
Review of Economic Studies (2003)70, 569–587 0034-6527/03/00220569$02.00
c© 2003 The Review of Economic Studies Limited

Optimal Indirect and Capital
Taxation

MIKHAIL GOLOSOV
University of Minnesota and Federal Reserve Bank of Minneapolis

NARAYANA KOCHERLAKOTA
Stanford University and Federal Reserve Bank of Minneapolis

and

ALEH TSYVINSKI
University of Minnesota and Federal Reserve Bank of Minneapolis

First version received November2001; final version accepted November2002(Eds.)

We consider an environment in which agents’ skills are private information and follow arbitrary
stochastic processes. We prove that it is typically Pareto optimal for an individual’s marginal benefit of
investing in capital to exceed his marginal cost of doing so. This wedge is consistent with a positive tax on
capital income. We also prove that it is Pareto optimal for the marginal rate of substitution between any
two consumption goods to equal the marginal rate of transformation. This lack of a wedge is consistent
with uniform taxation of consumption goods within a period.

1. INTRODUCTION

The modern economic analysis of optimal taxation has at least two important lines of research.
The first emphasizes the effects of taxation on capital accumulation (see Chari and Kehoe, 1999,
for an excellent survey). The basic assumption is that a government faces a dynamic Ramsey
problem: it needs to fund a stream of purchases over time using linear taxes on capital and labour
income. The hallmark result of this literature is that it is optimal for the government to set capital
income tax rates to zero in the long run (Judd (1985), Chamley (1986)).

A second branch of the literature is based on the work of Mirrlees (1971, 1976). Here, the
government has access to nonlinear taxation. However, agents have fixed heterogeneous skill
levels that are unobservable to others. The goal of taxation in this setting becomes (in part) one
of transferring resources from the highly skilled to the less skilled in an efficient way, given
that incomes but not skills are observable. An important lesson of this literature is theuniform
commodity taxation theoremof Atkinson and Stiglitz (1976, 1980). It states that if utility is
weakly separable between consumption and leisure, then, despite the presence of the incentive
problem, it is socially optimal for all consumption goods to be taxed at the same rate.

In this paper, we re-examine the zero capital taxation and uniform commodity taxation
theorems in the context of a large class of dynamic economies. We enlarge the class of economies
by allowing for unobservable skills to evolve stochastically over time. We imposeno restriction
on the evolution of skills except that it must be independent across agents.

Besides enlarging the class of economies in this way, we enlarge the choice set of the
taxation authority. We do not restrict attention to linear tax schemes (à la Ramsey) or piecewise
differentiable schemes (à la Mirrlees). Instead, we allow the taxation authority to use arbitrary
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nonlinear tax schemes; in other words, it can achieve any incentive-compatible and physically
feasible allocation.

This general class of environments is technically challenging because it features
dynamically evolving private information. There is no known way to develop a full
characterization of the socially optimal allocations in this environment. In particular, we might
well obtain misleading answers if we were to simply substitute first-order conditions for the large
number of incentive constraints, and then apply Lagrangian methods.1

In the first part of the paper, we re-consider the zero capital income taxation theorem. We
specialize the environment to have only one consumption good. We assume also that utility is
additively separable in consumption and leisure. We prove that in a Pareto optimal2 allocation,
individual consumption satisfies a “reciprocal” intertemporal first-order condition of the kind
derived by Rogerson (1985a):

1/u′(ct ) = (βRt+1)
−1Et {1/u′(ct+1)}. (1)

Here,Rt+1 is the marginal return to investment,u is the agent’s momentary utility function,β is
the individual discount factor, andEt is the periodt conditional expectation (with respect to the
randomness generated by period(t + 1) skills).

This “reciprocal first-order condition” has an important consequence. If individual marginal
utility u′(ct+1) in a Pareto optimum is random from the point of view of periodt , then from
Jensen’s inequality we know that

u′(ct ) < βRt+1Etu
′(ct+1). (2)

(The incentive problem means that it is typically efficient for individual consumption to be
stochastic: the planner needs to offer more consumption to high skill types to get them to work
more.) Thus, in an optimal tax system, the individual’s marginal benefit of purchasing capital is
higher than his marginal cost of doing so.

The intuition behind the inequality (2) is as follows. Suppose society considers increasing
investment by lowering an individual’s periodt consumption byεt and raising an individual’s
period (t + 1) consumption byεt Rt+1. Doing so has two immediate consequences on social
welfare (measured in utiles): there is a costu′(ct )εt and a benefitβεt Rt+1Etu′(ct+1). However,
there is an additional adverse effect on welfare. At an interior optimum,u is locally concave.
Hence, the periodt conditional covariance between period(t + 1) skills andu(ct+1 + εt Rt+1)

is lower than the periodt conditional covariance between period(t + 1) skills andu(ct+1).
Reducing this covariance provides less incentive for the agent to work in period(t + 1); his
effort, and societal output, therefore fall in period(t + 1).

Thus, lowering consumption in periodt and raising consumption in period(t +1) generates
the usual benefitβεt Rt+1Etu′(ct+1), the usual costεtu′(ct ), and an additional cost due to the
incentive problem. In a social optimum, the marginal social cost and the marginal social benefit
are equated, which implies that the partial marginal costu′(ct ) is less than the total marginal
benefitβRt+1Etu′(ct+1).3

We go on to re-consider the uniform commodity taxation theorem. We revert to the general
assumption of multiple consumption goods, and assume that utility is weakly separable between
consumption and labour. We prove that any Pareto optimal allocation has the property that
within a period, the marginal rate of substitution between any two consumption goods, for any

1. Rogerson (1985b) provides sufficient conditions for the validity of the first-order approach in a static principal-
agent context. However, there are no known generalizations of his conditions in dynamic settings.

2. By Pareto optimal, we mean Pareto optimal relative to the set of all allocations that are both incentive-
compatible and physically feasible.

3. See Kocherlakota (1998) and Mulligan and Sala-i-Martin (1999) for a similar intuition.
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agent, equals the marginal rate of transformation between those goods. This result implies that
if agents can trade consumption goods in a spot market, all consumption goods should be taxed
uniformly.

The idea behind the proof of the uniform commodity taxation theorem is as follows.
Because utility is weakly separable, consumption only affects the incentive constraints and the
planner’s objective function through the amount of sub-utility derived from consumption. Hence,
as long as resources are scarce, the planner wants to find a way to deliver these sub-utilities
that minimizes the resource cost of doing so. This immediately implies the uniform commodity
taxation theorem.

Our positive capital taxation and uniform commodity taxation results have predecessors in
the literature. For example, Diamond and Mirrlees (1978, 1986) prove in a particular dynamic
setting that Pareto optima feature the above kind of intertemporal wedge. They derive their result
in a model of disability insurance: they assume that skills are hidden, have a two-point support in
all periods, and that the low skill state is an absorbing one. As stated above, Atkinson and Stiglitz
(1976) prove the uniform commodity taxation theorem assuming that skills do not change over
time.

The main contribution of our analysis over this previous work is ourgenerality. There is
a large empirical literature on the intertemporal structure of individual wages and skills. The
consensus in this literature is that an empirically plausible statistical model of the intertemporal
evolution of individual skills should allow for the possibility of both a random fixed component
and an autoregressive (possibly unit root) component.4 There arenoprior results in the dynamic
private information literature that allow for such an elaborate stochastic process. In contrast,
we allow an individual’s hidden skills to followanystochastic process, and we are still able to
establish two important partial characterizations of Pareto optimal allocations.5

Our results are about wedges (or the lack thereof) in constrained Pareto optima. The
revelation principle tells us that there exists at least one nonlinear tax system that weakly
implements these wedges as an equilibrium outcome: namely, the direct mechanism. We present
no results about how these wedges might be implemented using tax systems that have a more
“decentralized” flavour.6 We know, though, that there is no refinement of the theory that will
enable it to make sharp predictions about the nature of optimal tax systems. As is well known
from the Ramsey literature, a wedge between the benefits and costs of saving can be generated
in equilibrium using a tax on savings, a tax on consumption that grows over time, or some linear
combination of the two. More generally, Chari and Kehoe (1999) emphasize that in the Ramsey
taxation literature, in which governments can only use linear taxes, there are typically an infinite
number of combinations of various taxes that can be used to implement a particular wedge. This
kind of indeterminacy is only more pronounced when the government can use arbitrarynonlinear

4. For an illustrative example, see Storesletten, Telmer and Yaron (2001). They argue that the autoregressive
component is large and highly persistent.

5. In Section 5, we provide a thorough literature review and identify the key feature of our model that allows us
to prove such general theorems: intratemporal and intertemporal consumption marginal rates of substitution are public
information.

6. It might appear obvious how to construct such a tax schedule. First, set a marginal labour tax rate for
each agent that equates his marginal rate of substitution between consumption and time to his marginal rate of
transformation. Second, set a marginal tax on savings that equates his intertemporal marginal rate of substitution to
the social intertemporal marginal rate of substitution.

Unfortunately, there is a problem with this approach: there is no guarantee that the resultant tax schedule gives
rise to a convex decision problem for the agent. This means that even though his first-order conditions are satisfied by
the social optimum, he may not find it optimal to make choices consistent with the social optimum.

Golosov and Tsyvinski (2003) design a simple implementation of the constrained Pareto optimum in the
Diamond–Mirrlees disability insurance model. The implementation relies on capital income taxation and asset-based
“means testing” for the provision of disability insurance.
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taxes. Hence, the robust predictions of any kind of theory of optimal taxation are not abouttaxes,
but, like our results, are aboutwedges.

The rest of the paper is structured as follows. In the next section, we describe the class of
model environments. In Section 3, we demonstrate the optimality of positive capital income
taxation. In Section 4, we generalize the uniform commodity taxation theorem. We defer a
complete discussion of the related literature until Section 5; the discussion clarifies why we
are able to prove our results in such generality. Finally, we conclude in Section 6.

2. SET-UP

The economy lasts forT periods, whereT may be infinity, and has a unit measure of agents. The
economy is endowed withK ∗

1 units of the single capital good. There areJ consumption goods,
which are produced by capital and labour. The agents have identical preferences. A given agent
has von Neumann–Morgenstern preferences, and ranks deterministic sequences according to the
function ∑T

t=1
β t−1U (ct , l t ), 1 > β > 0 (3)

wherect ∈ RJ
+ is the agent’s consumption in periodt, andl ∈ R+ is the agent’s labour in period

t . We assume thatU is bounded from above or bounded from below; this guarantees that the
utility from any consumption/labour process is well defined as an element of the extended reals.

The agents’ skills differ across agents and over time. We model this cross-sectional and
temporal heterogeneity as follows. Let2 be a Borel7 set in R+, and letµ be a probability
measure over the Borel subsets of2T . At the beginning of time, an elementθT of 2T is drawn
for each agent according to the measureµ; the draws are independent across agents. This random
vectorθT is the agent’s type; itst-th componentθt is the agent’s skill in periodt . We assume that
a law of large numbers applies: the measure of agents in the population with typeθT in Borel set
B is given byµ(B) (see Uhlig, 1996, for a formal justification of this assumption).

What makes the information problem dynamic is that a given agent privately learns hisθt

at the beginning of periodt and not before. Thus, at the beginning of periodt, an agent knows
his historyθ t

= (θ1, . . . , θt ) of current and past skill vectors but not his future skill vectors.
This implies that his choices in periodt can only be a function of this history. We model this
by using a standard mathematical formalism: we define a random variablex : 2T

→ R to be
θ t -measurable if and only if, given a Borel subsetM of R, x−1(M) = B × 2T−t , whereB is a
Borel subset of2t . Then, we restrict an agent’s periodt decisions to beθ t -measurable.

This stochastic specification is general along two important dimensions. First, it allows for
virtually arbitrary dynamic evolution of an agent’s skills. For example, the agent’s skills could be
constant over time (which is the traditional public finance assumption). Alternatively, the skills
could follow stationary or nonstationary stochastic processes over time. The only real restriction
is that the skill processes are independent across agents.8

What is the economic impact of these skill vectors? An agent with typeθt produces effective
labouryt according to the function

yt = θt l t (4)

wherel t is the agent’s labour input. Effective labouryt is observable, but actual labourl t and
skill θt are not.

7. Not all subsets ofR+ are Borel sets; nonetheless, a casual reader will not be misled about the nature of our
results by simply ignoring the word Borel throughout the written text.

8. Note that the specification is general enough to embed both the case in which2 is an interval (as is generally
assumed in the Mirrlees literature) and the case in which2 is a finite set (as is typically assumed in the dynamic
contracting literature).
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Along with the consumption goods, there is an accumulable capital good. We define an
allocation in this society to be(c, y, K ) = (ct , yt , Kt+1)

T
t=1 where for allt

Kt+1 ∈ R+

ct : 2T
→ RJ

+

yt : 2T
→ R+

(ct , yt ) is θ t -measurable. (5)

Here, yt (θ
T ) is the amount of effective labour produced by a typeθT in period t, c j t (θ

T ) is
the amount of thej -th consumption good given to a typeθT in period t, and Kt+1 is the
amount of capital carried over periodt into period(t + 1). The measurability restriction on
(ct , yt ) guarantees that they depend only on current and past realizations ofθt , not on the future
realizations(θt+1, . . . , θT ).

We assume that the initial endowment of capital isK ∗

1 , and define an allocation(c, y, K ) to
befeasibleif ct andyt are integrable for allt and

G

(∫
ctdµ, Kt+1, Kt ,

∫
ytdµ

)
≤ 0 for all t (6)

K1 ≤ K ∗

1 . (7)

Here,G : RJ+3
+ → R is assumed to be strictly increasing and continuously differentiable with

respect to its first(J +1) arguments, and strictly decreasing and continuously differentiable with
respect to its other two arguments.9 (In (6), and throughout the remainder of the paper, we use
the convention that the range of integration is2T when it is left unspecified.) Thus, we allow for
very general specifications of technology; one example technology, whenJ = 1, is thatG takes
the form

G(C, K ′, K , Y) = C + K ′
− (1 − δ)K − K 1/2Y1/2.

BecauseθT is unobservable, allocations must respect incentive-compatibility conditions. A
reporting strategyσ is a mapping from2T into 2T such that for allt, σt is θ t -measurable. Let
6 be the set of all possible reporting strategies, and define

W(·; c, y) : 6 → R

W(σ ; c, y) =

∑T

t=1
β t−1

∫
U (ct (σ ), yt (σ )/θt )dµ (8)

to be the utility from reporting strategyσ , given an allocation(c, y). Let σ ∗ be the truth-telling
strategy(σ ∗(θT ) = θT for all θT ). Then, an allocation(c, y, K ) is incentive-compatibleif

W(σ ∗
; c, y) ≥ W(σ ; c, y) for all σ in 6. (9)

An allocation which is incentive-compatible and feasible is said to be incentive-feasible.10

9. Our definition of feasibility does not explicitly allow for government purchases. However, our results all go
through if we change the second restriction to read

G

(∫
ct dµ, Kt+1, Kt ,

∫
yt dµ

)
≤ αt

where{αt }
∞
t=1 is a deterministic sequence of negative numbers. We can interpret these deterministic fluctuations in the

feasible set as being due to deterministic fluctuations in government purchases.
10. We restrict attention to direct mechanisms. By the revelation principle, this is without loss of generality. As

well, we restrict attention to mechanisms in which an individual’s consumption and output depend only on his own
announcements. This is without loss of generality because there is a continuum of agents with independent shock
processes.
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We assume that the government or social planner has the ability to fully commitex anteto a
tax system (or, equivalently, a direct mechanism). This is certainly not without loss of generality.
As Roberts (1984) emphasizes, a benevolent government or social planner would find in its
interests to alter the tax systemafter the revelation of agents’ information. Nonetheless, as the
dynamic Ramsey literature shows, the full-commitment case is (at least) a useful benchmark.

We do allow, though, for the possibility that the planner’sex anteobjective weights agents
differently based on their initial skill levels. Specifically, letχ1 : 2T

→ R+ beθ1-measurable,
and suppose that

∫
χ1dµ = 1. Then, we define the following programming problem,P1(K ′

1),
for an arbitrary levelK ′

1 of initial capital

V∗(K ′

1) = supc,y,K

∑T

t=1
β t−1

∫
U (ct , yt/θt )χ1dµ

s.t.G

(∫
ctdµ, Kt+1, Kt ,

∫
ytdµ

)
≤ 0 for all t

W(σ ∗
; c, y) ≥ W(σ ; c, y) for all σ in 6

K1 ≤ K ′

1

ct ≥ 0, yt ≥ 0, Kt ≥ 0 for all t and almost allθT . (10)

We say that(c∗, y∗, K ∗) solvesP1(K ′

1) if (c∗, y∗, K ∗) lies in the constraint set ofP1(K ′

1) and

V∗(K ′

1) =

∑T

t=1
β t−1

∫
U (c∗

t , y∗
t /θt )χ1dµ. (11)

In the actual model economy, there are initiallyK ∗

1 units of capital. Hence, the planner’s
problem is to solveP1(K ∗

1). We assume throughout that there is a solution toP1(K ∗

1) and that
|V∗(K ∗

1)| < ∞. Any solution toP1(K ∗

1) is a Pareto optimum.11

Note that the planner’s maximized objectiveV∗ is weakly increasing. In our analysis, we
will often require thatV∗ is strictly increasing. The following lemma shows that, under a mild
regularity condition,V∗ is strictly increasing ifU is additively separable between consumption
and leisure. (In the remainder of the paper, as is standard, we use the terms for almost allθT and
almost everywhere (or a.e.) equivalently.)

Lemma 1. Let U(c, l ) = u(c) − v(l ), where u is strictly increasing and continuously
differentiable. Suppose that for any(c∗, y∗, K ∗) that solves P1(K ∗

1), there exists some t and
positive scalars c+, c+ such that c+ ≥ c∗

j t ≥ c+ a.e. for all j . Then, V∗(K1) < V∗(K ∗

1) for all
K1 < K ∗

1 .

Proof. In Appendix. ‖

The proof of the lemma works as follows. Suppose the planner has not used up all initial
capital. Then, roughly speaking, the planner can addε/u′(c∗

j t (θ
T )) to c∗

j t (θ
T ) for all θT . This

guarantees that for allθT , u(c∗

j t (θ
T )) increases byε (for ε small). Since all types’ utilities are

going up byε, this change does not affect incentive-compatibility. Is the change feasible? The
integral of 1/u′(c∗

j t (θ
T )) must be finite; the upper and lower bounds onc∗

j t , along withu’s being

C1, are enough to guarantee this.12

11. Specifically, any solution toP1(K ∗
1 ) is interim Pareto optimal, conditional on the realization ofθ1. If χ = 1,

the solutions toP1(K ∗
1 ) are symmetricex antePareto optima.

12. This last issue arises repeatedly in our analysis. We increase consumption for a set of types so as to increase
each type’s utility by the same amount. Then, we have to be sure that the integral of this increase in consumption is finite.
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3. OPTIMAL INTERTEMPORAL WEDGES

To obtain results about the intertemporal characteristics of optimal taxation, we simplify the
model. We set the number of consumption goodsJ = 1, and set

G(Ct , Yt , Kt , Kt+1) = Ct + Kt+1 − Kt (1 − δ) − F(Kt , Yt ) (12)

where F is strictly increasing and continuously differentiable in its first argument. (These
restrictions onJ andG do not apply in the next section.) Throughout the section, we assume
that the partial derivativeUc exists and is continuous in its first argument over the positive reals.
We provide a partial characterization of Pareto optima.

The main result in this section is a restriction on the intertemporal behaviour of individual
consumption. The result is similar to (but much more general than) that derived by Rogerson
(1985a) for optimal contracts in relationships with repeated moral hazard.

We begin by stating the result. We use the notationEt xt+1 to be the periodt conditional
expectation13 of a random variablext+1.

Theorem 1. Let U(c, l ) = u(c) − v(l ). Suppose(c∗, y∗, K ∗) solves P1(K ∗

1), and that
there exists t< T and scalars c+, c+ such that c+ ≥ c∗

t , c∗

t+1, K ∗

t+1 ≥ c+ > 0 a.e. Then

β

(
1 − δ + FK

(
K ∗

t+1,

∫
y∗

t+1dµ

))/
u′(c∗

t ) = Et {1/u′(c∗

t+1)}. (13)

Proof. In Appendix. ‖

There are two ways to read Theorem 1. First, it says that given any positive measure Borel
setB in 2t , theaverageof u′(c∗

t )/u′(c∗

t+1) across the agents who have a periodt history in B is
equal toβ(1 − δ + FK ,t+1). Second, it says that given that an agent knows his periodt history
lies in B, the agent’sexpectationof u′(c∗

t )/u′(c∗

t+1) is equal toβ(1 − δ + FK ,t+1). (These two
ways of reading Theorem 1 are equivalent because of the law of large numbers.)

Here is a sketch of the proof of Theorem 1, for the case in which2 is finite. Suppose
(c∗, y∗, K ∗) is an interior optimum, and fix a positive probability skill historyθ

t
. We consider a

perturbation similar to that used by Rogerson (1985a), and define a new consumption allocation
c′ to be the same asc∗ except that

c′
t (θ

t
) = c∗

t (θ
t
) − ε/u′(c∗

t (θ
t
)) (14)

c′

t+1(θ
t
, θ) = c∗

t+1(θ
t
, θ) + β−1ε/u′(c∗

t+1(θ
t
, θ)) for all θ in 2 (15)

whereε is small and positive. For the agents with skill historyθ
t
, this change is designed to

reduce momentary utility in periodt by ε, and increase momentary utility in period(t + 1)

(given any continuation skill history) byβ−1ε.
The key to the proof is that, by construction,∑T

t=1
β t−1u(c′

t (θ
T )) =

∑T

t=1
β t−1u(c∗

t (θ
T )) (16)

While weaker assumptions will ensure this, it is sufficient to assume that consumption is bounded from above and below
and thatu is C1.

13. As is standard (see Billingsley, 1995, Chapter 34), given aθ t+1-measurable random variablext+1, we define
the conditional expectationEt xt+1 to be aθ t -measurable random variable such that∫

A
Et xt+1dµ =

∫
A

xt+1dµ

for any A ⊆ 2T such thatµ(A) > 0 andA = B × 2T−t for some Borel setB in 2t .
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for all (not almost all!) typesθT . This means that, given that(c∗, y∗) is incentive-compatible,
the new plan(c′, y∗) must also be incentive-compatible. Intuitively, any sequence of reports
generates the same (ex ante) utility under (c′, y∗) as under(c∗, y∗). Hence, the ranking of
reporting strategies must be the same under(c′, y∗) as under(c∗, y∗).

Similarly, the new consumption plan(c′, y∗) does not change the planner’s objective. It
follows (from Lemma 1) that the new timing of consumption payments cannot result in extra
resources for the planner or(c∗, y∗, K ∗) is not optimal. There areµ(θ

t
) agents who have skill

history θ
t
. Hence, the new plan frees upµ(θ

t
)ε/u′(c∗

t (θ
t
)) units of consumption in periodt .

Similarly, it costsβ−1ε
∑

θ∈2 µ(θ
t
, θ)/u′(c∗

t+1(θ
t
, θ)) in period (t + 1). By saving the extra

periodt consumption into period(t + 1), the planner has extra resources after paying the costs
unless:

µ(θ
t
)

(
1 − δ + FK

(
K ∗

t ,

∫
y∗

t+1dµ

))/
u′(c∗

t (θ
t
)) ≤ β−1

∑
θ∈2

µ(θ
t
, θ)/u′(c∗

t+1(θ
t
, θ)).

(17)
Making the same argument withε small and negative implies the reverse inequality. In other
words, at an optimum, the two sides of (17) are equated, which implies Theorem 1.

It is important to note that even ifθT is public information (so that there is no incentive
problem), Theorem 1 is still valid. In this case, full insurance is possible andu′(c∗

t ) is
deterministic for allt . Theorem 1 immediately implies the standard first-order condition:

u′(c∗
t ) = β

(
1 − δ + FK

(
K ∗

t+1,

∫
y∗

t+1dµ

))
u′(c∗

t+1). (18)

Thus, the incentive problem does not create the restriction in Theorem 1. Rather, the incentive
problem determines the variance of the marginal utility process that gets plugged into the formula
in Theorem 1.

This kind of thinking informs the next two corollaries.

Corollary 1. Let U(c, l ) = u(c) − v(l ). Suppose(c∗, y∗, K ∗) solves P1(K ∗

1), and that
there exists t< T and scalars c+, c+ such that c+ ≥ c∗

t , c∗

t+1, K ∗

t+1 ≥ c+ > 0 a.e. Then

u′(c∗
t ) ≤ β

(
1 − δ + FK

(
K ∗

t+1,

∫
y∗

t+1dµ

))
Etu

′(c∗

t+1) a.e. (19)

In addition, suppose that it is not true that u′(c∗

t+1) equals Etu′(c∗

t+1) almost everywhere. Then

u′(c∗
t ) < β

(
1 − δ + FK

(
K ∗

t+1,

∫
y∗

t+1dµ

))
Etu

′(c∗

t+1) (20)

over some subset of2T with positive measure.

Proof. From the definition of a conditional expectation and Theorem 1, we know that

β(1 − δ + FK ,t+1) = Et {u
′(c∗

t )/u′(c∗

t+1)} (21)

= u′(c∗
t )Et {1/u′(c∗

t+1)} (22)

where the latter equality follows fromu′(c∗
t ) beingθ t -measurable (see, Billingsley, 1995, Theo-

rem 34.3). The corollary then follows from the conditional version of Jensen’s inequality.‖

The first part of the corollary says that the expected marginal utility of investing in capital,
conditional on information known to an agent as of timet, is at least as high as the marginal
utility of current consumption. The second part of the corollary says that if some individuals do
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not know theiru′(c∗

t+1) as of timet, then the inequality becomes strict. Note that this lack of
predictability is to be expected in general because the planner wants to elicit high labour from
high skill types.

Economically, this is the most important result of this section. In a Pareto optimum, an
individual’s periodt shadow return from saving is given by

β−1u′(c∗
t )/Etu

′(c∗

t+1). (23)

The periodt technological return to capital is given by(
1 − δ + FK

(
K ∗

t+1,

∫
y∗

t+1dµ

))
. (24)

Corollary 1 shows that ifu′(c∗

t+1) does not equalEtu′(c∗

t+1) (which means that the private
information constraint is binding for the social planner), it is optimal for the technological return
to capital to exceed some individual’s periodt shadow return.14 Of course, this is inconsistent
with equilibrium if agents can competitively trade capital and consumption without facing taxes.
Rather, if the Pareto optimal wedge is to be replicated in the equilibrium, individuals must face
taxes. As discussed in the introduction, these taxes can be of several forms: a tax on savings, a
growing tax on consumption, or a combination thereof.

We described the intuition behind this result in the introduction. The basic idea is that
becauseu is locally concave, when an individual saves more from periodt to period(t + 1),

he works less in response to any given period(t + 1) compensation scheme. This adverse effect
of savings on incentives implies that it is optimal for society to deter savings by taxing it.

It is interesting to contrast Corollary 1 with the results concerning optimal linear taxation of
capital and labour income in a representative agent economy. Judd (1985) and Chamley (1986)
prove for a general specification ofu that it is optimal in the long run to eliminate the wedge
between expected marginal utility of investing in capital and the marginal utility of current
consumption. Indeed, whenu(c) = c1−σ /(1 − σ), Chamley proves an even stronger result:
it is optimal for the wedge to be zero for allt, not just in the long run. In contrast, we find that for
any specification ofu, as long asu′(c∗

t+1) is not known at timet, the wedge in periodt should
be non-zero.

There are special circumstances in which the inequality in Corollary 1 becomes an equality
instead. In particular, if agents have fixed skills over time, then the Pareto optimal allocations
display no wedge between the marginal utility of consumption and the expected marginal utility
of investment.

Corollary 2. Suppose thatµ(A) > 0 only if µ(A) = µ{θT
∈ A|θt = θ1 for all t }. Let

U (c, l ) = u(c) − v(l ). Suppose(c∗, y∗, K ∗) solves P1(K ∗

1), and that there exists t< T and
scalars c+, c+ such that c+ ≥ c∗

t , c∗

t+1, K ∗

t+1 ≥ c+ > 0 a.e.Then

βu′(c∗

t+1(θ
T ))

(
1 − δ + FK

(
K ∗

t+1,

∫
y∗

t+1dµ

))/
u′(c∗

t (θ
T )) = 1 a.e. (25)

This corollary follows from the fact thatθt is perfectly predictable, givenθ1. In fact, using a
similar approach as in Theorem 1, we can prove (at least when2 is finite) that even if preferences
are non-separable between consumption and labour, we obtain a version of Chamley–Judd’s
classic result for this case of fixed skills.

14. Why does the second part of Corollary 1 only hold with positive probability? Imagine a world in which there
are two possible realizations in period 1. If skills are high in period 1, they are high in period 2 with probability 1. If
they are low in period 1, they are equally likely to be high or low in period 2. In this kind of world, the inequality in
Corollary 1 is strictly positive in period 1 when skills are low, but becomes an equality when the skills are high.
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Proposition 1. Suppose T= ∞, 2 is finite, and thatµ{θ∞
} > 0 iff θt = θ1 for all t .

Suppose that V∗(K1) < V∗(K ∗

1) for all K1 < K ∗

1 . Let a strictly positive allocation(c∗, y∗, K ∗)

solve P1(K ∗

1), and suppose that for allθ1, the sequence{c∗
t (θ1), y∗

t (θ1), K ∗
t }

∞

t=1 converges to a
positive limit(css(θ1), yss(θ1), Kss). Then

β−1
= 1 + FK

(
Kss,

∫
yssdµ

)
− δ. (26)

Proof. In Appendix. ‖

4. SUBOPTIMAL INTRATEMPORAL WEDGES

In this section, we prove the uniform commodity taxation theorem. We return to the general
set-up described in the first section (with multiple commodities and a general production
structure), except that we assume that utility is weakly separable:

U (c, l ) = U∗(u(c), l ), u : RJ
+ → R+. (27)

We also assume thatu is strictly increasing and is continuously differentiable over the positive
orthant ofRJ . The notationu j andG j represents the partial derivatives of those functions with
respect to theirj -th arguments.

Theorem 2. Suppose V∗(K1) < V∗(K ∗

1) for all K1 < K ∗

1 . Let (c∗, y∗, K ∗) solve
P1(K ∗

1) and suppose that there exists some t and scalars c+, c+ such that c+ > c∗

j t (θ
T ) >

c+ > 0 for all j and for almost allθT . Then, if J> 1,

u j (c
∗
t (θ

T ))/uk(c
∗
t (θ

T ))

= G j

(∫
c∗

t dµ, K ∗

t+1, K ∗
t ,

∫
y∗

t dµ

)/
Gk

(∫
c∗

t dµ, K ∗

t+1, K ∗
t ,

∫
y∗

t dµ

)
(28)

for all j , k and almost allθT .

Proof. In Appendix. ‖

Theorem 2 states that in a Pareto optimum, the marginal rate of substitution between two
consumption goods is equalized to the marginal rate of transformation between those two goods.
It is a direct extension of Atkinson and Stiglitz (1976), who also assume weakly separable
preferences but restrict attention to static settings. The key to the proof is that the consumption
goods enter both sides of the incentive constraints only through the sub-utilityu(c). Hence, it is
optimal for the planner to deliver this sub-utility from consumption in a way that minimizes the
resource cost of doing so.15

Theorem 2 establishes a result about marginal rates of substitution and transformation. It
implies that, within a given period, it is suboptimal for agents to face taxes or subsidies that
differ across consumption goods. What is the optimal intertemporal behaviour of this common
tax rate? There is no sharp answer to this question. SupposeU∗ is additively separable between
consumption and labour. Then, it is possible to prove multi-good versions of Theorem 1 and
Corollary 1 which imply that it is optimal for an individual’s marginal benefit of saving to
exceed his marginal cost of doing so. As emphasized earlier, this wedge is consistent with a

15. The theorem relies on the assumption that the planner’s objectiveV∗ is strictly increasing in initial resources.
Lemma 1 guarantees that this assumption is satisfied at least whenU is additively separable in its two arguments.
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tax on savings, a growing tax on consumption goods, or a combination thereof. All we know for
sure is that because of Theorem 2, if there is to be a tax/subsidy on consumption goods in any
period, that tax/subsidy must be the same across all goods.

5. RELATED LITERATURE

Our results are valid regardless of the nature of the dynamic evolution of the private information
in our model. In this section, we argue that our generality in this regard is due to one key
attribute of our framework: any agent’s marginal rate of substitution between consumption goods
is unaffected by his type, and is therefore public information.

Consider first the Atkinson–Stiglitz theorem on the suboptimality of intratemporal wedges.
It is well known that it is possible to perturb our basic model in order to generate optimal
intratemporal wedges. For example, Mirrlees (1976) and Cremer, Pestieau and Rochet (2001)
show that if agents have different endowments or different tastes, and those attributes are also
private information, then the Atkinson–Stiglitz theorem is no longer valid. Alternatively, if
preferences are not weakly separable between consumption goods and leisure, then intratemporal
wedges may be optimal.

What undoes the Atkinson–Stiglitz result in these cases? With hidden endowments or
hidden tastes, an agent’s willingness to substitute between any two consumption goods is known
only to him. Similarly, without the weak separability assumption, an agent’s willingness to
substitute depends on his (unobservable) time spent working and is again private information.
This type of private information implies that an optimal tax system must screen people based on
their willingness to substitute between consumption goods.

In contrast, in our set-up an agent’s intratemporal marginal rate of substitution between
any two consumption goods is publicly known. Hence, the planner has no efficiency reason to
separate people using this attribute, and the Atkinson–Stiglitz result is still valid.16

This same issue arises with regard to our intertemporal results. There are now many papers
on efficient dynamic insurance in the presence of hidden idiosyncratic shocks to endowments or
marginal utilities of consumption (see, among others, Townsend (1982), Green (1987), Thomas
and Worrall (1990), Atkeson and Lucas (1992), Khan and Ravikumar (2001)). A key result that
runs through this dynamic insurance literature is that in Pareto optimal allocations, the typical
agent’s shadow interest rate is no larger than the societal shadow interest rate. This result is
similar to our Corollary 1.

But, unlike our Corollary 1, the result from this literature with hidden endowments or hidden
tastes depends crucially on the nature of the shock process. To see this point, consider a two-
period economy with a continuum of agents who have a utility function

u(c1) + u(c2)

over sequences of consumption. The typical agent’s endowment is((1+θ), (1+θ)2), whereθ is
random with positive support; the endowments are private information. The society can borrow
and lend from an outside lender at a net rate of returnr . In this type of dynamic insurance model,
with endowments that are not stochastically independent, in an optimal allocation agents’ shadow
interest rates arehigher thanr . This wedge is consistent with subsidies for saving, not taxes on
saving.

What generates this lack of robustness? In models with hidden endowments or hidden tastes,
this intertemporal marginal rate of substitution is private information. It is not surprising that
the distortions in the latter kind of model hinge crucially on the dynamic nature of the private

16. See Laffont and Tirole (1994, p. 194) for a similar discussion of the limitations of the Atkinson–Stiglitz
theorem.
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information. In our model, instead, the intertemporal marginal rate of substitution for any agent
is publicly known.

There are many other papers which also assume that agents’ intertemporal marginal rates of
substitution are public information. For example, Diamond and Mirrlees (1978, 1986) consider
a special case of our general set-up. In their model, agents are long-lived and can be disabled
or not. Disabled agents are unproductive; able agents have known productivities. Once disabled,
the agent stays disabled; the probability of an able agent becoming disabled is exogenous. The
informational problem is that the disability status of the agent is known only to the agent.
Diamond and Mirrlees prove that in the social optimum, the shadow societal interest rate is
higher than the private shadow interest rate. They argue explicitly that this result implies that
capital income taxation is socially optimal. As we stress in the introduction, our contribution
over their work is that we generalize their positive capital income taxation result to a much larger
class of individual skills processes.

There are several papers on the properties of efficient allocations in the presence of repeated
moral hazard (see, among others, Rogerson (1985a), Phelan and Townsend (1991), Phelan
(1994), Atkeson and Lucas (1995)). Again, in these settings the optimal allocations have the
property that agents’ shadow interest rates are lower than the societal shadow interest rate.
The intuition behind this result is essentially the same as that behind Corollary 1. However, in
this literature, the idiosyncratic output shocks are restricted to be independently and identically
distributed over time; we instead allow for a much wider range of skills processes.

We were originally motivated to write this paper by the work of da Costa and Werning
(2001). They examine optimal monetary policy in two models (a cash-credit good framework
and a shopping-time set-up) in which agents are privately informed about their fixed skills. In the
cash-credit good framework, da Costa and Werning prove that if preferences are weakly separable
between consumption and leisure, then the Friedman rule (zero nominal interest rates) is socially
optimal. This is essentially an implication of the uniform commodity taxation theorem, and so
we conjecture that this result could be established in our more general set-up. They also consider
how deviations from weak separability of preferences affect optimal monetary policy.

In a paper written at the same time as ours, but independently, Werning (2001) analyses
the properties of optimal capital income taxes in a model economy with unobservable and
heterogeneous fixed skills. Like us (Corollary 2), he finds that it is optimal for capital income
taxes to be zero in this setting.

6. CONCLUSION

In this paper, we consider the problem of optimal taxation when individual skills are
unobservable and evolve stochastically over time. We show that when utility is weakly separable
between consumption and leisure, it is optimal to equate the marginal rate of substitution between
consumption goods for any agent to the marginal rate of transformation between those goods.

We consider the intertemporal structure of optimal taxation when there is only a single
consumption good and utility is additively separable between consumption and leisure. In
this case, if the optimal allocation requires future consumption to be random given current
information, then individuals face distorted consumption paths. These distortions are consistent
with the presence of positive capital income taxes (or, equivalently, with growing consumption
taxes).

Given additive separability of preferences between consumption and labour, the uniform
commodity taxation theorem is generally valid, but the zero capital income taxation theorem
is generally not. The reason for this distinction is that over time, individuals are acquiring
information about their types. It is this idiosyncratic uncertainty that generates positive capital
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income taxes. In particular, if individuals knew their entire sequence of skills in period 1, then
we could use exactly the same reasoning as in Theorem 2 (or Corollary 2) to conclude that Pareto
optimal allocations are consistent with zero capital income taxation.

We are able to prove the theorems in a highly general setting. Individual skills are
independent over a continuum of individuals but follow arbitrary stochastic processes over time.
There is one crucial assumption that makes our analysis work: a given agent’s (intertemporal or
intratemporal) marginal rate of substitution between consumption goods is public information.
As we emphasized in Section 5, this assumption is not true if agents have hidden endowments
of consumption, have random and unobservable tastes over consumption goods, or if our various
separability assumptions are violated.

However, the good news is that we can allow any additional private information as long as
individuals’ willingness to substitute consumption over time is common knowledge. This means,
for example, that we could allow labour and skills to be multidimensional, so that agents can
work at different tasks that may be imperfectly substitutable in producing consumption goods.
More interestingly, we could allow agents to secretly accumulate human capital, and thereby
endogenize skills. Our results would go through in this kind of environment as long as time is
the only input into human capital formation.

APPENDIX

In this Appendix, we collect the proofs of the main results.

A.1. Proof of Lemma1

SupposeV∗(K1) = V∗(K ∗
1 ) for someK1 < K ∗

1 . Let (c∗, y∗, K ∗) solveP1(K1). It lies in the constraint set ofP1(K ∗
1 ),

and so also solvesP1(K ∗
1 ). Without loss of generality, assume thatc∗

1 satisfies the uniform boundedness conditions.

Definec′
11(θ

T , ε) to be the solution to the equation

u(c′
11(θ

T , ε), (c∗
1 j (θ

T )) j 6=1) − u(c∗
1(θT )) = ε for all θT (A.1)

for ε non-negative. Here,c′
11(θ

T , ε) is the amount of consumption good 1 that gives a typeθT ε more utiles thanc∗
1.

Clearly,c′
11 is θ1-measurable with respect toθT , and is continuous with respect toε.

From the mean value theorem, forε small, we know that

|c′
11(θ

T , ε) − c∗
11(θ

T )| = ε/u1(c′
11(θ

T , ε′), (c∗
1 j (θ

T )) j 6=1), 0 < ε′ < ε (A.2)

whereu1 is the partial ofu with respect to its first argument. From the regularity conditions onc∗, we know that there
existsM > 0 such that

|c′
11(θ

T , ε) − c∗
11(θ

T )| < Mε for ε small. (A.3)

Hence, forε small,c′
11(θ

T , ε) is integrable as a function ofθT . Moreover, addingε to initial consumption is feasible for
initial capital K ∗

1 , as long asε is sufficiently small. That is, for sufficiently smallε,

G

(∫
c′
1(θT , ε)dµ, K ∗

2 , K ∗
1 ,

∫
y∗dµ

)
< 0 (A.4)

wherec′
1(θT , ε) ≡ (c′

11(θ
T , ε), (c∗

1 j (θ
T )) j 6=1). Thus,(c′, y∗, K ∗) is feasible, given initial capitalK ∗

1 .

For all θT ,

u(c′
1(θT , ε)) − v(y∗

1(θT )/θ1) (A.5)

= u(c∗
1(θT )) + ε − v(y∗

1(θT )/θ1) (A.6)

≥ u(c∗
1(θT ′)) + ε − v(y∗

1(θT ′)/θ1) (A.7)

= u(c′
1(θT ′, ε)) − v(y∗

1(θT ′)/θ1) (A.8)

which proves that(c′, y∗) is incentive-compatible (the inequality is implied by the incentive-compatibility of(c∗, y∗)).
It follows that(c∗, y∗) cannot be a solution toP1(K ∗

1 ). ‖
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A.2. A technical lemma

We use the following notation:

�t = {A ⊆ 2T
|A = B × 2T−t , B Borel andB ⊆ 2t

} (A.9)

L∞
t = {x θ l -measurable|∃A ∈ �t , sup

θT ∈A |x(θT )| < ∞, andµ(A) = 1}. (A.10)

Let ||·|| denote the usual ess-sup norm onL∞
t .

The proofs of Theorems 1 and 2 use two technical results. The first is Theorem 1 of Luenberger (1969, p. 243). This
theorem assumes that in an optimization problem with equality constraints, the objective and constraints are continuously
Frechet differentiable in the neighbourhood of a local optimum. It then proves that this local optimum must satisfy
analogues of the usual Lagrangian first-order conditions.

The second key result is the following lemma. It establishes that as long asc∗
t is bounded from above and below, the

constraints in the minimization problems in the proofs of Theorems 1 and 2 are defined by a function that is continuously
Frechet differentiable in a neighbourhood ofc∗

t .

Lemma A1. Let u : R+ → R be C1 and let c∗t be an element of L∞t . Suppose there exists scalars c+ and c+
such that c+ ≥ c∗

t ≥ c+ > 0. Define U : L∞
t → L∞

t by

U (ct )(θ
T ) = u(ct (θ

T )). (A.11)

Then U is continuously Frechet differentiable in a neighbourhood of c∗
t .

Proof. Note thatu′ is uniformly continuous over the interval[c+/2, 3c+/2]. Let {1nt}
∞
n=1 be an arbitrary

sequence inL∞
t such that limn→∞ ||1nt || = 0. Then

limn→∞ ||u(c∗
t + 1nt) − u(c∗

t ) − u′(c∗
t )1nt ||/||1nt || (A.12)

= limn→∞ ||u′(c∗
t + 1′

nt)1nt − u′(c∗
t )1nt ||/||1nt ||, 0 ≤ 1′

nt ≤ 1nt (A.13)

≤ limn→∞ ||u′(c∗
t + 1′

nt) − u′(c∗
t )||(||1nt ||/||1nt ||) (A.14)

= limn→∞ ||u′(c∗
t + 1′

nt) − u′(c∗
t )|| (A.15)

= 0. (A.16)

The first step follows from the mean value theorem and the last step from the uniform continuity ofu′ over[c+/2, 3c+/2].
It follows that in a neighbourhood ofc∗

t , the Frechet derivative ofU is well defined and given byU ′(ct )(1) =

u′(ct )1 for all 1 in L∞
t . The norm of this linear operator is given by||u′(ct )||. Let ||ct − c∗

t || < c+/2 and let{1nt}
∞
n=1

be a sequence inL∞
t such that limn→∞ ||1nt || = 0. Then

limn→∞ ||u′(ct + 1nt) − u′(ct )|| = 0 (A.17)

becauseu′ is uniformly continuous over[c+/2, c+/2 + c+/2]. So U is continuously Frechet differentiable in a
neighbourhood ofc∗

t . ‖

We use this technical lemma for the proofs of Theorems 1 and 2.

A.3. Proof of Theorem1

The proof has two distinct parts.

Part 1: Constructing a minimization problem

In the first part of the proof, we construct a particular class of two-period deviations from the candidate optimum.
The class of possible deviations satisfies two requirements. First, the deviations are required to deliver the same utility
to all types as does the candidate optimum. Second, the deviations are required to satisfy resource-feasibility in all
periods.

Obviously, the first requirement means that all of these deviations provide the same objective value to the planner.
In addition, the first requirement implies that all of the deviations are incentive-compatible. Hence, we now have a
necessary condition for the candidate optimum: it must use fewer initial resources than any of these possible deviations.
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More precisely, consider the following minimization problemM I N1:

minηt ,εt+1,ζt

[
ζt +

∫
ηt dµ

]
s.t.∫

εt+1dµ = F

(
K ∗

t+1 + ζt ,

∫
y∗
t+1dµ

)
− F

(
K ∗

t+1,

∫
y∗
t+1dµ

)
+ (1 − δ)ζt

u(c∗
t + ηt ) + βu(c∗

t+1 + εt+1) = u(c∗
t ) + βu(c∗

t+1) a.e.

c∗
t + ηt ≥ 0, c∗

t+1 + εt+1 ≥ 0, K ∗
t+1 + ζt ≥ 0 a.e.

ηt ∈ L∞
t , εt+1 ∈ L∞

t+1, ζt ∈ R. (A.18)

The objective of this problem is to minimize the resources used in periodt . The first constraint requires that feasibility
be satisfied in period(t + 1). The second constraint requires that utility to almost all types be kept the same under the
deviation plan as under the candidate optimum.

We claim thatM I N1 is solved by setting(ηt , εt+1, ζt ) = 0. Suppose not, and that there exists some element
(ηt , εt+1, ζt ) of the constraint set which generates a negative value for the objective. There exists a subsetB of 2T such
thatµ(B) = 1 and

u(c∗
t (θT ) + ηt (θ

T )) + βu(c∗
t+1(θT ) + εt+1(θT )) = u(c∗

t (θT )) + βu(c∗
t+1(θT )) for all θT in B. (A.19)

Define(c′, K ′) so thatc′
= c∗ andK ′

= K ∗ except that

c′
t (θ

T ) = c∗
t (θT ) + ηt (θ

T ) for all θT in B

c′
t+1(θT ) = c∗

t+1(θT ) + εt+1(θT ) for all θT in B

K ′
t+1 = K ∗

t+1 + ζt . (A.20)

We claim that(c′, y∗, K ′) is incentive-feasible, delivers the same value of the planner’s objective as(c∗, y∗, K ∗)

and uses fewer resources. The allocation(c′, y∗, K ′) is obviously feasible because∫
c′
t dµ + K ′

t+1 =

∫
c∗
t dµ + K ∗

t+1 + ζt +

∫
ηt dµ (A.21)

<

∫
c∗
t dµ + K ∗

t+1. (A.22)

We next want to show that the allocation(c′, y∗, K ′) is incentive-compatible. By construction

u(c′
t (θ

T )) + βu(c′
t+1(θT )) (A.23)

= u(c∗
t (θT )) + βu(c∗

t+1(θT )) for all θT (A.24)

(not justθT in B). Then, we know that for anyσ in 6 and for allθT :∑T

s=1
βs−1u(c′

s(σ (θT )))

=

∑t−1

s=1
βs−1u(c∗

s(σ (θT ))) + βt−1
[u(c′

t (σ (θT ))) + βu(c′
t+1(σ (θT )))] +

∑T

s=t+2
βs−1u(c∗

s(σ (θT )))

=

∑t−1

s=1
βs−1u(c∗

s(σ (θT ))) + βt−1
[u(c∗

t (σ (θT ))) + βu(c∗
t+1(σ (θT )))] +

∑T

s=t+2
βs−1u(c∗

s(σ (θT )))

=

∑T

s=1
βs−1u(c∗

s(σ (θT ))). (A.25)

This means that for anyσ, agents get the same utility fromc′ as fromc∗. It follows that(c′, y∗) is incentive-compatible:∫ ∑T

t=1
βt−1

[u(c′
t ) − v(y∗

t /θt )]dµ (A.26)

=

∫ ∑T

t=1
βt−1

[u(c∗
t ) − v(y∗

t /θt )]dµ (A.27)

≥

∫ ∑T

t=1
βt−1

[u(c∗
t (σ )) − v(y∗

t (σ )/θt )]dµ for anyσ (A.28)

=

∫ ∑T

t=1
βt−1

[u(c′
t (σ )) − v(y∗

t (σ )/θt )]dµ. (A.29)

The inequality comes from the fact that(c∗, y∗) is incentive-compatible.
Hence,(c′, y∗, K ′) uses fewer resources, is incentive-compatible, and delivers the same value of the objective to

the planner. This violates Lemma 1. We can therefore characterize(c∗, K ∗) using the first-order conditions ofM I N1.
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Part 2: Deriving the first-order conditions

The second part of the proof is purely technical: in it, we verify that the theorem’s implication is in fact a first-order
condition forM I N1.

Suppose we enlarge the constraint set by dropping the non-negativity constraints. The non-negative orthant ofL∞
t

has a non-empty interior. Hence, 0 must also be a local minimum of the enlarged minimization problem without the
non-negativity constraints.

Note that the Frechet derivativeU ′(c∗
t ) mapsL∞

t on to L∞
t . Hence,(0, 0, 0) is a regular point of the constraint

set. From Lemma A1 and Luenberger (1969, Theorem 1, p. 243) we can conclude that there existsz∗
t+1 ∈ L∞∗

t+1 (the
dual ofL∞

t+1) andλ∗
t ∈ R such that 0 is a stationary point of the following Lagrangian:

L(ζt , ηt , εt+1) = ζt +

∫
ηt dµ + λ∗

t

[∫
εt+1dµ − (1 − δ)ζt − F(K ∗

t+1 + ζt , Y∗
t+1)

]
−〈z∗

t+1, u(c∗
t + ηt ) + βu(c∗

t+1 + εt+1)〉. (A.30)

(Here, as is standard, we use the notation〈z, u〉 to denote the result of applying a linear operatorz to the random variable
u.) In other words

1 − λ∗
t (1 − δ) − FK (K ∗

t+1, Y∗
t+1)λ∗

t = 0 (A.31)∫
ηt dµ − 〈z∗

t+1, u′(c∗
t )ηt 〉 = 0 for all ηt in L∞

t (A.32)

λ∗
t

∫
εt+1dµ − 〈z∗

t+1, βu′(c∗
t+1)εt+1〉 = 0 for all εt+1 in L∞

t+1. (A.33)

It follows that ∫
η′

t/u′(c∗
t )dµ = 〈z∗

t+1, η′
t 〉 for all η′

t in L∞
t (A.34)

β−1λ∗
t

∫
ε′
t+1/u′(c∗

t+1)dµ = 〈z∗
t+1, ε′

t+1〉 for all ε′
t+1 in L∞

t+1 (A.35)

λ∗
t = [1 − δ + FK (K ∗

t+1, Y∗
t+1)]−1 (A.36)

and so

β−1
[1 − δ + FK (K ∗

t+1, Y∗
t+1)]−1

∫
η′

t/u′(c∗
t+1)dµ =

∫
η′

t/u′(c∗
t )dµ for all η′

t in L∞
t . (A.37)

Let η′
t = 1Au′(c∗

t ), whereA is an arbitrary element of�t . Theorem 1 follows. ‖

A.4. Proof of Proposition1

We claim that(c∗, K ∗) solves the following minimization problem:

minc,K K1

s.t.
∫

ct dµ + Kt+1 = Kt (1 − δ) + F

(
Kt ,

∫
y∗
t dµ

)
for all t

∑∞

t=1
βt−1U

(
ct (θ1),

y∗
t (θ1)

θ̂1

)
=

∑∞

t=1
βt−1U

(
c∗
t (θ1),

y∗
t (θ1)

θ̂1

)
for all θ1, θ̂1

Kt ∈ R+, ct ≥ 0 for all t . (A.38)

Suppose not. Then, there exists non-negative(c′, K ′) such thatK ′
1 < K ∗

1 and∫
c′
t dµ + K ′

t+1 = K ′
t (1 − δ) + F

(
K ′

t ,

∫
y∗
t dµ

)
for all t (A.39)

∑∞

t=1
βt−1U

(
c′
t (θ1),

y∗
t (θ1)

θ̂1

)
=

∑∞

t=1
βt−1U

(
c∗
t (θ1),

y∗
t (θ1)

θ̂1

)
for all θ1, θ̂1. (A.40)

It is clear that (c′, y∗, K ′) is feasible; (c′, y∗) is incentive-compatible because we have kept the utility of all
announcement/true type pairs the same. This allocation solvesP1(K1), for K1 < K ∗

1 , which violates the assumption
thatV∗ is strictly increasing.
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Now, we can characterize(c∗, y∗, K ∗) using the first-order conditions to this problem. Letλt be the multiplier on
the periodt feasibility constraint and letγ (θ1, θ̂1) be the multiplier on the appropriate utility constraint.

Abusing notation slightly, we useµ(θ1) to denoteµ{(θ1, θ1, θ1, . . .)}. Differentiating with respect toct (θ1) for
anyθ1, we obtain ∑

θ̂1
γ (θ1, θ̂1)βt−1Uc

(
c∗
t (θ1),

y∗
t (θ1)

θ̂1

)
= λtµ(θ1) (A.41)

whereUc is the partial derivative ofU with respect toc. Differentiating with respect toKt+1 we obtain

λt = λt+1

(
1 + FK

(
K ∗

t+1,

∫
y∗
t+1dµ

)
− δ

)
. (A.42)

The assumption that(ct (θ1), yt (θ1), Kt ) converges to a positive limit for allθ1 guarantees that

limt→∞ λt/λt+1 = 1/β (A.43)

limt→∞ λt/λt+1 =

(
1 + FK

(
K ∗

t+1,

∫
y∗
t+1dµ

)
− δ

)
. (A.44)

This implies the proposition.

A.5. Proof of Theorem2

We proceed much as in the proof of Theorem 1. Again, we construct a particular class of deviations from the candidate
optimum. In particular, we focus on deviant allocations that deliver the same sub-utility in all states as the optimal
allocation.

Thus, we claim thatc∗ solves the following optimization problemM I N2:

minc G

(∫
ct dµ, K ∗

t+1, K ∗
t ,

∫
y∗
t dµ

)
s.t.u(ct ) = u(c∗

t ) a.e.

s.t.ct ∈ L∞
t

s.t.ct ≥ 0 a.e. (A.45)

Suppose not. Then, there exists a non-negativec′
t in L∞

t such that

G

(∫
c′
t dµ, K ∗

t+1, K ∗
t ,

∫
y∗
t dµ

)
< 0 (A.46)

andu(c′
t (θ

T )) = u(c∗
t (θT )) for all θT in A ⊆ 2T , whereµ(A) = 1. Let c′′

t (θT ) = c′
t (θ

T ) for all θT in A and
c′′
t (θT ) = c∗

t (θT ) for all θT not in A. Let c′′
= (c′′

t , c∗
−t ).

Clearly,(c′′, y∗, K ∗) is feasible. As in Theorem 1, this allocation is also incentive-compatible because

W(σ∗
; c′′, y∗) (A.47)

= W(σ∗
; c∗, y∗) (A.48)

≥ maxσ∈6 W(σ ; c∗, y∗) (A.49)

= maxσ∈6 W(σ ; c′′, y∗). (A.50)

Thus,(c′′, y∗, K ∗) also solvesP1(K ∗
1 ). However, becauseG is strictly increasing inKt+1, and strictly decreasing in

Kt , there existsK ′ such that(c′′, y∗, K ′) solvesP1(K1) for someK1 < K ∗
1 . But this means thatV∗(K1) = V∗(K ∗

1 )

which is a contradiction.
Thus,c∗ solves the above minimization problem. The rest of the proof is simply technical: establishing that the

solution to the minimization problem satisfies the first-order conditions in the theorem.
Note that Lemma A1 can easily be extended to the case in whichc∗

t is a finite-dimensional random vector. As
in the proof of Theorem 1, if we drop the non-negativity constraints from the minimization problem, we know thatc∗

t
is a local minimum in the resulting problem, and that it is a regular point in the constraint set. From Lemma A1, and
Luenberger (1969, Theorem 1, p. 243), we know that there existsz∗

t ∈ L∞∗
t such thatc∗

t is a stationary point of the
Lagrangian:

L(ct ) = G

(∫
ct dµ, K ∗

t+1, K ∗
t , Y∗

t

)
− 〈z∗

t , u(ct )〉. (A.51)
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In other words

0 = G j

(∫
c∗
t dµ, K ∗

t+1, K ∗
t , Y∗

t

) ∫
1dµ − 〈z∗

t , u j (c
∗
t )1〉 for all 1 in L∞

t (A.52)

0 = Gk

(∫
c∗
t dµ, K ∗

t+1, K ∗
t , Y∗

t

) ∫
1dµ − 〈z∗

t , uk(c∗
t )1〉 for all 1 in L∞

t . (A.53)

It follows that

0 = G j

(∫
c∗
t dµ, K ∗

t+1, K ∗
t , Y∗

t

) ∫
{1′/u j (c

∗
t )}dµ − 〈z∗

t , 1′
〉 for all 1′ in L∞

t (A.54)

0 = Gk

(∫
c∗
t dµ, K ∗

t+1, K ∗
t , Y∗

t

) ∫
{1′/uk(c∗

t )}dµ − 〈z∗
t , 1′

〉 for all 1′ in L∞
t (A.55)

and so

0 =

∫ [
G j

(∫
c∗
t dµ, K ∗

t+1, K ∗
t , Y∗

t

)/
u j (c

∗
t ) − Gk

(∫
c∗
t dµ, K ∗

t+1, K ∗
t , Y∗

t

)/
uk(c∗

t )

]
1′dµ for all 1′ in L∞

t .

(A.56)
The theorem follows by setting

1′
= G j

(∫
c∗
t dµ, K ∗

t+1, K ∗
t , Y∗

t

)/
u j (c

∗
t ) − Gk

(∫
c∗
t dµ, K ∗

t+1, K ∗
t , Y∗

t

)/
uk(c∗

t ). (A.57)
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