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ZERO EXPECTED WEALTH TAXES: A MIRRLEES APPROACH
TO DYNAMIC OPTIMAL TAXATION

BY NARAYANA R. KOCHERLAKOTA1

In this paper, I consider a dynamic economy in which a government needs to finance
a stochastic process of purchases. The agents in the economy are privately informed
about their skills, which evolve stochastically over time; I impose no restriction on the
stochastic evolution of skills. I construct a tax system that implements a symmetric con-
strained Pareto optimal allocation. The tax system is constrained to be linear in an
agent’s wealth, but can be arbitrarily nonlinear in his current and past labor incomes.
I find that wealth taxes in a given period depend on the individual’s labor income in
that period and previous ones. However, in any period, the expectation of an agent’s
wealth tax rate in the following period is zero. As well, the government never collects
any net revenue from wealth taxes.
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PEOPLE ARE BORN WITH DIFFERENT ABILITIES to turn effort into output—
that is, with different skills. These skills evolve stochastically. Talented people
may awake one day with crippling back pain or chronic fatigue syndrome that
renders them low skilled. Unemployed people may suddenly find a good job
opportunity. Some people learn faster or forget slower than others. It is plausi-
ble to think of skills at birth as private information (as in Mirrlees (1971)), but
these kinds of changes in skills are also difficult for outside observers to verify
directly.

Motivated by these observations, I ask the following question. Suppose peo-
ple are privately informed about their skills and those skills evolve stochasti-
cally over time. What are the properties of optimal wealth taxes, given that the
government wants to use the tax system to fund its purchases and to insure
people against skill shocks?

To answer this question, I restrict attention to preferences that are addi-
tively separable between consumption and leisure. I place no restriction on the
process that generates skills or on the process that generates aggregate shocks.
I prove that a symmetric constrained Pareto optimal allocation of resources

1The material in this paper previously circulated as part of the June 2003 manuscript, “A Mir-
rlees Approach to Dynamic Optimal Taxation: Implications for Wealth Taxes and Asset Prices.”
Feel free to contact me with comments or questions via e-mail at nkocher@stanford.edu. I ac-
knowledge the support of NSF Grant SES-0076315. This work grew out of my joint paper with
Mikhail Golosov and Aleh Tsyvinski, and owes a large intellectual debt to them. I thank three ref-
erees, a co-editor, Winnie Choi, Nan Li, Barbara McCutcheon, Luigi Pistaferri, and Ivan Werning
for useful comments. The paper has also benefited from comments from participants in seminars
at Penn State University, University of Iowa, Federal Reserve Bank of Chicago, University of
British Columbia, Federal Reserve Bank of Minneapolis, Stanford University, and Federal Re-
serve Bank of Cleveland. The views expressed herein are those of the author and not necessarily
those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.
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can be implemented using a tax system that is linear in current wealth. The
wealth tax rate in any period is a function of current and past labor incomes;
however, the expected period (t + 1) wealth tax rate for a person, conditional
on his period t information, is zero. I then show that total wealth tax collections
are zero in every date and state, regardless of the realization of the aggregate
shocks.

In the aggregate, wealth taxes are zero, but it is crucial that wealth taxes
not be zero for every person. I find that in the optimal system, a given agent’s
period (t + 1) wealth tax is a strictly decreasing function of consumption in
period (t + 1). Thus, people who are surprisingly low skilled in period (t + 1)
pay a wealth tax; people who are surprisingly highly skilled receive a wealth
subsidy. The intuition behind these nonzero taxes is simple. The optimal tax
system is designed to trade off social insurance of skill shocks against incentives
to provide effort. The “regressive” wealth taxes deter agents from bringing a
large amount of wealth into period (t + 1) and then reducing work effort. This
dynamic deterrence allows the society to have a tax system that provides better
social insurance for a given level of output.

Given my analysis, actual tax systems are suboptimal in two ways. First, the
average tax rate on net capital income is around 50% across OECD countries
(Carey and Rabesona (2002)). Second, in real-world tax codes, there is little
explicit dependence of wealth taxes on labor income shocks. It is known from
prior work that the first kind of suboptimality can lead to large welfare losses
(Lucas (2003)). I show through a numerical example that the lack of labor
income dependence can potentially lead to even greater welfare losses.

My paper is a dynamic extension of Mirrlees’ (1971) analysis. The question
of optimal wealth taxes in dynamic versions of the Mirrlees model has also
been taken up in recent papers by Albanesi and Sleet (2005) and Golosov and
Tsyvinski (2004). The limitation of these papers is that they restrict attention
to particular shock processes for individual skills (and, less importantly, as-
sume that there are no aggregate shocks). Golosov and Tsyvinski (2004) focus
on disability insurance and so they assume that skills have an absorbing state.
Albanesi and Sleet (2005) assume individual skills are independently and iden-
tically distributed over time.2

Neither of these assumptions is a particularly good approximation to what
we know about individual skills from the empirical literature on individual
wages. This literature documents that individuals experience large and per-
sistent shocks to their wages (and presumably to their skills as well) through-
out their lives (see, among others, Storesletten, Telmer, and Yaron (2001) and
Meghir and Pistaferri (2004)). Thus, my primary contribution to the exist-
ing literature on dynamic optimal taxation is that my results are applicable

2Golosov and Tsyvinski construct a system in which agents face a age-dependent asset test to
receive welfare benefits. In Albanesi and Sleet’s system, the optimal taxes are a function only
of current wealth and current labor income (although this function is allowed to be arbitrarily
nonlinear).



ZERO EXPECTED WEALTH TAXES 1589

for empirically relevant specifications of the stochastic process that generates
skills. I document in the context of a numerical example how persistence in
individual-level skill shocks and the presence of aggregate shocks affect opti-
mal wealth taxes.

Golosov, Kocherlakota, and Tsyvinski (2003) (GKT) provide a partial in-
tertemporal characterization of socially optimal allocations in a class of en-
vironments similar to mine. I generalize their characterization to allow for
aggregate shocks. This generalized characterization plays a key role in my
proof that optimal wealth taxes should be zero on average. However, my main
contribution over their work is that, unlike them, I explicitly consider a decen-
tralized tax system. In particular, GKT find that it is optimal for a wedge to
exist between the intertemporal marginal rate of transformation and individ-
uals’ intertemporal marginal rates of substitution. I show through an example
that this optimal wedge does not translate directly into a positive tax on capi-
tal in a decentralized tax system.3 Instead, the optimal tax system creates the
wedge in a subtle fashion: Individuals face idiosyncratic wealth tax risk that
serves to deter saving.

Chari, Christiano, and Kehoe (CCK) (1994) ask the question, “What is the
structure of optimal capital income taxes when government purchases are sto-
chastic?” However, they use what might be termed the Ramsey approach: they
assume that there is no heterogeneity across individuals and assume that the
government can only use linear taxes on labor and capital income. Assuming
preferences are additively separable between consumption and leisure (as I do
in this paper), they find that the optimal tax rate on capital income is zero in
any period t > 2 if preferences are homothetic in consumption. In contrast,
I find that it is optimal for aggregate capital tax collections to be zero in every
period, including periods 1 and 2.

I discuss these differences in results in the body of the paper. However, the
difference is really hardly surprising, because entirely different forces are at
work in the two kinds of analyses. In the Ramsey approach used by CCK, the
goal is to minimize the deadweight loss associated with the distortions gener-
ated by the linearity of taxes. (Sufficiently nonlinear taxes are nondistorting,
because they are lump-sum.) Under the Mirrlees approach that I use, the goal
is to design taxes so as to minimize the deadweight loss associated with provid-
ing good incentives.

1. ENVIRONMENT

In this section, I describe the environment. The description is similar to that
in GKT, except that I allow for the possibility of publicly observable aggregate
shocks.

3The example closely follows similar ones in Albanesi and Sleet (2005) and Golosov and
Tsyvinski (2004).
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The economy lasts for T periods, where T may be infinite, and has a unit
measure of agents. The economy is initially endowed with K∗

1 units of the sin-
gle capital good. There is a single consumption good that can be produced by
capital and labor. The agents have identical preferences. A given agent has
von Neumann–Morgenstern preferences and ranks deterministic sequences
according to the function

T∑
t=1

βt−1{u(ct)− v(lt)}� 1>β> 0�(1)

where ct ∈ R+ is the agent’s consumption in period t and lt ∈ R+ is the agent’s
labor in period t. I assume that u′�−u′′� v′, and v′′ all exist and are positive.
I also assume that the momentary utility functions u and v are bounded from
above and below.

There are two kinds of shocks in the economy: public aggregate shocks and
private idiosyncratic shocks. The first kind of shocks work as follows. Let Z be
a finite set and let µZ be a probability measure over the power set of ZT that
assigns positive probability to all subsets of ZT . At the beginning of period 1,
an element zT of ZT is drawn according to µZ . The random vector zT is the se-
quence of public aggregate shocks; zt is the realization of the shock in period t.

The idiosyncratic shocks work as follows. Let Θ be a Borel set in R+ and
let µΘ be a probability measure over the Borel subsets of ΘT . At the begin-
ning of period 1, an element of θT is drawn for each agent according to the
measure µΘ. Conditional on zT , the draws are independent across agents. I as-
sume that a law of large numbers applies: conditional on any zT , the measure
of agents in the population with type θT in Borel set B is given by µΘ(B).

Any given agent learns the realization of the public shock zt and his own
idiosyncratic shock θt at the beginning of period t and not before. Thus, at the
beginning of period t� the agent knows his own private history θt = (θ1� � � � � θt)
and the history of public shocks zt = (z1� � � � � zt). This implies that his choices
in period t can only be a function of this history.

What is the economic impact of these shocks? First, the shocks determine
skills. In period t� an agent produces effective labor yt according to the function

yt(θ
T � zT )=φt(θT � zT )lt(θT � zT )�(2)

φt :ΘT ×ZT → (0�∞)�(3)

φt is (θt� zt)-measurable�(4)

I assume that an agent’s effective labor is observable at time t� but his labor
input lt is known only to him. I refer to φt as an agent’s skill in history (θt� zt).
The idea here is that everyone shows up for eight hours per day and their
output at the end of the day is observable. However, it is hard to monitor how
hard they are working and what kinds of shocks they face during the day.
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The public aggregate shocks influence the aggregate production function in
the following way. I define an allocation in this society to be (c� y�K), where

K :ZT → R
T+1
+ �

c :ΘT ×ZT → R
T
+�

y :ΘT ×ZT → R
T
+�

Kt+1 is zt-measurable�

(ct� yt) is (θt� zt)-measurable�

Here, yt(θT � zT ) (ct(θT � zT )) is the amount of effective labor (consumption)
assigned in period t to an agent with type θT � given that the public aggregate
shock sequence is zT ;Kt+1 is the per capita amount of capital carried over from
period t into period (t + 1).

As mentioned above, I assume that the initial endowment of capital is K∗
1 .

I assume that the government has exogenous per capita purchasing needs
Gt :ZT → R+ in period t, where Gt is zt-measurable. I define an allocation
(c� y�K) to be feasible if, for all t� zT ,

Ct(z
T )+Kt+1(z

T )+Gt(z
T )≤ Ft(Kt�Yt� z

T )+ (1 − δ)Kt(z
T )�

Ct(z
T )=

∫
θT ∈ΘT

ct(θ
T � zT )dµΘ�

Yt(z
T )=

∫
θT ∈ΘT

yt(θ
T � zT )dµΘ�

K1 ≤K∗
1 �

Here, Ct and Yt represent per capita consumption and per capita effective la-
bor. (Note that (Ct�Yt) are zt-measurable.) The aggregate production function
Ft : R2

+ ×ZT → R+ is assumed to be strictly increasing, weakly concave, homo-
geneous of degree 1, continuously differentiable with respect to its first two
arguments, and zt-measurable with respect to its last argument.

Both φt and Ft are allowed to depend on the history of shocks in potentially
complicated nonlinear ways. In particular, in keeping with recent empirical
descriptions of idiosyncratic shocks to wages (Storesletten, Telmer, and Yaron
(2001)), the variance of φt , conditional on θt and zt+1, may well be a nonde-
generate function of zt+1.

Because θt is only privately observable, allocations must respect incentive-
compatibility conditions. (The following definitions correspond closely to
those in GKT.) A reporting strategy σ :ΘT × ZT → ΘT × ZT , where σt is
(θt� zt)-measurable and σ(θT � zT ) = (θT ′� zT ) for some θT ′ (thus, the agent is
required to report truthfully about the publicly observable variables). Let Σ be
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the set of all possible reporting strategies and define

W (·; c� y) :Σ→ R�

W (σ; c� y)=
T∑
t=1

βt−1

∫
ZT

∫
ΘT

{
u(ct(σ))− v(yt(σ)/φt)

}
dµΘ dµZ

to be the expected utility from reporting strategy σ , given an allocation (c� y)�
(Note that the integral over Z could also be written as a sum.) Let σTT be the
truth-telling strategy σTT(θ

T � zT ) = (θT � zT ) for all θT � zT . Then an allocation
(c� y�K) is incentive-compatible if

W (σTT; c� y)≥W (σ; c� y) for all σ in Σ�

An allocation that is incentive-compatible and feasible is said to be incentive-
feasible.

An optimal allocation is an allocation (c� y�K) that solves the problem of
maximizing

T∑
t=1

βt−1

∫
ZT

∫
ΘT

{u(ct)− v(yt/φt)}dµΘ dµZ

subject to (c� y�K) being incentive-feasible. Under this notion of optimality,
all agents are treated symmetrically from an ex ante perspective.

2. AN INTERTEMPORAL CHARACTERIZATION OF OPTIMAL
CONSUMPTION ALLOCATIONS

In this section, I provide a partial characterization of optimal allocations
that is valid for any specification of the exogenous elements of the model
(φ�F�µΘ�µZ�u�v�β�Z�Θ). The main contribution is that I extend GKT’s in-
tertemporal characterization into this setting with aggregate shocks.

The key proposition is the following. It establishes that any optimal alloca-
tion must satisfy a particular first order condition (similar to that derived in
Theorem 1 of GKT (2003) and in Rogerson (1985)).

PROPOSITION 1: Suppose (c∗� y∗�K∗) is an optimal allocation and that there
exist t < T and scalars M+, M+ such that M+ ≥ c∗

t � c
∗
t+1�K

∗
t+1 ≥M+ > 0 almost

everywhere. Then there exists λ∗
t+1 :ZT → R+ such that

λ∗
t+1 is zt+1-measurable�(5)

λ∗
t+1 = β [E(u′(c∗

t+1)
−1|θt� zt+1)]−1

u′(c∗
t )

a.e.�(6)

E
{
λ∗
t+1(1 − δ+ F∗

K�t+1)|zt
} = 1 a.e.�(7)
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where F∗
K�t+1(z

T )= FK�t+1(K
∗
t+1(z

T )�Y ∗
t+1(z

T )� zT ) for all zT .

The proof is given in Appendix A.
The content of this proposition is twofold. First, it establishes that

β
{E(u′(c∗

t+1)
−1|θt� zt+1)}−1

u′(c∗
t )

is independent of θt . This result is obviously true without private information,
because in that case the optimal c∗

t is independent of θt . In the presence of
private information, it is generally optimal to allow c∗

t to depend on θt so as
to require highly skilled agents to produce more effective labor. Proposition 1
establishes that even in that case, the harmonic mean of βu′(c∗

t+1)/u
′(c∗

t ), con-
ditional on θt and zt+1, is independent of θt .

Second, the theorem establishes that this conditional harmonic mean is
equal to the social discount factor (λ) between period t and period (t + 1).
The social discount factor can then be used to determine the optimal level of
capital accumulation between period t and period (t + 1).

Why does the relationship involve harmonic means, as opposed to arithmetic
means? Assume Θ is finite and think about the marginal benefit to the plan-
ner of getting ε extra units of per capita consumption in history zt . At first
glance, one might think that the marginal benefit is proportional to the arith-
metic mean of marginal utilities:

ε
∑
θt∈Θt

µΘ(θ
t)u′(ct(θt� zt))�

(For the purposes of this intuitive argument, I write ct as a function of (θt� zt)�
not (θT � zT ). This is without loss of generality, because ct is (θt� zt)-measur-
able.) However, this implicitly assumes that each agent is receiving ε units of
consumption regardless of history, which will typically violate incentive con-
straints.

Instead, the extra resources should be split so that each agent θt receives
η(θt), where

∑
θt∈Θt η(θ

t)µΘ(θ
t)= ε and, for all θt� θt′,

u
(
ct(θ

t� zt)+η(θt)) − u(ct(θt′� zt)+η(θt′)) = 0

or, using a first order approximation,

u′(ct(θt� zt))η(θt)= u′(ct(θt′� zt))η(θt′)= B
for some B� We can solve for B using

ε=
∑
θt∈Θt

BµΘ(θ
t)

u′(ct(θt� zt))
�
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so that the marginal gain to the planner is given by∑
θt∈Θt

µΘ(θ
t)u′(ct(θt� zt))η(θt)= B

= ε

[∑
θt∈Θt

µΘ(θ
t)

u′(ct(θt� zt))

]−1

�

The shadow value of resources in a history zt is given by the harmonic mean of
marginal utilities, not the arithmetic mean.4

Proposition 1 immediately implies that there is an intertemporal wedge of
the sort established by GKT. By using Jensen’s inequality, we get

βE
{
u′(c∗

t+1)(1 − δ+ FK�t+1)|zt� θt
}
> u′(c∗

t )(8)

with positive probability if Var(u′(c∗
t+1)|zt+1� θt) has a positive probability of be-

ing larger than zero. Thus, we get a wedge between the intertemporal marginal
rate of substitution and the intertemporal marginal rate of transformation: an
individual’s marginal expected utility from selling capital tomorrow exceeds his
marginal disutility from buying capital today.

3. TAXES AND WEDGES

At this stage, we have provided an intertemporal characterization of the
Pareto optimal quantities in this dynamic Mirrlees world. What does this result
say about taxes?

A Problem with the Natural Tax/Wedge Connection

Agents decide how much capital to bring into period (t + 1) using infor-
mation available up through period t. Hence, it seems logical that the pe-
riod (t + 1) capital tax itself should be a function only of information up
through period t. Under this assumption, the optimal capital tax would be pos-
itive. To see this, note that if agents can buy and sell capital in a competitive
market subject to a linear tax, they face the first-order condition

βE
{
u′(ct+1)(1 − δ+ FK�t+1)(1 − τkt+1)|θt� zt

} = u′(ct)�(9)

4Note that the proposition reduces to Theorem 1 of GKT if Z is a singleton (so there are no
aggregate shocks). The proof of Proposition 1 also resembles the proof of Theorem 1 in GKT.
Both proofs work by first establishing that the optimal allocation must satisfy a particular re-
source minimization problem, but the nature of the minimization problem is different. The GKT
proof constructs the constraint set in the resource minimization problem by keeping the utility
from consumption along all realizations of θT the same as in a putative optimum. In my proof,
I construct the constraint set by keeping the utility differential between any two paths the same.
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If τkt+1 is (θt� zt)-measurable, then it must be larger than 0 if the equilibrium
allocation is to be optimal.

I show in this subsection that the above natural logic starts from a wrong
premise: even though the capital accumulation decision is made in period t,
the tax on capital accumulation must depend on period (t + 1) informa-
tion. To see this, consider the following example (which is similar to ones
described in Albanesi and Sleet (2005) and Golosov and Tsyvinski (2004)).5
Let u(c)= ln(c), v(l) = l2/2, and β = 1. Suppose too that T = 2, Θ= {0�1},
Z = {1}, F(K�Y) = rK + wY , and δ = 1. As well, suppose φ1(θ) = 1,
φ2(θ� z) = θ, v(l) = l2/2, and Pr(θ2 = 1) = 1/2. Set G = 0. Then, we can
rewrite the planner’s problem as

max
c1�c2h�c2l�y1�y2h�K2

ln(c1)− y2
1

2
+ ln(c2h)

2
+ ln(c2l)

2
− y2

2h

4

s.t. c1 +K2 = rK1 +wy1�

c2h

2
+ c2l

2
= rK2 + wy2h

2
�

ln(c2h)− y2
2h

2
≥ ln(c2l)�

c2h� c2l� y2h�K2� y1 ≥ 0�

(In this statement of the problem, I have set y2l = 0� as would be true in a social
optimum.) The solution to this problem must satisfy the first-order conditions

c∗
1 +K∗

2 = rK1 +wy∗
1 �

c∗
2h

2
+ c∗

2l

2
= rK∗

2 + wy∗
2h

2
�

ln(c∗
2h)− y∗2

2h

2
= ln(c∗

2l)�

1
c∗

1

= r

0�5c∗
2h + 0�5c∗

2l

�

w

c∗
2h

= y∗
2h�

y∗
1 = w

c∗
1

�

The obvious way to implement this allocation is as follows. Suppose that
there is a single firm that owns the technology. The firm rents capital and labor

5See Chiappori et al. (1994) for a similar example.



1596 NARAYANA R. KOCHERLAKOTA

in each period to produce output. In period 1, agents decide how much to work
and how much capital to accumulate, given a linear tax on capital income. In
period 2, the agents decide how much to work. If they generate zero income,
they get a handout α2l. If they earn positive income, they get a handout α2h

(which may be negative). So, the proceeds from the linear tax on capital in-
come are being used to fund the subsidy to the disabled/unemployed agents in
period 2.

More formally, define a tax mechanism in this world by (τk�α2h�α2l). Then
an equilibrium in this economy is a specification of (c1� c2h� c2l� y1� y2h�k2) such
that it solves

max
c1�y1�c2h�c2l �y2h�k2

ln(c1)− y2
1

2
+ ln(c2h)

2
+ ln(c2l)

2
− y2

2h

4

s.t. c1 + k2 = rk1 +wy1�

c2h = r(1 − τk)k2 +wy2h + α2h if y2h > 0�

c2h = r(1 − τk)k2 + α2l if y2h = 0�

c2l = r(1 − τk)k2 + α2l�

k2� c2h� c2l� y2h� y1 ≥ 0�

and markets clear

c1 + k2 = rk1 +wy1�

c2h

2
+ c2l

2
= rk2 + wy2h

2
�

Note that in equilibrium, rτkk2 = α2h/2+α2l/2, which is the government’s bud-
get constraint.

Assume that the tax mechanism is such that the equilibrium value of y2h > 0.
Then the first-order conditions to the agent’s problem are

1
c1

= r(1 − τk)
[

0�5
c2h

+ 0�5
c2l

]
�

y1 = w

c1
�

w

c2h
= y2h�

ln(c2h)− y2
2h

2
≥ ln(c2l)�

c2h = r(1 − τk)k2 +wy2h + α2h�

c2l = r(1 − τk)k2 + α2l�
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How do we pick the tax mechanism so as to make the solution to these first-
order conditions coincide with the equilibrium allocation? We set

(1 − τk)= [0�5c∗
h + 0�5c∗

l ]−1

0�5/c∗
2h + 0�5/c∗

2l

�(10)

α2h = c∗
2h − r(1 − τk)K∗

2 −wy∗
2h�(11)

α2l = c∗
2l − r(1 − τk)K∗

2 �(12)

Then the equilibrium first-order conditions line up exactly with the social opti-
mality first-order conditions. Note that the capital tax is positive.

However, there is a problem with this analysis. Under this tax mechanism,
the optimal allocation satisfies the agent’s first-order conditions. Nonetheless,
the agent can do better than choose the optimal allocation. Why is this? Note
first that

1
c∗

1

<
r(1 − τk)
c∗

2l

�

because

1
c∗

1

= r(1 − τk)
[

0�5
c∗

2h

+ 0�5
c∗

2l

]
�

c∗
2h > c

∗
2l�

Now suppose the agent saves k∗
2 + ε and set y∗

2h = 0. His utility from this
budget-feasible plan is

ln(c∗
1 − ε)+ ln(c∗

2l + r(1 − τk)ε)
as opposed to

ln(c∗
1)+ ln(c∗

2h)

2
− y∗2

2h

2
+ ln(c∗

2l)

2
= ln(c∗

1)+ ln(c∗
2l)�

Because 1/c∗
1 < r(1 − τk)/c∗

2l� then the agent is better off using the new plan.
Intuitively, we have set the capital tax rate to guarantee that the agent does

not save too much or too little—assuming that he tells the truth about his type.
The optimal allocation pushes the agent to be indifferent between telling the
truth or lying. If he saves a little bit more and wealth effects are nontrivial, then
he will prefer to pretend to be disabled when he is actually abled. Saving too
much and shirking beats saving the right amount and telling the truth about
one’s type.

What this means is that the wedge does not immediately translate into a
conclusion about taxes. We have to find a different way to make a connection
between the wedge and tax rates.
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Fixing the Problem

The above problem resulted from the fact that even though the agent was
happy with saving k∗

2 when he told the truth, he wanted to save a different
amount when he lied. How do we fix this problem? One way is to tailor the tax
rates on saving to the agent’s announcements.

In particular, define a new tax mechanism (τkh� τkl�α2h�α2l). This mecha-
nism works like this. If the agent produces 0 effective labor in period 2, then
he receives a handout α2l and his savings tax rate is τkl� If the agent produces
a positive amount of effective labor in period 2� he receives a handout α2h and
his savings tax rate is τkh. His problem becomes

max
c1�y1�c2h�c2l �y2h�k2

ln(c1)− y2
1

2
+ ln(c2h)

2
+ ln(c2l)

2
− y2

2h

4

s.t. c1 + k2 = rk1 +wy1�

c2h = r(1 − τkh)k2 +wy2h + α2h if y2h > 0�

c2h = r(1 − τkl)k2 + α2l if y2h = 0�

c2l = r(1 − τkl)k2 + α2l�

k2� c2h� c2l� y2h� y1 ≥ 0�

Define (τkl� τkh�α2l� α2h) so that

(1 − τkl)r
c∗

2l

= 1
c∗

1

�

(1 − τkh)r
c∗

2h

= 1
c∗

1

�

α2i = c∗
2i − r(1 − τki)k∗

2� i= h� l�
Then I claim that under this tax mechanism, the equilibrium allocation coin-
cides with the optimal allocation.

Why? Suppose that the agent works y∗
2h > 0 in period 2 when abled. Then his

solution for his other choice variables is

1
c1

= r
[

0�5(1 − τkh)
c2h

+ 0�5(1 − τkl)
c2l

]
�

w

c1
= y1�

c1 + k2 = rk1 +wy1�

c2h = r(1 − τkh)k2 +wy2h + α2h�

c2l = r(1 − τkl)k2 + α2l�
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The starred allocation satisfies these first-order conditions.
What if the agent works y2h = 0 in period 2 when abled? Then his first-order

conditions become

1
c1

= r(1 − τkl)
c2l

�

w

c1
= y1�

c1 + k2 = rk1 +wy1�

c2h = r(1 − τkl)k2 + α2l�

c2l = r(1 − τkl)k2 + α2l�

Setting (c1� y1�k2� c2h� c2l) equal to (c∗
1� y

∗
1 �k

∗
2� c

∗
2l� c

∗
2l) satisfies these first-order

conditions. Hence, the agent is indifferent between working y∗
2h in period 2

(when able) and not working in period 2.
Thus, we can implement the optimal allocation using a tax schedule that is

linear in capital income and nonlinear in labor income. Note that τkl > τkh;
people who do not work get hit with a higher savings tax rate than those who
work.

I want to emphasize that it is still optimal to have a wedge between the in-
tertemporal marginal rate of substitution and the intertemporal marginal rate
of transformation. However, the only way to decentralize this wedge using lin-
ear taxes on savings is to use state-contingent tax rates.

4. A GENERAL IMPLEMENTATION

In this section, I use the above two-period analysis to build a general imple-
mentation of an optimal allocation. In the implementation, taxes on wealth are
restricted to be linear.

Taxes in a Sequential Markets Economy

I begin by describing a notion of equilibrium, given arbitrary nonlinear taxes
on labor income and linear taxes on wealth. In the economy, there is a single
representative firm that owns the technology of production, and rents capital
and hires effective labor in each period. The firm takes period t capital rents rt
and period t wages wt as given.

The agents in the economy all begin life with K∗
1 units of capital. They trade

capital, labor, and consumption in a sequence of competitive markets. They
face a labor tax schedule ψ : RT

+ × ZT → R
T , where ψt is (yt� zt)-measurable.

According to this schedule, an agent who has an effective labor sequence {yt}Tt=1
pays labor taxes ψt((yt)Tt=1� z

T ) in period t.
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The agents also face a linear tax on their wealth. The tax rate, though, may
depend on their effective labor history. Thus, let τ : RT

+ ×ZT → R
T , where τt is

(yt� zt)-measurable. Then an agent with wealth Wt at the beginning of period t
and with effective labor (yt)Tt=1 pays wealth taxes τt((yt)Tt=1� z

T )Wt .
Formally, the typical agent takes as given a tax system (ψ�τ) and prices

(r�w). He then has a choice problem of the form

max
c�y�k

T∑
t=1

βt−1

∫
zT ∈ZT

∫
θT ∈ΘT

{
u(ct(θ

T � zT ))− v
(
yt(θ

T � zT )

φt(θT � zT )

)}
dµΘ dµZ

s.t. ct(θ
T � zT )+ kt+1(θ

T � zT )

≤ (
1 − τt

(
y(θT � zT )� zT

))
(1 − δ+ rt(zT ))kt(θT � zT )

+wt(zT )yt(θT � zT )−ψt
(
y(θT � zT )� zT

)
for all (θT � zT )�

(ct�kt+1� yt) is (θt� zt)-measurable and nonnegative�

k1 ≤K∗
1 �

Given a tax system (ψ�τ)� an equilibrium in this economy is a specifi-
cation of (c� y�k) and (r�w) such that (c� y�k) solves the agent’s problem,
given ψ, τ, r, and w, such that rt(zT ) = Fkt(Kt(z

T )�Yt(z
T )� zT ) and wt(zT ) =

FYt(Kt(z
T )�Yt(z

T )� zT ), and such that markets clear for all t and zT :∫
θT ∈ΘT

ct(θ
T � zT )dµΘ +Gt(z

T )+Kt+1(z
T )

= Ft
(
Kt(z

T )�Yt(z
T )� zT

) + (1 − δ)Kt(z
T )�

Kt(z
T )=

∫
θT ∈ΘT

kt(θ
T � zT )dµΘ�

Yt(z
T )=

∫
θT ∈ΘT

yt(θ
T � zT )dµΘ�

Note that in this definition of equilibrium, the government’s budget is balanced
in every period:

Gt(z
T )=

∫
θT ∈ΘT

τt
(
y(θT � zT )� zT

){
(1 − δ+ rt(zT ))kt(θT � zT )

}
dµΘ

+
∫
θT ∈ΘT

ψt
(
y(θT � zT )� zT

)
dµΘ�

Elements of the Implementation

In this subsection, I describe how to set ψ and τ such that the resulting equi-
librium allocation is optimal. I make one key assumption: in the optimal allo-
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cation, current consumption depends on current and past skills only through
current and past effective labor. This assumption allows me to implement an
optimal allocation using a tax schedule that is written in terms of effective la-
bor, not in terms of θt .

Formally, suppose (c∗� y∗�K∗) is a socially optimal allocation. Let DOMt be
a subset of R

T
+ ×ZT defined as follows: (yT � zT ) is in DOMt if and only if there

exists θT in ΘT� (y ′
s)
T
s=t+1 in R

T−t
+ , and (z′

s)
T
s=t+1 in ZT−t such that(

yt� (y ′
s)
T
s=t+1� z

T
) = (

y∗(θT � zT )� zT
)
�

where zT = (zt� (z′
s)
T
s=t+1) for some (z′

s)
T
s=t+1 in ZT−t . In words, (yT � zT ) is

in DOMt if in the socially optimal allocation, there exists some type in ΘT that
receives the effective labor history yt when the public history is zt . Note that
DOMt ⊆ DOMt−1 for all t. I then make the following assumption.

ASSUMPTION 1: There exists a sequence of functions ĉ ∗ = (̂c ∗
t )
T
t=1, where

ĉ ∗
t : DOMt → R+, ĉ ∗

t is (yt� zt)-measurable, and

ĉ ∗
t

(
y∗(θT � zT )� zT

) = c∗
t (θ

T � zT )

for all (θT � zT ).

In a one-period setting, this assumption is a trivial consequence of incentive
compatibility. However, in a dynamic setting, an agent may receive information
about both his current skills and his future skills. The planner induces truth-
ful revelation about current skills by having consumption and effective labor
covary positively across agents as in the static case. In contrast, the planner
induces truthful revelation about future skills by offering agents more momen-
tary utility today in exchange for more effective labor in the future. It is optimal
for this increase in current momentary utility to come from both consumption
and leisure. Thus, information about future skills induces a negative covari-
ance between current consumption and current effective labor. It is then no
longer obvious that current consumption depends on current and past skills
only through current and past effective labor.

It is easy to prove that Assumption 1 is satisfied in an environment like
that of Albanesi and Sleet (2005), in which skill shocks are i.i.d., because the
agent receives no information about his future skills. If skill shocks are mean-
reverting, it is intuitively plausible that the effect of information about future
skills is outweighed by the effect of information about current skills. This in-
tuition would suggest that Assumption 1 continues to be valid when skills are
mean-reverting. (This intuition is further supported by the fact that when skills
are fixed over time, it is optimal for consumption and effective labor to covary
positively in period 1.)

However, suppose skills actually are an explosive process in the sense that a
high current level of skills implies that the future growth rate of skills is high.
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In this case, the above intuition suggests that Assumption 1 may be violated.
I present an example of this kind in Appendix B.6

Given Assumption 1, I next construct the details of the tax system that im-
plements the optimal allocation (c∗� y∗�K∗). I begin with the optimal tax on
wealth. Given the optimal allocation (c∗� y∗�K∗), we know from Proposition 1
that there exists λ∗

t+1 :ZT → R+ such that λ∗
t+1 is zt+1-measurable and

λ∗
t+1 = β [E(u′(c∗

t+1)
−1|θt� zt+1)]−1

u′(c∗
t )

�(13)

Define τ∗
t+1 : RT

+ ×ZT → R by

τ∗
t+1(y

T � zT )(14)

=

1 − λ∗
t+1(z

T )u′(̂c ∗
t (y

T � zT ))

βu′(̂c ∗
t+1(y

T � zT ))
� ∀ (yT � zT ) in DOMt+1,

1� ∀ (yT � zT ) not in DOMt+1.

Verbally, τ∗
t+1 equates the ex post individual marginal rate of substitution with

the ex post societal marginal rate of transformation if (yT � zT ) is in DOMt+1.
If (yT � zT ) is not in DOMt+1, the agent loses all of his wealth. Note that τ∗

t+1 is
(yt+1� zt+1) measurable.

Next, I describe the labor tax code. First, define

MPK∗
t (z

t)≡ FK
(
K∗
t (z

t−1)�Y ∗
t (z

t)� zt
)
�(15)

MPL∗
t (z

t)≡ FY
(
K∗
t (z

t−1)�Y ∗
t (z

t)� zt
)
�(16)

Then let (ψ∗∗� k̂∗) : DOMT → R
T × R

T
+ be defined so that

ĉ ∗
t (y

T � zT )+ k̂∗
t+1(y

T � zT )(17)

= (
1 − τ∗

t+1(y
T � zT )

)(
1 − δ+ MPK∗

t (z
T )

)
k̂∗
t (y

T � zT )

+ MPL∗
t (z

T )yt −ψ∗∗
t (y

T � zT )�∫
θT ∈ΘT

k̂∗
t+1

(
y∗(θT � zT )� zT

)
dµΘ =K∗

t (z
T )�(18)

k̂∗
1 =K∗

1(19)

for all t and for all (yT � zT ) in DOMT . Here ψ∗∗ describes the labor taxes, given
that the agent chooses an effective labor sequence in DOMT and k̂∗ describes
the agent’s capital holdings so as to satisfy the flow budget constraint.

6I used an insight provided by Ivan Werning to construct this example.
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However, this does not quite complete the specification of the labor
taxes; we need to describe labor taxes when the agent chooses an effec-
tive labor sequence not in DOMT . First, note that for all t, there exists
an extension ψ∗∗

ext�t : DOMt → R such that ψ∗∗
ext�t(y

T � zT ) = ψ∗∗(yT � zT ) for all
(yT � zT ) in DOMT and such that ψ∗∗

ext�t is (yt� zt)-measurable. Then define
ψ∗: R

T
+ ×ZT → R

T by

ψ∗
t (y

T � zT )=
{
ψ∗∗

ext�t(y
T � zT )� if (yT � zT ) is in DOMt ,

2ytwt(zT )� for any (yT � zT ) not in DOMt .
(20)

This function ψ∗ describes an optimal labor tax code. As is made clear in the
proof of Proposition 2, the tax when (yT � zT ) is outside of DOMt is sufficient
to make only effective labor strategies that lie in DOMT budget-feasible.

A Second Welfare Theorem

I now claim that (c∗� y∗�k∗) is an equilibrium given (ψ∗� τ∗), where k∗(θT �
zT ) = k̂∗(y∗(θT � zT )� zT ). As usual, we use social shadow values to construct
equilibrium prices. Let r∗t = MPK∗

t and let w∗
t = MPL∗

t . Clearly, given these
prices, the firm’s first-order conditions are satisfied. The optimal allocation
satisfies market clearing. Hence, we need only verify that given prices (r∗�w∗),
and tax system (ψ∗� τ∗), the allocation (c∗� y∗�k∗) is individually optimal for an
agent in the economy. To prove this claim, we need the following proposition.

PROPOSITION 2: Given prices (r∗�w∗) and tax system (ψ∗� τ∗), and given that
the typical agent chooses a budget-feasible y ′, his optimal choices of (c�k) are
c′
t(θ

T � zT )= ĉ ∗
t (y

′(θT � zT )� zT ) and k′
t(θ

T � zT )= k̂∗
t (y

′(θT � zT )� zT ).

PROOF: First, note that any budget-feasible y ′ satisfies the property that
(y ′(θT � zT )� zT ) is in DOMT for all (θT � zT ). To see this, suppose y ′ is a strat-
egy such that (y ′(θT � zT )� zT ) is not in DOMT for some (θT � zT ). Note that
DOMT = ⋂T

t=1 DOMt , even if T is infinite. Hence, there always exists some fi-
nite t such (y ′(θT � zT )� zT ) is not in DOMt . In this period t, the agent loses all
of his accumulated wealth and owes twice his current labor income in taxes.
This is impossible for him to afford, so such a y ′ is not budget-feasible.

Define τ′ :ΘT ×ZT → R by τ′(θT � zT )= τ∗(y ′(θT � zT )� zT ) and ψ′(θT � zT )=
ψ∗(y ′(θT � zT )� zT ). Then, given that the agent chooses effective labor strat-
egy y ′, his intertemporal consumption problem becomes

max
c�k

T∑
t=1

βt−1

∫
θT ∈ΘT

∫
zT ∈ZT

u(ct) dµΘ dµZ

s.t. ct + kt+1 = (1 − τ′
t)(1 − δ+ rt)kt +wty ′

t −ψ′
t �
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ct�kt+1 are (θt� zt)-measurable and nonnegative�

k1 ≤K∗
1 �

The first-order conditions to this problem are

βE
{
(1 − τ′

t+1)u
′(ct+1)(1 − δ+ rt+1)|θt� zt

} = u′(ct)�

ct + kt+1 = (1 − τ′
t)(1 − δ+ rt)kt +wty ′

t −ψ′
t �

If T is finite, the first-order conditions are obviously necessary and sufficient
(once y ′ is fixed). If T is infinite, the necessity and sufficiency is implied by the
assumption that u is bounded.

My claim is that (c′�k′) satisfy these first-order conditions. Clearly, from the
definition of ψ∗ and k̂∗, they satisfy the flow budget constraints. What about
the Euler equations? We know that for all (yT � zT ) in DOMT ,

(
1 − τ∗

t+1(y
T � zT )

)
λ∗
t+1(z

T )−1 = β−1 u
′(̂c ∗

t (y
T � zT ))

u′(̂c ∗
t+1(y

T � zT ))

and so for all (θT � zT ),(
1 − τ′

t+1(θ
T � zT )

)
λ∗
t+1(z

T )−1 = (
1 − τ∗

t+1

(
y ′(θT � zT )� zT

))
λ∗
t+1(z

T )−1

= β−1 u
′(̂c ∗

t (y
′(θT � zT )� zT ))

u′(̂c ∗
t+1(y

′(θT � zT )� zT ))

= β−1 u
′(c′

t(θ
T � zT ))

u′(c′
t+1(θ

T � zT ))
�

Hence,

βE
{
(1 − τ′

t+1)u
′(c′

t+1)(1 − δ+ rt+1)|θt� zt
} − u′(c′

t)

= [
E{λ∗

t+1(1 − δ+ rt+1)|θt� zt} − 1
]
u′(c′

t)

= 0�

This proves the proposition. Q.E.D.

Proposition 2 considers an agent who chooses an arbitrary effective la-
bor strategy y ′ that is budget-feasible. Because (y ′(θT � zT )� zT ) ∈ DOMT for
all (θT � zT ), there exists a reporting strategy σ ′ :ΘT ×ZT →ΘT ×ZT that sat-
isfies

y∗(σ ′(θT � zT ))= y ′(θT � zT ) for all (θT � zT )�
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The content of Proposition 2 is that if an agent chooses y ′, it is optimal for
him to choose an asset allocation plan that gives him consumption c′(θT � zT )�
where for all (θT � zT ),

c′(θT � zT )= ĉ ∗(y ′(θT � zT )� zT
)

= ĉ ∗(y∗(σ ′(θT � zT ))� zT
)

= c∗(σ ′(θT � zT ))�

We can now use Proposition 2 to show that given prices and taxes, a con-
sumer’s optimal choice from his budget set is (c∗� y∗�k∗), where k∗(θT � zT )=
k̂∗(y∗(θT � zT )� zT ). To complete the argument, we need only show that the op-
timal effective labor strategy is y∗. We know from Proposition 2 that an agent
who chooses y ′ and then chooses an optimal consumption-savings strategy, re-
ceives utilityW (σ ′; c∗� y∗), where σ ′ is defined as above. However, this utility is
no larger than W (σTT; c∗� y∗), which can be achieved by choosing y∗ and then
saving optimally. The agent is weakly better off choosing y∗.

Thus, we have successfully implemented the optimal allocation as an equi-
librium allocation using the tax mechanism (ψ∗� τ∗). In the implementation,
agents can only trade capital and consumption. However, it is straightforward
to extend the analysis to allow agents to trade zt+1-contingent claims that are
available in zero net supply. Indeed, the structure of the optimal taxes τ∗ is left
unaltered by adding these financial asset markets.

5. IMPLICATIONS FOR OPTIMAL TAXES

In this subsection, I discuss some properties of the optimal tax system de-
rived in Section 4.

Zero Taxes

It is easy to prove that in the above implementation, the expected wealth tax
rate in period (t + 1), conditional on (θt� zt+1), is zero. Define

τ∗∗
t+1(θ

T � zT )= τ∗
t+1

(
y∗(θT � zT )� zT

)
for all (θT � zT )�

By construction,

(1 − τ∗∗
t+1)= β−1λ∗

t+1u
′(c∗

t+1)
−1u′(c∗

t )�

so that the after-tax ex post marginal rate of substitution is set equal to the
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social discount factor. Then

E
{
(1 − τ∗∗

t+1)|θt� zt+1
} = E

{
β−1λ∗

t+1u
′(c∗

t+1)
−1u′(c∗

t )|θt� zt+1
}

= β−1λ∗
t+1u

′(c∗
t )E

{
u′(c∗

t+1)
−1|θt� zt+1

}
by (θt� zt+1)-measurability of λ∗

t+1u
′(c∗

t )

= 1�

where the last step follows from Proposition 1. Thus, the expected wealth tax
rate is zero.

Who pays the higher tax? This is also easy to see. Conditional on (θt� zt+1),
the variance in the wealth tax rate derives from the dependence of u′(c∗

t+1)
−1

on θt+1. The after-tax rate (1 − τ∗∗
t+1) is surprisingly high for agents with a sur-

prisingly high 1/u′(c∗
t+1)—that is, a high c∗

t+1. Intuitively, the high wealth tax
rate on the unskilled is needed to deter agents from doing a joint deviation
that consists of saving too much and then working too little when skilled in the
following period.

This result implies immediately that any given individual’s expected wealth
tax rate is zero. However, there is a second, slightly more subtle, implication:
under any optimal system, wealth taxes are purely redistributional because
the government raises no net revenue from them in any public history zt+1.
This result may seem surprising at first because many individual capital hold-
ings processes k∗ are consistent with optimality. Nonetheless, suppose k∗ is
an equilibrium process of capital holdings given that wealth taxes as a func-
tion of (θT � zT ) equal τ∗∗. Then we can calculate the total revenue from wealth
taxes in each public history:∫

θT ∈ΘT
τ∗∗
t+1(θ

T � zT )k∗
t+1(θ

T � zT )
(
1 − δ+ MPK∗

t+1(z
T )

)
dµΘ

= (
1 − δ+ MPK∗

t+1(z
T )

)
E(τ∗∗

t+1k
∗
t+1|zt+1)

= (
1 − δ+ MPK∗

t+1(z
T )

)
E

(
E(τ∗∗

t+1|θt� zt+1)k∗
t+1|zt+1

)
= 0�

The key step in this calculation is the penultimate one, in which I exploit the
law of iterated expectations and the fact that k∗

t+1 is (θt� zt)-measurable.

The Key Assumption

The above zero mean wealth tax result is a direct consequence of Proposi-
tions 1 and 2. These propositions are, respectively, about the socially and in-
dividually optimal intertemporal allocation of consumption. Both of them rely
on one crucial feature of the environment: individuals’ intertemporal marginal
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rates of substitution for consumption (IMRS) are publicly observable.7 This
aspect of the setup means that private information does not directly impact on
the intertemporal first order conditions for consumption.

We can use this point to better understand how the zero mean tax result
does and does not generalize. Propositions 1 and 2 are not valid if preferences
are not additively separable between consumption and labor8 (because then
unobservable labor affects the consumption IMRS). They are also not valid
if there are unobservable shocks to agents’ marginal utility of consumption or
hidden endowment shocks. On the other hand, Propositions 1 and 2 do remain
valid if agents can engage in multiple tasks or if they can invest in multiple
forms of capital.

More subtly, the propositions remain valid even if skills are endogenous.
Suppose agents can engage in human capital accumulation, but it is not possi-
ble for outsiders to monitor their investment. As long as this hidden investment
is only in the form of time, then Propositions 1 and 2, and the zero mean wealth
tax result go through. However, if the unmonitorable investment includes con-
sumption goods, the agents’ marginal utilities of consumption are no longer
public information, and neither of Propositions 1 and 2 is true.

Comparison with Ramsey Taxation

There is a large literature on optimal capital and labor income taxation that
uses what might be termed the Ramsey approach. Under this approach, it is
assumed that all agents are identical. The government is restricted to use lin-
ear taxes on capital and labor income, but these taxes are allowed to depend
in arbitrary ways on the history of aggregate shocks. The government is not
allowed to impose a tax on capital income in period 1, because such a tax is
lump-sum. As well, the government and agents can trade in a complete set of
date- and state-contingent claims to consumption.

Suppose the agents’ utility from consumption is given by u(c)= c1−γ/(1−γ)
or u(c)= ln(c). Then their overall utility function is homothetic over consump-
tion goods at different dates and separable between consumption and labor.
Chari, Christiano, and Kehoe (1994) show that under this assumption,9 the op-
timal capital tax is positive in period 2 and is zero in any period t > 2. As they
explain, the zero tax result is an application of the uniform commodity tax-
ation theorem, where the various commodities are consumption at different
dates and states.

7GKT (2003) also emphasize this aspect of the environment.
8Kocherlakota (2004) shows that if Θ is finite, and preferences are not additively separable

between consumption and labor, the optimal wealth taxes are necessarily nondifferentiable as a
function of wealth.

9CCK generalize Chamley’s (1986) result for deterministic economies by allowing for shocks
to government purchases. Atkinson and Sandmo (1980) consider the Ramsey problem in an over-
lapping generations context.
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How do the Ramsey capital taxes derived by Chari, Christiano, and Kehoe
compare to the optimal tax system described in Section 4? The systems agree
in the sense that in any period t > 2, they imply that aggregate capital tax col-
lections should be zero. However, they differ in two important respects. First,
in period 2, the Ramsey taxes are nonzero. The government is using these pe-
riod 2 taxes as an imperfect substitute for the instrument that it would like to
use: the lump-sum period 1 taxes on capital income. In the tax system derived
in Section 4, the optimal capital tax collections are zero in every date and state,
including period 2. Lump-sum taxes are always available—there is no need to
use the period 2 taxes to substitute for them.

Of course, this difference between the Mirrlees and Ramsey systems van-
ishes after one period. The more long-lasting difference is that the Mirrlees
system requires the use of nonzero capital taxes, while the Ramsey system does
not. The nonzero capital taxes play an essential role in inducing optimal savings
and effort given the private information friction. As we shall see in Section 6,
the welfare losses associated with having uniform capital taxes across agents
can be substantial in the setting with private information.

Remarks

This subsection points out several other important features of the optimal
tax system described in Section 4.

REMARK 1: The labor income taxes ψ∗ are indeterminate. There is a large
set of labor income tax schedules and individual capital holdings (ψ∗� k̂∗) that
can be used as part of a tax mechanism that supports a given optimal allo-
cation (c∗� y∗�K∗). Loosely speaking, these various optimal tax systems dif-
fer in terms of the timing of tax collections. For example, suppose T = 2,
but people earn labor income only in period 1 (which implies in turn that
optimal capital taxes are zero for everyone). Suppose one optimal tax sys-
tem is to tax agents with high income $10,000 in period 1 and not tax agents
with low income. Then we can construct another optimal tax system by taxing
high-income agents $1,000 in period 1, and $9�000(1 + r) in period 2, while
transferring $9,000 in period 1 to low-income agents and then taxing them
$9�000(1 + r) in period 2. This tax system is also optimal, because the present
value of the tax burden for each possible report is kept the same. However, in-
dividual capital holdings in equilibrium change (high-income agents hold less
capital under the second system, while low-income agents hold more).

REMARK 2: In the above class of optimal mechanisms, the government’s
budget is balanced in every period. However, using the reasoning in the above
paragraph, it is possible to construct optimal tax structures with alternative
streams of government debt: there is simply no notion of an optimal debt struc-
ture in this world. This is a consequence of the richness of the tax structure: as
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Bassetto and Kocherlakota (2004) emphasize, when taxes can depend on past
incomes, debt is irrelevant.

REMARK 3: The tax system is linear in wealth, but it is not arbitrage-free.
Consider an agent who faces no future skill risk: in the optimal tax system, he
faces no wealth taxes. Other agents face wealth tax risk that is correlated with
their equilibrium consumptions. They would like to shield their wealth from
taxes by making an off-book loan to the “no-risk” agent that allows him to do
all of the capital accumulation in the economy.10

REMARK 4: An agent’s expected wealth tax rate is zero, but there is a
wedge between the social intertemporal marginal rate of transformation and
the agent’s marginal rate of substitution. This wedge is created by tax risk.
The agent faces high wealth taxes when his consumption is low and low wealth
taxes when his consumption is high. The optimal tax system inflates the agent’s
“consumption beta” of investing in physical capital and thereby deters saving.

REMARK 5: I focus on symmetric Pareto optima, in which the planner treats
all agents the same. It is possible, though, to extend the results to the case of
asymmetric Pareto optima, in which agents are given different initial lifetime
utility promises. In particular, given an asymmetric Pareto optimal allocation,
it can be implemented using a tax system that is linear in wealth and in which
the expected wealth tax rate is zero for all agents. This optimal tax system is a
nonlinear function of initial lifetime utility promises and current and past labor
incomes.

6. A NUMERICAL EXAMPLE AND ITS LESSONS

Section 5 focused on one particular aspect of the optimal tax system de-
scribed in Section 4: the average wealth taxes are zero in every date and state.
In this section, I use a numerical example to explore other aspects of the opti-
mal tax system constructed in Section 4.

Before proceeding to the example, however, a word of warning is in or-
der. It would be desirable to use an infinite horizon example as in Albanesi
and Sleet (2005). However, to answer the questions of interest, the example
would have to include aggregate shocks, persistent hidden state variables, and
probably should allow for endogenous physical state variables. At a conceptual

10Like I do, Golosov and Tsyvinski (2005) consider an optimal tax problem in a dynamic
Mirrlees economy. However, they assume that the government is restricted to using arbitrage-
free taxes on wealth. (They motivate this restriction, like Guesnerie (1995), by assuming that
agents can freely engage in intertemporal side trades. I suspect that they could also have moti-
vated it by assuming that agents could form coalitions, as in Hammond (1987).) The optimal tax
is typically nonzero in their setting. Its sign depends on details of the data generation process for
skills.
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level, it is known how to attack problems of this kind, thanks to the work of
Fernandes and Phelan (2000) and Doepke and Townsend (2005). Practically,
it is still impossible to implement their procedures in an example that includes
the elements of interest.

For these reasons, I focus on a two-period example. Obviously, this analy-
sis can only be viewed as suggestive of what would happen in a full-blown in-
finite horizon application. Nonetheless, I believe that the example contains
some useful lessons beyond what we learn from the infinite horizon analysis of
Albanesi and Sleet (2005) (who require skill shocks to be i.i.d. over time).

Details of the Example

The example works as follows. I assume that T = 2, u(c) = ln(c), v(y) =
y2/2, and β= 1. In terms of the shocks, I assume that

Z = {0�1}�
Θ= {0�8�1�2}�
Pr(θ1 = 0�8)= 0�5�

Pr(θ2 = θ|θ1 = θ)= π for θ= 0�8�1�2�

Pr(z1 = 1)= 0�5�

Pr(z2 = z|z1 = z)= 0�9 for z = 0�1�

I leave π as a free parameter that determines the persistence of the idiosyn-
cratic shocks. Given the Markov structure, the autocorrelation of the idiosyn-
cratic shocks equals 2π − 1.

The production technology works as follows. I set K1 = 1. The production
technology in both periods has the same form,

Ft(K�Y)=K +Y�
and capital fully depreciates (δ= 1). Hence, the aggregate shocks do not affect
the aggregate production function.

Finally, I set government purchases to be

Gt(zt)=
{
gH� if zt = 0,
0� if zt = 1.

Again, I treat gH as a free parameter to be varied. Thus, this example can be
used to analyze the impact of gH and π on endogenous variables like capital
tax rates.

I solve the planner’s problem using a direct numerical procedure. I form a
relaxed program by discarding the incentive constraints for the low types at
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every node. I then write down the first order conditions of the relaxed problem
and use the nonlinear equation solver in GAUSS (eqsolve) to find the solution
to these first-order conditions. (There are 58 equations in 58 unknowns, which
is easily manageable.) I conclude by checking to make sure that the incentive
constraints of the low types are in fact satisfied by the solution to the relaxed
problem.

Impact of Idiosyncratic Shock Persistence

I begin by varying the idiosyncratic shock parameter π. I assume that gH = 0,
so that there are no aggregate shocks in the economy. In this two-period set-
ting, optimal capital tax rates depend on skill realizations in periods 1 and 2.
I plot these in Figure 1 as a function of the autocorrelation of the individual-

FIGURE 1.—Impact of the autocorrelation of individual-specific skill shocks on optimal capital
tax rates.
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specific skill shocks. The major lesson of this figure is that the optimal capital
tax rates depend crucially on the persistence of the skill shock. In particular, as
the shocks become more persistent, the capital tax rates associated with high
probability transitions (low to low and high to high) fall in absolute value. In
contrast, the capital tax rates associated with low probability transitions rise in
absolute value. These findings are not entirely unexpected given the zero mean
tax rate result derived in Section 5.

In terms of magnitudes, it is worth emphasizing that these tax rates are being
applied to the entire stock of capital, not just to flow income (which in this
model economy is actually zero). A capital tax rate of 5% is equivalent to a
capital income tax rate of 100%, if the rate of return on capital is 5%.

Impact of Shocks to Government Purchases

Much of the Ramsey literature on optimal capital taxation is concerned with
how shocks to government purchases should affect the mix between capital
taxes and labor taxes. In this subsection, I explore how government purchases
affect capital tax rates in this two-period economy. I set π = 0�75 (which is
equivalent to an autocorrelation of 0�5 in skill shocks), and then solve the
planner’s problem for gH = 0 (the no aggregate shocks case) and gH = 0�3.
This shock to government purchases is large: in the computed optimal alloca-
tions, the ratio of government purchases to output is about 1/3 when gH = 0�3
and is exactly zero when gH = 0. This kind of jump is about the same order of
magnitude as that seen in the United States at the onset of World War II.

The results of this exercise are depicted in Table I. The zero mean wealth
tax result says that for any level of government purchases, the cross-sectional
average of the capital tax rate is zero; Table I is consistent with this result.
More generally, Table I documents that period 2 government purchases are
the key determinant of the capital tax rates faced by any given individual. The
capital tax rates are highly similar in rows 1, 2, and 3 in Table I, because g2 is
equal to 0 in all three rows. The capital tax rates are highly similar in rows
4 and 5 in Table I, because g2 is equal to 0�3 in both rows. However, the cross-
sectional variance of capital tax rates if g2 = 0�3 is quite different than if g2 = 0.
When g2 = 0�3, the cross-sectional standard deviation of capital tax rates is

TABLE I

AGGREGATE SHOCKS AND CAPITAL TAX RATES

τhh τhl τlh τll

gH = 0 (no agg. shocks) −0�058 0�173 −0�210 0.070
(g1� g2)= (0�0) −0�057 0�171 −0�208 0.069
(g1� g2)= (0�3�0) −0�057 0�170 −0�221 0.074
(g1� g2)= (0�0�3) −0�072 0�216 −0�254 0.085
(g1� g2)= (0�3�0�3) −0�072 0�216 −0�269 0.090
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around 0�125 for agents who were highly skilled in period 1. When g2 = 0�3�
the cross-sectional standard deviation of capital tax rates is only 0�09 for those
same agents. As we shall see, this difference of 3.5% between the two standard
deviations is comparable to the average capital tax rate in the OECD.

Intuitively, when purchases are high in period 2, it is socially optimal for
effective labor to be high. It becomes even more socially beneficial to deter
individuals from pursuing the strategy of saving and shirking, and therefore
socially optimal to impose relatively high capital taxes on those with low labor
income. Thus, the cross-sectional mean of capital tax rates is always zero, but
the cross-sectional variance of capital tax rates covaries positively with aggre-
gate government purchases.

Positivity or Labor Income Independence: What Is Worse?

This is a normative paper. It describes the properties of a particular optimal
tax system, given a plausible specification of informational and technological
restrictions. In the real world, there is no reason to expect politically deter-
mined tax systems to be the same as the socially optimal one described in this
paper.

Nonetheless, it is useful to consider how real-world tax systems can be im-
proved. Tax systems in developed countries have two striking differences from
the prescriptions of this paper. First, they have a higher mean capital tax. They
are substantially different from zero—the average tax rate on net capital in-
come is about 50% (Carey and Rabesona (2002)). This tax on the flow of cap-
ital income is equivalent to a tax of about 2.5% on the capital stock, assuming
that the net return on capital is roughly 5%.

The second important prescription of this paper is that capital taxes should
be systematically higher on individuals with unexpectedly low labor income.
There is some element of this in the United States welfare system, because
welfare payments are asset-tested (see Golosov and Tsyvinski (2004) for a full
discussion). Nonetheless, I am not aware of income tax codes that have explicit
“regressive” wealth taxes of the form described in this paper.

Thus, relative to the optimal tax system described in Section 4, real-world tax
systems have two apparent deficiencies: the tax on capital is too high and too
uniform (across people). As mentioned in the introduction, the prior Ramsey
literature has emphasized the welfare losses associated with the first problem.
How large are the welfare losses associated with the second problem?

To answer this question, I compare agents’ welfare under three regimes in
the two-period model with gH = 0. The first is the optimal tax system described
in Section 4. The second is a similar tax system, except that it is only optimal
subject to the restriction that the average capital tax rate in period 2 is 2.5%
(the average tax rate on the capital stock in OECD countries). In this system,
the capital tax rates are allowed to depend in an arbitrary way on an agent’s
history of labor incomes. The third is the optimal tax system given that the
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FIGURE 2.—The ratio of two welfare losses. The numerator is the welfare loss from imposing
a zero capital tax rate (independent of second-period labor income) as opposed to the optimal
tax system. The denominator is the welfare loss from requiring the average capital tax rate to
be 0.025 as opposed to the optimal tax system. Both welfare losses are expressed in terms of the
percentage of consumption agents in the better regime are willing to give up to avoid being in the
worse regime.

government cannot impose taxes on capital accumulation. In this last tax sys-
tem, the average tax rate is zero, but there is no dependence of capital taxes on
individual labor income.

In Figure 2, I graph the ratio of the welfare difference between regimes
1 and 3 to the welfare difference between regimes 1 and 2. (I measure the
welfare difference as the percentage loss of consumption an agent in regime 1
would be willing to incur to avoid being in the other regime.) Figure 2 has two
basic lessons. First, the welfare loss associated with income independence can
be much larger than the welfare loss associated with positive capital taxes. The
second lesson is that income independence is much less costly if skill shocks
are highly persistent. This latter result is hardly surprising. If skills are fixed
over time, it is optimal for capital taxes to be zero for all agents. Hence, the
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welfare loss of imposing zero taxes is relatively small when the autocorrelation
of the shocks is near 1.

The conclusions depicted in Figure 2 are tentative. The welfare losses asso-
ciated with either restriction on the tax system are likely to be quite different
in model economies with more periods (or with more carefully calibrated in-
dividual skills processes). Nonetheless, I believe that this picture indicates that
having capital taxes depend on labor income can be a first order consideration
in designing good social insurance systems.

Lessons from the Simulations

There are three conclusions to be drawn from this numerical exercise. First,
the cross-sectional standard deviation of optimal capital tax rates is a decreas-
ing function of the persistence of the underlying skill shocks. Second, the
cross-sectional standard deviation of optimal capital tax rates is an increas-
ing function of government purchases. Third, the welfare loss from imposing
uniform capital tax rates can be much larger than that from imposing positive
capital tax rates. In future work, it would be useful to see the extent to which
these lessons can be generalized to more elaborate environments.

7. CONCLUSION

In this paper, I describe a general implementation for the ex ante symmetric
Pareto optima in a dynamic Mirrlees economy. The implementation relies on
a tax system that is nonlinear in labor income and linear in wealth. As in GKT
(2003), it is socially optimal to have social shadow rates of return be higher than
individual shadow rates of return. However, it is not possible to implement
the optimum by equating this wedge with a tax on wealth. Instead, the tax on
wealth accumulated from period t to period (t+1)must be designed to equate
the ex post individual after-tax rate of return with the social shadow rate of
return. The resulting average wealth tax rate is zero and the government never
collects any net tax revenue from wealth taxes.

The government is potentially free to use tax schedules that are nonlinear
functions of current and past labor incomes and wealths. This flexibility means
that there are many optimal tax systems. Not all of them have the feature that
expected marginal tax rates on wealth are zero. In particular, for the case in
which skill shocks are i.i.d. over time, Albanesi and Sleet (2005) consider a
class of tax systems that are arbitrary nonlinear functions of current labor in-
come and current wealth. They show that there is a tax system of this kind that
implements a constrained Pareto optimal allocation. In this optimal system,
current wealth is used as a summary statistic that encodes the relevant infor-
mation from the past history of labor incomes. Because wealth is playing this
record-keeping role, Albanesi and Sleet (2005) prove that the expected mar-
ginal tax rate on wealth need not be zero in their optimal system.
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In my paper, the government is treated as the sole provider of insurance
against skill shocks. It is clear that the results about wealth taxation are sen-
sitive to this assumption. Suppose instead that agents are ex ante identical
and can sign long-term contracts with insurance entities (as, for example, in
Atkeson and Lucas (1995)). Then the social insurance can be handled by
the private sector. There is still a need for taxation—to fund government
expenditures—but these taxes optimally take the form of lump-sum levies.
There is no need for either labor income taxes or capital income taxes.11

Nonetheless, it remains true that much social insurance in highly developed
economies is done by the government. I view the analysis in this paper as taking
this fact as given and then providing a partial characterization of the nature of
optimal dynamic taxation. Understanding why the government plays such a
large role in social insurance—using efficiency or other considerations—is an
important goal for future research.
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APPENDIX A: PROOF OF PROPOSITION 1

The proof has two parts. In the first part, I establish that (c∗� y∗�K∗) solves a
particular resource minimization problem. In the second part, I derive the first
order conditions to that minimization problem.

Part 1

Note first that we can use Lemma 1 of GKT (2003) to show that any optimal
allocation satisfies all feasibility constraints with equality.

Next, define µ(zt+1|zt) to be the conditional probability of zt+1� given zt .
Consider the following minimization problem MIN (I abuse notation slightly
by writing c∗

t (θ
T � zt) to refer to c∗

t (θ
T � zt� zt+1� zt+2� � � � � zT )):

min
ct �ct+1�Kt+1�ζ

∫
θT ∈ΘT

ct(θ
T )dµΘ +Kt+1(21)

s.t. u(ct(θ
T ))= u(c∗

t (θ
T � zt))+β

∑
zt+1∈Z

ζ(θT � zt+1)µ(zt+1|zt)(22)

for almost all θT in ΘT�

u(ct+1(θ
T � zt+1))= u(c∗

t+1(θ
T � zt� zt+1)

) − ζ(θT � zt+1)(23)

for all zt+1 in Z and almost all θT in ΘT�

11Golosov and Tsyvinski (2005) provide a formal justification of this basic intuition.
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θT ∈ΘT

ct+1(θ
T )dµΘ − Ft+1

(
Kt+1�Y

∗
t+1(z

t)� zt
) − (1 − δ)Kt+1(24)

= −K∗
t+2(z

t� zt+1)−Gt+1(z
t� zt+1) for all zt+1 in Z�

ct :ΘT → R+� ctθ
t-measurable�(25)

ct+1 :ΘT ×Z→ R+� ct+1θ
t+1-measurable�(26)

ζ :ΘT ×Z→ R� ζθt-measurable�(27)

Kt+1 ∈ R+�(28)

This minimization problem constructs a class of perturbations around the
optimum (c∗� y∗�K∗)� The perturbations lower utility in period (t + 1) by a
(θt� zt+1)-contingent amount ζ. This decrease is corrected by raising utility in
period t by the expected value of ζ.

I claim that if (c∗� y∗�K∗) is optimal, a solution to MIN is

ct(θ
T )= c∗

t (θ
T � zt) a.e.�(29)

ct+1(θ
T � zt+1)= c∗

t+1(θ
T � zt� zt+1) a.e.�(30)

Kt+1 =K∗
t+1(z

t)�(31)

ζ(θT � zt+1)= 0 a.e.(32)

Suppose instead that the solution to MIN is (c′
t � c

′
t+1�K

′
t+1� ζ

′). Let B be the
Borel subset of ΘT with measure 1 on which the constraints in MIN are valid.
Define (c∗∗�K∗∗) by

c∗∗
t (θ

T � zt� zt+1� � � � � zT )= c′
t(θ

T )

for all θT in B and all (zt+s)T−t
s=1 in ZT−t �

c∗∗
t+1(θ

T � zt� zt+1� zt+2� � � � � zT )= c′
t+1(θ

T � zt+1)

for all θT in B and all (zt+s)T−t
s=1 in ZT−t �

c∗∗
t (θ

T � zT )= c∗
t (θ

T � zT ) for all other t� θT � zT �

K∗∗
t (z

t� zt+1� zt+2� � � � � zT )=K′
t+1 for all (zt+s)T−t

s=1 in ZT−t �

K∗∗
t (z

T )=K∗
t (z

T ) for all other zT �

Obviously, the planner’s objective is the same when evaluated at (c∗∗� y∗�K∗∗)
as at (c∗� y∗�K∗). Also, (c∗∗� y∗�K∗∗) does not satisfy the period t resource
constraint in history zt with equality (because it uses fewer resources than
(c∗� y∗�K∗)).
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The crux of the proof is to show that (c∗∗� y∗) is incentive-compatible. Let
σ be an arbitrary reporting strategy. Then

W (σ; c∗∗� y∗)−W (σ; c∗� y∗)(33)

=
∫
ZT

∫
ΘT

T∑
t=1

βt−1
{
u(c∗∗

t (σ))− u(c∗
t (σ))

}
(34)

= µ(zt)
{
βt

∫
B

∑
zt+1∈Z

µ(zt+1|zt)βζ ′(σθ(θT � zt)� zt+1

)
dµΘ(35)

−βt+1

∫
B

∑
zt+1∈Z

µ(zt+1|zt)ζ ′(σθ(θT � zt)� zt+1

)
dµΘ

}
= 0�(36)

where σθ(θT � zt) is the θ component of σ(θT � zt). It follows that

W (σ; c∗∗� y∗)−W (σTT; c∗∗� y∗)(37)

=W (σ; c∗� y∗)−W (σTT; c∗� y∗)(38)

≤ 0�(39)

Thus, if (c∗� y∗) is incentive-compatible, so is (c∗∗� y∗). Because (c∗∗� y∗) uses
fewer resources, this completes the first part of the proof.

Part 2

In this part of the proof, I derive first-order necessary conditions to MIN.
The basic approach is like GKT (2003). The constraint set of MIN is a subset of
essentially bounded random variables overΘT ×Z. Let L∞

t be the set of essen-
tially bounded random variables over ΘT that are θt-measurable. As in GKT
(2003), it can be shown that the optimum is a regular point of the constraint
set. Hence, from Luenberger (1969, Theorem 1, p. 243), we can conclude that
the optimum must satisfy the necessary conditions for MIN, which are∑

zt+1∈Z

(
(1 − δ)− FK(K∗

t+1�Y
∗
t+1)

)
γ∗
t+1(zt+1)= 1�(40)

∫
ηt dµΘ − 〈m∗

1�u
′(c∗

t )ηt〉 = 0 for all ηt in L∞
t �(41)

γ∗
t+1(zt+1)

∫
εt+1 dµΘ − 〈

m∗
2(zt+1)�u

′(c∗
t+1(·� zt+1))εt+1

〉 = 0(42)

for all εt+1 in L∞
t+1 and all zt+1 in Z�



ZERO EXPECTED WEALTH TAXES 1619

0 = 〈
βm∗

1µ(zt+1|zt)� νt
〉 − 〈m∗

2(zt+1)� νt〉(43)

for all νt in L∞
t and all zt+1 in Z�

Here, m∗
1 is an element of the dual of L∞

t and is the Lagrange multiplier on
the first constraint of MIN; for each value of zt+1, m∗

2(zt+1) is an element of
the dual of L∞

t (NOT L∞
t+1) and is the Lagrange multiplier on the second con-

straint of MIN. As is standard, the notation 〈z�u〉 represents the outcome of
applying the linear operator z to u. Finally, γ∗

t+1(zt+1) is a multiplier on the last
constraint in MIN for each value of zt+1.

We can rewrite the second first-order condition and combine the latter two
to get ∫

η′
t

u′(c∗
t )
dµΘ − 〈m∗

1�η
′
t〉 = 0 for all η′

t in L∞
t �(44)

γ∗
t+1(zt+1)

∫
ν′
t

u′(c∗
t+1(·� zt+1))

dµΘ = 〈
βm∗

1µ(zt+1|zt)� ν′
t

〉
(45)

for all ν′
t in L∞

t and all zt+1 in Z�

Together, these imply that

βµ(zt+1|zt)
∫

η′
t

u′(c∗
t )
dµΘ(46)

= γ∗
t+1(zt+1)

∫
η′
t

u′(c∗
t+1(·� zt+1))

dµΘ for all η′
t in L∞

t �

By plugging in η′
t = 1A, where A is an arbitrary Borel set in Θt� and using the

standard definition of a conditional expectation, we get

β
µ(zt+1|zt)
u′(c∗

t )
= γ∗

t+1(zt+1)E

(
1

u′(c∗
t+1(·� zt+1))

∣∣∣θt)�(47)

Define

λ∗
t+1(z

t� zt+1)= γ∗
t+1(zt+1)

µ(zt+1|zt) �(48)

Then

λ∗
t+1(z

t� zt+1)= β {E(u′(c∗
t+1)

−1|θt� zt+1)}−1

u′(c∗
t )

(49)

and

1 = E{
λ∗
t+1(1 − δ+ FK�t+1)|zt

}
�(50)
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This proves the proposition. Q.E.D.

APPENDIX B: EXAMPLE OF A FAILURE OF ASSUMPTION 1

In this appendix, I construct an example environment in which the optimal
consumption c∗ does not depend on θ solely through y∗.

Let T = 2 and Θ= {1�2�3}. Assume that

φ1(1� θ2)= 5 + h and φ2(1� θ2)= 5 for all θ2�(51)

φ1(2� θ2)= 5 and φ2(2� θ2)= 5 for all θ2�(52)

φ1(3� θ2)= 5 and φ2(3� θ2)= 4�5 for all θ2�(53)

Hence, agents know their skill sequences in period 1 itself. There are three
types of agents. Type 1 agents have high skills in period 1 and medium skills
in period 2. Type 2 agents have medium skills in both periods. Finally, type 3
agents have medium skills in period 1 and low skills in period 2. Later, I de-
scribe how the parameter h is chosen.

I assume that u(c) = c1/2, v(l) = l2� and β = 1� Also, I assume that the de-
preciation rate δ = 1 and F(K�Y) = K + Y . All agents are initially endowed
with zero units of capital.

I solved numerically for the optimal allocation of consumption and effective
labor. I find that if I choose h= 0�30087, I get

c1(1� ·)= c2(1� ·)= 8�900�(54)

c1(2� ·)= c2(2� ·)= 8�532�(55)

c1(3� ·)= c2(3� ·)= 8�497�(56)

y1(1� ·)= 9�419; y2(1� ·)= 8�380�(57)

y1(2� ·)= y2(2� ·)= 8�559�(58)

y1(3� ·)= 9�419; y2(3� ·)= 7�523�(59)

I chose h so that in the efficient allocation, y1(1� ·)= y1(3� ·). Hence, we have
an example in which consumption in period 1 is different for types 1 and 3, but
effective labor is the same. There is no way to implement this outcome using a
tax system that depends only on effective labor.

This example is nongeneric: by perturbing h away from 0�30087� we get an
allocation in which consumption is a function of effective labor. I suspect that
it is possible to construct similar examples in whichΘ is an interval that is more
robust to perturbing the parameters of the economy.
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