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Abstract

We study the optimal Mirrlees taxation problem in a dynamic economy with idiosyncratic (pro-

ductivity or preference) shocks. In contrast to the standard approach, which implicitly assumes that

the mechanism is operated by a benevolent planner with full commitment power, we assume that any

centralized mechanism can only be operated by a self-interested ruler/government without commitment

power, who can therefore misuse the resources and the information it collects. An important result of

our analysis is that there will be truthful revelation along the equilibrium path (for all positive discount

factors), which shows that truth-telling mechanisms can be used despite the commitment problems

and the different interests of the government. Using this tool, we show that if the government is as

patient as the agents, the best sustainable mechanism leads to an asymptotic allocation where the ag-

gregate distortions arising from political economy disappear. In contrast, when the government is less

patient than the citizens, there are positive aggregate distortions and positive aggregate capital taxes

even asymptotically. Under some additional assumptions on preferences, these results generalize to the

case when the government is benevolent but unable to commit to future tax policies. We conclude by

providing a brief comparison of centralized mechanisms operated by self-interested rulers to anonymous

markets.
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1 Introduction

The first-generation approach to public finance, best exemplified by models of Ramsey tax-

ation, sought to determine the optimal policy of a benevolent government in a world with a

given set of fiscal or regulatory instruments. The second-generation approach, pioneered by

Mirrlees, has made major progress over this approach by explicitly modeling the choice of

tax instruments that the government can use.1 This literature has modeled the informational

problems restricting the potential tax-transfer programs, and formulated the determination of

optimal tax and transfer programs as one of mechanism design.2

Some of the theoretical limitations of the second-generation approach have long been ap-

parent, however. First, in intertemporal settings, this approach assumes that the mechanism

designer (government or planner) can commit to a dynamic mechanism, even though such

commitment is ex post costly. Second, it is assumed that there is a body (a “benevolent gov-

ernment”) that can operate the optimal tax-transfer program (mechanism), even though the

lessons of the political economy literature are that governments or politicians do not simply

maximize welfare, but have their own selfish objectives, such as reelection or personal en-

richment.3 This paper aims to contribute to a potential third-generation approach to public

finance where both the informational constraints on tax instruments and the incentive prob-

lems associated with governments, politicians and bureaucrats are taken into account. For

this purpose, we investigate how mechanisms work and should be designed in the presence of

self-interested and time-inconsistent governments.4

Two questions motivate this analysis. First, we would like to understand whether sus-

tainable mechanisms–i.e., optimal tax-transfer programs in the presence of these additional

1See Mirrlees (1971) for the seminal reference and Baron and Myerson (1982), Dasgupta, Hammond and
Maskin (1979), Green and Laffont (1977), Harris and Townsend (1981), Myerson (1979), and Holmstrom and
Myerson (1983) for some of the important papers in the early literature. Albanesi and Sleet (2005), Battaglini
and Coate (2005), Golosov and Tsyvinski (2004), Golosov, Kocherlakota and Tsyvinski (2003), Kocherlakota
(2005) and Werning (2002) consider applications of the Mirrlees framework to dynamic taxation.

2Given this formulation of the optimal tax-transfer program as a mechanism, we will use the terms “optimal
tax-transfer program” and “mechanism” interchangeably.

3For general discussions of the implications of self-interested behavior of governments, petitions and bureau-
crats, see, among others, Buchanan and Tullock (1962), North and Thomas (1973), North (1981), Olson (1982),
North and Weingast (1989), and Dixit (2004). Austen-Smith and Banks (1999), Persson and Tabellini (2000)
and Acemoglu (2005a) provide introductions to various aspects of the recent developments and the basic theory.
Another potential difficulty with centralized system is that they may involve excessive communication relative

to trading systems. See Segal (2005) for a recent model developing this insight.
4One can think of an extended game in which there is a fictional disinterested mechanism designer, with the

government as an additional player that has the authority to tax and regulate and the ability to observe all the
communication between the fictitious mechanism designer and individual agents. Although this may be a useful
modeling tool, it does not circumvent the substantive issues raised here: the party entrusted with taxes and
transfers has neither the same interests as those of the citizens nor much commitment power. Naturally, the
best mechanism we characterize can be represented as a solution to this fictional mechanism design problem.
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constraints–look similar to “Mirrlees” mechanisms, which assume a benevolent planner and

full commitment. If they do, then we can have more confidence in the mechanism design ap-

proach as a tool to analyze the practice of policy design as well as a normative benchmark.5

Second, in the presence of self-interested and time-inconsistent government behavior, anony-

mous market allocations cannot always be replicated by centralized (sustainable) mechanisms.

This opens the door to a theoretical analysis of the relative costs and benefits of central-

ized resource allocation methods versus those that preserve anonymity and limit government

intervention, and we would like to take a first step in this direction.

To highlight the problems that arise when we depart from the benchmark of a benevolent

planner with full commitment, it is useful to start with Roberts’ (1984) example economy,

where, similar to Mirrlees (1971), risk-averse individuals are subject to unobserved shocks af-

fecting the marginal disutility of labor supply. But differently from the benchmark Mirrlees

model, the economy is repeated T times, with individuals having perfectly persistent types.

Under full commitment, a benevolent planner would choose the same allocation at every date,

which coincides with the optimal solution of the static model. However, a benevolent gov-

ernment without full commitment cannot refrain from exploiting the information that it has

collected at previous dates to achieve better risk sharing ex post. This turns the optimal

taxation problem into a dynamic game between the government and the citizens. Roberts

showed that as discounting disappears and T → ∞, the unique sequential equilibrium of this

game involves the highly inefficient outcome in which all types declare to be the worst type

at all dates, supply the lowest level of labor and receive the lowest level of consumption. This

example shows the potential inefficiencies that can arise once we depart from the unrealistic

case of full commitment, even with benevolent governments.

Our benchmark economy incorporates the lack of commitment present in Roberts’ (1984)

paper, but also assumes that the government is self-interested and maximizes its own utility.

This latter assumption brings our model closer to the political economy literature, where issues

of conflict of interest and credibility of policy are central. It is also particularly useful for our

purposes because it simplifies the structure of the dynamic game relative to the case with a

benevolent time-inconsistent planner. At the end of the paper, we generalize some of our results

to a situation where the government has an arbitrary degree of benevolence (thus nesting the

fully-benevolent time-inconsistent government).

Our main departure from Roberts’ (1984) framework is that instead of a finite-horizon

5In line with this objective, throughout the paper we look for the allocation that maximizes the ex ante
utility of the citizens (agents) subject to the political economy and commitment constraints introduced by the
self-interested nature of the government.
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economy, we study an infinite-horizon economy, where individuals can use punishment strate-

gies against the government. This enables us to construct a sustainable mechanism, defined

as an equilibrium tax-transfer program that is both incentive compatible for the citizens and

for the government (i.e., it satisfies a sustainability constraint for the government). The (best)

sustainable mechanism gives a fraction of the output to the government in every period, and

if the government deviates from this implicit agreement, citizens switch to supplying zero la-

bor, implicitly punishing the government.6 The infinite-horizon setup enables us to prove our

first important result, that a version of the revelation principle, the truthful revelation along

the equilibrium path, applies, irrespective of the discount factors of various parties. The fact

that truthful revelation principle applies only along the equilibrium path is important, since

it is actions off the equilibrium path that place restrictions on what types of mechanisms are

allowed (these are encapsulated in the sustainability constraints).

The truthful revelation along the equilibrium path enables us to write the problem of

finding the best sustainable mechanism as an infinite-dimensional maximization problem. We

characterize the solution to this program by defining a quasi-Mirrlees problem, where the ex

ante expected utility of the citizens is maximized subject to the standard incentive compati-

bility constraints and two additional resource constraints at every date; the first requires that

the sum of total labor supply in the economy be no less than some amount Lt and the second

that the sum of total consumption be no greater than some amount Ct. When the mechanism

also optimizes over the sequences of Ct and Lt subject to the aggregate resource constraints,

the quasi-Mirrlees problem is identical to the full-commitment dynamic Mirrlees problem. We

show that the best sustainable mechanism is a solution to a quasi-Mirrlees problem, and distor-

tions resulting from the self-interested behavior of the government only affect the parameters

of this quasi-Mirrlees problem (i.e., Lt and Ct). This formulation therefore gives us a clean

way of characterizing the differences between the best sustainable mechanism and the full-

commitment Mirrlees mechanism in terms of the aggregate distortions caused by the former

relative to the full-commitment Mirrlees allocation.

The other main results in the paper concern the characterization of these aggregate dis-

tortions. First, we show that at the initial date, there will always be further distortions in the

6Clearly, the punishment strategies that sustain this equilibrium are not “renegotiation proof”. This is
common with many other analyses of repeated games, so we do not view this as a special shortcoming of
our approach. Moreover, in practice, citizens have many other recourses against governments that misbehave,
including voting or throwing them out of office, and these actions will have the same impact as supplying zero
labor in the punishment phase. We do not incorporate these possibilities to simplify the analysis in this paper.
In Acemoglu, Golosov and Tsyvinski (2006), we study the equilibrium of an economy without any informational
restrictions on taxes and transfers, where the citizens have the option of replacing the current government. This
enables us to highlight the distortions arising from “pure political economy”.
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sustainable mechanism relative to the full-commitment Mirrlees mechanism. Intuitively, at the

initial date, the sustainability constraint is never slack and implies that any increase in output

has to be associated with increased government consumption. This increases the opportunity

cost of increasing output, and leads to a reduction in labor supply and capital accumulation.

Second, we provide tight conditions under which these further distortions disappear or per-

sist over time. In particular, we prove that when the government is as patient as, or more

patient than, the citizens, the sustainability constraint of the government eventually becomes

slack. In the absence of a binding sustainability constraint, aggregate distortions disappear,

and the marginal products of labor and capital asymptotically converge to the marginal rates

of substitution for the agents; consequently, the limiting allocation can be implemented with a

structure of taxes for labor similar to that in the full-commitment Mirrlees economy and zero

aggregate capital taxes.7 When the government is less patient than the citizens, the results

are very different, however; aggregate distortions never disappear, and even in the long run,

there are positive aggregate capital taxes. This last set of results is important, since it provides

an exception to most existing models, which predict that long-run taxes on capital should be

equal to zero (cfr. footnote 7).

The results for the case of a self-interested of government are derived under general assump-

tions on the utility functions of citizens. We also show that when individuals have instantaneous

utility functions that are separable between consumption and leisure, similar results apply for

any utility function of the government, in particular, in the case where the government is

fully-benevolent but time-inconsistent.

Finally, since with a sustainable mechanism part of the output has to be given to the

government, the anonymous market allocation, without the government, cannot always be

achieved by a centralized mechanism. This raises the question of when centralized mechanisms

are preferable to anonymous markets. We conclude the paper with a brief discussion of this

issue; we show that anonymous markets with limited insurance and redistribution may be ex

ante preferable to centralized mechanisms, and that this is more likely when there are worse

institutional controls on government behavior and a lower discount factor of the government.

This paper is related to a number of different strands of research. These include both the

original and the more recent applications of the mechanism design approach to the optimal

taxation problem already mentioned in footnote 1. The major difference between our work and

7This result is therefore similar to that of zero limiting taxes on capital in the first-generation Ramsey-type
models, e.g., Chamley (1986) or Judd (1985), but is derived here without any exogenous restriction on tax
instruments (see Kocherlakota, 2005, for the zero capital tax result using the second-generation approach).
It is important to emphasize, however, that this limiting allocation can be decentralized in different ways,

and some of those may involve positive taxes on individual capital holdings.
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these papers is that they assume a benevolent government and full commitment. Secondly, our

paper is related to the recently burgeoning political economy literature mentioned in footnote

3. What distinguishes our paper from this literature is the explicit modeling of the incentive

problems on the side of the individuals as well as our focus on best sustainable mechanisms.8

Our analysis is also related to work on optimal taxation with time-inconsistency, for example,

Chari and Kehoe (1990, 1993), Phelan and Stacchetti (2001), and Sleet and Yeltekin (2004).

As well as Roberts (1984), most closely related to our research is the recent important

paper by Bisin and Rampini (2005), who also consider the problem of mechanism design

without commitment in a two-period setting.9 Bisin and Rampini extend Roberts’s analysis

and show how the presence of anonymous markets acts as an additional constraint on the

government, ameliorating the commitment problem. This lack of commitment is related to

the lack of commitment by the self-interested government in our model. The most important

distinction between the two approaches is that our model is infinite horizon. This enables us to

construct sustainable mechanisms with the revelation principle holding along the equilibrium

path, to analyze substantially more general environments, and to characterize the limiting

behavior of distortions and taxes.

The rest of the paper is organized as follows. Section 2 describes the basic environment.

Section 3 starts the analysis of sustainable mechanisms. In this section, we set up the problem

of constructing sustainable mechanisms and prove a version of the revelation principle. Section

4 formulates the problem of characterizing the best sustainable mechanism as a solution to a

quasi-Mirrlees program. Section 5 characterizes the best sustainable mechanism using a simple

but restrictive case to illustrate the main ideas. Section 6 characterizes the best sustainable

mechanism without any restrictions on the set of mechanisms and preferences. Section 7 ex-

tends our analysis to cover the case of fully-benevolent, but time-inconsistent governments.

Section 8 briefly compares allocations with anonymous markets to those under sustainable

mechanisms. Section 9 concludes, while the Appendices contain some technical material nec-

essary for the analysis as well the proofs not provided in the text.

8In this context, Hart, Shleifer and Vishny (1997), Chari (2000) and Acemoglu, Kremer and Mian (2003)
also contrast the incentive costs of governments and markets, but do not derive the costs of governments from
the centralization of power and information in the process of operating a mechanism.

9See also the work by Freixas, Guesnerie and Tirole (1985) on the ratchet effect and recent work on general
mechanisms without commitment, for example, Bester and Strausz (2001), Skreta (2004), and Miller (2005).
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2 Demographics, Preferences and Technology

The model economy is infinite horizon in discrete time. It is populated by a continuum of

citizens with measure normalized to 1 and a ruler.10 The ruler/government can be thought

of as a single agent or as a group of agents such as a bureaucracy, whose preferences can be

consistently represented by a standard von Neuman-Morgenstern utility function.

Let Θ = {θ0, θ1, ..., θN} be a finite ordered set of potential types, with the convention that
θi corresponds to “higher skills” than θi−1, and in particular, θ0 is the worst type.11 Let

ΘT be the T -fold product of Θ, representing the set of sequences of length T = 1, 2, ...,∞,
with each element belonging to Θ. We think of each agent’s lifetime type sequence θ∞ as

drawn from Θ∞ according to some measure µ∞. Let θi,∞ be the draw of individual i from

Θ∞. The t-th element of θi,∞, θit, is the skill level of this individual at time t. We use the

standard notation θi,t to denote the history of this individual’s skill levels up to and including

time t, and make the standard measurability assumption that the individual only knows θi,t

at time t. Since this will be a private information economy, no other agent in the economy

will directly observe this history.12 This structure imposes no restriction on the time-series

properties of individual skills. Both iid draws from Θ in every period as well as arbitrary

temporal dependence are allowed. For concreteness, one may wish to think that θit follows a

Markov process. We assume that each individual’s lifetime type sequence is drawn from Θ∞

according to the same measure µ∞ and independently from the draws of all other individuals,

so that there is no aggregate uncertainty in the skills distribution. In addition, to simplify

the notation, we also assume (without loss of generality) that within each period, there is an

aggregate invariant distribution of types denoted by G.

The instantaneous utility function of individual i at time t is given by

u
¡
cit, l

i
t | θit

¢
(1)

where cit ≥ 0 is the consumption of this individual and lit ≥ 0 is her labor supply. This

10The continuum assumption implies that whenever we think of deviations, these should be by an individual
with positive measure ε, and then we should take the limit as ε→ 0. Moreover, equilibrium statements should
be read as “almost-everywhere”. These technical details do not matter except in the proof of Theorem 5.
11Finiteness of Θ is adopted for simplicity and without loss of any economic insight. The more general case

where Θ is a compact interval of R+ introduces a number of additional technical details, not central for our
analysis.
12This means that there exists a set of nested information sets (sub-sigma fields) representing each individual’s

information sets, so that the individual only knows the information contained in F i
t at time t. In particular, let

the triple (Θ∞,F, µ∞) be a probability space and
©
F i
t : t ∈ Z+

ª
be a filtration, i.e., a collection of sub-sigma

fields of F , such that F i
t ⊆ F i

t0 for all t
0 > t. Let Θt be the set Θ∞ truncated at t. Then θi,t ∈ Θt and all

decisions taken at time t by individual i must be F i
t -measurable.
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formulation is general enough to nest both preference shocks and productivity shocks.13 We

assume that labor supply of an individual with skill θ comes from a compact set, i.e., lit ∈£
0, l̄ (θ)

¤
.

Assumption 1 (utility function) For all θ ∈ Θ, u (c, l | θ) : R+ ×
£
0, l̄ (θ)

¤
→ R is twice

continuously differentiable and jointly concave in c and l, and is non-decreasing in c and non-

increasing in l.

Assumption 2 (single crossing) Let the partial derivatives of u be denoted by uc and ul.

Then uc (c, l | θ) / |ul (c, l | θ)| is increasing in θ for all c and l and all θ ∈ Θ.

Assumption 3 (worst type and full support) We have l̄ (θ0) = 0 and l̄ (θ) = l̄ < ∞ for

all θ ∈ Θ and θ 6= θ0. Moreover, µ
∞ has full support in the sense that θit = θ0 has positive

probability after any history.

The first two assumptions are standard. Assumption 3 states that for the worst type, θ0,

supplying positive labor is impossible. This suggests that we can think of the worst type as

“disabled”–unable to supply any labor at that date. It also requires µ∞ to have full support in

the sense that any individual can become disabled at any point. This assumption will simplify

the analysis of sustainable mechanisms by making it possible to have off-the-equilibrium path

actions where all types supply zero labor. As described in Remark 1, this assumption can

be replaced by an alternative one, described below, which imposes “freedom of labor supply”

directly. The advantage of Assumption 3 is that it leads to the freedom of labor supply as an

equilibrium outcome.

Each individual maximizes the discounted sum of their utility with discount factor β ∈
(0, 1), so their objective function at time t is

E

" ∞X
s=0

βsu
¡
cit+s, l

i
t+s | θit+s

¢¯̄̄̄¯F i
t

#
= E

" ∞X
s=0

βsu
¡
cit+s, l

i
t+s | θit+s

¢¯̄̄̄¯ θi,t, ht
#

where E
£
·|F i

t

¤
or E

£
·|θi,t, ht

¤
denote the expectations operator conditional on having observed

the history θi,t in addition to any public information up to time t, captured by ht (discussed

further below).

The production side of the economy is described by the aggregate production function

Y = F (K,L) (2)

where K is capital and L is labor. We assume:

13In particular, productivity shocks would correspond to the case where u
¡
cit, l

i
t | θit

¢
= u

¡
cit, l

i
t/θ

i
t

¢
.
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Assumption 4 (production structure) F is strictly increasing and continuously differen-

tiable in both of its arguments, with derivatives denoted by FK and FL, exhibits constant returns

to scale and satisfies the Inada condition, limK→∞ FK (K,L) = 0 for all L ∈ R+. Moreover,
capital fully depreciates after use, and F (K, 0) = 0.

Both the full depreciation assumption and the assumption that labor is essential for pro-

duction are adopted to simplify the notation. The Inada condition, together with the fact that

the maximum amount of labor in the economy is bounded, implies that there is a maximum

amount of output that can be produced Ȳ ∈ (0,∞) given by Ȳ = F
¡
Ȳ , L̄

¢
, where L̄ is the

maximum amount of total labor.

In addition, the ruler’s (government’s) utility at time t is given by

Et

" ∞X
s=0

δsv (xt+s)

#
,

where x denotes government consumption, v : R+ → R is the ruler’s instantaneous utility

function, and Et refers to the expectations operator conditional on public information at time
t. We assume that:

Assumption 5 (ruler utility) v is twice continuously differentiable, concave, and satisfies

v0 (x) > 0 for all x ∈ R+ and v (0) = 0. Moreover δ ∈ (0, 1).

Notice also that the ruler’s discount factor, δ, is potentially different from that of the

citizens, β.

3 Sustainable Mechanisms

Since the government both lacks commitment power and has the ability to expropriate output

for its own consumption, the interaction between the citizens and the government is a game

(e.g., Roberts, 1984, Chari and Kehoe, 1990, 1993). Our purpose throughout is to characterize

the equilibrium of this game between the government and the citizens, corresponding to the

best sustainable mechanism, meaning the sustainable mechanism that maximizes the ex ante

utility of citizens.14

14Since we are dealing with a dynamic game, our focus on the best sustainable mechanism is essentially a
selection among the many equilibria. Alternatively, one can think of the “social plan” as being designed by the
citizens to maximize their utility subject to the constraints placed by the self-interested behavior of the govern-
ment (see, in particular, the last paragraph of the Concluding Remarks, and also Acemoglu, 2005). In addition,
throughout the paper we focus on perfect Bayesian equilibria (see Definition 1) and do not impose renegotiation-
proofness (focusing on the renegotiation-proof subset of equilibria is both technically and conceptually difficult
and also would put more constraints on the “best sustainable mechanism”).

8



This section sets up the details of the game between the government and the citizens, and

proves Proposition 1, which provides an infinite-dimensional maximization problem for the

characterization of the best sustainable mechanism. This proposition is then used to determine

the form of the best sustainable mechanism and the resulting distortions. This section will also

establish a general result on truthful revelation along the equilibrium path (Theorem 1, also

Theorem 5 below), which is used here to prove Proposition 1, but is of independent interest

for infinite-horizon games and mechanism design problems without commitment, and shows

that these problems can be analyzed without giving up the revelation principle.

3.1 The Game Form Between Government and Citizens

There is a number of alternative ways of specifying the game form between the government

and the citizens, with identical results. Our choice here is motivated to maximize similarity

with Roberts’ (1984) model.

We define a submechanism (or t-mechanism) as a subcomponent of the overall mechanism

between the government and the individuals. A submechanism specifies what happens at a

given date. In particular, let Zt be a general message space for time t, with a generic element

zt.
15 This message space may include messages about current type of the individual, θ̂

i
t ∈ Θ,

and past types θ̂
i,t−1 ∈ Θt−1 (even though the individual may have made some different reports

about his or her types in the past), and might also include other messages.

Let Zt ≡
tQ

s=0
Zs and zt denote a generic element of Zt. In addition, let ht ∈ Ht be some

publicly observable aggregate variable, and ht ∈ Ht ≡
tQ

s=0
Hs denotes the history of this

variable up to time t. Here ht could be payoff relevant or simply a “sunspot” variable used for

randomization, and is not affected by the actions of the agents. These histories are introduced

to allow for randomizations.

A submechanism consists of two mappings, i.e., Mt ≡
³
c̃t, l̃t

´
such that c̃t : Z

t×Ht → R+
assigns consumption levels for each complete history of messages and public histories, and

l̃t : Z
t × Ht →

£
0, l̄
¤
assigns corresponding labor supply levels.16 Given Assumption 3, any

15More formally, θt, θ̂
t
and zt have to be Ft-measurable as defined in footnote 12.

16The mechanisms we describe here allow for general message spaces, but impose two restrictions. First, they
are non-stochastic. This is only to simplify notation in the text, and everywhere we can replace the mappings
in the text with c̃t : Z

t×Ht → ∆ (R+) and l̃t : Zt×Ht → ∆
¡£
0, l̄
¤¢
, where ∆ (J) denotes the set of probability

measures over J . In the Appendix, we consider potentially stochastic mechanisms to convexify the constraint
set. Second, a more general mechanism would be a mapping from the message histories of all agents, not just
the individual’s history. Since there is a continuum of agents that do not share any information, this latter
restriction is without loss of generality here (except that off the equilibrium path, some submechanisms would
violate the resource constraint, though this is not important for our equilibrium analysis). Notice also that while
the submechanism restricts each individual’s allocations to be a function of only his own history of reports, as
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submechanism must allow for some messages which will lead to l = 0. We denote the set of

submechanisms that satisfy this restriction and also the relevant resource constraints (which

will be specified below) by Mt. Throughout, we condition strategies on public history ht

whenever such conditioning is useful, and suppress this dependence when the context makes

the conditioning clear.

The typical assumption in models with no commitment is that the mechanism designer

can commit to a submechanism at a given date, but cannot commit to what mechanisms

will be offered in the future. In our context, there is an additional type of deviation for the

government whereby it can use its power to extract resources from the society even within the

same period. The interaction between the government and the individuals is modeled with the

following game form at each date:

1. At the beginning of period t, the government offers a submechanism M̃t ∈Mt.

2. Individuals send a message zt ∈ Zt, and ht ∈ Ht is realized; zt and ht together with

ht−1 ∈ Ht−1 and zt−1 ∈ Zt−1 determine labor supplies according to the submechanism

M̃t.

3. Production takes place according to the labor supplies of the individuals, with Yt
¡
ht
¢
=

F
¡
Kt, Lt

¡
ht
¢¢
, where Kt is the capital stock inherited from the previous period, and

Lt

¡
ht
¢
=
R 1
0 l̃t

¡
zi,t, ht

¢
di, where i ∈ [0, 1] indexes individuals and zi,t ∈ Zt denotes the

history of reports by individual i.

4. The government decides whether to deviate from the submechanism M̃t, denoted by

ξt
¡
ht
¢
∈ {0, 1}. If ξt

¡
ht
¢
= 0, production is distributed among agents according to the

pre-specified submechanism M̃t ∈Mt, the government chooses x̃t
¡
ht
¢
≤ F

¡
Kt, Lt

¡
ht
¢¢
,

and next period’s capital stock is determined as K̃t+1

¡
ht
¢
= F

¡
Kt, Lt

¡
ht
¢¢
− x̃t

¡
ht
¢
−R 1

0 c̃t
¡
zi,t, ht

¢
di. If ξt

¡
ht
¢
= 1, the government chooses x̃0t

¡
ht
¢
≤ F

¡
Kt, Lt

¡
ht
¢¢
, and

a new consumption function c̃0t : Z
t × Ht → R+, and next period’s capital stock is:

K̃ 0
t+1

¡
ht
¢
= F

¡
Kt, Lt

¡
ht
¢¢
− x̃0t

¡
ht
¢
−
R 1
0 c̃

0
t

¡
zi,t, ht

¢
di for all ht ∈ Ht.17

it will become clear below, the government’s strategies allow submechanisms to be functions of the reports of
all agents in the past.
Finally, we could define a submechanism as a mappingMt [Kt] conditional on the capital stock of the economy

at that date to emphasize that what can be achieved will be a function of the capital stock. We suppress this
dependence to simplify notation.
17More generally, we can allow the government to capture a fraction η ≤ 1 of the total output of the

economy when ξ = 1, where the level of η could be related to the institutional controls on government
or politician behavior. In this case, the constraint on the government following a deviation would be
K̃0
t+1

¡
ht
¢
= ηF

¡
Kt, Lt

¡
ht
¢¢
− x̃0t

¡
ht
¢
−
R 1
0
c̃0t
¡
zi,t, ht

¢
di, with the remaining 1 − η fraction of the output

10



This game form emphasizes that the only difference between the standard models with no

commitment and our setup is that the government, in the last stage, can also decide to expro-

priate the output produced in the economy. Notice that at this stage, labor supply decisions

have already been made according to the pre-specified submechanism M̃t. However, consump-

tion allocations cannot be made according to M̃t, since the government is expropriating some

of the output for itself. Consequently, we also let the government choose a new consumption

allocation function, c̃0t : Z
t ×Ht → R+ at this point.

Let M = {Mt}∞t=0 with Mt ∈ Mt be a mechanism, with the set of mechanisms denoted

by M. Let x =
©
xt
¡
ht
¢ª∞

t=0
be the (potentially stochastic) sequence of government con-

sumption levels. We define a social plan as (M,x), which is an implicitly-agreed sequence of

submechanisms and consumption levels for the government.

We represent the action of the government at time t conditional on history of publicly

observable variables, ht, by ρt =
³
M̃t, ξt

¡
ht
¢
, x̃t
¡
ht
¢
, x̃0t

¡
ht
¢
, c̃0t

´
. The first element of ρt

is the submechanism that the government offers at stage 1 of time t, and the second is the

government’s expropriation decision. The third element of ρt is what the government consumes

itself if ξt = 0. Since M̃t specifies both total production and total consumption by the citizens,

given x̃t the capital stock for next period, K̃t+1, is determined as a residual from the resource

constraint and is not specified as part of the action profile of the government.18 The fourth

element, x̃t, is the government consumption level when ξt = 1. Finally, the fifth element is the

function c̃0t that the government chooses after deviating from the original submechanism, with

Ct denoting the set of all such functions. Once again the capital stock for the following period,
K̃ 0
t+1, is determined as a residual from the resource constraint. Government consumption

levels must satisfy: x̃t ≤ F (Kt, Lt) and x̃0t ≤ F (Kt, Lt), but to simplify notation we write x̃t,

x̃0t ∈ R+. Let Rt be the set of ρt’s and ρt ∈ Rt denote the history of ρt’s up to and including

time t, and assume that this is publicly observable.19

For the citizens, define αit
¡
θt | zt−1, ρt−1, ht−1

¢
as the action of individual i at time t when

her type history is θt, her history of messages so far is zt−1 and the publicly observed histories

of government actions and aggregate variables up to time t− 1 are ρt−1 and ht−1. The action

getting destroyed. This generalization has no effect on our results and for now, we set η = 1 to simplify
notation. We return to issues of institutional limits on government expropriation below.
18Since we are characterizing a (sustainable) mechanism, the ownership of the capital stock K̃t+1 is not

specified. Instead, this is simply the amount of resources used in production in the following period, and the
government decides how this production will be distributed.
19In fact, ρt includes the action x̃0t and the function c̃0t, which are not observed when ξt = 0. Thus, more

appropriately, only a subset of ρt should be observed publicly. This slight abuse of notation is without any
consequence for the analysis.
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αit specifies a message zt ∈ Zt, so:

αit : Z
t−1 ×Rt−1 ×Θt ×Ht−1 → Zt.

We write zt
¡
αt
¡
θt, ht−1

¢¢
to denote the message resulting from strategy αt for an agent of

type θt and given public histories ht−1. A strategy is truth telling if it satisfies

α∗
¡
θt | zt−1, ρt−1, ht−1

¢
= zt

£
θt
¤
for all θt ∈ Θt, zt−1 ∈ Zt−1, ρt−1 ∈ Rt−1 and ht−1 ∈ Ht−1,

(3)

where the notation zt
£
θt
¤
means that the individual is sending a message that fully reveals her

true type.20 To economize on notation, we represent the truth-telling strategy by

αit
¡
θt | zt−1

£
θt−1

¤
, ρt−1, ht−1

¢
= α∗. Notice that this strategy only imposes truth-telling fol-

lowing truthful reports in the past (since instead of an arbitrary history of messages zt−1, we

have conditioned on zt−1
£
θt−1

¤
). In addition, let us define the null strategy

α∅
¡
θt | zt−1, ρt−1, ht−1

¢
= z∅t for all θ

t ∈ Θt, zt−1 ∈ Zt−1, ρt−1 ∈ Rt−1 and ht−1 ∈ Ht−1,

where z∅t stands for a message signifying that the individual is disabled (i.e., θ
i
t = θ0). Such

a message must always be allowed in any submechanism that is an element ofMt because of

Assumption 3.21 Therefore, the individual can always choose to supply zero labor, or in other

words, any feasible mechanism (submechanism) must allow for “freedom of labor supply”. We

will use the notation αit
¡
θt | zt−1, ρt−1, ht−1

¢
= α∅ to denote that the individual is playing the

null strategy. Finally, we denote the strategy profile of all the individuals in society by α, with

A denoting the set of all such strategy profiles.

Let zt ∈ Zt be a profile of reports at time t.22 As usual, we define Zt =
tQ

s=0
Zs. The

government’s strategy at time t is therefore

Γt : Rt−1 ×Zt−1 ×Ht−1 → R,

i.e., it determines M̃t ∈Mt, ξt ∈ {0, 1}, x̃t ∈ [0, F (Kt, Lt)], x̃
0
t ∈ [0, F (Kt, Lt)] and c̃t ∈ Ct as

a function of the government’s own past actions and the entire history of reports by citizens.

We denote the strategy of the government by Γ and the set of government strategies by G.

20Whenever we write “for all ht−1 ∈ Ht−1,” this should be understood as “almost surely,” since some histories
may have zero probability.
21Since an individual with θit = θ0 cannot supply any labor, he must always send the message z∅t (or an

equivalent message).
22More formally, zt assigns a report to each individual, thus it is a function of the form z : [0, 1]→ Zt, where

i ∈ [0, 1] denotes individual i, and Zt is the set of all such functions.
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Definition 1 A (Perfect Bayesian) equilibrium in the game between the government and the

citizens is given by strategy profiles Γ̂ and α that are sequentially rational, i.e., best responses to

each other in all information sets given beliefs, and whenever possible, beliefs are derived from

Bayesian updating given the strategy profiles.23 We write the requirement that these strategy

profiles are best responses to each other as Γ̂ ºα Γ for all Γ ∈ G and α ºΓ̂ α for all α∈ A.

Let us define ΓM,x =
hn

M̃t, ξt
¡
ht
¢
, x̃t
¡
ht
¢
, x̃0t
¡
ht
¢
, c̃0t

o∞
t=0

i
as the (potentially stochastic)

action profile of the government induced by strategy Γ given a social plan (M,x).

Definition 2 M is a sustainable mechanism if there exists x =
©
xt
¡
ht
¢ª∞

t=0
, a strategy profile

α for the citizens and a strategy profile ΓM,x ∈ G for the government, which constitute an equi-
librium and induce an action profile

hn
M̃t, ξt

¡
ht
¢
, x̃t
¡
ht
¢
, x̃0t
¡
ht
¢
, c̃0t

o∞
t=0

i
for the government

such that M̃t =Mt , ξt
¡
ht
¢
= 0, and x̃t

¡
ht
¢
= xt

¡
ht
¢
for all ht ∈ Ht, and satisfies ΓM,x ºα Γ

for all Γ ∈ G. In this case, we say that equilibrium strategy profiles ΓM,x and α support the

sustainable mechanism M .

In essence, this implies that the government does not wish to deviate from the social plan

(M,x) given the strategy profile, α, of the citizens. The notation Γ̂ ºα Γ makes this explicit,

stating that given the strategy profile, α, of the citizens, the government weakly prefers its

strategy profile to any other strategy profile based on the same implicit agreement.

3.2 Truthful Revelation Along the Equilibrium Path

The revelation principle is a powerful tool for the analysis of mechanism design and implemen-

tation problems (see, e.g., MasCollel, Winston and Green, 1995). Since, in this environment,

the government, who operates the mechanism, cannot commit and has different interests than

those of the agents, the simplest version of the revelation principle does not hold; there will

exist situations in which individuals will prefer not to report their true type (e.g., Roberts,

1984, Freixas, Guesnerie and Tirole, 1985, or Bisin and Rampini, 2005).24 The key result of

this section will be that along the equilibrium path, a version of the revelation principle will

hold (without introducing a fictional mechanism designer and for all positive discount factors).

Let us first consider the problem of finding the best allocation for individuals. As we

will see below, as long as the set of sustainable mechanisms (i.e., the constraint set, (5)-(7)) is

23We do not introduce explicit notation to describe beliefs, since these do not play any role in any of the
analysis or the proofs.
24As noted in the Introduction, this statement refers to the case in which messages are sent to the government.

It is possible to construct alternative environments with fictional mechanism designers with full commitment
power, so that the revelation principle holds.
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nonempty, this is equivalent to choosing the best sustainable mechanism, given by the following

program:

maxE

" ∞X
t=0

βtu
³
c̃t
¡
zt
£
αt
¡
θt, ht−1

¢
, ht
¤¢
, l̃t
¡
zt
£
αt
¡
θt, ht−1

¢
, ht
¤¢
| θit
´#

(4)

subject to the resource constraint,

Kt+1

¡
ht
¢
= F

µ
Kt

¡
ht−1

¢
,

Z
l̃t
¡
zt
£
αt
¡
θt, ht−1

¢¤
, ht
¢
dGt

¡
θt
¢¶

(5)

−
Z

c̃t
¡
zt
£
αt
¡
θt, ht−1

¢¤
, ht
¢
dGt

¡
θt
¢
− x̃t

¡
ht
¢
,

a set of incentive compatibility constraints for individuals,

α is a best response to ΓM,x, (6)

and the “sustainability” constraint of the government:

E

" ∞X
s=0

δsv
¡
x̃t+s

¡
ht+s

¢¢¯̄̄̄¯ht
#
≥ max

x̃0t,K̃
0
t+1,c̃

0
t

E
hn

v
¡
x̃0t
¢
+ δvct

³
K̃ 0
t+1, c̃

0
t | M̃ t

´o
| ht
i
, (7)

for all t ≥ 0 and all ht ∈ Ht. Note that current labor supply decisions are conditioned on the

realization of the public history up to time t, ht, while the capital stock, Kt, inherited from

the previous period, is conditioned on ht−1.

The last constraint, (7), encompasses all the possible deviations by the government at date

t: the left-hand side is what the government will receive from date t onwards by sticking with

the implicitly-agreed consumption schedule for itself. The right-hand side is the maximum it

can receive by deviating. The potential deviations include a deviation at the last stage of the

subgame at time t to expropriation, ξt = 1, together with a new consumption schedule for

individuals, c̃0t; or ξt = 0 and a choice of x̃t
¡
ht
¢
different from xt

¡
ht
¢
; or the offer of a new

submechanism at time t+ 1 (encapsulated into the continuation value vct ). In the case where

ξt = 1, the government chooses x̃
0
t, K̃

0
t+1 and c̃

0
t to maximize its deviation value, which is given

by current utility, v (x̃t), and continuation value, written as v
c
t

³
K̃ 0
t+1, c̃

0
t | M̃ t

´
, to emphasize

that this continuation value depends on the entire history of submechanisms (thus information)

up to time t, M̃ t, and on the capital stock from then on, K̃ 0
t+1, as well as potentially on c̃0t. If

this constraint, (7), were not satisfied, it is either because the government prefers ξt = 0 and

some sequence of submechanisms or consumption levels different from (M,x), or because the

government prefers ξt = 1. In the former case, we can always change (M,x) to ensure that (7)

is satisfied. The latter, i.e., ξt = 1, cannot be part of the best equilibrium allocation from the
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viewpoint of the citizens, since it involves government expropriation. Consequently, as long as

the constraint set given by (5)-(7) is nonempty, the best allocation must satisfy (7) and is thus

a solution to the program of maximizing (4) subject to (5)-(7). Finally, this constraint set is

indeed nonempty, since the trivial allocation with zero production and zero consumption for

all parties is in the set.25

Let us also introduce the notation α=(α | α0) to denote a strategy profile where all indi-
viduals play α along the equilibrium path and α0 off the equilibrium path. We then have:

Lemma 1 Suppose Assumptions 1-5 hold. Then in any sustainable mechanism,

E

" ∞X
s=0

δsv
¡
xt+s

¡
ht+s

¢¢¯̄̄̄¯ht
#
≥ v

¡
F
¡
Kt

¡
ht−1

¢
, Lt

¡
ht
¢¢¢

for all t and ht ∈ Ht, (8)

is necessary. Moreover, in the best sustainable mechanism, vct

³
K̃ 0
t+1, c̃

0
t | M̃ t

´
= 0 for all

M̃ t ∈Mt, K̃ 0
t+1 ∈ R+ and c̃0t ∈ Ct, and the sustainability constraint (7) is equivalent to (8).

Proof. See Appendix B.

This lemma uses the fact that irrespective of the history of submechanisms and the amount

of capital stock left for future production, there is an equilibrium continuation play that gives

the government zero utility from that point onwards (which is analogous to the results in

repeated games where the most severe punishments against deviations are optimal, e.g., Abreu,

1988). This continuation play is used as the threat against government deviation from the

implicitly-agreed social plan. The implication is that, along the best sustainable mechanism,

the best deviation for the government involves ξt = 1 and x̃0t = F (Kt, Lt). This enables us to

simplify the sustainability constraints of the government to (8), which also has the virtue of

not depending on the history of submechanisms up to that point.26 Moreover, the lemma also

shows that in any sustainable mechanism (8) is necessary.

Remark 1 By allowing all citizens to claim to be the worst type in the punishment phase,

Assumption 3 plays a crucial role in the proof of Lemma 1. An alternative game form delivering

Lemma 1 without Assumption 3 is as follows

1. At the beginning of period t, the government offers a menu of labor-consumption bundles,

possibly dependent on past histories, denoted byMC
t .

25In particular, the following social plan (M,x) is a sustainable: xt = 0 for all t and Mt always assigns zero
labor (and consumption) to all reports.
26This statement refers to the sustainability constraint, (8). The optimal mechanism will clearly make allo-

cations depend on the history of individual messages.
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2. Individuals choose how much labor to supply, lt ∈
£
0, l̄
¤
, and production takes place.

3. The government decides ξt ∈ {0, 1}. If ξt = 1, all output is expropriated, and consumed
or distributed as before. If ξt = 0, production is distributed among agents who have

chosen labor supply level as specified in the menu MC
t , and those who have chosen a

labor supply level that is not in the menu (i.e., lt such that @ct ∈ R+ with (lt, ct) ∈ Ct),
receive zero consumption.

This game form directly imposes “freedom of labor supply”, meaning that it is individuals

who decide how much labor to supply, whereas with our original game form, the submechanism

determines how much labor individuals supply. With this game form, Lemma 1 applies exactly

without Assumption 3. We chose the game form in the main text and Assumption 3 for two

reasons: first, the game form in the main text is closer to the standard Mirrlees setup and

the mechanism design structure; second, the alternative game form described here imposes an

additional restriction on the set of mechanisms, such that individual allocations can differ only

to the extent that individuals have chosen different labor-consumption bundles in the past.

In contrast, our more general game form allows history-dependent allocations in which two

individuals who have made different reports but have received the same consumption-labor

bundle in the past may be treated differently in the future. Since they both lead to identical

results, whether our baseline game form with Assumption 3 or this alternative game form

without this assumption is preferred is a matter of taste, with no consequence for the rest of

the results in the paper.

Remark 2 Yet another possible game form, which would lead to similar results, gives citizens

the option to replace the government after a deviation. If replacement is costless, we would

obtain a similar result to Lemma 1. See, for example, Acemoglu (2005b), Acemoglu, Golosov

and Tsyvinski (2006).

Next, we define a direct (sub)mechanism as M∗
t : Θ

t ×Ht →
£
0, l̄
¤
× R+. In other words,

direct mechanisms involve a restricted message space, Zt = Θt, where individuals only report

their current type.27 We denote a strategy by the government inducing direct submechanisms

along the equilibrium path by Γ∗.

Definition 3 A strategy profile for the citizens, α∗, is truthful if, along the equilibrium path,

we have that αit
¡
θt | θt−1, ρt−1, ht−1

¢
= α∗. We write α∗=(α∗ | α0) to denote a truthful strategy

profile.

27Once again, more generally, this can be written as M∗
t : Θ

t ×Ht → ∆
¡£
0, l̄
¤
× R+

¢
to allow for stochastic

mechanisms.
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The notation α∗=(α∗ | α0) emphasizes that individuals play truth-telling along the equilib-
rium path, but may play some different strategy profile, α0, off the equilibrium path. Clearly, a

truthful strategy against a direct mechanism simply amounts to reporting the true type of the

agent. Let us next define c [Γ, α, h], l[Γ, α, h] and x [Γ, α, h] as, respectively, the equilibrium

consumption and labor supply distributions across individuals (as a function of the history

of their reports), the sequence of government consumption levels resulting from the strategy

profiles of the government and individuals, and the sequence of histories h =
©
ht
ª∞
t=0
, such

that all of these functions only condition or information available up to time t for allocations

of time t.

Theorem 1 (Truthful Revelation Along the Equilibrium Path) Suppose Assumptions

1-5 hold and that Γ and α are a combination of strategy profiles that support a sustainable mech-

anism. Then, there exists another pair of equilibrium strategy profiles Γ∗ and α∗ = (α∗ | α0)
for some α0 such that Γ∗ induces direct submechanisms and α∗ induces truth telling along the

equilibrium path, and moreover c [Γ, α,h] = c [Γ∗, α∗,h], l [Γ, α,h] = l [Γ∗, α∗,h] and x [Γ, α,h] =

x [Γ∗, α∗,h].

Proof. See Appendix B.

The most important implication of this theorem is that for the rest of the analysis, we can

restrict attention to truth-telling (direct) mechanisms on the side of the agents. The reason

why, despite the lack of commitment and the self-interested preferences of the mechanism de-

signer, a revelation principle type result holds is twofold: first, the government has a deviation

within the same period; and second, individuals can use punishment strategies involving zero

labor supply following a deviation by the government. The punishments strategies of citizens

support a sustainable mechanism, making it the best response for the government to pursue the

implicitly-agreed social plan (M,x). Given this sustainability, there is effective commitment on

the side of the government along the equilibrium path. This notion is important to distinguish

from the commitment that exists in the standard mechanism design problems where there is

unconditional commitment (i.e., along all paths). In contrast, in our environment, there is

no commitment off the equilibrium path, where the government can exploit the information it

has gathered or expropriate part of the output. In fact, off the equilibrium path, non-truthful

reporting by the individuals is important to ensure sustainability. Nevertheless, by definition,

along the equilibrium path induced by a sustainable mechanism, the government prefers not

to deviate from the implicitly-agreed social plan and thus individuals can report their types

without the fear that this information or their labor supply will be misused.
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3.3 The Best Sustainable Mechanism

Theorem 1 enables us to focus on direct mechanisms and truth-telling strategy α∗ by all

individuals. This implies that the best sustainable mechanism (and thus the best allocation)

can be achieved by individuals simply reporting their types. Recall that at every date, there

is an invariant distribution of θ denoted by G (θ). This implies that θt has an invariant

distribution, which is simply the t-fold version of G (θ), Gt (θ) (since there is a continuum of

individuals, each history θt occurs infinitely often).28 Given this construction, we can write

total labor supply given history ht as Lt

¡
ht
¢
=
R
Θt lt

¡
θt, ht

¢
dGt

¡
θt
¢
, and total consumption as

Ct

¡
ht
¢
=
R
Θt ct

¡
θt, ht

¢
dGt

¡
θt
¢
.29 Moreover, since Theorem 1 establishes that any sustainable

mechanism is equivalent to a direct mechanism with truth-telling on the side of the agents, we

obtain the main result from the section, which will be used in the rest of the paper:

Proposition 1 Suppose Assumptions 1-5 hold. Then, the best sustainable mechanism is a

solution to the following maximization program:

USM= max
{ct(θt,ht),lt(θt,ht),xt(ht),Kt+1(ht)}∞t=0

E

" ∞X
t=0

βtu
¡
ct
¡¡
θi,t, ht

¢¢
, lt
¡
θi,t, ht

¢
| θit
¢#

(9)

subject to some initial condition K0, the resource constraint

Kt+1

¡
ht
¢
= F

µ
Kt

¡
ht−1

¢
,

Z
lt
¡
θt, ht

¢
dGt

¡
θt
¢¶
−
Z

ct
¡
θt, ht

¢
dGt

¡
θt
¢
− xt

¡
ht
¢
, (10)

a set of incentive compatibility constraints for individuals,

E

" ∞X
s=0

βsu
¡
ct+s

¡
θi,t+s, ht+s

¢
, lt+s

¡
θi,t+s, ht+s

¢
| θit+s

¢¯̄̄̄¯ θi,t, ht
#

(11)

≥ E

" ∞X
s=0

βsu
³
ct+s

³
θ̂
i,t+s

, ht+s
´
, lt+s

³
θ̂
i,t+s

, ht+s
´
| θit+s

´¯̄̄̄¯ θi,t, ht
#

for all t, all θi,t ∈ Θt, all ht ∈ Ht and all possible sequences of
n
θ̂
i
t+s

o∞
s=0
, and the sustainability

constraint of the government

E

" ∞X
s=0

δsv
¡
xt+s

¡
ht+s

¢¢¯̄̄̄¯ht
#
≥ v

µ
F

µ
Kt

¡
ht−1

¢
,

Z
lt
¡
θt, ht

¢
dGt

¡
θt
¢¶¶

, (12)

for all t and ht ∈ Ht.

28More formally, given the continuum of agents, we can apply a law of large numbers type argument, and
each history θt will have positive measure. See, for example, Uhlig (1996).
29From now on, we suppress the ˜’s to simplify notation and simply use ct, lt and xt. Note also that

R
Θt
here

denotes Lebesgue integrals, and in what follows, we will suppress the range of integration, Θt.

18



Proof. The proof follows from Lemma 1 and Theorem 1. Suppose there exists an equilib-

rium (α∗∗,Γ∗∗), that maximizes (9). By the argument in the text, (α∗∗,Γ∗∗) will not feature

ξt = 1 for any t. Therefore, (α∗∗,Γ∗∗) features a sequence of submechanisms
n
M̂t

o∞
t=0
, (po-

tentially stochastic) consumption levels for the government,
©
x̂t
¡
ht
¢ª∞

t=0
and ξt

¡
ht
¢
= 0 for

all t and ht ∈ Ht. Then setting (M,x) =
³n

M̂t

o∞
t=0

,
©
x̂t
¡
ht
¢ª∞

t=0

´
implies that (α∗∗,Γ∗∗)

support a sustainable mechanism. Then, use Theorem 1 to find (α∗,Γ∗) corresponding to a

sustainable direct mechanism. This direct mechanism has to satisfy the resource constraint,

(10), the incentive compatibility constraints of individuals at all dates, which instead of (6) can

be written as (11) since Γ∗ induces direct mechanisms. Finally, from Lemma 1, the constraint

(12) ensures that Γ∗ is a best response to citizens’ strategies, α∗.

It is important to note that the objective function in the optimization only incorporates

expectation at time t = 0 before individuals know their type (i.e., “behind the veil of igno-

rance”), while the incentive compatibility constraints, (11), require that there are no prof-

itable deviations given any sequence of individual types and public histories. Note further

that the maximization in (9) is over sequences
©
ct
¡
θt, ht

¢
, lt
¡
θt, ht

¢
, xt
¡
ht
¢
,Kt+1

¡
ht
¢ª∞

t=0
,

which allows potential randomization conditional on the realizations of the publicly observable

aggregate variable ht. Finally, this problem also defines USM as the ex ante value of the best

sustainable mechanism for an individual.

The role of Theorem 1 in this formulation is obvious, since it enables us to write the

program for the best sustainable mechanism as a direct mechanism with truth-telling, thus

reducing the larger set of incentive compatibility constraints of individuals to (11).30

4 Sustainable Mechanisms and the Quasi-Mirrlees Program

Let us next define the dynamic Mirrlees program (with full-commitment, benevolent gov-

ernment and exogenous government expenditures). Imagine the economy needs to finance a

(potentially stochastic) exogenous government expenditure Xt

¡
ht
¢
≥ 0 at time t. Then the

dynamic Mirrlees program of maximizing the time t = 0 (ex ante) utility of a representa-

tive agent, can be written as (e.g., Golosov, Kocherlakota and Tsyvinski, 2003, Kocherlakota,

2005):

max
{ct(θt,ht),lt(θt,ht)}∞t=0

E

" ∞X
t=0

βtu
¡
ct
¡
θi,t, ht

¢
, lt
¡
θi,t, ht

¢
| θit
¢#

30The equations in (11) focus on the incentive compatibility constraints that apply along the equilibrium
path (expectations on both sides of the constraints are taken conditional on θi,t). This is without any loss of

generality, since (11) needs to hold for any sequence of reports
n
θ̂
i

t+s

o∞
s=0
, thus any potential deviation from

time t = 0 is covered by this set of constraints.
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subject to the incentive compatibility constraints, (11), and Ct

¡
ht
¢
+ Xt

¡
ht
¢
+Kt+1

¡
ht
¢
≤

F
¡
Kt

¡
ht−1

¢
, Lt

¡
ht
¢¢
for all ht ∈ Ht, where Ct

¡
ht
¢
=
R
ct
¡
θt, ht

¢
dG
¡
θt
¢
and Lt

¡
ht
¢
=R

lt
¡
θt, ht

¢
dG
¡
θt
¢
, and ct

¡
θt, ht

¢
and lt

¡
θt, ht

¢
are Ft-measurable (see footnote 12). Moreover,

we can add the feasibility constraint that {Xt

¡
ht
¢
}∞t=0 should be such that

{Ct

¡
ht
¢
, Lt

¡
ht
¢
}∞t=0 ∈ Λ∞ for all ht ∈ Ht,

where

Λ∞ = { {Ct, Lt}∞t=0 such that ∃
©
ct
¡
θt
¢
, lt
¡
θt
¢ª∞

t=0
satisfying (11), (13)

Ct

¡
ht
¢
=

Z
ct
¡
θt, ht

¢
dG
¡
θt
¢
, and Lt

¡
ht
¢
=

Z
lt
¡
θt, ht

¢
dG
¡
θt
¢
}.

In other words, for certain government expenditure sequences, {Xt}∞t=0’s, the constraint set of
this Mirrlees maximization problem can be empty (e.g., if Ct = 0 and Lt > 0, the incentive

compatibility constraints of individuals cannot be satisfied). Thus it is important to ensure

that {Ct

¡
ht
¢
, Lt

¡
ht
¢
}∞t=0 ∈ Λ∞ for all ht ∈ Ht.

For a sequence {Ct

¡
ht
¢
, Lt

¡
ht
¢
}∞t=0 ∈ Λ∞ for all ht ∈ Ht, we can define the quasi-Mirrlees

program as

U({Ct

¡
ht
¢
, Lt

¡
ht
¢
}∞t=0) ≡ max

{ct(θt,ht),lt(θt,ht)}∞
t=0

E

" ∞X
t=0

βtu
¡
ct
¡
θi,t, ht

¢
, lt
¡
θi,t, ht

¢
| θit
¢#

(14)

subject to the incentive compatibility constraints, (11), and two additional constraintsZ
ct
¡
θt, ht

¢
dG
¡
θt
¢
≤ Ct

¡
ht
¢
, (15)

and Z
lt
¡
θt, ht

¢
dG
¡
θt
¢
≥ Lt

¡
ht
¢
, (16)

for all ht ∈ Ht. Clearly this program takes the sequence {Ct

¡
ht
¢
, Lt

¡
ht
¢
}∞t=0 as given and

maximizes the ex ante expected utility of an individual subject to the usual incentive compat-

ibility constraints as well as two additional constraints. The first, (15), requires the sum of

consumption levels across agents for all report histories to be no greater than some number

Ct, while the second, (16), requires the sum of labor supplies to be no less than some amount

Lt. The functional U({Ct

¡
ht
¢
, Lt

¡
ht
¢
}∞t=0) defines the maximum ex ante (t = 0) utility of an

agent in this economy for a given sequence {Ct

¡
ht
¢
, Lt

¡
ht
¢
}∞t=0.31

31We show in the Appendix that U({Ct, Lt}∞t=0) is a well-defined functional. Nevertheless, the incentive
compatibility constraints embedded in (11) do not form a convex set. For this reason, in the Appendix, we follow
Prescott and Townsend (1984a,b) and allow lotteries to convexify the constraint set and establish concavity of
U({Ct, Lt}∞t=0) in {Ct, Lt}∞t=0. This will change the exact form of the optimization problem, but not its economic
essence. For this reason, we relegate the formalism of the lotteries to Appendices C and D, and in the text, we
assume that U({Ct, Lt}∞t=0) is concave. In the Appendix, we also prove that U({Ct, Lt}∞t=0) is differentiable,
which we again assume to be the case in the text.
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Returning to the dynamic Mirrlees program, for a given sequence of government expendi-

tures {Xt

¡
ht
¢
}∞t=0, this can clearly be written as:

max
{Ct(ht),Lt(ht),Kt+1(ht)}∞t=0

U({Ct

¡
ht
¢
, Lt

¡
ht
¢
}∞t=0) (17)

subject to a given level of K0 and to

Ct

¡
ht
¢
+Xt

¡
ht
¢
+Kt+1

¡
ht
¢
≤ F

¡
Kt

¡
ht−1

¢
, Lt

¡
ht
¢¢
, and {Ct

¡
ht
¢
, Lt

¡
ht
¢
}∞t=0 ∈ Λ∞, (18)

for all ht ∈ Ht.

Therefore, we can represent the dynamic Mirrlees program as a solution to a two-step max-

imization problem, in which the first step is the quasi-Mirrlees formulation, yielding the func-

tional U({Ct

¡
ht
¢
, Lt

¡
ht
¢
}∞t=0), and the second step is the maximization of U({Ct

¡
ht
¢
, Lt

¡
ht
¢
}∞t=0)

over (potentially stochastic) sequences {Ct

¡
ht
¢
, Lt

¡
ht
¢
,Kt+1

¡
ht
¢
} subject to a resource con-

strained and feasibility.

Now again using the quasi-Mirrlees formulation, the characterization of the best sustainable

mechanism, (9), can be written as

max
{Ct(ht),Lt(ht),xt(ht),Kt(ht)}∞t=0

U({Ct

¡
ht
¢
, Lt

¡
ht
¢
}∞t=0) (19)

subject to

Ct

¡
ht
¢
+ xt

¡
ht
¢
+Kt+1

¡
ht
¢
≤ F

¡
Kt

¡
ht−1

¢
, Lt

¡
ht
¢¢
and {Ct

¡
ht
¢
, Lt

¡
ht
¢
}∞t=0 ∈ Λ∞, (20)

for all ht ∈ Ht, and also subject to (12). The only difference between the dynamic Mirrlees

program in (17)-(18) and the best sustainable mechanism in (19)-(20)-(12) is the presence

of the sustainability constraint for the government, (12), which also makes {xt
¡
ht
¢
}∞t=0 and

endogenously chosen sequence instead of the exogenously given {Xt}∞t=0. This formulation
establishes the following theorem.

Theorem 2 Suppose Assumptions 1-5 hold. Then, the best sustainable mechanism solves a

quasi-Mirrlees program for some sequence {Ct

¡
ht
¢
, Lt

¡
ht
¢
}∞t=0 ∈ Λ∞.

Proof. This follows immediately from rewriting (9)-(12) from Proposition 1 as a two-step

maximization program, and expressing (10) as xt
¡
ht
¢
= F

¡
Kt

¡
ht−1

¢
, Lt

¡
ht
¢¢
− Ct

¡
ht
¢
−

Kt+1

¡
ht
¢
.

Consequently, any allocation consistent with the best sustainable mechanism is a solution

to a problem that maximizes the ex ante utility of the citizens. Despite the political economy

constraints and the resources extracted by the government from the society, the mechanism
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will maximize the ex ante utility of the citizens given some resource constraints (which are

in addition to the resource constraints imposed by feasibility).32 This theorem also enables

us to represent the differences between the dynamic Mirrlees program and the best sustain-

able mechanism purely in terms of aggregate distortions, corresponding to what the sequences

{Ct

¡
ht
¢
, Lt

¡
ht
¢
}∞t=0 ∈ Λ∞ are (and how they differ from the solution to the dynamic Mirrlees

program in (17)-(18)).

To make more progress, we need to characterize the behavior of the sequences {Ct, Lt}∞t=0
(and {xt}∞t=0) under the best sustainable mechanism, which is what we turn to next.

5 The Economy with Private Histories

The dynamic behavior of the optimal sustainable mechanism is determined by the need to

provide dynamic incentives both to the government and to individual agents. As is well known

(e.g. Green, 1987, Phelan and Townsend, 1991, or Atkeson and Lucas, 1992), the behavior of

individual allocations can be very complicated even in the absence of sustainability constraints

on the government. In order to highlight the effect of government sustainability constraints,

we first consider mechanisms with private histories, i.e., where individual histories are not

observed by the government.33 The restriction to private histories is purely a heuristic device,

useful in separating different parts of the analysis. Section 6 below will drop this assumption

and characterize the best sustainable mechanism in the history-dependent case without any

restrictions on potential mechanisms or strategies.

32It is also interesting to highlight which features of our environment are important for Theorem 2. For this
purpose, consider an environment without capital and suppose that labor supply is equal to output. Suppose
that the government can tax individuals differentially according to how much they produce, with the maximum
amount that can be extracted from an individual supplying labor l as η̃ (l), where η̃ :

£
0, l̄
¤
→
£
0, l̄
¤
. In this

case, using an analog of Lemma 1 and suppressing dependence on public histories, we have the sustainability
constraint as:

∞X
s=0

δsv (xt+s) ≥ v

µZ
η̃
¡
l
¡
θt
¢¢
dGt ¡θt¢¶ ,

where l
¡
θt
¢
is the labor supply of an individual with type history θt, and the term

R
η̃
¡
l
¡
θt
¢¢
dGt

¡
θt
¢
captures

the maximum amount that the government can expropriate given the technological restriction embedded in the
function η̃ (·) and the distribution of types given by Gt

¡
θt
¢
. Unless η̃ (·) is a linear function, Theorem 2 does

not apply, and there would be further distortions relative to our baseline analysis.
33Here the term “private histories” refers to the fact that past reports of individuals are not conditioned upon,

and is not related to the public histories, ht’s, which designate the potential randomness of aggregate variables.
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5.1 Best Sustainable Mechanism with Private Histories

To further simplify the notation in this case, let us also assume that there is no capital, so that

the aggregate production function of the economy is simply

Yt = Lt, (21)

where K0 = 0 and Lt denotes the aggregate labor supply at time t.

The restriction to private histories implies that in admissible mechanisms, allocations must

depend only on agents’ current report (and potentially on public histories, ht). In such an

environment the incentive compatibility constraints for agents can be separated across time

periods, and written as

u
¡
ct
¡
θt, h

t
¢
, lt
¡
θt, h

t
¢
| θt
¢
≥ u

³
ct

³
θ̂t, h

t
´
, lt

³
θ̂t, h

t
´
| θt
´

(22)

for all θ̂t ∈ Θ and θt ∈ Θ, and for all t and ht ∈ Ht. Moreover, given the single crossing property

in Assumption 3, (22) can be reduced to a set of incentive compatibility constraints only for

neighboring types. Since there are N + 1 types in Θ, this implies that (22) is equivalent to N

incentive compatibility constraints.34 The best sustainable mechanism with private histories

maximizes (9) subject to (12), (22) and the resource constraint

Ct

¡
ht
¢
+ xt

¡
ht
¢
≤ Lt

¡
ht
¢
, (23)

Recall now the quasi-Mirrlees program defined above. It is straightforward to see that

because of “private histories”, the optimal allocations of (ct, lt) depend only on Ct

¡
ht
¢
and

Lt

¡
ht
¢
and are independent of any Cs (h

s), Ls (h
s) with s 6= t. This implies that U({Ct, Lt}∞t=0)

is time separable, i.e., U({Ct

¡
ht
¢
, Lt

¡
ht
¢
}∞t=0) = E

P∞
t=0 β

tU(Ct

¡
ht
¢
, Lt

¡
ht
¢
) for some real-

valued differentiable function U : R2+ → R. The program for the best sustainable mechanism,

(19)-(20), therefore becomes:

max
{Ct(ht),Lt(ht),xt(ht)}∞t=0

E
∞X
t=0

βtU(Ct

¡
ht
¢
, Lt

¡
ht
¢
) (24)

subject to the resource constraint, (23), and the sustainability constraint,

E

" ∞X
s=0

δsv(xt+s
¡
ht+s

¢
) | ht

#
≥ v(Lt

¡
ht
¢
), (25)

34More specifically, in pure strategy direct mechanisms, there will be N (N + 1) incentive compatibility con-
straints, and Assumption 2 makes sure that only N of those, i.e., those between neighboring types, where the
higher type may want to misreport to be the next lower type, may be binding.
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for all t and ht ∈ Ht.

As before, this problem is well defined only for some (C,L). We denote the set of such

(C,L) pairs, which is a simplified version of (13), by Λ, i.e., Λ ≡ {(C,L) : ∃(c (θ) , l (θ)) s.t.
(15), (16) and (22) are satisfied}. Also define w̄ ≡ max(C,L)∈Λ v (L− C) / (1− δ). We impose:

Assumption 6 (sustainability) There exists
¡
C̄, L̄

¢
∈ argmax(C,L)∈Λ v (L− C) / (1− δ),

such that v
¡
L̄− C̄

¢
/ (1− δ) > v

¡
L̄
¢
.

This assumption ensures that the highest discounted utility that can be given to the gov-

ernment, w̄, is sufficient to satisfy its sustainability constraint (25). Clearly this assumption is

satisfied if the discount factor of the government, δ, is sufficiently large.

We now introduce our key concept of “aggregate distortions”. Since our objective is to com-

pare the additional distortions created by the self-interested and time-inconsistent behavior of

the government, aggregate distortions are defined relative to the dynamic Mirrlees allocations.

Definition 4 In the model with no capital and with private histories, we say that the (poten-

tially stochastic) sequence
©
Ct

¡
ht
¢
, Lt

¡
ht
¢
, xt
¡
ht
¢ª∞

t=0
induced by the best sustainable mecha-

nism Γ∗ is undistorted at t0 if
n
Ĉt

¡
ht
¢
, L̂t

¡
ht
¢o ∞

t=0 is a solution to (17) subject to (18) with©
Xt

¡
ht
¢ª∞

t=0
=
©
xt
¡
ht
¢ª∞

t=0
for all ht ∈ Ht and Ct0

³
ht

0
´
= Ĉt0

³
ht

0
´
, L̂t0

³
ht

0
´
= Lt0

³
ht

0
´

for all ht
0 ∈ Ht0. We say that

©
Ct

¡
ht
¢
, Lt

¡
ht
¢
, xt
¡
ht
¢ª∞

t=0
is asymptotically undistorted, if

it is (almost surely) undistorted as t→∞

This is a natural definition. It requires that the aggregate allocations in the best sustainable

mechanism coincide with the allocations in the dynamic Mirrlees program where government

expenditures are equal to what is being paid to the government under the best sustainable

mechanism.35 It can be noted that if the ruler could commit to a sequence of consumption levels©
xt
¡
ht
¢ª∞

t=0
at time t = 0, then Definition 4 implies that the resulting allocation would always

be undistorted. The question is whether when the sequence
©
xt
¡
ht
¢ª∞

t=0
is determined to

satisfy the sustainability constraint of the government, (12), there will be aggregate distortions.

Definition 4 is general enough to cover the case in which (C,L) /∈IntΛ (where IntΛ denotes
the interior of Λ). For the usual case where (C,L) ∈IntΛ, we have a simple condition character-
izing undistorted allocations. In particular, since U (C,L) is differentiable (see Appendix B),

when (C,L) ∈IntΛ the solution to the dynamic (full-commitment) Mirrlees program (17)-(18)

satisfies:

UC (C,L) = −UL (C,L) , (26)

35Note also that if an allocation is distorted, then in the absence of the sustainability constraints it could be
modified to create a Pareto improvement.
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where UC and UL are the partial derivatives of U (C,L) with respect to C and L. Condition

(26) is intuitive: it requires the marginal cost of increasing output by one unit to be equal

to the marginal benefit of doing so. The next proposition illustrates the relationship between

distortions and this condition more explicitly (suppressing dependence on ht to simplify nota-

tion):

Proposition 2 Suppose Assumptions 1-2 hold. Consider a sequence of {Ct, Lt}∞t=0. Then:

1. the marginal labor tax rate on the highest type of agent, θN , at time t is given by τN,t =

1 + UL (Ct, Lt) /UC (Ct, Lt).

2. if {Ct, Lt}∞t=0 is undistorted at t, the labor supply decision of the highest type of agent is
undistorted, i.e., uc (ct (θN ) , lt (θN) | θN) = −ul (ct (θN ) , lt (θN ) | θN).

Proof. Assumption 2 implies that we only need to check incentive compatibility constraints

for neighboring types. Appendix C establishes that Lagrange multipliers exist. Let uc and ul

be the partial derivatives of u (which exist by Assumption 1). Therefore, we have

uc (ct (θN) , lt (θN ) | θN ) (1 + λNt) = νCt,

ul (ct (θN) , lt (θN ) | θN ) (1 + λNt) = −νLt,

where λNt is the multiplier on incentive compatibility constraint between types θN and θN−1

at time t, νCt is the multiplier on (15) at t and νLt is the multiplier on (16) at t. By the

differentiability of U (C,L) and the definition of Lagrange multipliers, νCt = UC (Ct, Lt) and

νLt = −UL (Ct, Lt). Combining these equations, we have

−ul (ct (θN) , lt (θN) | θN)
uc (ct (θN ) , lt (θN) | θN)

= (1− τN,t) = −
UL (Ct, Lt)

UC (Ct, Lt)
,

where the first equality defines τN,t, and the second equality establishes the first part of the

lemma. The second result follows immediately from setting UL (Ct, Lt) = −UC (Ct, Lt) from

the definition of an undistorted sequence, in particular, equation (26).

Let us next follow Thomas and Worrall (1990) and consider the recursive characterization

of the best sustainable mechanism. By standard arguments (and again suppressing dependence

on ht), any solution to the following recursive maximization problem is a sustainable mechanism

(see Appendix C):

V (w) = max
C,L,x,w0

©
U(C,L) + βV (w0)

ª
(27)

subject to

C + x ≤ L,
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w = v(x) + δw0, (28)

v(x) + δw0 ≥ v(L), (29)

w0 ∈W and (C,L) ∈ Λ. (30)

where w is the future utility promised to the government, W is the set of feasible values for w,

and the requirement that (C,L) ∈ Λmakes sure that we only look at feasible levels of aggregate
consumption and labor supply. The program in (27) determines optimal policies for a given

level of promised utility w. Once the value function V (w) is determined from this program,

the problem of finding the best sustainable mechanism is simply equivalent to choosing the

initial value of promised utility to government, w0, such that w0 ∈ argmaxw V (w).36

This program also makes the role of the sustainability constraint (29) clear. If the society

wishes to produce more output (or supply more labor L), it can only do so by providing

greater consumption to the government either today or in the future. Therefore, when this

constraint is binding, the social cost of increasing output will be greater than UL, thus leading

to aggregate distortions relative to the dynamic Mirrlees benchmark.

The main result of this section is the following theorem:

Theorem 3 Consider the economy with no capital and with private histories and suppose that

Assumptions 1-3, 5 and 6 hold.

1. At t = 0, there is an aggregate distortion.

2. Suppose that β ≤ δ. Let Γ∗ be the best sustainable mechanism inducing a sequence of val-

ues
©
wt

¡
ht
¢ª∞

t=0
. Then

©
wt

¡
ht
¢ª∞

t=0
is a non-decreasing stochastic sequence in the sense

that wt+1

¡
ht+1

¢
≥ wt

¡
ht
¢
for all ht+1 ∈ Ht+1. Moreover, a steady state exists in that©

wt

¡
ht
¢ª∞

t=0
converges (almost surely) to some w∗ ∈ [0, w̄] and

©
Ct

¡
ht
¢
, Lt

¡
ht
¢
, xt
¡
ht
¢ª∞

t=0

converges (almost surely) to some (C∗, L∗, x∗), which is asymptotically undistorted.

3. If β > δ, then aggregate distortions do not disappear even asymptotically.

Proof. See Appendix C.

36There is a number of technical details related to this program. First, we have thatW = [0, w̄] where w̄ is the
maximal feasible and sustainable promised utility to the government, defined above. Moreover, in Appendix C
we show that there may be room for improving on this program by randomizing over the values of w0, and thus
over C and L (i.e., considering lotteries for the government in the same way as we do for individuals). We relegate
the discussion of this issue to Appendix C, but here we take the sequence of values given (promised) to the
government {wt}∞t=0 as a stochastic process, with each element taking values from the set W, and consequently,
the sequence {Ct, Lt}∞t=0 that results from the best sustainable mechanism is also a stochastic sequence. Finally,
in the text, we assume that V is concave and differentiable, which are both proved in Appendix C.
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Part 1 reflects the additional aggregate distortions arising from the self-interested behavior

of the government. In particular, at t = 0, there is necessarily a positive distortion, reducing

aggregate output. Intuitively, this distortion results from the fact that as output increases, the

sustainability constraint (29) implies that more has to be given to the government, and this

makes the effective cost of production higher for the agents. Consequently, the best sustainable

mechanism induces an aggregate distortion, reducing the levels of aggregate labor supply and

production below those that would arise in the dynamic Mirrlees program.

The most important results are in parts 2 and 3. Part 2 states that as long as β ≤ δ,

asymptotically the economy converges to an equilibrium where there are no aggregate distor-

tions and the marginal tax rate on the highest type is equal to zero. Therefore, this theorem,

in combination with Theorem 2, implies that despite the political economy constraints and

the commitment problems, many of the insights of the optimal taxation literature inspired

by Mirrlees (1971) will continue to hold. Consequently, when the government is at least as

patient as the citizens, lessons from the optimal taxation literature are not only normative,

but may also help us understand how tax systems are designed in practice where politicians

are motivated by their own objectives, such as self-enrichment or reelection.

Part 3 of the theorem is perhaps more important. This part states that if the government

is less patient than the agents, distortions will not disappear. Since in many realistic political

economy models, the government or politicians are more short-sighted than citizens, this part of

the theorem may imply that in a number of important cases, political economy considerations

will lead to additional distortions that will not disappear even asymptotically.

We now give a heuristic argument to support this theorem (while the full proof is in

Appendix B). Let γ and ψ ≥ 0 be the Lagrange multipliers on the constraints (28) and (29)
respectively. Lemma 10 in Appendix B shows that V (w) is differentiable. Furthermore, in

the text, we simplify the discussion by assuming that (C,L) ∈IntΛ and w0 ∈IntW. Therefore,
taking the first order condition with respect to w0 and using the Envelope theorem, we obtain

that
β

δ
V 0(w0) = −ψ − γ = V 0(w)− ψ (31)

The other first order conditions with respect to C, L and x imply:

UC + UL = ψv0(L), and (32)

v0(x)(ψ + γ) = UC . (33)

Equation (32) makes it clear that aggregate distortions are related to ψ. It is also evident

that we must have ψ > 0 at t = 0, otherwise the government would receive w0 = 0 initially,
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which together with the sustainability constraint (29) would imply Ct = Lt = 0 for all t, and

this cannot be a solution when ψ = 0. Equation (32) then yields that UC + UL > 0, and

Proposition 2 implies that the marginal tax rate on the highest type will be strictly positive,

i.e., τN > 0 at t = 0.

Part 2 of Theorem 3 states that, as long as β ≤ δ, eventually aggregate distortions will

disappear and marginal labor income taxes on the highest type will tend to zero. In many

ways, this is a surprising result, but the structure of the model makes the intuition clear. To

see why, let us start with the case where β = δ, in which case equation (31) implies

V 0(w0) = V 0(w)− ψ ≤ V 0(w).

The inequality above is strict when the sustainability constraint on the government (29) binds.

This, combined with the concavity of the value function V (·), which is proved in Lemma 8 in
Appendix B, implies that w0 ≥ w, with w0 > w if ψ > 0 and w0 = w if ψ = 0. This shows that

the promised utilities for the government are nondecreasing as stated in part 2 of Theorem 3.

The intuition for why the rewards to the government are increasing (nondecreasing) is as

follows. The incentives for the government in the current period are provided by both con-

sumption in the current period, x, and by consumption in future periods represented by the

promised utility w. Therefore, future government consumption not only relaxes the sustain-

ability constraint in the future, but also in all prior periods. Thus, all else equal, optimal

incentives for government are backloaded. The intuition for this backloaded compensation

scheme is similar to the reasons why in principal-agent models backloading compensation may

be useful (see, for example, Ray, 2002).

Since promised values to the government form a nondecreasing sequence
©
wt

¡
ht
¢ª∞

t=0
and

are in a compact set W = [0, w̄], they will converge to some value w∗. If w∗ < w̄, (31) im-

mideately implies that ψ = 0. In other words, the Lagrange multiplier on the sustainability

constraint of the government, (29), eventually reaches zero, and at this point, aggregate dis-

tortions disappear. Proposition 2 then implies that, as long as (C,L) ∈IntΛ, the marginal tax
rate on the labor supply of the highest type, θN , also vanishes as in the standard Mirrlees

program.

The intuition for why the multiplier on the sustainability constraint eventually reaches zero

is related to the fact that promised utilities to the government are increasing. Loosely speaking,

we can remove the sustainability constraints in the very far future, without influencing the

sequence of utilities promised to the government at time t = 0. This implies that eventually

the multipliers on these sustainability constraints must tend to zero.
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Finally, let us consider the case with δ < β. Since government is less patient than the

agents, backloading incentives for government becomes costly for agents. Consider any w for

which constraint (29) does not bind. Then (31) implies that V 0(w0) > V 0(w), and thus w0 < w,

so that promised utilities will be decreasing when the sustainability constraint, (29), is slack. In

fact, if a steady state (C∗, L∗, x∗) is ever reached, it will solve the following system of equations

1 +
UL

UC
=

µ
1− δ

β

¶
v0(L∗)

v0(x∗)
(34)

C∗ + x∗ = L∗ and v(x∗) = (1− δ)v(L∗),

with the steady-state utility of the government equal to w∗ = v(L∗). Equation (34) immediately

shows that when δ < β, were a steady state reached, it would feature a positive labor distortion,

as claimed in part 3 of Theorem 3. The intuition for the presence of (asymptotic) aggregate

distortions in this case is directly related to the fact that when the government is less patient

than the agents, backloading does not work. Since backloading was essential for the multiplier

on the sustainability constraint (29) going to zero, this multiplier remains positive, and the

additional distortions created by the sustainability constraint remain even asymptotically.

5.2 An Example for an Economy with Private Histories and No Capital

We now illustrate the results from the previous subsection with a simple numerical example.

Consider an economy with two types, i.e., Θ = {θ0, θ1} and

u (c, l | θ) =
√
c− l2

mθ
, (35)

where m is a parameter determining the relative disutility of labor. We continue to assume

that type θ0 is disabled and cannot supply any labor, so θ0 = 0, and we normalize θ1 = 1.

Let us also assume that a fraction π = 1/2 of the population is of type θ1 and that the utility

function of the government is also given by v (x) =
√
x.

Since type θ0 cannot supply any labor, we have l (θ1) = L/π. Moreover, the incentive

compatibility constraint for type θ1 isp
c (θ1)−

l (θ1)
2

mθ1
≥
p
c (θ0). (36)

Then c (θ0) and c (θ1) can be determined as solutions to (36) holding as equality and to

the resource constraint, (1− π) c (θ0) + πc (θ1) = C. Given this structure, U (C,L) can be

computed directly and used with the program (27) to derive the value function V (w).
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Figure 1: Theorem 3 part 2. Value function with β = δ = 0.9.

We take a baseline case where the government is as patient as the citizens, β = δ = 0.9

and m = 5. In Figure 1 we show the shape of the value function.37 Note that V (w) is inverse

U-shaped. The increasing part is due to the fact that if the government is given too low a

level of utility, the sustainability constraint will force the economy to produce a very low level

of output. For this reason, the relevant part of the value function V (w) is the segment after

the peak, which is everywhere decreasing. In fact, as noted above, with the best sustainable

mechanism, the economy will start at the peak of the function V (w).

Next, we show the time path of normalized promised values to the government (defined as

(1− δ)w) and aggregate distortions both for the baseline case, δ = 0.9, and also for a range

of lower discount factors, δ = 0.8, 0.7, and 0.6. Figure 2 plots the time path of the promised

value to the government, w, for these four different cases. The lowest curves is for δ = 0.6,

and then, respectively, for δ = 0.7, 0.8 and 0.9. Consistent with the results in Theorem 3 part

2, when δ = β, {wt} is an increasing sequence and converges to some level w∗. Interestingly,
in these examples the sequence {wt} is everywhere increasing even when δ < β.

Figure 3, in turn, depicts the evolution of the aggregate distortion, 1+UL/UC (which, from

Proposition 2, is also equivalent to the marginal tax on type θ1). The lowest curve shows the

case where β = δ, and consistent with part 2 of Theorem 3, the aggregate distortion converges

to zero. An interesting feature of the example is that the convergence of {wt} and of distortions
37We compute everything non-recursively, assuming that a steady state is reached after T periods and then

solving a sequence problem, which turns out to be faster and more accurate than the recursive approach in the
computations.
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Figure 2: Time path of normalized promised values to the government, {(1− δ)wt}, with
β = 0.9 and δ = 0.9; 0.8; 0.7; 0.6. Higher curves correspond to higher values of δ.
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Figure 3: Time path of distortions with β = 0.9 and δ = 0.6, 0.7, 0.8, 0.9. Higher curves
correspond to lower values of δ.
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Figure 4: Time path of xt/Yt with β = 0.9 and δ = 0.6, 0.7, 0.8, 0.9. Higher curves correspond
to lower values of δ.

is rather fast. This suggests that the best sustainable mechanism may converge to a mechanism

without aggregate distortions and with zero marginal tax rate on the highest type agents very

rapidly.

The figure also shows that, as predicted by part 3 of Theorem 3 and in contrast to the case

with β = δ, when δ < β aggregate distortions do not disappear asymptotically; in fact, they

could be quite sizable. For example, when δ = 0.6, the aggregate distortion converges to an

asymptotic value of 0.15 (the highest curve in the graph).

A final interesting feature is how much of the economy’s output is being captured by the

government. Figure 4 shows this again for δ = 0.9, 0.8, 0.7, and 0.6. When the discount factor

of the government is equal to that of the citizens, even in the asymptotic equilibrium, the

government receives a very small fraction of the output (and w∗ < w̄ with the notation in the

previous subsection). As we consider lower discount factors for the government, its temptation

to deviate increases, so a higher fraction of the output goes to the government, but even with

δ = 0.6, this is only 16% of total output.

6 Optimal History-Dependent Sustainable Mechanisms

6.1 Characterization of Best Sustainable Mechanism

We now return to the analysis of the general problem in Sections 2-4 without the restriction to

private histories, and we also re-incorporate capital. Despite the fact that individual allocations
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will now be a function of the entire history of reports by the individual, the analysis will parallel

the discussion of the best sustainable mechanism with private histories in Section 5 (and from

Theorem 1, individuals will continue to report their types truthfully).

The quasi-Mirrlees program was defined above in (14), and Theorem 2 established that

the best sustainable mechanism solves a quasi-Mirrlees program. In addition, Appendix C

shows that U({Ct, Lt}∞t=0) is differentiable in the sequences {Ct, Lt}∞t=0 ∈ Λ∞. This implies
that we can think of variations in sequences {Ct, Lt}∞t=0 where only one element, Cs or Ls for

some specific s is varied. We denote the derivative of U with respect to such variations by

UCs({Ct, Lt}∞t=0) and ULs({Ct, Lt}∞t=0) or simply by UCs and ULs . We also denote the partial
derivatives of the production function with respect to labor and capital at time s by FLs

and FKs . We next extend our definition of an undistorted equilibrium to this more general

environment:

Definition 5 We say that the (potentially stochastic) sequence
©
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¡
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¢
,Kt+1

¡
ht
¢
, xt
¡
ht
¢ª∞

t=0

induced by the best sustainable mechanism Γ∗ is undistorted at t0 if
n
Ĉt

¡
ht
¢
, L̂t

¡
ht
¢
, K̂t+1

¡
ht
¢o∞

t=0

is a solution to (17) subject to (18) with
©
Xt
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t=0
=
©
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¢ª∞

t=0
for all ht ∈ Ht and

Ct0
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0
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say that
©
Ct

¡
ht
¢
, Lt

¡
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¢
,Kt+1

¡
ht
¢
, xt
¡
ht
¢ª∞

t=0
is asymptotically undistorted if it is (almost

surely) undistorted as t→∞.

This definition is the natural generalization of Definition 4 to this more general environment.

As in Definition 4, when {Ct, Lt}∞t=0 ∈IntΛ∞, the current definition implies that an undistorted
allocation will satisfy

UCt · FLt = −ULt and FKt+1 · UCt+1 = UCt (37)

at time t (or as t → ∞). Here, the first condition requires the marginal cost of effort at
time t given the utility function U({Ct, Lt}∞t=0) to be equal to the increase in output from the

additional effort times the marginal utility of additional consumption, and is thus an immediate

generalization of condition (26) from the economy without capital. The second one requires

the cost of a decline in the utility by saving one more unit to be equal to the increase in output

in the next period times the marginal utility of consumption then. Once again, these are

aggregate conditions since they are defined in terms of the utility functional U({Ct, Lt}∞t=0),
which represents the ex ante maximal utility of an individual subject to incentive constraints.

Moreover, if a steady state exists and the conditions in (37) hold as t → ∞, then it is also
clear that

©
Ct

¡
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¢
, Lt
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,Kt+1

¡
ht
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, xt

¡
ht
¢ª∞

t=0
must be undistorted. We therefore say that

there are no asymptotic aggregate distortions on capital accumulation (or no aggregate capital
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taxation) if FKt+1 ·UCt+1 = UCt and no aggregate distortions on labor supply if UCt ·FLt = −ULt
as t→∞.38

Let us use the notation {C,L} ∈ Λ̄∞ if {Ct

¡
ht
¢
, Lt

¡
ht
¢
}∞t=0 ∈ Λ∞ and Ct

¡
ht
¢
→ C and

Lt

¡
ht
¢
→ L almost surely, and the steady-state pair {C,L} is asymptotically feasible.39 When©

Ct

¡
ht
¢
, Lt

¡
ht
¢
,Kt

¡
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¢ª
→ (C∗, L∗,K∗) almost surely, define U∗Ct = UCt({Ct

¡
ht
¢
, Lt

¡
ht
¢
}∞t=0).

Finally, with analogy to the previous section, define the maximal steady-state level of utility

for the ruler as: w̄ ≡ max{C,L}∈Λ̄∞,K≥0 v (F (K,L)− C −K) / (1− δ). The key sustainability

assumption is a generalization of Assumption 6 to this environment and requires that when

the government receives a utility of w̄, the sustainability constraint, (12), is satisfied:

Assumption 7 (general sustainability) There exists
¡
C̄, L̄, K̄

¢
∈ argmax{C,L}∈Λ̄∞,K≥0

v (F (K,L)− C −K) / (1− δ) such that v
¡
F
¡
K̄, L̄

¢
− C̄ − K̄

¢
/ (1− δ) > v

¡
F
¡
K̄, L̄

¢¢
.

Then the main result of this section parallels Theorem 3, but is weaker in some respects:

Theorem 4 Consider the model with the general environment and suppose that Assumptions

1-5 and 7 hold and that there exists {Ct

¡
ht
¢
, Lt

¡
ht
¢
}∞t=0 ∈IntΛ∞ (with Lt

¡
ht
¢
> 0 for some

t and all ht ∈ H̄t for some positive probability H̄t ⊂ Ht).

1. There exists t0 <∞ such that there are aggregate distortion on capital accumulation and

labor supply at t0.

Let Γ∗ be the best sustainable mechanism, inducing a sequence of consumption, labor supply and

capital levels
©
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, Lt
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. Suppose a steady state exists such that as t→∞,©

Ct
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→ (C∗, L∗,K∗) almost surely. Moreover, let ϕ =sup{ ( ∈ [0, 1] :

plimt→∞ (−tU∗Ct = 0}, where ϕ < 1. Then:

2. If ϕ ≤ δ, then (almost surely) there are no asymptotic aggregate distortions on capital

accumulation and labor supply.

3. If ϕ > δ, then aggregate distortions on capital accumulation and labor supply do not

disappear even asymptotically.

38Notice that we no longer have the equivalent of Proposition 2, since without specifying the stochastic
process for θi,t, we cannot establish the equivalent of the single-crossing property in consumption sequences.
This problem is common in models of dynamic taxation, even with the full commitment assumption, see, for
example, Golosov, Kocherlakota and Tsyvinski (2003).
39Note that despite the similarity of the symbols, Λ̄∞ and Λ∞ are very different sets. Λ∞ is a subset of the

vector space of bounded infinite sequences, c∞, while Λ̄
∞ ⊂ R2.
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Proof. See Appendix D.

The major results from Theorem 3 continue to hold here.40 The most important difference

is that instead of comparing the government discount factor, δ, to β, we now compare it to the

rate at which the ex ante marginal utility of consumption U∗Ct is declining in the steady state,
denoted by ϕ. Clearly, in the case where U({Ct, Lt}∞t=0) is time separable as in Theorem 3,

the rate at which U∗Ct declines in steady state is exactly equal to β, so that the results in this
theorem are closely related to those in Theorem 3. Moreover, in reality, ϕ is the “fundamental

discount factor” of the citizens, since it measures how one unit of resources at time t compares

with one unit of resources at time t+1 (from the viewpoint of t = 0). Only in special cases (e.g.,

without any dynamic incentive linkages) does this fundamental discount factor coincide with

β. Therefore, the case of ϕ ≤ δ indeed corresponds to the situation in which the government

is as patient as or more patient than the citizens.

The first part of the theorem states that the sustainability constraint of the government,

(12), necessarily introduces a distortion, though because of the ex ante utility function of the

citizens, U({Ct, Lt}∞t=0), is nonseparable, we can no longer be sure that this distortion will
be present at t = 0. The most important results are again contained in parts 2 and 3 of

the theorem. Part 2 states that as long as a steady state exists and U∗Ct declines sufficiently
rapidly, the multiplier of the sustainability constraint goes to zero. This establishes that

the sequence {Ct, Lt,Kt}∞t=0 is asymptotically undistorted, with no aggregate labor supply
and capital accumulation distortions. This generalizes the results from the economy with no

capital and private histories to the much more general environment here. Part 3, on the other

hand, states that if the discount factor of the government δ is sufficiently low, then aggregate

distortions will not disappear, even asymptotically. The significance of this result is even

greater than in Theorem 3, since it implies not only additional distortions on labor, but also

positive aggregate capital taxes in contrast to the existing literature on dynamic fiscal policy.

Once again, we provide a heuristic argument here, leaving the proof to the Appendix.

Since the objective function is no longer time separable, to characterize the best sustainable

mechanism in this case, we follow Marcet and Marimon (1998) and form a Lagrangian of the

form (again suppressing dependence on history ht for notational simplicity):

max
{Ct,Lt,Kt,xt}∞t=0

L = U({Ct, Lt}∞t=0) +
∞X
t=0

δt
©
µtv(xt)− (µt − µt−1)v(F (Kt, Lt))

ª
(38)

40The parts that are missing from this theorem relative to Theorem 3 are that the aggregate distortion is
at t = 0 (instead it could be at some later date), that the sequence of promised values to the government is
increasing and a statement that a steady state exists. Moreover, as noted in footnote 38, there is no equivalent
of Proposition 2 in this case. Finally, the theorem imposes the rather weak assumption that there exists
{Ct

¡
ht
¢
, Lt

¡
ht
¢
}∞t=0 ∈IntΛ∞ with Lt

¡
ht
¢
> 0 for some t and some ht.
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subject to

Ct + xt +Kt+1 ≤ F (Kt, Lt), and (39)

{Ct, Lt}∞t=0 ∈ Λ∞,

for all t, where µt = µt−1 + ψt with µ−1 = 0 and δtψt ≥ 0 is the Lagrange multiplier on the
constraint (12).41

The differentiability of U({Ct, Lt}∞t=0) implies that for {Ct, Lt}∞t=0 ∈IntΛ∞, we have:42

ULt − δt(µt − µt−1)v
0(F (Kt, Lt))FLt = −UCt · FLt (40)

UCt =
£
UCt+1 − δt(µt+1 − µt)v

0(F (Kt+1, Lt+1))
¤
FKt+1 (41)

Since µt ≥ µt−1, we obtain that

−ULt ≤ UCt · FLt , and (42)

UCt ≤ UCt+1 · FKt+1 . (43)

These two conditions imply that there may be positive distortions in labor supply and capital

accumulation–if the inequalities are strict, the marginal product of labor and capital would

be too high (relative to the full commitment Mirrlees allocation).

The first-order condition with respect to xt, on the other hand, yields:

UCt
δtv0(xt)

= µt ≤ µt+1 =
UCt+1

δt+1v0(xt+1)
. (44)

By construction, µt is an increasing sequence, so it must either converge to some value µ
∗ or

go to infinity. Suppose that (Ct, Lt,Kt) converges to some (C
∗, L∗,K∗)–and xt converges to

41To derive (38), form the Lagrangian

L0 = U({Ct, Lt}∞t=0) +
∞X
t=0

δtψt

" ∞X
s=0

δsv(xt+s)− v(F (Kt, Lt))

#
,

then note that
∞X
t=0

δtψt

∞X
s=0

δsv(xt+s) =
∞X
t=0

δtµtv(xt)

where µt = µt−1 + ψt with µ−1 = 0. Substituting this in L0 above gives (38).
42To obtain these equations, let the multiplier on constraint (39) at time t be κt. Then the first-order condition

with respect to Ct gives UCt = κt, while the first-order condition with respect to Lt gives

ULt − δt
¡
µt − µt−1

¢
v0(F (Kt, Lt))FLt = −κtFLt .

Substituting for κt gives (40). The first-order condition with respect to Kt+1, on the other hand, gives

−δt(µt+1 − µt)v
0(F (Kt+1, Lt+1))FKt+1 + κt − κt+1FKt+1 = 0

Substituting for κt and κt+1 and rearranging gives (41).
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x∗ = L∗ − C∗ −K∗. If U∗Ct is proportional to some ϕ ≤ δ, then we can show that µt (almost

surely) converges to some value µ∗ <∞, and that both (42) and (43) must hold as equality (see
the proof of Theorem 4), establishing the result stated in part 2 of the theorem. In contrast, if

U∗Ct is proportional to some ϕ > δ, then µt tends to infinity and aggregate distortions do not

disappear.

6.2 Example for History-Dependent Mechanisms

We now briefly illustrate the results of Theorem 4 and show how in some simple cases, ϕ

defined as sup{( ∈ [0, 1] : plimt→∞ (−tU∗Ct = 0} is again equivalent to the discount factor of
the agents, β. In particular, let us consider the following economy without capital and with

“almost constant types” as explained below. There are two types Θ = {θ0, θ1} and the utility
function is

u (c, l | θ) = u (c)− χ (l/θ) ,

where u is continuously differentiable, increasing and strictly concave and χ is continuously

differentiable, increasing and strictly convex. Furthermore, suppose that u satisfies Inada-type

conditions, so that first-order conditions are always satisfied as equality. We take θ0 = 0, so that

the low type is again disabled and cannot supply any labor. Suppose that with probability π

an individual is born as high type, and remains so with (iid) probability 1− ε in every period.

With probability 1 − π, individual is born as low type, and remains low type forever. By

almost constant types, we mean the limit of this economy as ε→ 0.43 Then the quasi-Mirrlees

formulation can be written as

U({Ct, Lt}∞t=0) ≡ max
{ct(θ0),ct(θ1),lt(θ1)}∞t=0

π
∞X
t=0

βt [u (ct (θ1))− χ (lt (θ1) /θ1)]+(1− π)
∞X
t=0

βt [u (ct (θ0))] ,

(45)

subject to πct (θ1) + (1− π) ct (θ0) ≤ πlt (θ1)− xt for all t, and

∞X
t=0

βt [u (ct (θ1))− χ (lt (θ1) /θ1)] ≥
∞X
t=0

βt [u (ct (θ0))] ,

where Lt = πlt (θ1) and Ct = Lt − xt. The first constraint is the resource constraint for each

t, while the second constraint is the incentive compatibility constraint sufficient for the high

type to reveal his identity given the presence of effective commitment along the equilibrium

path. Because ε → 0, we do not specify other incentive compatibility constraints. Assigning

43If instead we use the alternative game form outlined in Remark 1, this example would work with constant
types rather than almost constant types.
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Figure 5: The time path of distortions for almost constant types with β = 0.9 and δ =
0.6, 0.7, 0.8, 0.9. Higher curves correspond to lower values of δ.

Lagrange multipliers λ and βtµt to these constraints, the first-order necessary conditions of

this problem can be written as:

(π + λ)u0 (ct (θ1)) = πµt (46)

(1− π − λ)u0 (ct (θ0)) = (1− π)µt, (47)

and
(π + λ)

θ1
χ0 (lt (θ1) /θ1) = µt. (48)

Equations (46)-(47) imply that

u0 (ct (θ1))

u0 (ct (θ0))
=
(1− π − λ)

(π + λ)
.

Consequently, there is constant risk-sharing between the two types in all periods. Moreover, if a

steady state exists, so that xt → x∗, (46)-(48) combined imply that ct (θ1)→ c1∗, ct (θ0)→ c0∗,

and lt (θ1)→ l∗, and hence µt → µ∗. Consequently, in this case ϕ = β, so Theorem 4 applies

in exactly the same form as Theorem 3. Therefore, in this particular case, the rate at which

the derivative U∗Ct declines is easy to determine, and it does so at the same rate as the discount
factor of the citizens, i.e., ϕ = β. It is also straightforward to see that the same argument

generalizes to the case where there are more than two types.44

44In fact, we conjecture that whenever there exists a stationary distribution of consumption among individuals,
ϕ = β, though we have not been able to prove this conjecture.
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For a numerical illustration, we again consider the utility function (35) with two types and

the same parameter values from subsection 5.2. For brevity, we simply show the aggregate

distortion, 1 + ULt/UCt , in Figure 5. Consistent with part 2 of Theorem 4, when β = δ = 0.9,

the lowest curve shows that the aggregate distortion converges to zero and the convergence is

again rather fast. Instead, when δ < β, the aggregate distortion converges to a positive, and

potentially large, asymptotic value.45

7 Benevolent Time-Inconsistent Governments

The analysis so far was simplified by the fact that the government was purely self-interested.

Although this case is of relevance for many political economy applications, it is also important

to understand how the results generalize to the case considered by Roberts (1984), Freixas,

Guesnerie and Tirole (1985), or Bisin and Rampini (2005), where the government is still

benevolent, but “time inconsistent”, i.e., unable to commit to a full dynamic mechanism. To

do this, we now consider a more general utility function for the government of the form:

Et
∞X
s=0

δs
∙
(1− a) v (xt+s) + a

µ
Et+s

Z
u
¡
ct+s, lt+s | θt+s

¢
dGt+s

¡
θt+s

¢¶¸
, (49)

where the second term is the average (expected) utility of the citizens at time t + s (with

expectations based on information available at time t + s, which includes the public history

ht+s), and a > 0 (the case with a = 0 is identical to our analysis above). Therefore, this utility

function is identical to that of a purely-self-interested government when a = 0, and identical

to the fully-benevolent case when δ = β and a = 1.

In this case, we need to strengthen Assumption 1 and assume separable utility, which is a

standard assumption in most analyses of dynamic taxation (e.g., Golosov, Kocherlakota and

Tsyvinski, 2003, Kocherlakota, 2005).

Assumption 1’ (separable utility) u (c, l | θ) = u (c) − χ (l | θ), where u : R+ → R is
continuously differentiable, strictly increasing and concave, and χ (· | θ) is continuously dif-
ferentiable, strictly increasing and convex for all θ ∈ Θ, and satisfies χ (0 | θ) = 0 for all

θ ∈ Θ.
The next theorem shows that Theorem 1 and Proposition 1 continue to hold in this more

general environment, but with Assumption 1’ replacing Assumption 1:

45Note that the distortions are the same here as for the case with the private histories studied in subsection
5.2. The reason is that without the sustainability constraints, the problems would have the same solution.
When sustainability constraints are present but satisfied, there are no other reasons for the solutions to differ.
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Theorem 5 Suppose that government utility is given by (49) and that Assumptions 1’, 2, 3,

4 and 5 hold. Then for any combination of strategy profiles Γ and α that support a sustainable

mechanism, there exists another pair of equilibrium strategy profiles Γ∗ and α∗ = (α∗ | α0)
for some α0 such that Γ∗ induces direct submechanisms, α∗ induces truth telling along the

equilibrium path, and c [Γ, α,h] = c [Γ∗, α∗,h], l[Γ, α,h] =l[Γ∗, α∗,h] and x [Γ, α,h] = x [Γ∗, α∗,h].

Moreover, the best sustainable mechanism is a solution to maximizing (9) subject to (10), (11)

and the government sustainability constraint:

Et
∞X
s=0

δs
£
(1− a) v

¡
xt+s

¡
ht+s

¢¢
+

a

µ
Et+s

Z £
u
¡
c
¡
θt+s, ht+s

¢¢
− χ

¡
l
¡
θt+s, ht+s

¢
| θt+s

¢¤
dGt+s

¡
θt+s

¢¶¸
≥

max
x̃0t+

R
c̃0t(θt,ht)dGt(θt)≤F (Kt(ht−1),Lt(ht))

(1− a) v (x̃t) + a

Z
u
¡
ĉt
¡
θt, ht

¢¢
dGt

¡
θt
¢
, (50)

for all t and fall ht ∈ Ht.

Proof. See Appendix E.

The idea of this theorem is that the same type of punishment strategies that were used in

the case of the purely self-interested government also work when the government is benevolent.

In particular imagine that the government has undertaken a deviation in which it has used

some of its past information in order to improve the ex post allocation of resources. This could

clearly be desirable given the utility function of the government in (49), but as illustrated with

the Roberts’ (1984) example, it may have very negative consequences ex ante. Therefore, the

best sustainable mechanism will have to discourage such deviations. To do this, imagine the

same punishment strategies as above, in which following any type of deviation, all individuals

supply zero labor. To establish Theorem 5, all we need to show is that such punishment

strategies are sequentially rational. When all other agents choose zero labor supply, following

any deviation to positive labor supply, the government would consume some of the increase

in output itself, and would redistribute the rest equally among all agents given the separable

utility function assumed in Assumption 1’. Since there is a very large number of citizens,

this implies the deviating individual will receive no additional consumption from supplying

positive labor, and thus it is sequentially rational for all citizens to supply zero labor following

a deviation by the government.

This theorem therefore shows that revelation principle applies to the case of benevolent, but

time-inconsistent governments as well, though under the additional assumption of Assumption

1’. The next example shows why this assumption is necessary:

40



Example 1 To avoid issues of deviation among continuum of agents, let us consider a finite

economy with n agents for this example, where n is large (exactly the same example can

be constructed in an economy with a continuum of agents). There are two types of agents,

θ ∈ {0, 1}, with θ = 0 corresponding to the disabled type, who can only supply l = 0, and has

utility u (c, · | θ = 0) = u (c), while the utility of type θ = 1 is u (c, l | θ = 1) = u (c− χ1 (l)),

where with χ1 (·) strictly increasing in l. Furthermore, suppose that aggregate output is linear
in labor and that the government is fully benevolent, i.e., a = 1 in terms of the utility function

in (49). Now imagine the economy has entered the punishment phase where each citizen is

supposed to supply l = 0 and consume c = 0. Consider a deviation by an agent, i0, of type

θ = 1 to l0 > 0 such that χ1 (l
0) < 1. Following this deviation, the benevolent planner will

distribute consumption (output l0 > 0) to maximize its own utility, which involves maximizing

average utility of the citizens, thus equating the marginal utility of consumption across agents,

i.e.,

u0 (ci) = u0
¡
ci0 − χ1

¡
l0
¢¢
for all i 6= i0

thus, ci0 = ci + χ1 (l
0) for all i 6= i0. The resource constraint is (n− 1) ci + ci0 = l0, or

ci = (l
0 − χ1 (l

0)) /n and ci0 = (l
0 − χ1 (l

0)) /n+ χ1 (l
0). The resulting utility of individual i0 is

u
¡¡
l0 − χ1

¡
l0
¢¢
/n
¢
> u (0) ,

for any n, thus giving him greater utility than supplying zero labor. This proves that the

punishment phase where each citizen is supposed to supply zero labor is not sequentially

rational and thus cannot be part of a (Perfect Bayesian) equilibrium with this utility function.

The next theorem provides a generalization of Theorem 4 for the most-commonly studied

case where types are constant (in our context, types are “almost constant” as in subsection

6.2) and β = δ.46

Theorem 6 Suppose that government utility is given by (49) with a ∈ (0, 1) and that Assump-
tions 1’, 2, 3, 4 and 5 hold. Furthermore, assume that there are (almost) constant types, β = δ

and au0 (0) 6= (1− a) v0 (0). Then, asymptotically there are no aggregate distortions on labor

supply and capital accumulation.

Proof. See Appendix E.

This theorem implies that in an economy with (almost) constant types, aggregate distor-

tions disappear irrespective of the degree of benevolence of the government. Consequently,

46Once again with the game form in Remark 1, this theorem can be stated for constant types.
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there will be no aggregate capital taxes and no further taxes on labor beyond those implied

by the full-commitment Mirrlees economy.47 In the case where a → 1, the government is

arbitrarily close to the fully-benevolent case, and the theorem contrasts with the results in

Roberts (1984), where in a very similar environment, the equilibrium always involved extreme

distortions. Once again, the main source of the difference is the infinite-horizon nature of our

economy, which allows us to construct equilibria in which the government will be punished if

it exploits the information it gathers via the earlier submechanisms.

8 Anonymous Markets versus Mechanisms

We have so far characterized the behavior of the best sustainable mechanism under political

economy constraints. Although this was largely motivated by our objective of understanding

the form of optimal policy in an environment with both informational problems on the side

of agents and selfish behavior on the side of the government, an additional motivation is to

investigate when certain activities should be regulated by (sustainable) mechanisms and when

they should be organized in anonymous markets. In this section, we begin this analysis. Space

restrictions preclude a detailed discussion of how anonymous markets should be modeled, so

we take the simplest conception of anonymous markets as one in which there is no intervention

by the government, and consequently more limited insurance. For the purposes of the exercise

in this section, we do not need to assume anything specific about how the anonymous markets

work, except that there exists a well-defined anonymous market equilibrium, which yields ex

ante utility UAM to individuals before they know anything about their types. The point to

note is that UAM is independent of both the discount factor of the government and any other

institutional controls imposed on the government (since there is no government involvement

in the anonymous markets).

Given this, we can provide some simple comparisons between anonymous markets versus

sustainable mechanisms. Throughout this section, we suppress dependence of strategies and

allocations on public histories to simplify notation. Our first comparative static result states

that an increase in the discount factor of the government, δ, makes mechanisms more attrac-

tive relative to markets. Let USM (δ) be the ex ante expected value of the best sustainable

mechanism when the government discount factor is δ and UAM be as defined above.

Proposition 3 Suppose USM (δ) ≥ UAM , then USM
¡
δ0
¢
≥ UAM for all δ0 ≥ δ. Moreover,

as δ → 0, UAM > USM (δ).

47The assumption that au0 (0) 6= (1− a) v0 (0) rules out a special case in which our method of proof does not
work (though other more complicated approaches may work even without this assumption).
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Proof. Let S (δ) be the feasible set of allocation rules when the government discount factor
is equal to δ (meaning that they are feasible and also satisfy the sustainability constraint (12)).

Let {ct (δ) , lt (δ) , xt (δ)}∞t=0 ∈ S (δ) represent the best sustainable mechanism, where ct (δ) and
lt (δ) are vectors consumption and labor supply across types. Since δ

0 ≥ δ, we immediately

have {ct (δ) , lt (δ) , xt (δ)}∞t=0 ∈ S
¡
δ0
¢
–when the government’s discount factor is δ0, the left-

hand side of (12) is higher, while the right-hand side is unchanged, so {ct (δ) , lt (δ) , xt (δ)}∞t=0
satisfies (12). Therefore, {ct (δ) , lt (δ) , xt (δ)}∞t=0 is feasible and yields expected utilityUSM (δ)

when the government’s discount factor is δ0. This implies that USM
¡
δ0
¢
is at least as large as

UAM , therefore USM
¡
δ0
¢
≥ USM (δ) ≥ UAM .

The second part follows from the observation that with anonymous markets, individuals can

always achieve the autarchy allocation, thus UAM ≥ E0
£P∞

t=0 β
tu (ca (θt) , l

a (θt) | θt)
¤
,where

ca and la denote the optimal autarchy choices of an agent with type θ. In contrast, with δ → 0,

the centralized mechanism leads to utility of E0
£P∞

t=0 β
tu (0, 0 | θt)

¤
< E0

£P∞
t=0 β

tu (ca (θt) , l
a (θt) | θt)

¤
.

An important implication of this proposition is that because the government is self-interested

and unable to commit to policy sequences, not all equilibrium allocations without government

intervention can be achieved by a mechanism operated by the government. Consequently, as

shown by the last part of Proposition 3, anonymous markets can be preferred to sustainable

mechanisms.

Let us next consider a modification of our main setup along the lines mentioned in footnote

17, whereby the government can consume only a portion of the output η, so that a lower

η corresponds to better insututional constraints on government behavior. Define the value

of the mechanism as USM (η), i.e., now as a function of the institutional restriction on the

government. We then have:

Proposition 4 Suppose USM (η) ≥ UAM , then USM (η0) ≥ UAM for all η0 ≤ η. Moreover,

as η → 0, USM (η) > UAM .

The proof of this proposition is similar to that of Proposition 3 and is omitted. It states

the intuitive result that better institutional controls on government make mechanisms more

desirable relative to markets. It also implies that with sufficiently good controls on central-

ized mechanisms (government behavior), sustainable mechanisms are preferred to anonymous

markets.
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9 Concluding Remarks

The optimal taxation literature pioneered by Mirrlees (1971) has generated a number of im-

portant insights about the optimal tax policy in the presence of insurance-incentive trade-offs.

The recent optimal dynamic taxation literature has extended these insights to a macroeco-

nomic setting where issues of dynamic behavior of taxes is of central importance. A potential

criticism against all of this literature is that these optimal tax schemes assume a benevolent

government with full commitment power. A relevant and important question in this context is

whether the insights of this literature apply to real world situations where politicians care about

reelection, self-enrichment or their own individual biases, and cannot commit to sequences of

future policies or to mechanisms.

This paper investigated this question and characterized the conditions under which these

insights hold even when mechanisms are operated by self-interested politicians, who can misuse

the resources and the information they collect. The potential misuse of resources and informa-

tion by the government (politicians or bureaucrats) makes mechanisms less desirable relative

to markets than in the standard mechanism design approach, and implies that certain allo-

cations resulting from anonymous market transactions will not be achievable via centralized

mechanisms. Nevertheless, centralized mechanisms may be preferable to anonymous markets

because of the additional insurance they provide to risk-averse agents.

The main contribution of the paper is an analysis of the form of mechanisms to insure

idiosyncratic (productivity) risks as in the classical Mirrlees setup in the presence of a self-

interested government. Given the infinite horizon nature of the environment in question, we

can construct sustainable mechanisms where the government is given incentives not to misuse

resources and information. An important result of our analysis is the revelation principle

along the equilibrium path, which shows that truth-telling mechanisms can be used despite the

commitment problems and the different interests of the government and the citizens. Using

this tool, we provide a characterization of the best sustainable mechanism.

The other major results of our analysis are as follows. First, under fairly general conditions,

the best sustainable mechanism is a solution to a quasi-Mirrlees problem, defined as a program

in which the ex ante utility of agents is maximized subject to incentive compatibility, feasibility

constraints as well as two additional constraints on the total amount of consumption and labor

supply in the economy. Second, under additional conditions, we can characterize the initial

and asymptotic distortions created by the best sustainable mechanism. In particular, when

the government is sufficiently patient (in many cases as patient as, or more patients than,

the citizens), we can show that the Lagrange multiplier on the sustainability constraint of the
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government goes to zero and aggregate distortions disappear asymptotically. Consequently, in

the long run the highest type individuals will face zero marginal tax rate on their labor supply

as in classical Mirrlees setup and there will be no aggregate capital taxes as in the classical

dynamic taxation literature. These latter results therefore imply that some of the insights

from Mirrlees’ classical analysis and from the dynamic taxation literature may follow despite

the presence of political economy constraints and commitment problems. However, we also

show that when the government is not sufficiently patient, aggregate distortions remain, even

asymptotically. In this case, in contrast to many existing studies of optimal taxation, there

will be positive distortions and positive aggregate capital taxes even in the long run.

In addition, assuming that individual preferences are separable between consumption and

leisure, we also generalized the results on revelation principle and direct mechanisms to an

environment with potentially benevolent preferences for the government (including the fully-

benevolent time-inconsistent case), and showed that our main characterization result applies

with (almost) constant types.

We view this paper as a first step in investigating political economy of mechanisms. There

are both technical and substantial issues left unanswered. First, we would like to generalize

the results on time-inconsistent fully-benevolent government to non-separable utility functions

and to richer dynamics of individual types. Secondly, it is important to undertake a more

detailed comparison of centralized mechanisms subject to commitment problems and govern-

ment misbehavior to more realistic models of anonymous markets. Finally and perhaps most

importantly, our investigation highlights a difficult but interesting question: how should the

society be structured so that the government (the mechanism designer) is easier to control. In

other words, the recognition that governments need to be given the right incentives in designing

mechanisms opens the way for the analysis of “mechanism design squared”, where the structure

of incentives and institutions for governments and individuals are simultaneously determined

(for example, in the form of “constitutional design”). This becomes relevant in particular

when we want to think about the interaction of different types of institutions in society, for

example the difference between contracting institutions that regulate the relationship between

individual citizens versus “property rights institutions” that regulate the relationship between

the state and individuals (Acemoglu and Johnson, 2005). While the existence of these distinct

types of institutions have been recognized, how they should be simultaneously designed has

not been investigated. We believe that the approach and tools in this paper will be useful to

address this class of questions.
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Appendices

10 Appendix A: Some Technical Results and Definitions

We now provide a number of technical results and definitions that will be used in the rest of the
appendix. We take the definition of regular point from Luenberger (1969, p. 240).

Definition 6 Let X and Z be Banach spaces and G : X → Z be a vector-valued mapping. Suppose
that G is continuously (Fréchet) differentiable in the neighborhood of x0 with the derivative denoted by
G0 (x0). Then x0 is said to be a regular point of G if G0 (x0) maps X onto Z.

Lemma 2 Let X and Z be Banach spaces. Consider the maximization problem of

P (u) = max
x∈X

f (x) (51)

subject to
g0 (x) ≤ u (52)

and
G (x) ≤ 0 (53)

where f : X → R and g0 : X → R are real-valued functions and G : X → Z is a vector-valued mapping
and 0 is the zero of the Banach space Z. Suppose that f is concave and g0 is convex, and moreover that
the solution at u = 0, x0, is a regular point. Let µ be any multiplier of (52). Then µ is a subgradient
of P (0).

Proof. This lemma is a direct generalization of Proposition 6.5.8 of Bertsekas, Nedic and Ozdaglar
(2003, p. 382) to an infinite dimensional maximization problem.

Theorem 7 Let X and Z be Banach spaces. Consider the maximization problem of

P (u) = max
x∈X

f (x)

subject to
G (x) ≤ 0+ u

where f : X → R is a real-valued concave function and and G : X → Z is a convex vector-valued
mapping and 0 is the zero of the vector space Z and u is a perturbation. Suppose that x0 is a solution
to this program. Suppose also that x0 is a regular point of G and that f and G are continuously (Fréchet)
differentiable in the neighborhood of x0. Then P (0) is differentiable.

Proof. From Lemma 2, it follows that if there is a unique multiplier, P has a unique subgredient
and is thus differentiable. Proposition 4.47 in Bonnans and Shapiro (2000) establishes that under a
weaker constraint qualification condition than regularity, this problem has a unique multiplier.

Next, consider a metric space X andM (X) to be the space of all measures defined on Borel sets of
X. An element ξ ∈M (X) is nonnegative, countably additive, and has the property that ξ (X) = 1. Let
C (X) be the space of all bounded real-valued continuous functions onX. Then, following Parthasarathy
(1967, p. 40) we have that:

Definition 7 The weak topology on M (X) is the topology with the following sets as basis:

For any ξ ∈ M (X) , f1, ..., fk ∈ C (X) and ε1, ..., εk ∈ R+,

Sξ (f1, ..., fk; ε1, ..., εk) =

½
ν : ν ∈M (X) ,

¯̄̄̄Z
fidξ − fidν

¯̄̄̄
< εi for i = 1, ..., k

¾
.
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The key result for us is Theorem 6.5 from Parthasarathy (1967, p. 45):

Theorem 8 Let X be a compact metric space, then M (X) is a compact metric space with the weak
topology.

Next, recall the Caratheodory’s Theorem, with conv (X) denoting the convex hull of X for some
X ∈ RN (e.g., Proposition 1.3.1 in Bertsekas, Nedic and Ozdaglar, 2003, pp. 37-38):

Theorem 9 (Caratheodory’s Theorem) Let X ∈ RN , then any x ∈ conv (X) can be represented as
a convex combination of vectors x1, ..., xm from X such that x2−x1,...,xm−x1 are linearly independent.

Corollary 1 Let X ∈ RN , then any x ∈ conv (X) may be represented by no more than N + 1 vectors
of X.

Proof. Suppose not, this would violate linear independence of x2 − x1,...,xm − x1 as stated in
Theorem 9

This theorem and its corollary imply that the convex hull of any subset of the N -dimensional
Euclidean space can be achieved by N + 1 vectors, and will be useful in reducing the dimension of
randomizations below.

11 Appendix B: Proofs for Section 3

Proof of Lemma 1: If (8) is violated following some public history ht, then ξt (h
t) = 1, x̃0t (h

t) =
F
¡
Kt

¡
ht−1

¢
, Lt (h

t)
¢
and c̃0t = c̃0∅t yields utility v

¡
F
¡
Kt

¡
ht−1

¢
, Lt (h

t)
¢¢
to the government, which

is greater than its equilibrium payoff following ht, given by the left-hand side of (8). This contradicts
sustainability and establishes that (8) is necessary in any sustainable mechanism.

To see that (8) is sufficient for the best sustainable mechanism, note that reducing vct

³
K̃0
t+1, c̃

0
t | M̃ t

´
is equivalent to relaxing the constraint on problem (4), so is always preferred. Since from Assumption

5, vct ≥ 0 (i.e., x ≥ 0 and v (0) = 0), we only need to show that vct

³
K̃0
t+1, c̃

0
t | M̃ t

´
= 0 is achievable for

all M̃ t ∈Mt, Γ0 ∈ G, K̃0
t+1 ∈ R+ and c̃0t ∈ Ct. The following simple combination of strategies would

achieve this objective. Let ρt be the history of actions by the government. Also denote c̃0t = c̃0∅t be
the mapping that allocates zero consumption to all individuals irrespective of past and current reports.
Let ρt = ρ̂t if x̃t−s (h

t−s) = xt−s (h
t−s) and M̃t−s = Mt−s for all s > 0. Then the following strategy

combination would ensure vct

³
K̃0
t+1, c̃

0
t | M̃ t

´
= 0 for all t: (1) for the citizens, α=

¡
α̃ | α∅

¢
, for some

α̃, which means that for each citizen i and for all t, we have that if ρt−1 = ρ̂t−1, then αit = α̃, and
if ρt−1 6= ρ̂t−1, then αit = α∅; (2) for the government, Γ, such that if ρt−1 = ρ̂t−1, then Γ involves
x̃t (h

t) = xt (h
t), M̃t = Mt, and ξt (h

t) = 0 for all ht ∈ Ht; and if ρt−1 6= ρ̂t−1, then it involves
ξt (h

t) = 1, x̃0t (h
t) = F

¡
Kt

¡
ht−1

¢
, Lt (h

t)
¢
for all ht ∈ Ht, and c̃0t = c̃0∅t .

We next need to show that these strategies are sequentially rational. Consider the citizens first; it
suffices to note that following a history where ρt−1 6= ρ̂t−1, the government is playing ξt+s (h

t+s) = 1,

x̃0t+s (h
t+s) = F

¡
Kt+s

¡
ht+s−1

¢
, Lt+s (h

t+s)
¢
and c̃0t+s = c̃0∅t+sfor all s ≥ 0. Therefore, any strategy

other than α∅ will give some utility less than E
£P∞

s=0 β
su (0, 0 | θt+s) | θt, ht

¤
to an individual with

type history θt in the current period, which is the utility that always playing α∅ delivers. This argument
proves that this strategy is sequentially rational for the citizens. It is also sequentially rational for the
government, since after any history of ρt−1 6= ρ̂t−1, there will be no future output to expropriate, thus
playing ξt+s (h

t+s) = 1, x̃0t+s (h
t+s) = F

¡
Kt+s

¡
ht+s−1

¢
, Lt+s (h

t+s)
¢
and c̃0t+s = c̃0∅t+s is a best response

for the government starting in all of its information sets for all s ≥ 0. The fact that vct
³
K̃0
t+1, c̃

0
t | M̃ t

´
=

0 for all M̃ t ∈Mt, K̃t+1 ∈ R+ and c̃0t ∈ Ct, then implies that the best deviation for the government is
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also ξt (h
t) = 1, x̃0t (h

t) = F
¡
Kt

¡
ht−1

¢
, Lt (h

t)
¢
, c̃0t = c̃0∅t and K̃

0
t+1 (h

t) = 0 for all ht ∈ Ht establishing
that (7) takes the form (8).¥

Proof of Theorem 1: Take equilibrium strategy profiles Γ and α that support a sustainable
mechanism. Then by definition ξt (h

t) = 0 for all t and ht ∈ Ht, and from Lemma 1, (8) is satisfied.
Let the best response of type θt at time t according to α be to announce zt,Γ

¡
θt, ht−1

¢
given a history

of reports zt−1Γ
¡
θt−1, ht−1

¢
and public history ht−1. Let

ztΓ
¡
θt, ht−1

¢
=
¡
zt−1Γ

¡
θt−1, ht−1

¢
, zt,Γ

¡
θt, ht

¢¢
. Denote the expected utility of this individual under

this mechanism given history ht−1 be ũ
£
ztΓ
¡
θt, ht−1

¢
| θt,Γ, ht−1

¤
. By definition of ztΓ

¡
θt, ht−1

¢
being

a best response, we have

ũ
£
ztΓ
¡
θt, ht−1

¢
| θt,Γ, ht−1

¤
≥ ũ

£
z̃tΓ
¡
θt, ht−1

¢
| θt,Γ, ht−1

¤
for all z̃tΓ

¡
θt, ht−1

¢
∈ Zt and ht−1 ∈ Ht−1.

Now consider the alternative strategy profile for the government Γ∗, which induces the action profilehn
M̃t, ξt (h

t) , x̃t (h
t) , x̃0t (h

t) , c̃0t

o∞
t=0

i
such that ξt (h

t) = 0 for all t and ht ∈ Ht, M̃t =M∗t (whereM
∗
t is

a direct submechanism) and c [Γ∗, α∗,h] = c [Γ, α,h], l [Γ∗, α∗,h] = l [Γ, α,h], and x [Γ, α,h] = x [Γ∗, α∗,h].
Therefore, by construction,

ũ
£
θt, ht−1 | θt,Γ∗, ht−1

¤
= ũ

£
ztΓ
¡
θt, ht−1

¢
| θt,Γ, ht−1

¤
(54)

≥ ũ
£
z̃tΓ
¡
θt, ht−1

¢
| θt,Γ, ht−1

¤
= ũ

h
θ̂
t
, ht−1 | θt,Γ∗, ht−1

i
for all θ̂

t ∈ Θt and all ht−1 ∈ Ht−1. Equation (54) implies that α∗ = (α∗ | α0) is a best response along
the equilibrium path for the agents against the mechanism M∗ and government strategy profile Γ∗.
Moreover, by construction, the resulting allocation when individuals play α∗ = (α∗ | α0) against Γ∗ is
the same as when they play α against Γ. Therefore, by the definition of Γ being sustainable, we have
Γ ºα Γ

0 for all Γ0 ∈ G. Now choose α0 to be identical to α off-the-equilibrium path, which implies that
Γ∗ ºα∗ Γ

0 for all Γ0 ∈ G or that (8) is satisfied, thus establishing that (Γ∗, α∗) is an equilibrium.¥

12 Appendix C: Proofs for Section 5

In this appendix, we provide and prove a number of results used in the analysis of Section 5, ultimate
the building up to the proof of Theorem 3. Throughout this section we assume that Assumptions 1-3
and 5 are satisfied.

12.1 Properties of the Function U (C,L)

As mentioned in the text, to establish the concavity of U(C,L), we follow Prescott and Townsend

(1984a, 1984b) and allow for stochastic mechanisms, i.e., Mt ≡
³
c̃t, l̃t

´
: Zt ×Ht → ∆

¡
R+ ×

£
0, l̄
¤¢
as

specified in footnote 16. Recall that U(C,L) is a solution to a finite-dimensional maximization prob-
lem. Moreover, using the single-crossing property (Assumption 2), we can reduce the static incentive
compatibility constraints to only the constraints for the neighboring types, thus to N constraints (there
is no incentive compatibility constraint for the lowest type, θ0). In addition, there are the resource
constraints on the sum of consumption and labor supply levels. Recall also that only (C,L) ∈ Λ will
enable this maximization program to be well defined by making the constraint set non-empty.

Let C = {(c, l) ∈ R2 : 0 ≤ c ≤ c̄, 0 ≤ l ≤ l̄} be the set of possible consumption-labor allocations
for agents. Let P be the space of N + 1-tuples of probability measures on Borel subsets of C. Thus
each element ζ = [ζ(θ0), ..., ζ(θN )] in P consists of N + 1 probability measures for each type θi ∈ Θ.
Let us also denote the fraction of individuals with type θ at any point in time by π (θ), where clearlyPN

i=0 π (θi) = 1.
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Then the quasi-Mirrlees problem can be defined in the following way

U(C
¡
ht
¢
, L
¡
ht
¢
) ≡ max

ζ(·|ht)∈P

X
θ∈Θ

π(θ)

Z
u(c, l; θ)ζ(d(c, l), θ | ht) (55)

subject to Z
u(c, l | θi)ζ(d(c, l), θi | ht) ≥

Z
u(c, l | θ)ζ(d(c, l), θi−1 | ht) for all i = 1, ..., N (56)

X
θ∈Θ

π(θ)

Z
cζ(d(c, l), θ | ht) ≤ C

¡
ht
¢

(57)

X
θ∈Θ

π(θ)

Z
lζ(d(c, l), θ | ht) ≥ L

¡
ht
¢

(58)

for some (C,L) ∈ Λ.
Before deriving properties of the function U(C,L), we need to ensure regularity. Let (56), (57) and

(58) define the constraint mapping.

Lemma 3 The solution to (55) is a regular point of the constraint mapping.

Proof. The proof follows from the fact that from single-crossing property (Assumption 2), all
incentive compatibility constraints in (56) are linearly independent from each other, and also linearly
independent from (57) and (58), thus the constraint mapping has full rank, N +2, and is thus onto.

Our main result on the function U(C,L) is:

Lemma 4 U(C,L) is well-defined, continuous and concave on Λ, nondecreasing in C and nonincreasing
in L and differentiable in (C,L).

Proof. First, we show that U(C,L) is well-defined, i.e., a solution exists. For this, endow the
set of probability measures P with the weak topology. Since C is a compact subset of R2, Theorem
8 above establishes that P is compact in the weak topology, and the constraint set is compact in the
weak topology as well. Moreover, the objective function is continuous in any ζ ∈ P, thus establishing
existence.

Next, to show that U(C,L) is continuous, note that with the lotteries the constraint set is convex.
Then from Berge’s Maximum Theorem (e.g., Stokey, Lucas and Prescott, 1989, Theorem 3.6, p. 62),
U(C,L) is continuous in (C,L).

Concavity then follows from the convexity of the constraint set and the fact that the objective
function is concave in ζ ∈ P.

U(C,L) is also clearly nondecreasing in C, since a higher C relaxes constraint (57) and nonincreasing
in L, since a higher L tightens constraint (58).

Finally, to prove differentiability, note that the regularity condition is satisfied from Lemma 3 and
moreover, the objective function in (55) is continuously differentiable at all points of the constraint set.
We can therefore apply Theorem 7 using the strong topology, establishing that U(C,L) is differentiable
in (C,L). This completes the proof of the lemma.

The necessary properties of the set Λ are derived in the next lemma.

Lemma 5 Λ is compact and convex.

Proof. Convexity: Consider (C0, L0), (C1, L1) ∈ Λ and some ζ0, ζ1 feasible for (C0, L0) and
(C1, L1) respectively. For any α ∈ (0, 1) ζα ≡ αζ0 + (1− α)ζ1 is feasible for (αC0 + (1− α)C1, αL0 +
(1− α)L1), so that this set is non-empty. Moreover, since ζ0, ζ1 satisfy (56), (57) and (58), ζα satisfies
all three of these constraints, establishing convexity.

49



Compactness: Λ is clearly bounded, so we only have to show that it is closed. Take a sequence
(Cn, Ln) ∈ Λ. Since this sequence is in a bounded set, it has a convergent subsequence, (Cn, Ln) →
(C∞, L∞). We just need to show that (C∞, L∞) ∈ Λ. Let ζn be a feasible element for (Cn, Ln), and
since P is compact under the weak topology, ζn → ζ∞ ∈ P, which implies that ζ∞ satisfies (56)-(58)
and so ζ∞ is feasible for (C∞, L∞), therefore Λ is closed.

Now define a promised utility for the government for some sequence x = {xt}∞t=0 as

w =
∞X
t=0

δtv(xt)

Then the set of feasible promised utilities W is defined as

W = {w : ∃x ∈ R∞ s.t. for any t there is some L s.t. (L− xt, L) ∈ Λ, w =
∞X
t=0

δtv(xt)}

Lemma 6 W = [0, w̄].

Proof. Since v(0) = 0, it is clear that 0 is the minimal element. By definition w̄ is the maximal
element. Moreover, clearly any w ≤ w̄ is also achievable, so W must take the form [0, w̄].

To further analyze the best sustainable mechanism, let us rewrite the maximization problem recur-
sively as in equations (27)-(30) in the text. The following lemma is immediate:

Lemma 7 The solution to (24) subject to (23) and (25) is equivalent to the solution to the program
(27)-(30) combined with a choice of initial promised value to the government, w0, such that w0 =
argmaxw∈W V (w).

Proof. The proof follows from Thomas and Worrall (1990). Clearly any solution to (27)-(30) gives
a sustainable mechanism. Moreover, the ex ante utility for the citizens from any sustainable mechanism
can be obtained as V (w) from (27)-(30) by an argument analogous to the principle of optimality (see,
e.g., Stokey, Lucas and Prescott, 1989). It then follows that V (w0) = maxw∈W V (w) gives the best
sustainable mechanism.

Next note that the constraint set in the program (27)-(30) is not convex, and randomizations
over the current consumption and the continuation value of the government may further improve the
value of the program (which is the reason why we introduced histories ht). So analogously to the
quasi-Mirrlees problem, we now consider randomizations. Now let q = (C,L, x,w0) ∈ R4, C (w) =©
q ∈ R4 : (27)-(30) are satisfied for given w

ª
, and let Z be the set of Borel subsets of C (w) Then let

the triple (C (w) ,Z, µ̄) be a probability space. Let P (w) be the space of probability measures on C (w)
endowed with the weak topology. Incorporating randomization, we can write the recursive formulation
as:

Problem A1

V (w) = max
ξ∈P(w)

Z
[U(C,L) + βV (w0)]ξ (dq) (59)

subject to
C + x ≤ L ξ-almost-surely (60)

v(x) + δw0 ≥ v(L) ξ-almost-surely (61)

w =

Z
[v(x) + δw0]ξ (dq) (62)

and
(C,L) ∈ Λ and w0 ∈W ξ-almost-surely. (63)

Note that the resulting solution to this program will correspond to stochastic sequences {xt (ht)}∞t=0
and {wt (h

t)}∞t=0 as specified in the text.
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Lemma 8 V (w) is concave.

Proof. Consider any w0 and w1 and ξ0 and ξ1 that are the solution to the maximization problem.
Consider w = αw0 + (1 − α)w1 for some α ∈ (0, 1). Let ξα = αξ0 + (1 − α)ξ1. Constraints (60) and
(61) hold state by state, and are satisfied for both ξ0 and ξ1, and therefore must be satisfied for ξα.
Constraint (62) is linear in ξ, therefore ξα also satisfies this constraint. Since the objective function is
linear in ξα, we have V (αw0 + (1− α)w1) ≥ αV (w0) + (1− α)V (w1), establishing the concavity of V .

The above lemma establishes the concavity of V using arbitrary randomizations in the maximization
problem (59). The next lemma shows that a particularly simple form of randomization is sufficient to
achieve the maximum of (59).

Lemma 9 There exists ξ ∈ P (w) achieving the value V (w) with randomization between at most two
points, (C0, L0, x0, w

0
0) and (C1, L1, x1, w

0
1) with probabilities ξ0 and 1− ξ0.

Proof. To achieve convexity, we only need the constraint set to be convex. The constraint set here
is C (w) ∈ R4. Recall Theorem 9 and its corollary, which imply that the convex hull of C (w) can be
achieved with 5 points.

Suppose, to obtain a contradiction, that there are more than two points with positive probability.
We consider a case of three points, since the same argument applies to any finite number of points.
Suppose that randomization occurs between (C0, L0, x0, w

0
0), (C1, L1, x1, w

0
1) and (C2, L2, x2, w

0
2) with

probabilities ξ0, ξ1, ξ2 > 0. Suppose without loss of generality that v(x0) + δw00 ≤ v(x2) + δw02 ≤
v(x1)+δw01 and let α ∈ [0, 1] be such that v(x2)+δw02 = α(v(x0)+δw00)+(1−α)(v(x1)+δw01). Suppose
first

U(C2, L2) + βV (w02) > α[U(C0, L0) + βV (w00)] + (1− α)[U(C1, L1) + βV (w01)].

Then an alternative element ξ̂ ∈ P (w) assigning probability ξ̂2 = 1 to (C2, L2, x2, w
0
2) is feasible and

yields higher utility than the original randomization, yielding a contradiction. Next suppose that

U(C2, L2) + βV (w02) < α[U(C0, L0) + βV (w00)] + (1− α)[U(C1, L1) + βV (w01)].

Now consider an alternative ξ̂ ∈ P (w) assigning probability ξ0 + αξ2 to (C0, L0, x0, w
0
0) and probabil-

ity ξ1 + (1 − α)ξ2 to (C1, L1, x1, w
0
1), which is again feasible and gives a higher utility than original

randomization, once again yielding a contradiction. Therefore, ξ must satisfy

U(C2, L2) + βV (w02) = [U(C0, L0) + βV (w00)] + (1− α)[U(C1, L1) + βV (w01)].

But then the optimum can be achieved by simply randomizing between (C0, L0, x0, w
0
0) and (C1, L1, x1, w

0
1)

with probabilities ξ0 + αξ2 to (C0, L0, x0, w
0
0) and probability ξ1 + (1− α)ξ2.

Lemma 9 implies that we can focus on randomizations between two points. We denote solution for
any w by Ci(w), Li(w), xi(w), w

0
i(w), ξi(w) for i ∈ {0, 1}, and rewrite Problem A1 in equivalent form:

Problem A2:

V (w) = max
{ξi,Ci,Li,xi,w0

i}i=0,1

X
i=0,1

ξi [U(Ci, Li) + βV (w0i)] (64)

subject to
Ci + xi ≤ Li for i = 0, 1 (65)

v(xi) + δw0i ≥ v(Li) for i = 0, 1 (66)

w =
X
i=0,1

ξi [v(xi) + δw0i] . (67)

(Ci, Li) ∈ Λ for i = 0, 1 and w0 ∈W. (68)
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Returning to the notation in the text, the fact that at every date, there is randomization only between
two points also implies that the aggregate public history can be taken as ht ∈ {0, 1}t.

Next we would like to establish that V (w) is differentiable. This does not follow from Theorem 7,
since V (w) includes the term V (w0i), which may not be differentiable. Instead, we can apply an argument
similar to that of Benveniste and Scheinkman (1979) to prove differentiability (see also Stokey, Lucas
and Prescott, 1989).

Lemma 10 V (w) is differentiable.

Proof. From Lemma 9, in Problem A1 when w = w0, the optimal value can be achieved by
randomizing between w̄0i (w0) for i = 0, 1 with probabilities pi. Let V (w̄

0 (w0)) =
P

i=0,1 piV (w̄
0
i (w0))

and w̄0 (w0) =
P

i=0,1 piw̄
0
i (w0)). Then consider the maximization problem

W (w) = max
ξ∈P(w)

Z
[U(C,L) + βV (w̄0 (w0))]ξ (dq) (69)

subject to (60), (61) and

w =

Z
[v(x) + δw̄0 (w0)]ξ (dq) ,

which only differs from Problem A1 in that V (w0) and w0 are held constant at V (w̄0 (w0)) and w̄0 (w0).
By the same argument as in Lemma 8, W (w) is concave (the fact that we have V (w̄0 (w0)) fixed in
(69) does not affect the proof of Lemma 8). Next the same arguments as in Lemma 9 establishes that
W (w) can be equivalently characterized by the following maximization problem:

Problem A3:

W (w) = max
{ξi,Ci,Li,xi}i=0,1

X
i=0,1

ξi [U(Ci, Li) + βV (w̄0 (w0))]

Ci + xi ≤ Li for i = 0, 1 (70)

v(xi) + δw̄0 (w0) ≥ v(Li) for i = 0, 1 (71)

they don’t

w =
X
i=0,1

ξi [v(xi) + δw̄0 (w0)] . (72)

(Ci, Li) ∈ Λ for i = 0, 1 and w0 ∈W. (73)

Since W (w) is concave, Theorem 7 implies that it is also differentiable–βV (w̄0 (w0)) is just a
constant here, and all other terms are differentiable. Moreover, we have

W (w) ≤ V (w) (74)

and
W (w0) = V (w0) (75)

by construction.
From Lemma 8, V (w0) is concave, and therefore −V is convex. Convex functions have well-defined

subdifferentials. In particular, if f is convex, there exists a closed, convex and nonempty set ∂f such
that for all ν ∈ ∂f and any x and x0, we have f (x0)−f (x) ≥ v (x0 − x) (see Rockafellar, 1970, Chapter
23 or Bertsekas, Nedic and Ozdaglar, 2003, Chapter 4). Let −∂V (w) be the set of subdifferentials of
−V , i.e., all −ν such that −V (ŵ) + V (w) ≥ −ν · (ŵ − w). By definition, −∂V (w) is a closed, convex
and nonempty set. Consequently, for any subgradient −νof −∂V (w0), we have

ν · (w − w0) ≥ V (w)− V (w0) ≥W (w)−W (w0) ,

where the first inequality is by the definition of a subgradient, and the second follows from (74) and
(75). This implies that −ν is also a subgradients of −W (w0). But since W (w0) (and thus −W (w0))
is differentiable, −ν must be unique, therefore −V (w0) (and thus V (w0)) is also differentiable.
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12.2 Proof of Theorem 3

Proof. Since V is differentiable from Lemma 4 and concave from Lemma 8, the first-order conditions
are necessary and sufficient for the maximization (64). Assign the multipliers ξiκi to the constraints in
(65), ξiψi to those in (66) and γ to constraint (67), and let V 0 (w) be the derivative of V (w) at w, we
have

βξ0V
0 (w00) + δψ0ξ0 + δγξ0 ≤ 0

βξ1V
0 (w01) + δψ1ξ1 + δγξ1 ≤ 0

with both equations holding as equality for w0i ∈IntW. Therefore,

β

δ
V 0 (w0i) ≤ −ψi − γ, (76)

again with equality for w0i ∈IntW. Moreover, since V is differentiable, we have

V 0 (w) ≥ −γ (77)

again with equality for w ∈IntW.
In addition, combining first-order conditions we have that for (C,L) ∈IntΛ,

UC(Ci, Li) + UL(Ci, Li) = ψiv
0 (Li) for i = 0, 1. (78)

Part 1: To establish this part of the theorem, it suffices to show that ψi > 0 at t = 0 for i = 0
or 1. First note that the initial value w0 maximizes V (w), and since V (·) is differentiable, this implies
V 0 (w0) = γ = 0 at t = 0. Suppose, to obtain a contradiction, that ψi = 0 at t = 0 for both i = 0
and 1. This implies from (76) that βV 0 (w0i) /δ = 0, so that w

0
i = w0. Repeating this argument yields

wt = w0 for all t, and (66) never binds. This is in turn only consistent with xt = 0 for all t, which
then implies Ct = Lt = 0 for all t. This cannot be optimal, however, since ψi = 0 both i = 0 and 1
implies UC(Ci, Li) + UL(Ci, Li) = 0, which does not have Ci = Li = 0 as a solution (this follows from
Assumption 6, since otherwise w̄ would be equal to zero, and the inequality in Assumption 6 could not
be strict). This yields a contradiction and establishes that ψi > 0 for i = 0 or 1 at time t = 0, so initial
(C,L) cannot undistorted, and from Proposition 2, there is a positive marginal tax rate on even the
highest type.

Part 2: Let ht ∈ {0, 1}t, i = 0, 1 and fix some w ∈ IntW. Since β ≤ δ and V 0 (w) ≤ 0, (76) implies

V 0 (w0i) ≤ −ψi − γ for i = 0, 1.

Combining this with (77) and ψi ≥ 0 yields:

V 0 (w) ≥ V 0 (w0i) for i = 0, 1.

Concavity of V then implies that w0i ≥ w for i = 0, 1, establishing the claim that the sequence
{wt (h

t)}∞t=0 is nondecreasing. Since each wt (h
t) is in the compact set [0, w̄], the stochastic sequence

{wt (h
t)}∞t=0 must converge almost surely to some point w∗, meaning plimwt (h

t) = w∗. This im-
mediately implies {xt (ht)}∞t=0 almost surely converges to some x∗ (i.e., plimxt (h

t) = x∗), and also
plimCt (h

t) = C∗ and plimLt (h
t) = L∗ are feasible (given plimxt (h

t) = x∗) and are optimal from
the concavity of U (C,L), this is a solution to the maximization in (64), establishing the existence of a
steady state as claimed in the theorem.

Recall from the above argument that {wt (h
t)} ↑ w∗ almost surely. First suppose that β = δ and

w∗ < w̄. Then we must have V 0 (w∗) ≤ −ψ∗i − γ∗ for i = 0, 1 and from (77), V 0 (w∗) ≥ −γ∗, which is
only possible if ψ∗i = 0 for i = 0, 1 (recall that ψi ≥ 0), establishing the claim that the sustainability
constraints, (66), become slack asymptotically. This immediately implies that, asymptotically, the
solution to problem (17)-(18) with {Xt (h

t)}∞t=0 → x∗ and the solution to problem (19)-(20)-(12) coincide
as required for an asymptotically undistorted allocation as specified in Definition 4.
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Second, suppose that β = δ and w∗ = w̄. Recall that w̄ ≡ max(C,L)∈Λ v (L− C) / (1− δ), and let¡
C̄, L̄

¢
be a solution to this program satisfying the condition in Assumption 6, so that x̄ = L̄− C̄, and

v (x̄) / (1− δ) > v
¡
L̄
¢
. This implies that at

¡
C̄, L̄, x̄

¢
, the constraint (12) is slack, and therefore, the

solution to problem (19)-(20)-(12) coincides with the solution to problem (17)-(18) with X (ht)→ x̄, so
that the best sustainable mechanism is asymptotically undistorted.

Next consider the case in which β < δ. Now we have

β

δ
V 0 (wi,t+1) + ψi ≤ V 0 (wt) for i = 0, 1.

Recall that, as established above, {wi,t} ↑ w∗. To derive a contradiction, suppose that w∗ < w̄. This
implies that βV 0 (w∗) /δ + ψ∗ ≤ V 0 (w∗) for some ψ∗ ≥ 0, which is impossible in view of the fact that
β < δ and V 0 (w∗) ≤ 0 (unless wt = w0 for all t so that V

0 (w∗) = 0, which is ruled out by the argument
in part 1). Therefore, we must have {wi,t} ↑ w̄. The same argument as in the previous paragraph then
establishes that the best sustainable mechanism is asymptotically undistorted.

Part 3: Suppose that β > δ. Then, {wt (h
t)} is no longer nondecreasing. If {wt (h

t)} converges
to some w∗ ≤ w̄, then equation (34) in the text must hold as t → ∞ and limt→∞−UC/UL exists
and is strictly greater than 1 as claimed in the theorem. Next, suppose that {wt} does not converge.
Since it lies in a compact set, it has a convergent subsequence. Suppose that for all such convergent
subsequences ψi = 0 for i = 0, 1, this would imply convergence to a steady state since we would have
ψi,t = 0 for i = 0, 1 and for all t, yielding a contradiction. Therefore, there must exist a convergent
subsequence with ψi > 0, so that lim sup−UC/UL > 1. Consequently, distortions do not disappear
asymptotically, completing the proof.

13 Appendix D: Proofs for Section 6

In this appendix, we provide the proofs for the more general environment.

13.1 Properties of U ({Ct, Lt}∞t=0)
As in the above proof, to show concavity and differentiability of U ({Ct, Lt}∞t=0), we introduce ran-
domizations. To simplify notation, in this appendix, we suppress dependence on public histories ht.
The original maximization problem without randomization is to maximize (9) subject to (10), (11),
and (12) as stated in Proposition 1. Recall also that θt ∈ Θ, where Θ is at finite set (with N + 1
elements). Therefore Θt for any t < ∞ is also a finite set. Consider next the functions ct : Θ

t → R+
and lt : Θ

t →
£
0, l̄
¤
. By definition, these functions assign values to a finite number of points in the set

Θt for any t <∞, thus can simply be thought of as vectors of (N (N + 1))t dimension. MoreoverZ
ct
¡
θt
¢
dG
¡
θt
¢
≤ Ȳ , Kt+1 ≤ Ȳ and xt ≤ Ȳ , (79)

where Ȳ = F
¡
Ȳ , l̄

¢
< ∞. Therefore, Xt =

©
ct
¡
θt
¢
, l
¡
θt
¢
,Kt+1, xt

ª
is a vector (of dimension

(N (N + 1))
2t
+ 2). Let Xt be the set of all such vectors that satisfy the inequalities in (79), and

for Xt ∈ Xt, let Xt (i) denote the ith component of this vector, and Tt be the dimension of vectors in

the set Xt (i.e., Tt = (N (N + 1))
2t
+ 2). Xt is a compact metric space space with the usual Euclidean

distance metric, dt (Xt,X
0) =

³PTt
i=1 (X

0
t (i)−Xt (i))

2
´1/2

Let us now construct the product space of the Xt’s

X =
∞Y
t=1

Xt
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Clearly the sequence
©
ct
¡
θt
¢
, lt
¡
θt
¢
, xt,Kt+1

ª∞
t=0

must belong to X. In fact, it must belong to the

subset of X, which satisfy (10), (11), and (12), denoted by X̄.
Now by Tychonoff’s theorem (e.g., Dudley, 2002, Theorem 2.2.8), X is compact in the product

topology. Since (10), (11), and (12) are (weak) inequalities, X̄ is a closed subset of X, and therefore it
is also compact in the product topology. Moreover, X with the product topology is meterizable, with
the metric

d (X,X 0) =
∞X
t=1

φtdt (Xt,X
0
t) (80)

for some ω ∈ (0, 1) and X ≡ {Xt}∞t=0 ∈ X. This shows that X endowed with the product topology is
a metric space, and so is X̄. From Theorem 8, the set of probability measures defined over a compact
metric space is compact in the weak topology. This establishes that the set of probability measures
P∞ defined over X̄ is compact in the weak topology.

We are concerned not with all probability measures, but those that condition at t on information
revealed up to t. Let C = {(c, l) ∈ R2 : 0 ≤ c ≤ c̄, 0 ≤ l ≤ l̄} be the set of possible consumption-
labor allocations for agents, so that P∞ defined above is the set of all probability measures over
C∞. Now, for each t ∈ N and θt−1 ∈ Θt−1, let P

£
θt−1

¤
be the space of N + 1-tuples of probability

measures on Borel subsets of C for an individual with history of reports θt−1. Thus each element
ζ
¡
· | θt−1

¢
= [ζ(θ0 | θt−1), ..., ζ(θN | θt−1)] in a Pt

£
θt−1

¤
consists of N + 1 probabilities measures for

each type θi given their past reports, θ
t−1, and is thus closed. Consider P ≡

S
t∈N

S
θt∈Θt Pt

£
θt−1

¤
,

which is a closed subset of P∞. Since a closed subset of a compact space is compact (e.g., Dudley, 2002,
Theorem 2.2.2), P is compact in the weak topology.

Finally, choosing φ ≤ β in (80) shows that the objective function is continuous in the weak topol-
ogy. This establishes that including randomizations, we have a maximization problem over probability
measures in which the objective function is continuous in the weak topology, and the constraint set is
compact in the weak topology, and thus there exists a probability measure that reaches the maximum.

Given this result, the rest of the analysis parallels that of Theorem 3. The key lemma is a general-
ization of Lemma 4, which is stated here.

Lemma 11 U({Ct, Lt}∞t=0) is continuous and concave on Λ∞, nondecreasing in Cs and nonincreasing
in Ls for any s and differentiable in {Ct, Lt}∞t=0.

This lemma can be proved along the lines of Lemma 4, except that in this infinite-dimensional space
we are no longer able to prove Lemma 3. Thus, all the proofs assume that the solution is at a regular
point as defined in Definition 6.

Proof. The above argument established that in the problem of maximizing (9) subject to (10),
(11), and (12) over probability measures, a maximum exists and U({Ct, Lt}∞t=0) is therefore well defined.

To show concavity, consider (C0, L0) and (C1, L1) and corresponding ζ0, ζ1. We haveZ
(u(c, l; θ)− u(c, l; θ̂))ζα(d(c, l), θ)

= α

Z
(u(c, l; θ)− u(c, l; θ̂))ζ0(d(c, l), θ) + (1− α)

Z
(u(c, l; θ)− u(c, l; θ̂))ζ1(d(c, l), θ)

≥ 0

In a similar way we can show that ζα satisfies (10), (11), and (12), this convex combination is
feasible and it gives the same utility as αζ0 · u(θ) + (1− α)ζ1 · u(θ).

Next, note that the constraint set expands if Cs increases or Ls decreases for any s, therefore U
must be weakly increasing in Cs and weakly decreasing in Ls.

Finally, Theorem 7 applies to this problem and implies that U({Ct, Lt}∞t=0) is differentiable in
{Ct, Lt}∞t=0, completing the proof.

Lemma 12 Λ∞ is compact and convex.
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Proof. Convexity: Consider {Ct, Lt}∞t=0 and {C 0t, L0t}
∞
t=0 ∈ Λ∞ and some ζ0, ζ1 feasible for

{Ct, Lt}∞t=0 and {C 0t, L0t}
∞
t=0 respectively. Now for any α ∈ (0, 1) ζα ≡ αζ0 + (1 − α)ζ1 is feasible for

(α {Ct, Lt}∞t=0 + (1− α) {C 0t, L0t}
∞
t=0), so that this set is non-empty. Moreover, since ζ

0, ζ1 satisfy (56),
ζα satisfies it as well. Similarly, ζα satisfies (57) and (58).

Compactness: For any sequence {Cn
t , L

n
t }
∞
t=0 ∈ Λ∞, {Cn

t , L
n
t }
∞
t=0 → {C∞t , L∞t }

∞
t=0, there exists a

sequence {ζn}∞t=0 corresponding to {Cn
t , L

n
t }
∞
t=0, such that ζ

n → ζ∞, satisfying (56)-(58) and feasibility,
therefore {C∞t , L∞t }

∞
t=0 ∈ Λ∞ is closed. Boundedness follows from boundedness of C and L.

13.2 Proof of Theorem 4

The proof of Theorem 4 is similar to that of Theorem 3, except that we do not use the recursive
formulation. Instead, we work directly with the sequence problem and the necessary conditions of the
sequence problem.

Proof. Part 1: Suppose to obtain a contradiction that µt (h
t) = 0 for all t ≥ 0 and all ht

(almost surely). Then, xt (h
t) = 0 for all t and all ht. But in this case, if Lt > 0 for any t, then

the government can improve by expropriating the entire output at t. Thus we must have Lt (h
t) = 0

for all t and all ht. Since, by hypothesis, {Ct (h
t) , Lt (h

t)}∞t=0 ∈IntΛ∞ with Lt (h
t) > 0 is feasible

and the associated {Ct (h
t) , Lt (h

t)}∞t=0 ∈IntΛ∞ necessarily gives higher ex ante utility to citizens than
Lt (h

t) = Ct (h
t) = 0, the plan with Lt (h

t) = 0 for all t and all ht cannot be optimal, establishing a
contradiction and proving Part 1 of the theorem.

Part 2: Take {Ct (h
t) , Lt (h

t) ,Kt+1 (h
t)}∞t=0 to be part of the optimal mechanism. Suppose that

{Ct (h
t) , Lt (h

t) ,Kt+1 (h
t)}∞t=0 (almost surely) converges to a limit, (C∗, L∗,K∗), and let x∗ = L∗ −

C∗ −K∗.
We start by proving that ϕ =sup{ ( ∈ [0, 1] : plimt→∞ (−tU∗Ct = 0} defined in the theorem is

well-defined and strictly less than 1. To see this, recall that by hypothesis, a steady state exists, so that
{Ct (h

t) , Lt (h
t) ,Kt+1 (h

t)}∞t=0 → (C∗, L∗,K∗), thus {Ct (h
t)}∞t=0 is in the space c of convergent infinite

sequences (rather than simply in the space of all bounded infinite sequences, c∞). The dual of c is c1,
that is, the space of sequences {yt}∞t=0 such that

P∞
t=0 |yt| < ∞. Since UCt is equal to the Lagrange

multiplier for the constraint (15), it lies in the dual space of {Ct (h
t)}∞t=0 (see, e.g., Luenberger, 1969,

Chapter 9), thus in c1, which implies that limt→∞ UCt = 0, hence ϕ < 1.
The rest of the proof of Part 2 will consist of two cases.
Case 1: Suppose that {Ct (h

t) , Lt (h
t)}∞t=0 → (C∗, L∗) ∈IntΛ̄∞ and that ϕ = δ. Then (40) and

(41) are necessary conditions for optimality. Rearranging these equations and substituting for UCt , we
have

−
U∗Lt

U∗CtFLt (K∗, L∗)
= 1− (µt − µt−1)v

0(F (K∗, L∗)))

µtv
0(x∗)

(81)

and
FKt+1 (K

∗, L∗)U∗Ct+1
U∗Ct

= 1 +
(µt+1 − µt)v

0(F (K∗, L∗))FKt+1 (K
∗, L∗)

µtv
0(x∗)

, (82)

where all derivatives are evaluated at the limit (C∗, L∗,K∗).
Since {Ct (h

t) , Lt (h
t)}∞t=0 → (C∗, L∗) ∈IntΛ̄∞, equation (44) also holds as t→∞ and implies that,

we have
U∗Ct

δtv0(x∗)
= µt ≤ µt+1 =

U∗Ct+1
δt+1v0(x∗)

. (83)

Since as t→∞, a steady state (C∗, L∗,K∗, x∗) exists by hypothesis and U∗Ct is proportional to ϕ
t,

(83) can be written as
ϕtU∗C∗
δtv0(x∗)

= µt ≤ µt+1 =
ϕt+1U∗C∗
δt+1v0(x∗)

as t→∞. (84)

Since ϕ = δ and since, as established above, ϕ < 1, we have that (84) implies that as t → ∞,¯̄
µt+1 − µt

¯̄
→ 0 and µt → µ∗ ∈ (0,∞) (where the fact that µ∗ > 0 follows from Part 1, since µt+1 ≥ µt
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and µt > 0 for some t). Therefore, (µt − µt−1)/µt → 0, and from (81) and (82), we have that
−ULt/UCtFLt and FKt+1UCt+1/UCt almost surely converge to 1, thus {Ct (h

t) , Lt (h
t) ,Kt+1 (h

t)}∞t=0
must be asymptotically undistorted. The rest of the argument parallels the proof of Part 2 of Theorem
3. This establishes the result for Case 1 where {Ct (h

t) , Lt (h
t)}∞t=0 → (C∗, L∗) ∈IntΛ̄∞ and ϕ = δ.

Case 2: Suppose that either {Ct (h
t) , Lt (h

t)}∞t=0 → (C∗, L∗) ∈BdΛ̄∞ (and ϕ = δ) or ϕ < δ.
First consider the subcase where ϕ < δ. Then, equation (83) cannot apply. Since this equation must

hold for all {Ct (h
t) , Lt (h

t)}∞t=0 ∈IntΛ̄∞, we must have that {Ct (h
t) , Lt (h

t)}∞t=0 → (C∗, L∗) ∈BdΛ̄∞.
This implies that we converge to some {Ct (h

t) , Lt (h
t)}∞t=0 → (C∗, L∗) ∈BdΛ̄∞ and {Ct (h

t) , Lt (h
t) ,Kt+1 (h

t)}∞t=0 →
(C∗, L∗,K∗) (since by hypothesis a steady state exists), as in the first part of the hypothesis. Thus we
only have to consider the case where (C∗, L∗) ∈BdΛ̄∞ with and ϕ ≤ δ.

Now let us turn to the subcase where (C∗, L∗) ∈BdΛ̄∞ (and ϕ ≤ δ). Suppose also that v (x∗) / (1− δ) <
w̄, where w̄ is as defined in Assumption 7. Now (40) and (41) no longer apply, but since v (x∗) / (1− δ) <
w̄, the first-order necessary conditions with respect to xt and Kt+1 imply:

δµtv
0(xt)− δtκt = 0

−δt(µt+1 − µt)v
0 (F (Kt+1, Lt+1))FKt+1 + δt+1κt+1FKt+1 − δtκt = 0,

where recall that κt is the multiplier on the resource constraint (39). Rearranging these equations by
eliminating κt, we obtain:

µt+1
µt

=

v0(xt)
δFKt+1

− v0 (F (Kt+1, Lt+1))

v0 (xt+1)− v0 (F (Kt+1, Lt+1))
=

v0(x∗)
δFKt+1 (K

∗,L∗) − v0 (F (K∗, L∗))

v0 (x∗)− v0 (F (K∗, L∗))
, (85)

where the second equality evaluates the expression at the limit (C∗, L∗,K∗, x∗). Now to obtain a
contradiction, suppose that as t → ∞, we have µt → ∞, and thus µt+1/µt > 1. Inspection of (85),
combined with the fact that v0 (xt+1) − v0 (F (Kt+1, Lt+1)) ≥ 0 (since F (Kt+1, Lt+1) ≥ xt+1 and v (·)
is concave), implies that this is only possible if δFKt+1

(K∗, L∗) < 1. However, we have UCt ≤ UCt+1 ·
FKt+1

, thus as t → ∞, ϕFKt+1
≥ δFKt+1

≥ 1, where the inequality follows from the assumption that
ϕ ≥ δ and contradicts δFKt+1 (K

∗, L∗) < 1. Consequently, we have µt → µ∗ < ∞ at the limit point
(C∗, L∗,K∗, x∗), so that (12) is slack, and therefore the solution to problem (19)-(20) coincides with
the solution to problem (17)-(18) with X (ht)→ x∗.

Finally suppose that (C∗, L∗) ∈BdΛ̄∞ but also v (x∗) / (1− δ) = w̄. Assumption 7 then implies that
(12) is slack, and once again the solution to problem (19)-(20) coincides with the solution to problem
(17)-(18) with X (ht)→ x∗. This completes the proof of Case 2 and thus of Part 2.

Part 3: Suppose that ϕ > δ. In this case, (83) implies that U∗Ct is proportional to ϕ > δ as t→∞.
This implies that (µt − µt−1)/µt > 0 as t → ∞, so from (81) and (82), aggregate distortions cannot
disappear, completing the proof.

14 Appendix E: Proofs for Section 7

14.1 Proof of Theorem 5:

The proof of this theorem follows the structure of the proofs of Lemma 1, Theorem 1 and Proposition
1.

Proof. As in the proof of Lemma 1, we first need to show that there exists a sequentially rational
continuation play in which all agents supply zero labor. Suppose that the government has announced
a submechanism M̃t at time t and has capital stock Kt, and αit+s = α∅ for all i ∈ [0, 1] and for all
s ≥ 0. We first show that a deviation by an individual, i0 with type θi

0

t 6= θ0 to some other strategy that
involves supplying positive labor is not profitable (as noted in footnote 10, we think of an individual with
positive measure ε deviating, and take the limit ε→ 0, since there is a continuum of agents). Without
the deviation, i0 obtains utility u (0) / (1− β) (since from Assumption 1’, χ (0 | θ) = 0 for all θ ∈ Θ
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and there will be no labor supply for any type in the continuation game). Now imagine a deviation

to a message that corresponds to positive labor supply, say l0, with χ
³
l0 | θi

0

t

´
> χ

³
0 | θi

0

t

´
= 0 by

definition. This will generate output F (Kt, εl
0), since all other agents are supplying zero labor. Now

imagine the behavior of the government at the last stage of the game, conditional on αit+s = α∅ for all
i ∈ [0, 1] and for all s ≥ 1. Then the sequentially rational strategy of the government is to maximize
(49) with Kt+1 = 0, since there will be no production in future periods. Consequently, the utility-
maximizing program of the government in the information set following the deviation is (suppressing
ht-dependence to simplify notation):

max
x̃0t,c̃

0
t

(1− a) v (xt) + a

µZ £
u
¡
c̃0t
¡
zt
¡
αt
¡
θt
¢¢¢¢

− χ
¡
lt
¡
zt
¡
αt
¡
θt
¢¢¢

| θt
¢¤
dGt

¡
θt
¢¶

,

subject to xt +
R
c̃0t
¡
zt
¡
αt
¡
θt
¢¢¢

dGt
¡
θt
¢
≤ F (Kt, εl

0), where recall that zt
¡
αt
¡
θt
¢¢
is the history of

reports up to time t by an individual of type θt given strategy profile α. In view of Assumption 1’, this
expression is concave in c for any strategy profile α, so the optimal policy for the government in this
information set is to redistribute consumption (what it does not consume itself) equally across agents,
i.e., c̃0t

¡
zt
¡
αt
¡
θt
¢¢¢

= ct for all z
t
¡
αt
¡
θt
¢¢
∈ Zt. This implies that as ε→ 0, ct → 0, and thus the devi-

ation payoff of i0 is u (0)−χ
³
l0 | θi

0´
+β

³
u (0)− χ

³
0 | θi

0´´
/ (1− β) <

³
u (0)− χ

³
0 | θi

0´´
/ (1− β),

showing that a continuation strategy profile where all agents supply zero labor is sequentially rational.
Now consider two different types of deviations by the government. First, imagine the government

offers M̃t 6= Mt, i.e., a different mechanism at the beginning of time t than the one implicitly agreed
in the social plan (M,x). Given the above-constructed continuation equilibrium, αit+s = α∅ for all
i ∈ [0, 1] and for all s ≥ 0 is a best response against this deviation. Since maximal punishments are
optimal, αit+s = α∅ for all i ∈ [0, 1] and for all s ≥ 0 is optimal against this deviation, implying that
such a deviation would never be profitable for the government.

Second, as before, the government can deviate at the last stage of time t. Again αit+s = α∅ for all
i ∈ [0, 1] and for all s ≥ 1 is the maximal sequentially rational punishment against such a deviation.
Consequently, after any deviation by the government, there will not be any further production. Thus
the optimal deviation for the government involves K̃0

t+1 = 0, and again exploiting the concavity of the
government’s continuation payoff in c, the sustainability constraint is equivalent to:

Et
∞X
s=0

δs
∙
(1− a) v (xt+s) + aEt+s

µZ £
u (ct)− χ

¡
lt
¡
zt
¡
αt
¡
θt
¢¢¢

| θt
¢¤
dGt

¡
θt
¢¶¸

(86)

≥ max
x̃0t+c̃

0
t≤F (Kt,Lt)

(1− a) v (x̃t) + a

Z
u
¡
c̃0t
¡
θt
¢
dGt

¡
θt
¢¢
for all t.

Now, given an equilibrium pair of strategy profiles Γ and α, exactly the same argument as in
the proof of Theorem 1 implies that there exists another pair of equilibrium strategy profiles Γ∗ and
α∗ = (α∗ | α0) for some α0 such that Γ∗ induces direct submechanisms. Consequently, we can write
(86), in terms of a direct mechanism, which gives (50).

Finally, the same argument as in the proof of Proposition 1 implies that the best sustainable
mechanism is a solution to maximizing (9) subject to (10), (11), and the sustainability constraints of
the government given by (50).

14.2 Proof of Theorem 6

Proof. Suppose again that there are N + 1 types, i.e., Θ = {θ0, θ1, ..., θN}, ranked in ascending order
of skills, and with respective probabilities {π0, π1, ..., πN}. Given the assumptions of the theorem (and
again suppressing ht-dependence to simplify notation), we can write the program for the best sustainable
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mechanism as:

max
{{ct(θi),lt(θi)}Ni=0,xt,Kt+1}∞

t=0

∞X
t=0

βt
NX
i=0

πi [u (ct (θi))− χ (lt (θi) | θi)]

subject to the constraints

∞X
t=0

βt [u (ct (θi))− χ (lt (θi) | θi)] ≥
∞X
t=0

βt [u (ct (θi−1))− χ (lt (θi−1) | θi)] (87)

for all i = 1,..., N ,

∞X
s=0

βt+s

(
(1− a) v (xt+s) + a

Ã
NX
i=0

πi [u (ct+s (θi))− χ (lt+s (θi) | θi)]
!)
≥ V (Kt, Lt) (88)

for all t, and

xt +Kt+1 +
NX
i=0

πiu (ct (θi)) ≤ F

Ã
Kt,

NX
i=1

πilt (θi | θi)
!

(89)

for all t, and that ct (θi) ≥ 0 for all i and t and xt ≥ 0 for all t.
The first set of constraints, (87), ensure incentive compatibility for the citizens. Given Theorem 5,

there is truthful revelation along the equilibrium path. This, together with Assumption 2, implies that
we only need one constraint for each type other than the disabled type, θ0, where type i could deviate
to claim to be type i− 1. The second set of constraints, (88), one for each date, impose sustainability,
with the definition V (Kt, Lt) ≡ maxx̃0t+c̃0t≤F (Kt,Lt) (1− a) v (x̃0t) + a

PN
i=0 πiu (c̃

0
t (θi)), and finally, the

last set of constraints, one for each date, impose the aggregate resource constraint.
As in subsection 6.1, we follow Marcet and Marimon (1998) and form the Lagrangian (see footnote

41 for details):

L =
∞X
t=0

βt
NX
i=1

πi [u (ct (θi))− χ (lt (θi) | θi)]

+
∞X
t=0

βtµt

(
(1− a) v(xt) + a

NX
i=1

πi [u (ct (θi))− χ (lt (θi) | θi)]
)

−
∞X
t=0

βt(µt − µt−1)V

Ã
Kt,

NX
i=1

πilt (θi | θi)
!

+
NX
i=1

λi

( ∞X
t=0

βt {[u (ct (θi))− χ (lt (θi) | θi)]− [u (ct (θi−1))− χ (lt (θi−1) | θi)]}
)

−
∞X
t=0

βtηt

(
xt +Kt+1 +

NX
i=1

πict (θi)− F

Ã
Kt,

NX
i=1

πilt (θi | θi)
!)

where λi is the multiplier on the incentive-compatibility constraint of type i, β
tηt is the multiplier on

the resource constraint at time t, and we have left the constraints that ct (θi) ≥ 0 for all i and t and
xt ≥ 0 for all t implicit.

For ct (θi) > 0 and xt > 0, we can take first-order conditions, which, after canceling out the βt

terms and defining λ0 = 0 and λN+1 = 0, yield:

(1 + aµt)πiu
0 (ct (θi)) + (λi − λi+1)u

0 (ct (θi))− ηtπi = 0 for all i = 0, ...N and all t, (90)
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(1 + aµt)πiχ
0 (lt (θi) | θi) + (λiχ0 (lt (θi) | θi)− λi+1χ

0 (lt (θi) | θi+1)) (91)

+
¡
µt − µt−1

¢
πiVL (Kt, Lt)− ηtπiFL (Kt, Lt) = 0 for all i = 0, ...N and all t,

−
¡
µt − µt−1

¢
VK (Kt, Lt) + ηtFK (Kt, Lt)− β−1ηt−1 = 0 for all t, (92)

µt (1− a) v0 (xt) = ηt for all t. (93)

Recall that {µt}
∞
t=0 is a nondecreasing sequence, thus it possesses a unique limit point on the extended

real line. First suppose that µt → µ∗ < ∞, then (90)-(93) establishes that there exists an allocation
with ηt → η∗, ct (θi)→ c∗i > 0 for all i, and xt → x∗, in which distortions disappear as claimed in the
theorem.

To complete the proof, we need to show that there does not exist any solution to the above max-
imization problem with µt → ∞. To obtain a contradiction suppose that µt → ∞. Combine (90) for
type N with (93) and using the fact that µt+1 ≥ µt > 0 and that λN+1 = 0 (by definition), we have
that for all ct (θN ) > 0 and xt > 0,³

1 + λN
πN

´
(1− a) v0(xt)

u0(ct(θN ))
− a

= µt ≤ µt+1 =

³
1 + λN

πN

´
(1− a) v0(xt+1)

u0(ct+1(θN ))
− a

. (94)

Both sides of this equation are strictly positive by the fact that µt+1 ≥ µt > 0. The hypothesis that
µt →∞ implies that as t→∞, µt < µt+1.

Next combine (90) some i and i0 6= i to obtain:

u0 (ct (θi)) +
(λi − λi+1)

πi (1 + aµt)
u0 (ct (θi)) = u0 (ct (θi0)) +

(λi0 − λi0+1)

πi0 (1 + aµt)
u0 (ct (θi0)) . (95)

The fact that µt → ∞ implies that as t → ∞, |ct (θi)− ct (θi0)| → 0. This argument then establishes
that ct (θi) ↓ c∗ for all i = 0, ...N . From the freedom of labor supply, this also implies that we must
have lt (θi) ↓ l∗ = 0 for all i = 1, ...N , since otherwise at some point all θi 6= θ0 would claim to have
become disabled). From Assumption 2 and the resource constraint, this also implies that as t → ∞,
ct (θi) ↓ 0 for all i = 0, ...N and xt ↓ 0.

Now, suppose first that l∗ = 0 and c∗ = 0 are reached in finite time, i.e., ct0 (θi) = 0 for all i and all
t ≥ t0 for some t0 < ∞. We will show that this cannot be part of a sustainable mechanism. We have
that for all t ≥ t0, ct (θi) = lt (θi) = 0 for all i and xt = 0, so the continuation utility of the government
is (1− a)u (0) / (1− δ) (since v (0) = 0 and χ (0 | ·) = 0). However, by hypothesis, ct0−1 (θi) > 0 for
at least some i, so there is positive output at t0 − 1. Moreover, from (95), ct0−1 (θi) 6= ct0−1 (θi0) for
some i and i0. This implies that the government would prefer to deviate at t0 − 1 to ξt0−1 = 1, and
redistribute the output between xt and equal consumption across all individuals (i.e., ct0−1 (θi) = c∗t0−1
for all i and some c∗t0−1). This deviation will necessarily increase government utility at t

0 − 1 (since
ct0−1 (θi) 6= ct0−1 (θi0) for all i and i0 in the original allocation), and its continuation utility from t0

onwards would still remain at (1− a)u (0) / (1− δ). Since this argument applies for any t0 > 0, it
proves that there cannot be a sustainable mechanism that reaches l∗ = 0 and c∗ = 0 in finite time.
Hence, it must be the case that ct (θi) ↓ 0 and lt (θi) ↓ 0, but ct (θi) > 0 for all t. Then, combining (94)
and (95) implies that, as long as au0 (0) 6= (1− a) v0 (0), µt+1 − µt ↓ 0, contradicting µt →∞, and thus
establishing the theorem.
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