass a
likelihood-ratio test against the alternative theory that puts maximum likelihood on the
sample. The parameter α governs the extent to which the agent is willing to reevaluate
her views about how past data were generated in the light of new sample information.
In other words, it reflects her a priori judgement about how sample evidence should be
weighed against prior evidence encoded in M0. If α = 0, then data receive minimal
weight andM0

t =Mt, the set of posteriors from the statistical representation. At the
other extreme α = 1, only posteriors based on theories assigning maximal weight to the
sample are allowed. In general, the more weight placed on the sample, the less ambiguity
there is about θ and the future: α > α0 impliesMα

t ⊂Mα0
t and Pαt ⊂ Pα0t .

The Bayesian model is the special case where both the set of priors and the set of
likelihoods have only a single element. In particular, if there is a single likelihood and a
single prior that is a Dirac measure on one parameter value, then data are perceived to be
i.i.d. Another interesting special case occurs ifM0 consists of several Dirac measures on
the parameter space in which case there is a simple interpretation of the updating rule:
Mα

t contains all θ
∗’s such that the hypothesis θ = θ∗ is not rejected by an asymptotic

likelihood ratio test performed with the given sample, where the critical value of the
χ2 (1) distribution is −2log α. In particular, if α > 0, then there is updating, parameter
values may be discarded or added to the set, and Pαt varies over time. In the extreme
case α = 0, ambiguity is not reevaluated and no learning takes place.

4.3 Informal Support

We do not yet know what axioms on preference must be added to those in [18] in order
to deliver a statistical representation or the more general α-ML representation, and in
that sense these are ad hoc. However, we argue next that formal axiomatic support is
in an important sense limited even in the Bayesian model and that on informal grounds,
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our models are appealing in many settings. While the de Finetti Theorem delivers some
statistical representation for any given exchangeable prior, in applications the modeler
must choose a particular representation (Θ,B, µ0, `) and there is no axiomatic foundation
for any particular specification. Consequently, the latter is invariably ad hoc and is
justified informally by what seems ‘natural’ or ‘cognitively appealing’ given the setting.
Similarly, to apply our model, and even given a counterpart of the de Finetti Theorem,
one would specify a representation (Θ,B,M0,L,α) that seems natural. Our claim is that
there are settings where a natural specification is easier to find in our framework than
in the Bayesian one. The urns examples in Section 2 provide a number of such settings.
Others are described in the applications below.

To be sure, we do not claim that the appeal of our model is universal. There are
well known criticisms of the standard portrayal of an agent who thinks in terms of an
exhaustive set of contingencies, conjures a prior over them and then applies Bayesian
updating in response to new information. One could describe settings where our model
is similarly problematic cognitively. We suggest only that it is suitable in a broader class
of settings than the Bayesian model.

4.4 Properties

According to the exchangeable Bayesian model, the agent believes that any one of a set
of i.i.d. processes is being observed, and learning gradually resolves uncertainty about
the ‘true’ process. While a typical measure of ‘estimation risk’, such as the posterior
variance, might fluctuate during the learning process, it eventually shrinks. The agent
then behaves as if he had been told the distribution of the ‘true’ i.i.d. process. Ex ante,
he is sure that he will actually learn it.

Learning under ambiguity introduces three additional aspects. First, new measures of
uncertainty must be used to describe ‘estimation uncertainty’. For example, measures of
maximum distance between posterior distributions are an option. Second, according to
reasonable measures, uncertainty need not be reduced by the learning process. The ear-
lier observation that ambiguous signals can induce uncertainty applies also to sequences
of such signals. Third, the agent eventually behaves as if he faced independently and in-
distinguishably distributed data. The learning process under ambiguity thus also ‘settles
down’, in the sense that, given many observations, the agent’s one-step-ahead view of the
world changes little in response to new data. However, he might still perceive ambiguity.
If this is the case, he will know ex ante that some ambiguity may never be resolved.

Beliefs in the Short Run

The short run properties of the learning process are illustrated in Figure 1, using the urn
example of Section 2.3. We set ² = 1: the agent weighs equally all the logically possible
combinations of non-coin balls. The top panel illustrates the aggregation of ambiguous
signals. It shows the evolution of the posterior interval for a sequence of draws such that
the number of black balls is 3t

5
, for t = 5, 10, .... In particular, after the first 5 ambiguous
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Figure 1: Posterior Interval is range of posterior probability that coin ball is black, µt (B) .
In top panel, sample is selected to keep fraction of black balls constant. In bottom panel,
vertical lines indicate black balls drawn.

signals, with 3 black balls drawn, the agent assigns a posterior probability between .4
and .8 to the coin ball being black.

What happens if the same sample is observed again? There are two effects. First, a
larger batch of signals permits more possible interpretations. For example, having seen
ten draws, the agent may believe that all six black draws came about although each time
there were the most adverse conditions, that is, all but one non-coin ball was white.
This interpretation strongly suggests that the coin ball itself is black. The argument also
becomes stronger the more data are available: after five draws, the appearance of three
black balls under ‘adverse conditions’ is not as remarkable. At the same time, the story
that all but one non-coin ball was always white is somewhat less believable if the sample
is larger: reevaluation limits the scope for interpretation, and more so the more data are
available.

The evolution of the posterior interval thus depends on how much agents reevaluate
their views. For agents with α = 0 and α = .001, the posterior interval expands between
t = 5 and t = 20. In this sense, a sample of ten or twenty ambiguous signals induces
more ambiguity than a sample of five. If α = 0, this is the only effect: the interval
increases monotonically. An agent who does not reevaluate at all has an increasing
stock of theories, none of which he is willing to disregard. However, any willingness to
reevaluate (α > 0) implies that large enough batches of ambiguous signals induce less
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ambiguity than smaller ones.

The lower panel of Figure 1 tracks the evolution of posterior intervals along a repre-
sentative sample. Taking the width of the interval as a measure, the extent of ambiguity
is seen to respond to data. In particular, a phase of many black draws (periods 5-11, for
example) shrinks the posterior interval, while an ‘outlier’ (the white ball drawn in period
12) makes it expand again. This behavior is reminiscent of the evolution of the Bayesian
posterior variance, which is also maximal if the fraction of black balls is one half.

Beliefs in the Long Run

To describe what happens in the long run, it is helpful to fix a ‘true’ data generating
process. Assume that this process is i.i.d. and let the measure φ ∈ ∆ (S) denote the
distribution of one component st. Equivalently, φ can be viewed as the empirical distri-
bution of an infinite sample. By analogy with the Bayesian case, the natural candidate
parameter value on which posteriors might become concentrated maximizes the data
density of an infinite sample. In our setup, any data density depends on the sequence of
likelihoods that is used. In what follows, it is sufficient to focus on sequences such that
the same likelihood is used whenever state s is realized. A likelihood sequence can then
be represented by a collection (`s)s∈S.

Accordingly, define the log data density after maximization over the likelihood se-
quence by

H (θ) := max
(`s)s∈S

X
s∈S

φ (s) log `s (s|θ) . (14)

We now assume that θ∗ = argmaxθH (θ) is a singleton. This is an identification
condition: it says that there is at least one sequence of likelihoods (that is, the maximum
likelihood sequence), such that the sample φ can be used to discriminate θ∗ from any
other parameter value. The following proposition (proven in the appendix) summarizes
the behavior of the posterior set in the long run. WriteMt −→ {δx} if every sequence
of posteriors fromMt converges to the Dirac measure δx, almost surely under the i.i.d.
measure described by φ.

Theorem 1 Suppose that Θ is finite and that for every θ ∈ Θ, there is µ0 ∈M0 with
µ0 (θ) > 0. Suppose also that the above identification condition is satisfied.

(a) If for all θ 6= θ∗, X
s∈S

φ (s)max
`∈L

log
` (s|θ)
` (s|θ∗) < 0, (15)

then M0
t −→ {δθ∗} .

(b) If α > 0, then Mα
t −→ {δθ∗} .

For a statistical representation (α = 0) , the set of posteriors converges to δθ∗ under
condition (15). The latter requires that the agent cannot envision a sequence of likeli-
hoods that makes any alternative parameter θ look more likely than θ∗, given the infinite
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sample with empirical frequencies φ.16 If the agent reevaluates theories (α > 0), and if
the identification condition holds, then in the long run only the maximum likelihood
sequence is a permissible scenario and the set of posteriors converges to a singleton.

The theorem is consistent with the earlier discussion (Sections 2.4-2.5) of learning in
the long run in the example of ambiguous urns. In conformity with earlier notation, let
φ∞ denote the probability that a black ball is drawn “under the truth”. Hence

H(θ) = φ∞max
λ1

log
1{θ=B} + λ1

5
+ (1− φ∞)max

λ0

log
5− 1{θ=B} − λ0

5

= φ∞ log
1{θ=B} + 3

5
+ (1− φ∞) log

4− 1{θ=B}
5

It follows that the identification condition is satisfied except in the knife-edge case φ∞ =
1
2
. Moreover, θ∗ = B if and only if φ∞ >

1
2
. Thus the theorem implies that an agent who

reevaluates his views (α > 0) and observes a large number of draws with a fraction of
black balls above half “almost” believes that the color of the coin ball is black. The role
of the size of α is only to regulate the speed of convergence to this limit.

An agent with α = 0 acts more conservatively. Let φ∞ >
1
2
, so that θ∗ = B. Condition

(15) reduces to

φ∞max
λ1

log
λ1

1+ λ1
+ (1− φ∞)max

λ0

log
5− λ0
4− λ0 < 0;

but this is satisfied only if φ∞ is greater than a cutoff φ∗∗ = log (1/2)
log (3/8)

.17 As discussed in
Section 2.5, “unlikely” sequences such as those with λ1 = λ0 = 3 are given weight by the
conservative agent, but are eventually discarded if there is reevaluation.

5 DYNAMIC PORTFOLIO CHOICE

Portfolio choice is a natural application of our model. Given the substantial uncertainty
about asset return processes, portfolio recommendations that ignore this uncertainty
seem off the mark.

5.1 The Decision Problem

Consider an agent who invests for T quarters. He cares only about terminal wealth, but
rebalances his portfolio every quarter. He can invest in a riskless asset with constant
interest rate r and in stocks with uncertain returns R (st). The state can take two values
16This is not implied by the identification condition (14), except in special cases such as the Bayesian

case. The identification condition requires that θ∗ is more likely than θ only when the sequence of
likelihoods is actually the maximum likelihood sequence.
17The cutoff values in (6), for the case of general ², can be proven similarly.
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every period: st ∈ {0, 1}. We choose parameters to approximate U.S. stock returns:
R (1) = 1.14 and R(0) = .92. If st is iid with Pr {st = 1} = 1

2
, the mean and variance of

NYSE returns from 1927:Q3 to 2001:Q2 are matched exactly. We fix the riskless rate at
r = .01 per quarter.18

The agent’s beliefs are defined by an α-ML representation (Θ,M0,L,α). He believes
that returns are unpredictable, but that something can be learned about mean returns by
looking at past data. This is captured by a parameter θ ∈ Θ ≡ £

λ, 1− λ¤, where λ < 1
2
.

However, he also believes that there are many poorly understood factors driving returns.
These are captured by multiple likelihoods, where the set L consists of all ` (· | θ) such
that

` (1|θ) = θ + λ, for some λ ∈ [−λ,λ].
The set of priorsM0 on Θ is given by all the Dirac measures. For simplicity, we write
θ ∈M0 if the Dirac measure on θ is included. If λ > 0, returns are ambiguous signals.
The likelihood parameter λt ∈ [−λ,λ] represents movement in the poorly understood
factors. Since the set of priors consists of Dirac measures, reevaluation (α > 0) is crucial
for nontrivial updating. If α = 0, thenMt =M0 for all t.

Belief Dynamics

Before discussing the agent’s optimization problem, we briefly describe the evolution of
beliefs. The present example is convenient because the posterior setMα

t depends on the
sample only through the fraction φt of high returns observed prior to t. More specifically,
it is shown in the appendix that

Mα
t

¡
st1
¢
=

½
θ ∈ Θ : g (θ;φt) ≥ max

θ̃∈Θ
g(θ̃;φt) +

logα

t

¾
(16)

where g (θ,φt) = φt log
¡
θ + λ

¢
+ (1− φt) log

¡
1− θ + λ¢. The function g (.;φ) is strictly

concave and has a maximum at θ = φ+ 2λ
¡
φ− 1

2

¢
.

Using (16), it is straightforward to determine the limiting behavior of the 1-step-ahead
beliefs Pt (st1) as t becomes large. Suppose that the empirical frequency of high returns
converges to φ∞. ThenMα

t collapses to the single number

θ∗ =


λ if φ∞ <

2λ
1+2λ

φ∞ + 2λ
¡
φ∞ − 1

2

¢
if φ∞ ∈

h
2λ
1+2λ

, 1
1+2λ

i
1− λ if φ∞ >

1
1+2λ

Thus Pt (st1) collapses to the set L (.|θ∗), which consists of all probabilities on S = {0, 1}
with

Pr (s = 1) ∈ [θ∗ − λ, θ∗ + λ]. (17)

18Here we follow much of the finance literature and consider nominal returns.
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The agent thus learns the true parameter value θ∗, in the sense that in the limit he
behaves as if he had been told that it equals θ∗. If the realized empirical distribution
is symmetric (φ∞ = 1

2
), then θ∗ = φ∞. We use this fact below to calibrate the belief

parameters.

Bellman Equation

The agent’s optimization problem can be written using the fraction φt of high returns
together with wealth wt as state variables. The value functions Jt satisfy the terminal
condition JT+1

¡
wT+1,φT+1

¢
= wT+1 and the Bellman equation

Jt (wt,φt) = max
Γt

min
p∈Pt(st1)

³
Ep
¡
Jt+1

¡
wt+1,φt+1

¢¢1−γ´ 1
1−γ

= max
Γt

min
λt∈[−λ,λ]
θ∈Mα

t

{ (θ + λt)
¡
Jt+1(wt+1 (1) ,φt+1 (1))

¢1−γ
+ (1− θ − λt)

¡
Jt+1(wt+1 (0) ,φt+1 (0))

¢¢1−γ } 1
1−γ ,

subject to the transition equations

wt+1 (st+1) = (1+ r + Γt (R (st+1)− r))wt,
φt+1 (st+1) =

tφt + st+1
t+ 1

.

Here Γt is the fraction of wealth wt invested in the stock market. The value function has
the form Jt (wt,φt) = ht (φt)wt.

5.2 Preference Parameters

We specify β = .99 and set the coefficient of relative risk aversion γ equal to 2. It
remains to specify the belief parameters α and λ. The parameter λ determines how much
the agent thinks that he will learn in the long run. To determine a value, he could pose
the following question: “Suppose I see a large amount of data and that the fraction of
high returns is 1

2
. How would I compare a bet on a fair coin with a bet that next quarter’s

returns are above or below the median?” By the Ellsberg Paradox, we would expect the
agent to prefer the fair bet. He could then try to quantify this preference by asking:
“What is the probability of heads that would make me indifferent between betting on
heads in a coin toss and betting on high stock returns?” In light of the range of limiting
probabilities given in (17), the result is 1

2
− λ. We present results for values of λ ranging

from 0 to .02.

The parameter α determines how fast the set of possible models shrinks. Here it can
be motivated by reference to classical statistics. If signals are unambiguous (λ = 0), there
is a simple interpretation of our updating rule: Mα

t contains all parameters θ
∗ such that

the hypothesis θ = θ∗ is not rejected by an asymptotic likelihood ratio test performed

23



20
40

60
80

100

20
40

60
80

100
120

-0.5

0

0.5

1

1.5

2

Quarters

Stock Position

# Hi Returns

Figure 2: Optimal stock position for ambiguity averse agent with α = .14 and λ = 0, for
30-year planning problem, beginning in 1971:Q3.

with the given sample, where the critical value of the χ2 (1) distribution is −2 logα. For
a 5% significance level, α = .14, which is the value we use below.

5.3 Optimal Policies

Our leading example is an investor in 1971:Q3 (t = 0), who plans over various horizons
(up to 30 years). He looks back on data starting in 1927:Q3. We generate a discretized
returns sample by letting st = 1 if the NYSE return was above the mean in quarter
t and st = 0 otherwise. Figure 2 shows the optimal stock position as a fraction of
wealth for a 5 year horizon if α = .14 and λ = 0. The axis to the right measures time in
quarters, the one to the left the number of high returns observed, H = tφt. Thus only the
surface above the region H ≤ t represents the optimal stock position. The slope of the
surface suggests that the agent is by and large a ‘momentum investor’. If low returns are
observed (movements to the right, increasing t while keeping H fixed), the stock position
is typically reduced. The extreme is the path above the time axis which is taken if low
returns are observed every period. In contrast, if high returns are observed (movements
into the page, increasing H one for one with t), the stock position is typically increased.
The extreme is now the ridge above the diagonal (H = t) which is taken if high returns
are observed every period.

24



Non-Participation

The optimal policy surface has a flat piece at zero: when enough low returns are observed,
agents do not participate in the market. Non-participation arises because the agent uses
different ‘worst case’ probability measures to evaluate continuation utility given long or
short positions. When the agent is long he employs the measure with the lowest possible
expected return. In contrast, when short, as in the far right corner of the figure, his
worst case scenario is provided by the measure with the highest expected return. In the
non-participation region, continuation utility for any nonzero position is lower than what
can be obtained by simply investing in the riskless asset.

For the static case, non-participation with multiple-priors utility was noted by Dow
andWerlang [16]. The terminal period of our model corresponds to their setup. However,
the emergence of a non-participation region in earlier periods is not obvious. In a dynamic
model, agents invest in the stock market not only to exploit the expected equity premium,
but also to hedge changes in the investment opportunity set. In our model, the latter
is summarized by the set of beliefs about future returns, or, equivalently, by the state
variable φt.

Hedging Changes in Ambiguity

The intertemporal hedging motive implies that (i) agents may follow contrarian, as
opposed to momentum, strategies, and (ii) participation is more likely earlier in the
investment period. The effects of hedging are most pronounced if there is a large amount
of prior uncertainty. For this reason, Figure 3 illustrates them by focusing on an agent
in 1928:Q3, who has only one year of previous data as prior information. The left hand
panel shows a representative ‘section’ of the optimal policy surface (for t = 12). The
right hand panel shows the change in the stock position at t = 12, as a function of the
number of high returns, if the 13th observation was either a high or a low return.

Investment behavior falls into one of three regions. The non-participation region is
reached if the absolute value of the sample equity premium is low

¡
φt =

H
t
≈ 1

2

¢
. If the

equity premium has been either very high or very low, the agent is in a momentum
region. He is long in stocks if the sample equity premium is positive and short otherwise.
He also reacts to high (low) returns by increasing (decreasing) his net position. If the
absolute value of the equity premium is in an intermediate range, the agent is in a
contrarian region. He is short in stocks for a positive sample equity premium and long
otherwise. Moreover, he now reacts to high (low) returns by decreasing (increasing) his
net exposure. The contrarian region is also present in our leading example (investment
starting in 1971:Q3), but is very small; this is why it was not discernible in Figure 2.

To understand why a contrarian region emerges, consider the dependence of contin-
uation utility on φt. The term ht (φt) is typically U-shaped in φt. Intuitively, the agent
prefers to be in a region where either the lowest possible expected return is much higher
than the riskless rate or the highest possible return is far below the riskless rate, because
in both cases there is an equity premium (positive or negative, respectively) that can
be exploited. Suppose the lowest expected equity premium is positive. The agent must
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Figure 3: Stock position and responses to arrival of a high or low return after 12 quarters
in 30-year planning problem beginning in 1928:Q3. Ambiguity averse investor with α =
.14 and λ = 0.

balance two reasons for investing in the stock market. One the one hand, he can exploit
the expected equity premium by going long. On the other hand, he can insure himself
against bad news about investment opportunities (low returns) by going short. Which
effect is more important depends on how the size of the equity premium compares to the
slope of the ht’s. If the equity premium is small in absolute value, the hedging effect
dominates.

Participation since 1971

Figure 4 compares the positions that various investors would have chosen over the last
three decades. An investor who believes that returns are unambiguous signals (λ = 0)
should always holds stocks, although his positions are quite small, barely reaching 30%
even after the high returns of the 1990s. As a reference point, a ‘rational expectations’
agent who is sure that the mean return is equal to the sample mean of 12% p.a. would
hold 82% stocks every period. The Bayesian learner in Figure 4 lies between these two,
increasing his position up to 80% toward the end of the sample.

The plot also shows that small amounts of signal ambiguity can significantly reduce
the optimal stock position. The investor with λ = .01 already holds essentially no
stocks throughout most of the 1970s. An investor with λ = .02 does not go long in
stocks until 1989. Both of these investors participate in the market in the 1970s, but
spend most of the time in their contrarian region, where they take tiny short positions.
As long as the investor remains in a region where he is long in stocks, changes in the
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Figure 4: Optimal stock positions for ambiguity averse agents with α = .14 and different
values of λ (here denoted λ), as well as for a Bayesian agent with uniform prior. All
planning problems are over 30 years beginning in 1971:Q3.

ambiguity parameters α and λ for a given sample tend to affect the level of holdings,
with a negligible effect on changes. Comparison of our benchmark, our cases λ = .01
and λ = .02, and the Bayesian example reveals that the supporting measure’s means
are essentially vertically shifted versions of each other. Of course, the Bayesian model
cannot generate non-participation, so changes will look very different in states where the
ambiguity averse investor moves in and out of the market.

Overall, our results suggest that learning under ambiguity could be used as a building
block of a successful model of the cross section of holdings. While more work is required
to distinguish an ambiguity aversion story from a Bayesian model augmented with a
technological participation cost, it is already clear that the two models have different
implications. For example, consider the issue of investing a social security fund in the
stock market. If the participation cost is technological, then the government could reduce
it by exploiting economies of scale. In contrast, if non-participation is due to ambiguity
underlying preferences, then agents could not gain from being forced to invest.

6 AMBIGUOUS NEWS AND ASSET PRICES

This section studies asset pricing in periods of ambiguous news. The first subsection
below contains a stylized example to highlight the main effects discussed in the intro-
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duction: the asymmetric response to news, the discount due to future ambiguous news,
and the link between information quality and volatility. These features are common to
the aftermath of both systematic and idiosyncratic shocks. Examples of shocks that flag
a period of ambiguous news include company announcements as well as unanticipated
shocks to economic growth. In the second subsection, we calibrate a representative agent
model of asset pricing with ambiguous news to the period after September 11. This
exercise suggests that a model with ambiguous signals can help to account quantitatively
for observed price movements.

6.1 A Simple Model of Ambiguous News

There are three periods. A risk neutral representative agent, who does not discount the
future, can hold shares of a single asset that is available in unit supply. The asset pays
θ units of consumption in period 3, where θ = 1 with probability m and θ = 0 with
probability 1−m. In period 2, agents receive an ambiguous signal s ∼ N ¡

θ,λ−1
¢
with

λ ∈ £λ,λ¤ . An equilibrium is a price p1 at which the asset trades in period 1 together
with a price function p2 (s) for period 2.

The agent updates beliefs in period 2 to arrive at a set of posterior probabilities for
θ = 1:

M1 (s) =

(
mφ

¡
s; 1,λ−1

¢
mφ

¡
s; 1,λ−1

¢
+ (1−m)φ ¡s; 0,λ−1¢ ; λ ∈ £λ,λ¤)

where φ
¡
s;µ,λ−1

¢
is the normal density with mean µ and precision λ evaluated at s. It

is helpful to rewrite the posterior probability given precision λ as the posterior mean

E [θ|s,λ] =
µ
1+

1−m
m

exp

µ
λ

µ
1

2
− s
¶¶¶−1

. (18)

The posterior mean is increasing in m and in s, the latter because high s is ‘good news’
about θ. It increases with the precision λ if and only if s > 1

2
: more precise good news

increase the posterior mean, while more precise bad news decrease it.

Asymmetric Response and Price Discount

The worst state for the agent occurs if θ = 0. Since he holds the asset in equilibrium, he
evaluates the future in period 2 using the lowest element ofM1 (s) . He is willing to hold
the asset at the price

p2 (s) = min
λ∈[λ,λ]

E [θ|s,λ]

=

½
E [θ|s,λ] if s ≥ 1

2

E
£
θ|s,λ¤ if s < 1

2
.

Ex post, the agent interprets bad news
¡
s < 1

2

¢
as very informative, whereas good news

are viewed as imprecise. The price function is plotted in the left hand panel of Figure 5.
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Figure 5: Price function p2(s) and variance of price p2 as a function of true precision λ
for ambiguous news model.

Its key feature is the kink at 1
2
. Ambiguity tends to make the distribution of price more

negatively skewed than the distribution of signals.

In period 1, the price depends on the agent’s ex ante perception of the signal precision.
This minimizes the value of the asset in period 2. Thus,

p1 = min
λ̃∈[λ,λ]

E [p2 (s)]

= m min
λ̃∈[λ,λ]

E

 p2 (s)

E
h
p3|s, λ̃

i |s = 1, λ̃


≤ m. (19)

If the signal is noisy, then the law of iterated expectations holds and the initial price
is equal to m. If λ > λ, the price in the ambiguous signals model is strictly below the
posterior mean. The prospect of ambiguous news induces a discount, as the agent wants
to be compensated for the ambiguity to be endured.

Connection between Truth and Beliefs

To evaluate the equilibrium price behavior, one needs to specify the true distribution of
the signal. We assume that the true precision λ is in the interval

£
λ,λ

¤
. The signal is

thus N ¡
θ,λ−1

¢
. For the Bayesian model (λ = λ), the truth is simply the likelihood at
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the true parameter. This is an intuitive restriction: the agent is not wrong about the
meaning and precision of the signal. Similarly, in the ambiguous case, while the agent is
uncertain about the precision, he is not entirely off target.

Information Quality and Volatility

The right hand panel of Figure 5 examines how price volatility, measured by the variance,
changes with different measures of information quality. In the Bayesian case, precision
itself is a natural measure. The solid line shows that price volatility increases monoton-
ically with signal precision. Although the signal becomes less volatile as λ increases, it
is also given less weight in the conditional expectation; on net, prices move around less.
The dashed line presents the volatility that arises at the true λ if the agent is ambiguity
averse with

£
λ,λ

¤
= [1, 3] . For every true λ, the move from the dotted (Bayesian) line

to the dashed line may thus be viewed as a comparative static decrease in information
quality.

It is apparent that if a decrease in information quality arises through an increase in
ambiguity, volatility can go up or down. In particular, volatility increases if the signal
itself is relatively volatile. In this case, agents take bad news much more seriously than
do Bayesians, while they treat good news similarly. The strong response to bad news
increases volatility overall. In contrast, if the signal is relatively precise, then bad news
are treated similarly by the Bayesian and the ambiguity averse agent, whereas the latter
responds much less to good news. This decreases volatility overall.

Matching Prices after an Unanticipated Shock

After a shock that increases uncertainty, prices often fall not only on impact, but continue
to slide for some time. For example, this was the case after 9/11, considered in more
detail in the next subsection. We now examine when this is consistent with no long term
change in fundamentals. Consider a price path with p∗1 > p∗2. One can imagine that,
before the shock, the price is p∗0 = 1. When the shock occurs, the price drops to p

∗
1. A

further drop to p∗2 is followed by a recovery to p
∗
3 = θ = 1.

It is straightforward to back out the signal values (sbay and samb, say) and the priors
(mbay and mamb) required to match the above price path. For the Bayesian model,
mbay = p∗1 and s

bay satisfies

E
£
θ|sbay,λ∗¤ = p∗2.

In contrast, with an ambiguous signal, the prior and signal satisfy

min
λ̃∈[λ,λ]

E [p2 (s)] = p
∗
1 and

E
£
θ|samb,λ¤ = p∗2.

From (19), it follows that mamb > mbay. The ambiguous signal induces a discount for
any given prior, so the prior that rationalizes a given price is higher in the ambiguous
signal case. The two models thus provide different stories to explain the price path.
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Under the Bayesian model, there was simply a large drop in the expected value of the
asset. In contrast, in the ambiguous signal model a smaller revision of the expected value
is amplified by the prospect of ambiguous news.

Which model is more plausible? This can be assessed by comparing the likelihood of
the signal realizations sbay and samb under the true density. Since p∗2 < p

∗
1 = m

bay < mamb,
(18) implies that both signal realizations must be smaller than 1

2
. Under the truth, which

is normal with mean 1, the likelihood of the ambiguous model is higher if and only if
samb > sbay. This is true as long as p2 is sufficiently small. Intuitively, a successful model
here is one that can explain why prices fell so much without invoking a very low (and thus
unlikely) signal. Since the ambiguity averse agent reacts strongly to bad news, the signal
required to make him discount the asset to a rather low price need not be as extreme as
that required for the Bayesian agent.

While this example clarifies the role of ambiguous signals in explaining prices after an
increase in uncertainty, it has a number of drawbacks. First, the uncertainty is directly
about changes in the asset value, rather than in economic growth. Second, it assumes
risk neutrality. Finally, the recovery occurs by assumption within one period, as opposed
to gradually over many periods, as it did after September 11. These assumptions are
relaxed in the next subsection.

6.2 Asset Pricing after 9/11

This subsection constructs and calibrates a representative agent model to explain the
movements in the S&P 500 index in September and early October of 2001. There
is an infinitely-lived representative agent. A single Lucas tree yields dividends Yt =
exp

³Pt
j=1∆yj

´
Y0, with Y0 given. According to the true data generating process, the

growth rate of dividends is ∆yt ∼ i.i.N ¡
θhi,σ2

¢
for all t. The agent knows that the

mean growth rate is θhi from time 0 up to some given time T + 1. However, he believes
that with probability 1− µ, the mean growth rate drops permanently to θlo after T + 1.
Information about growth beyond T + 1 is provided, at each date t ≤ T , by a signal st
that takes the values 1 or 0. Signals are serially independent and also independent of
dividends before T + 1; they satisfy Pr (st = 1) = π. At time T + 1, the long run mean
growth rate is revealed.

The information structure captures the following scenario. First, there was no actual
permanent structural change caused by the attack.19 Second, agents were initially unsure
if there would be such a change. Third, news reports were initially much more informative
about the possibility of structural change than were dividend or consumption data. Of
course, to the extent that dividend data were available, they may have provided some
information. But initially, they are likely to have largely reflected decisions taken before
19The model can accommodate drops in dividends in September and stock price movements that reflect

these drops. All that is required is that such movements come from the same distribution as movements
before September 11.
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the attack occurred, becoming more informative only with time. Our model captures
this shift in relative informativeness in a stark way. We divide the time after the attack
into two phases, a learning phase (t ≤ T ) where dividends are entirely uninformative
about structural change, and a “new steady state” phase (t > T ) where structural change
actually materializes in dividends. In our calibration below, T corresponds to 26 days.20

Finally, imposing a fixed T at which θ is revealed is not a strong restriction if beliefs are
already close to the true θ at time T. We show a plot of our posterior means below.

The agent believes that signals are informative about growth, but views them as
ambiguous. This feature is modeled via a set of likelihoods `, where

`
¡
st = 1|θhi

¢
= `

¡
st = 0|θlo

¢
= λ ∈ [λ,λ], (20)

with λ > 1
2
.Beliefs about signals up to time T have a statistical representation (Θ,M0,L),

where Θ =
©
θhi, θlo

ª
,M0 contains the single prior given by µ, and L is defined by (20).

The special case λ = λ is a Bayesian model. To ease notation, assume that signals
continue to arrive after T , but that for t > T, `

¡
st = 1|θhi

¢
= 1 = `

¡
st = 0|θlo

¢
.

In terms of the notation of earlier sections, the state space is S = {0, 1} × R. Since
Y is independent of s, the 1-step-ahead beliefs Pt (st1, Y t1 ) for t ≤ T are given by the
appropriate product of 1-step-ahead beliefs about st+1 and the conditional probability
law for Yt+1. Preferences over consumption streams are then defined recursively by

Vt
¡
c; st1, Y

t
1

¢
= min

p∈Pt(st1,Y t1 )

³
c1−γt + βEp

h¡
Vt+1

¡
c; st+11 , Y t+11

¢¢1−γi´ 1
1−γ
, (21)

where β and γ are the discount factor and the coefficient of relative risk aversion, respec-
tively. Since only the signals are ambiguous, the minimization in (21) may be viewed as
a choice over sequences

¡
λt+11

¢
of precisions.

Connection between Truth and Beliefs

Discipline on beliefs is imposed in two ways. First, as above, assume that the true
precision λ lies in [λ,λ]. This condition ensures that an agent’s view of the world is not
contradicted by the data. Suppose the agent looks back at the history of signals after
he is told the true parameter at time T . If he is Bayesian (λ = λ), the distribution
of the signals at the true parameter value is the same as the true distribution of the
signals. In this sense, the agent has interpreted the signals correctly.21 More generally,
an ambiguity averse agent contemplates many ‘theories’ of how the signal history has
been generated, each corresponding to a different sequence of precisions (λt). One might
thus be concerned that theories that do not satisfy λt = λ infintely often are contradicted
20The model could be extended to relax this strict division into phases. One might want to assume

that both news reports and dividends are informative about structural change at all times. However, in
such a setup, one would still like to let the informativeness of news reports decrease over time relative to
that of dividends. It is plausible that the main effects of our setup would carry over to this more general
environment.
21For example, he has not been “overconfident”, interpreting every signal as more precise than it

actually was.
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by the data. However, this is not the case if λ ∈ [λ,λ]: there exists a large family of
signal processes with time varying precision λt ∈ [λ,λ] that cannot be distinguished from
the true distribution on the basis of any finite sample.22 While some of these processes
will appear less likely than others in the short run, any of them is compatible with a
sample that looks i.i.d. with precision λ. An agent who believes in the whole range [λ,λ]
need not, with hindsight, feel that he interpreted the signals incorrectly.

The second restriction is that agents would learn the true state θhi even if it were not
revealed at T + 1. This precludes an excessively pessimistic interpretation of news. A
sufficient condition is that the posterior probability of θhi, µt

¡
st1,λ

t
1

¢
say, converges to 1

if the truth equals the lower bound of the precision range:

lim
t→∞

min
λt1

µt
¡
st1,λ

t
1

¢
= 1, a.s. for st i.i.d. with Pr (st = 1) = λ. (22)

If λ were too large for given λ, agents could interpret negative signals as very precise and
never be convinced that the true state has occurred if the fraction of good signals is λ.
Thus the condition bounds λ for a given λ.

Supporting Measure and Asset Prices

Following [20], equilibrium asset prices can be read off standard Euler equations once
a (1-step-ahead) “supporting measure” that achieves the minimum in (21) has been
determined. Suppose that the intertemporal elasticity of substitution is greater than one.
It is then easy to show that continuation utility is always higher after good news (s = 1)
than after bad news (s = 0). Thus the sequence of precisions

¡
λ∗t+11

¢
that determines

the supporting measure at time t and history st1 is chosen to minimize the probability
of a high signal in t + 1. For the past signals st1, this requires maximizing the precision
of bad news (λ∗j = λ if sj = 0) and minimizing the precision of good news (λ∗j = λ if
sj = 1). For the future signal st+1, it requires maximizing (minimizing) the precision
λ∗t+1 whenever news are more likely to be bad (good) next period, that is, whenever the
posterior probability of θhi is smaller (larger) than 1

2
.

Let Pt denote the price of the Lucas tree. Since signals and dividends are independent
for t ≤ T , the price-dividend ratio vt = Pt/Yt depends only on the sequence of signals.
It satisfies the difference equation

vt
¡
st1
¢
= β̂E∗t

£¡
1+ vt+1

¡
st+11

¢¢¤
where E∗t denotes expectation with respect to the (1-step-ahead) supporting measure and
where the new discount factor β̂ = βe(1−

1
σ)θ

hi− 1
2
(1−γ)(1− 1

σ )σ2

is adjusted for dividend risk.
Once θ has been revealed in period T + 1, the price dividend ratio settles at a constant
value.
22To construct such precision sequences, pick any ω such that ωλ + (1− ω)λ = λ. Let λ̃t be an

i.i.d. process valued in
©
λ,λ

ª
with Pr

³
λ̃t = λ

´
= ω. For almost every realization (λt) of

³
λ̃t

´
, the

empirical distribution of the nonstationary signal process with precision sequence (λt) converges to the
true distribution of the signals. See Nielsen [38] for a formal proof.

33



Calibration

To illustrate different models of learning, we calibrate the model to the aftermath of
September 11, 2001. The stock market was closed in the week after the attack; the first
trading day was Monday, September 17. Figure 6 plots the price-dividend ratio for the
S&P 500 index for 19 trading days, starting 9/17, including the pre-attack value (9/10)
as day 0. At the end of our window (Friday, October 5), the market had climbed, for
the first time, to the pre-attack level. It subsequently remained between 68 and 73 for
another three weeks (not shown). The discount rate is 4% p.a. and the coefficient of
relative risk aversion is γ = .5. The average growth rate of dividends is fixed to match
the price-dividend ratio, yielding a number of 5.2% p.a. This is clearly larger than the
historical average, which reflects the high p/d ratio. The volatility of consumption is set
at the historical value of 2% p.a. reported by Campbell [13] for postwar data. Finally,
we assume that the potential permanent shock corresponds to a drop in consumption
growth of .5 % p.a. In steady state, this would correspond to a price-dividend ratio of
61.

Having fixed these parameters, we infer, for every learning model, the sequence of
signals that must have generated our price-dividend ratio sample if the model is correct.
If the signals had a continuous distribution, this map would be exact. Here we assume
that agents observe 20 signals per day. We then compute the model-implied price path
that best matches the data. While the price distribution is still discrete, it is sufficiently
fine to produce sensible results. A model is discarded if its ‘pricing errors’ are larger
than .5 at any point in time. Finally, we compute the likelihood conditional on the first
observation for each model, using the distribution of the fitted price paths. This is a
useful criterion for comparing models, since the first observation is basically explained
by the choice of the prior.

Numerical Results

To select a Bayesian model, we search over priors µ and precision parameters λ to max-
imize the likelihood. This yields an interior solution for both parameters. For example,
for precision, the intuition is as follows: the path of posteriors is completely determined
by the path of p/d ratios. Thus performance differences across Bayesian models depend
on how likely the path of posteriors is under the truth. If precision is very large, then it
is highly unlikely that there could have been enough bad news to explain the initial price
decrease. In contrast, if precision is very small, then signals are so noisy that posteriors
do not move much in response to any given news. Highly unlikely ‘clusters’ of first bad
and then good news would be required to explain the price path. This tradeoff gives rise
to an interior solution for precision.

To select a multiple-priors model, we need to specify both the true precision and the
range of precisions the agent thinks possible. To sharpen the contrast with Bayesian
models, we focus on models where ambiguity is large; we set λ slightly (.001) below
the upper bound associated with the requirement (22). We also assume that the truth
corresponds to λ.23 With these two conventions, we search over λ to find our favorite
23Strictly speaking, this polar case is not permitted by the restriction that the truth lie in the interior
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Figure 6: Data and In-Sample Forecasts for 9/11 Calibration.

multiple-priors model. This model is compared to the Bayesian model in Figures 6 and
7. The favorite multiple-priors model begins with a much higher prior probability, and
the precision range for λ ∈ [.58, .608] is higher than the precision for the best Bayesian
model, λ = .56. The multiple-priors model (log likelihood = −33.29) outperforms the
Bayesian model (log likelihood = −36.82). Figure 6 plots the 1-step-ahead conditional
likelihoods to illustrate the source of the difference. The multiple-priors model is better
able to explain the downturn in the week of September 17. The models do about the
same during the recovery. Figure 6 plots, together with the data, three-trading-day-ahead
in-sample forecasts. This shows that the Bayesian model predicts a much faster recovery
than the multiple-priors model throughout the sample.

The result shows how the effects discussed in the previous subsection operate in
a setting with many signals. The two models represent two very different accounts
of market movements in September 2001. According to the Bayesian story, all price
movements reflect changes in beliefs about future growth. In particular, the initial drop
in prices arose because market participants expected a permanent drop in consumption
of .2% (see Figure 7). During the first week, bad news increased the expected drop to
almost .5%. In contrast, the ‘ambiguity story’ says that agents begin with a prior opinion
that basically nothing has changed. However, they know that the next few weeks will be
one of increased confusion and uncertainty. Anticipation of this lowers their willingness
to pay for stocks. In particular, they know that future bad news will be interpreted (by

of the precision range. However, there is always an admissible model arbitrarily close to the model we
compute.
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Figure 7: Conditional Probabilities and Posterior Mean for 9/11 Calibration.

future ambiguity averse market participants) as very precise, whereas future good news
will be interpreted as noisy. This makes it more likely that the market will drop further
in the short run than for the Bayesian model.

For representative agent asset pricing models with multiple-priors utility, there is
always an observationally equivalent Bayesian model that yields the same equilibrium
price. This begs the questions why one should not consider this Bayesian model directly.24

Here, the reason is that this Bayesian model cannot be motivated by the same plausible
a priori view of the environment as our ambiguity aversion model. We want to capture
a scenario where signals are generated by a memoryless mechanism, and where precision
does not depend on the state of the world: learning in good times is not expected to
occur at a different speed than in bad times. An ambiguity aversion model with these
features outperforms a Bayesian model with these features. Some other Bayesian model
which does not have these features is not of interest. In addition, such a model would
yield misleading comparative static predictions. The observationally equivalent model is
much like a ‘reduced form’ which is not invariant to changes in the environment.
24This model would be an expected utility model with pessimistic beliefs, similar to the one in Abel

[1].
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7 RELATED LITERATURE

We are aware of only two formal treatments of learning under ambiguity. Marinacci
[36] studies repeated sampling with replacement from an Ellsberg urn and shows that
ambiguity is resolved asymptotically. This is a special case of our model in which signals
are unambiguous. The statistical model proposed by Walley [48, pp. 457-72] differs
in details from ours, but is in the same spirit; in particular, it also features ambiguous
signals. An important difference, however, is that our model is consistent with a coherent
axiomatic theory of dynamic choice between consumption processes. Accordingly, it is
more readily applicable to economic settings.25

Our model proposes a way to model incomplete learning in complicated environments
that is quite different from existing Bayesian approaches. One such approach starts from
the assumption that the true data generating measure is not absolutely continuous with
respect to an agent’s belief.26 This generates situations where beliefs do not converge to
the truth even though agents believe, and behave as if, they will.27 In contrast, agents
in our model are aware of the presence of hard-to-describe factors that prevent learning
and their actions reflect the residual uncertainty.

Our setup is also different in spirit from models with persistent hidden state variables,
such as regime switching models. In these models, learning about the state variable never
ceases because agents know that the state variable is forever changing. Agents thus track
a known data generating process that is not memoryless. In contrast, our model applies
to memoryless mechanisms. Accordingly, learning about the fixed true parameter does
eventually cease. Nevertheless, because of ambiguity, the agent reaches a state where no
further learning is possible although the true parameter is not yet known.

There exist a number of applications of multiple-priors utility or the related robust
control model to asset pricing or portfolio choice. None of these is concerned with learn-
ing. Multiple-priors applications typically employ a constant set of one-step-ahead prob-
abilities (Epstein and Miao [17], Routledge and Zin [39]). Similarly, existing robust
control models (Hansen, Sargent, and Tallarini [26], Maenhout [33], Cagetti et al. [12])
do not allow the ‘concern for robustness’ to change in response to new observations.
Neither is learning modeled in Uppal and Wang [44] that pursues a third approach to
accommodating ambiguity or robustness.

Our paper contributes to a growing literature on learning and portfolio choice. Bawa,
Brown, and Klein [9] and Kandel and Stambaugh [30] first explored the role of parame-
ter uncertainty in a Bayesian framework.28 Several authors have solved intertemporal
25A similar remark applies to Huber [29], who also points to the desirability of admitting ambiguous

signals and outlines one proposal for doing so.
26This violates the Blackwell-Dubins [10] conditions for convergence of beliefs to the truth. See Feld-

man [21] for an economic application.
27As a simple example, if the parameter governing a memoryless mechanism were outside the support

of the agent’s prior, the agent could obviously never learn the true parameter.
28There are alternatives to a Bayesian approach to the parameter uncertainty problem. See Ang and

Bekaert [2] for a classical econometric strategy.
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portfolio choice problems with Bayesian learning.29 The main results are conservative
investment recommendations and optimal ‘market timing’ to hedge against changes in
beliefs. While these effects reappear in our setup, our results are qualitatively different
since multiple-priors preferences lead to non-participation.

Non-participation can be derived also from preferences with first-order risk aversion,
as in Ang, Bekaert and Liu [3]. The difference between first-order risk aversion and
ambiguity aversion models is that, in the latter, the degree of deviation from expected
utility behavior depends on the environment. For example, it can vary systematically
with new information about the market, as in our model.30 There is also a ‘technolog-
ical’ approach, that derives non-participation from fixed participation costs.31 Whether
technology or preferences are behind observed no-participation is an important question
for future research, in particular since the welfare implications of the two explanations
are quite different, as discussed in Section 5.

There is a large literature on asset pricing with Bayesian learning. One set of papers
argues that learning can explain excess volatility and in-sample predictability of returns.
In these applications, the learning process starts at the beginning of the sample and is
usually reset periodically, for example due to regime shifts.32 In contrast, our application
focuses on a learning process triggered by an event that increases uncertainty. It is thus
closer to a second group of papers that tries to explain post-event abnormal returns
(“underreaction”) through the gradual incorporation of information into prices.33 Our
setup may be viewed as a model of negative underreaction in periods of ambiguous news.
In these periods, underreaction is likely even if there is no change in fundamentals that
is gradually revealed. Moreover, the slide in prices is reversed in the long run as agents
learn that fundamentals have not changed.

The mechanism that generates negative skewness in our model also differs from exist-
ing explanations. Veronesi [46] shows, in a Bayesian model with risk averse agents, that
prices respond more to bad news in good times and conversely. This obtains because,
in his setup, news that contradict the current belief increase the conditional variance of
asset payoffs. Our result differs in two ways. First, since it does not rely on risk aversion,
it is relevant also if uncertainty is idiosyncratic and investors are well diversified. Second,
ambiguous signals entail an asymmetric response whether or not times are good. They
29Detemple [15], Gennotte [22], and Barberis [4] have considered the case of learning about mean

returns, while Barberis [4] and Xia [49] have studied learning about predictability. See Ang and Bekaert
[2] for portfolio choice in a regime-switching model.
30Another difference is that perceived ambiguity can differ across bets on different parts of the state

space. Mukerji and Tallon [37] show how this differentiates multiple-priors from other preferences with
‘kinked indifference curves’. In applications, this is relevant for modeling participation in some assets
markets and non-participation in others.
31See, for example, Vissing-Jorgensen [47] or Haliassos and Michealides [25]). Non-participation of

young households can also be explained by short-sale constraints, as in Storesletten, Telmer and Yaron
[41].
32See Timmermann [42, 43], Bossaerts [5], and Lewellen and Shanken [32] for models of nonstationary

transitions and Brandt, Xeng, and Zhang [6], Veronesi [46] and Brennan and Xia [11] for models with
persistent hidden state variables.
33See, Brav and Heaton [7] for an overview and discussion of this literature.
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thus induce unconditional negative skewness in returns. To explain the latter fact, some
authors have proposed mechanisms for bad news to be more concentrated in time.34 Such
mechanisms could reinforce negative skewness in our setting, but they are not necessary
for it to obtain.

A APPENDIX

Proof of (16). Write the likelihood of a sample st1 under some theory, here identified
with a pair

¡
θ,λt1

¢
, as

L
¡
st1, θ,λ

t
1

¢
=

tY
j=1

(θ + λj)
sj (1− θ − λj)1−sj . (23)

Let λ̃
t

1 denote the sequence that maximizes (23) for fixed θ. This sequence is independent
of θ and has λ̃j = λ if sj = 1 and λ̃j = −λ if sj = 0, for all j ≤ t. It follows

that L
³
st1, θ, λ̃

t

1

´
depends on the sample only through the fraction φt of high returns

observed. The setMα
t can be expressed in terms of L

³
st1, θ, λ̃

t

1

´
, because θ ∈Mα

t if and

only if the theory
³
θ, λ̃

t

1

´
passes the likelihood ratio criterion. Indeed, if θ ∈Mα

t , then

there exists some λt1 such that the theory
¡
θ,λt1

¢
passes the criterion. Thus

³
θ, λ̃

t

1

´
must

also pass it, since its likelihood is at least as high. In contrast, if θ /∈Mα
t , then there is

no λt1 such that the theory
¡
θ,λt1

¢
passes the criterion. Finally, one can use

g (θ,φt) =
1

t
logL

³
st1, θ, λ̃

t

1

´
to express the criterion in (16).

Proof of Theorem 1. (a) Refer to the i.i.d. measure with one-period distribution φ as
the ‘truth’. Every posterior inM0

t (s
t
1) corresponds to some µ0 and `

t
1 :

µt
¡
θ∗|st1, µ0, `t1

¢
=

µ0 (θ
∗)
Qt
j=1 `j(sj|θ∗)P

θ∈Θ µ0 (θ)
Qt
j=1 `j(sj|θ)

(24)

=
1

1+
P

θ∈Θ
µ0(θ)
µ0(θ

∗) exp
³
t
³
1
t

Pt
j=1 log

`j(sj |θ)
`j(sj |θ∗)

´´
By (15), then a.s. under the truth and for all θ 6= θ∗,

lim
t→∞

max
`t1

Ã
1

t

tX
j=1

log
`j (sj|θ)
`j (sj|θ∗)

!
= lim

t→∞
1

t

tX
j=1

max
`
log

` (sj|θ)
` (sj|θ∗)

34See, for example, Hong and Stein [28] or Veldkamp [45].
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=
X
s∈S

φ (s)max
`
log

` (s|θ)
` (s|θ∗) < 0,

where the last equality follows from the law of large numbers because the stochastic
process max` log

`(st|θ)
`(st|θ∗) is i.i.d. under the truth. It follows that the sum in the denomi-

nator of (24) converges to 0 a.s. under the truth and hence that µt (θ
∗|st1, µ0, `t1) → 1.

(b) For any sequence s∞1 , denote by φt the empirical measure on S corresponding to the
first t observations. We focus on the set of sequences Ω for which φt → φ; this set has
measure one under the truth. Fix a sequence s∞1 ∈ Ω. For any likelihoods (`s)s∈S and
θ ∈ Θ, and for any probability measure λ on S, define

H̃ (λ, (`s) , θ) =
X
s∈S

λ (s) log `s (s|θ) ,

Below we take λ to be φt or φ.

Given µ0 and the likelihood sequence `
t
1, then the data density for the first t periods

is

Pr(st1;µ0, `
t
1) =

X
θ∈Θ

µ0 (θ)
tY
j=1

`j(sj|θ).

In choosing a likelihood sequence that maximizes Pr(st1;µ0, `
t
1), it is wlog to focus on

sequences such that `j = `k if sj = sk. Any such likelihood sequence can be identified
with a collection (`s)s∈S and we can write

max
`t1

Pr(st1;µ0, `
t
1) = max

(`s)

X
θ∈Θ

µ0 (θ) e
t eH(φt,(`s),θ).

By definition of H and the identification condition, there exists ² > 0 such that

max(`s) eH (φ, (`s) , θ) ≤ H (θ∗) − ², for all θ 6= θ∗.
Thus the Maximum Theorem implies that, for some sufficiently large T ,

max(`s) eH (φt, (`s) , θ) ≤ max(`s) eH (φt, (`s) , θ∗) − ², (25)

for all θ 6= θ∗ and t > T .
We claim that

lim
t→∞

µ
max
µ0,`

t
1

Pr(st1;µ0, `
t
1)

¶ 1
t

= eH(θ
∗),

or equivalently, that ·
maxµ0,`

t
1
Pr(st1;µ0, `

t
1)

etmax(`s)
fH(φt,(`s),θ∗)

¸ 1
t

−→ 1. (26)
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Rewrite the latter in the form"
maxµ0,`

t
1

X
θ∈Θ

µ0 (θ) e
tηt(θ,µ0,`

t
1)

# 1
t

−→ 1, where (27)

ηt
¡
θ, µ0, `

t
1

¢
=
1

t
Σtj=1log`j (sj | θ)−max

(`s)

fH (φt, (`s) , θ∗) .
From (25), deduce that

maxµ0,`
t
1
µ0 (θ

∗) eηt(θ
∗,µ0,`

t
1)

≤ maxµ0,`
t
1

X
θ∈Θ

µ0 (θ) e
tηt(θ,µ0,`

t
1)

≤ maxµ0,`
t
1
µ0 (θ

∗) etηt(θ
∗,µ0,`

t
1) + (1− µ0 (θ∗)) e−²t,

for all t > T . But

h
maxµ0,`

t
1
µ0 (θ

∗) etηt(θ
∗,µ0,`

t
1)
i 1
t −→ 1,

which proves (27).

Now consider any admissible ‘theory’ (µ0, `
t
1). By the definition ofMα

t , (µ0, `
t
1) must

satisfy µ
max
µ0,`

t
1

Pr(st1;µ0, `
t
1)

¶ 1
t

≥ ¡Pr(st1;µ0, `t1)¢ 1
t ≥ α 1

t

µ
max
µ0,`

t
1

Pr(st1;µ0, `
t
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¶ 1
t

.

Thus (26) implies that ·
Pr(st1;µ0, `

t
1)

etmax(`s)
fH(φt,(`s),θ∗)

¸ 1
t

−→ 1. (28)

for any admissible theory.

From (24), the posterior derived from (µ0, `
t
1) satisfies

µt(θ
∗|st1, µ0, `t1) =

µ0 (θ
∗) etηt(θ

∗)P
θ∈Θ µ0 (θ) etηt(θ)

= µ0 (θ
∗)

µ0 (θ∗) +X
θ 6=θ∗

µ0 (θ) e
t(ηt(θ)−ηt(θ∗))

−1

;
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here and below we suppress the dependence of ηt on (µ0, `
t
1) because the latter is fixed.

Thus we are done if we can show thatX
θ 6=θ∗

µ0 (θ) e
t(ηt(θ)−ηt(θ∗)) → 0.

This follows from two claims.

Claim 1: For any ² > 0 and all θ 6= θ∗, ηt (θ) ≤ −² for all t > T (²). To maximize
1
t
Σtj=1log`j (sj | θ), it is wlog to focus on sequences such that `j = `k if sj = sk. Therefore,

1

t
Σtj=1log`j (sj | θ) ≤ max(`s) eH (φt, (`s) , θ)

The claim follows from (25).

Claim 2: ηt (θ
∗)→ 0. By construction, ηt (θ

∗) ≤ 0. Suppose that ηt (θ∗) < −δ for some δ
and all t > T . Then claim 1 (with ² = δ) implies that

·
Pr(st1;µ0, `

t
1)

etmax(`s)
fH(φt,(`s),θ∗)

¸ 1
t

=

ÃX
θ∈Θ

µ0 (θ) e
ηt(θ)

!1
t

< e−δ < 1

for all sufficiently large t, contradicting (28).
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