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Abstract

I study efficient allocations in a dynamic private information economy with

a continuum of individual shocks that are persistent. I formulate the problem

recursively and develop a first order approach to simplify it. The main advan-

tage of the first order approach is that it allows for a substantial reduction of

the state space of the dynamic program. This makes the problem tractable and

permits quantitative implementation of the problem.

I provide both qualitative and quantitative solutions for a taste shock econ-

omy where the shocks follow a random walk. I show that insurance against the

shocks works very differently than in an otherwise identical economy with i.i.d.

shocks. Both current and continuation utility are now positively correlated with

the current shock and the social planner will optimally overinsure the agents,

rather than underinsure. Also, for most of the population the intertemporal

wedges are significantly larger than in an i.i.d. economy.
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1 Introduction

This paper studies efficient allocations in a dynamic economy with continuum of

idiosyncratic private information shocks that follow a Markov process. It is well

known that persistent shocks significantly complicate the analysis of the problem.

As shown by Fernandes and Phelan [8], the efficient allocations do have a recursive

structure, but the dimensionality of the state space is proportional to the number of

possible shock values. Quantitative analysis thus is feasible only for a small number

of shocks.1 This paper shows that when the first order approach is used, the state

space can be reduced to a manageable dimension of three state variables, even though

the shocks take a continuum of values. This greatly increases the tractability of the

problem and the ability to investigate the efficient allocations quantitatively.

It is well known from Green [11], Thomas and Worrall [18] or Atkeson and Lucas

[5] that when the shocks are i.i.d., the recursive formulation takes a very simple form.

The whole reporting history of an agent up to any period t can be summarized by a

single statistic, ”promised utility”, which is the lifetime utility the agent is entitled

to receive from period t onwards. Based on the agent’s report, the social planner

chooses current consumption, current output and continuation utility from tomorrow

on, such that the promised utility is delivered and it is in the agents’ interest to

report their shocks truthfully. The continuation utility chosen by the social planner

becomes promised utility at the beginning of the next period, and so on. The crucial

feature of this recursive formulation is that preferences over the allocations from the

current period onwards are identical for all agents, regardless of whether they reported

truthfully in the previous period or not.

This formulation breaks down when the shocks are persistent. When shocks are

persistent, the probability distribution and hence preferences over the allocations

1See also Zhang [21] who studies a continuous time version of a private information economy

with Markov shocks and is able to provide additional theoretical characterizations of the efficient

allocations.
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from the current period onward depend on the shock the agent experienced last

period. Thus, the continuation utility chosen by the social planner depends both on

the current report and on the current true shock. Since the social planner does not

observe an agent’s true shock, incentive compatibility requires that the continuation

utility must be delivered next period for all possible true shocks in the last period. To

satisfy this restriction, the state variable must itself be a function of the true shock

in the previous period. This function, hereafter called the promised utility function,

gives the promised utility of an agent for each possible true shock she might have had

last period.

The main advantage of the first order approach is that it restricts attention to

local deviations from the optimum. When the first order approach is applied, only

the continuation utility of the truthtelling agent and its marginal change matter in

determining whether an allocation is incentive compatible. As a consequence, I show

that one can reduce the state space by replacing the promised utility function by

only two values: promised utility for the truthtelling agent and a marginal change in

her promised utility. Since one must still keep track of last period’s shock, the state

space reduces to three numbers. To apply the first order approach, I first show that

the continuation utility function is differentiable in the agent’s shock if the transition

function is differentiable in the previous shock. Assuming this holds, the first order

approach is correctly defined. I then find the necessary and sufficient conditions for

the first order approach to hold.2

To analyze the efficient allocations, I study a simple economy with private taste

shocks that follow a random walk with Pareto distributed innovations. I show that

the pattern of insurance is very different from the pattern in an otherwise identical

economy with i.i.d. shocks.In an economy with i.i.d. shocks, agents with high cur-

2The first order approach employed in this paper has also been recently used in related dynamic

environments. Werning [20] and Abraham and Pavoni [1] use it to study dynamic hidden savings

problem while Jarque [13] uses it to analyze moral hazard environment with effort persistence.
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rent taste shocks are rewarded more consumption, but in order to ensure incentive

compatibility, their continuation utility is reduced. With permanent shocks, this is

no longer optimal: if the current shock is high, future shocks are expected to be

high and so consumption in the future is expected to be high as well. Therefore, an

agent with a high current taste shock receives both high current consumption and

high continuation utility.

How are the agents then induced to report truthfully, rather than pretending they

have higher shocks? I show that an appropriate choice of the marginal continuation

utility is essential to ensure incentive compatibility and to provide insurance. The

marginal continuation utility is shown to be positively related to the sensitivity of

the agent’s lifetime utility from tomorrow on to the next period shock. A lifetime

utility profile that is very sensitive to next period’s shock is beneficial for high shock

agents because they expect to have a high shock tomorrow as well, but it is very

costly for low shock agents, because they expect to continue having low shocks. High

marginal continuation utility thus deters the low shock agents from reporting high

shocks and helps to relax the incentive compatibility constraint. I show that the

social planner will then optimally choose the marginal continuation utility to be “too

high”, compared to the first best allocation. I.e., agents’ lifetime utility will be more

sensitive to the current shock than it would be in a first best allocation, and the

social planer overinsures the agents. This conclusion is very different from an i.i.d.

economy, where the social planner typically underinsures the agents.

Recent research on dynamic optimal taxation3 has focused attention on the anal-

ysis of the intertemporal wedges implied by the efficient allocations. The reason is

that, in any implementation with taxes, the wedges are closely related to capital

taxes. I therefore solve numerically for the efficient allocations and study both the

efficient allocations and the intertemporal wedges. I define the ex-ante intertemporal

3See Werning [19], Golosov, Kocherlakota, Tsyvinski [9], Kocherlakota [16], Albanesi and Sleet

[4], Albanesi [3] or Farhi and Werning [7], Kapicka [14] and others.
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wedge as a wedge between the marginal utility of consumption today and the expected

marginal utility of consumption tomorrow. I find that the wedge is mostly negative

for low marginal promised utilities but turns positive for higher ones. For most of the

marginal promised utilities and for most of the population, the ex-ante intertemporal

wedge is significantly larger than it would have been in an i.i.d. economy. I also

define an ex-post intertemporal wedge as a wedge between current marginal utility of

consumption and the marginal utility of consumption tomorrow. If the well known

inverse Euler equation were to hold, then the expected value of the ex-post intertem-

poral wedge would be zero. But the inverse Euler equation does not hold in the taste

shock economy I study and the expected value of the ex-post intertemporal wedge

is in general significantly different from zero. I decompose the ex-ante intertemporal

wedge into the expected ex-post intertemporal wedge and the difference between the

two, which is strictly positive due to Jensen’s inequality. I find that the magnitude

of the expected ex-post intertemporal wedge is the major reason why the ex-ante

intertemporal wedge is so large. However, even the difference between these two is

significantly larger than in an i.i.d. economy.

2 The Model

The world begins at time t = 1. The economy is populated by a continuum of agents

of measure one. The agents are heterogeneous with respect to their productivity

shock θt ∈ Θ = [θ, θ] ⊆ R+. The productivity shock is a continuous random variable

that follows a first order Markov process. Let Π : Θ × BΘ → [0, 1] be its transition

function, where BΘ is the σ−algebra on Θ. It is assumed that Π is twice differentiable

with respect to its first argument. Moreover, it is assumed that the transition function

is such that
¯̄̄
Π1(θ,B)
Π(θ,B)

¯̄̄
is bounded for all B ∈ BΘ. For each t ≥ 1, one can construct a

probability measure µt on (Θt,BtΘ) over the shock sequences θt ∈ Θt that follow an

initial given shock θ0. Similarly, for 1 ≤ j < t I construct a probability measure µtj on
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(Θ1+t−j,B1+t−jΘ ) over the subsequences of shocks θtj ∈ Θ1+t−j, given the initial shock

θ0.

The agents are infinitely lived. Their preferences in each period are defined over

consumption c ∈ R+, output y ∈ R+, and depend on the productivity shock θ ∈ Θ.

Let Y ⊆ R+×Θ be the set of all feasible output-productivity shock pairs.4 The period

utility function is given by U : R+×Y → [u, ū]. It is assumed that the utility function

is increasing in consumption and productivity shock, decreasing in output, concave

in consumption, convex in output and twice differentiable with respect to all three

arguments. Furthermore, the utility function is bounded, i.e. −∞ < u < ū < +∞.

For technical reasons, I restrict the utility function to be linear in θ.5 Agents discount

the future by a discount factor β ∈ (0, 1). Let W = [ u
1−β ,

ū
1−β ] be the set of lifetime

utilities the agent may receive.

At the beginning of each period, agents observe their current productivity shock.

After that, consumption and output are determined. While both consumption and

output are observed by the social planner, the productivity of the agent is her private

information. The only exception is the initial shock θ0, which is observed by the

social planner and is assumed to be the same for everyone.

The social planner needs to finance a sequence of expenditures {ẽt}∞t=1, where

ẽt ∈ R. He has access to a credit market and can freely borrow or save. The sequence

of intertemporal prices of consumption is given by q = {qt}∞t=1 where qt > 0 is a

relative price of consumption between periods t and t + 1. Let e ∈ E ⊂ R be the

present value of the expenditures:

e =
X∞

t=1
Qtẽt,

where Q1 = 1 and Qt =
Qt−1
i=1 qi for t > 1 is the relative price of consumption goods

4This formulation allows for the possibility that not all output levels are feasible for a given

productivity shock. For example, in a standard Mirrleesean economy where labor supply l = y
θ is

between 0 and 1, Y is defined by the inequality 0 ≤ y ≤ θ.
5Two most common examples that satisfy this assumption is a taste shock specification without

production (U = θu(c)) or with additively separable production (U = u(c)− θv(y)).
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in period t in terms of consumption in period 1. To ensure that the present value of

expenditures is finite, it is assumed that the prices satisfy a boundedness conditionP∞
t=1Qt ≤ +∞. In what follows I will take the sequence of prices as a parameter of

the social planner’s problem and the present value of government expenditures as an

exogenous variable.

3 Constrained Pareto Optima

For a given present value of expenditures e and prices q, the social planner selects

a pair of consumption assignments Ct : E×Θt → R+ and income assignments Yt :

E×Θt → R+ for each period t ≥ 1. The collection of these assignments for all periods

Z = {Ct, Yt}t≥1 is called an allocation.

At the beginning of period t, the agents report their current type to the social

planner. The reporting strategy of an agent can be described by a collection of func-

tions σ = {σt}t≥1 where σt : Θt → Θ is a reporting strategy in period t. The set of

all reporting strategies is denoted by Σ and the history of reports up to period t is

denoted by θ̂
t ∈ Θt.

The agent’s continuation preferences over an allocation Z from period t on are

given, for any history of reports θ̂
t−1 ∈ Θt−1 and any last period shock θt−1 ∈ Θ, by

Wt(Z, θ̂
t−1
, θt−1) =

X∞

j=0

Z
Θj+1

βjU [Ct+j(θ̂
t−1
, θt+jt ), Yt(θ̂

t−1
, θt+jt ), θt+j]µ

j(θt−1, dθ
t+j
t ).

Preferences from the initial period 1 on will be denoted simply as W (Z, θ0) =

W1(Z,®, θ0).

The allocation must satisfy two constraints. First, since the shocks are private

information of an agent, the allocation must be such that the agent always prefers

to report her shock truthfully. If the agent chooses reporting strategy σ she receives

consumption and output assignment Z ◦ σ = {Ct(σt(θt), Yt(σt(θt)}t≥1. Thus, the

allocation is incentive compatible if

W (Z, θ0) ≥W (Z ◦ σ, θ0) ∀σ ∈ Σ. (1)
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Second, the allocation must be feasible, i.e. must collect enough resources to

finance the present value of expenditures e. The budget constraint of the social

planner is X∞

t=1
Qt

Z
Θt
[Ct(θ

t)− Yt(θt)]µt(θ0, dθt) = e. (2)

Denote the set of all allocations that are both incentive compatible and feasible

for a present value of expenditures e and last period shock θ0 by Z
q(e, θ0).

6 The social

planner’s objective is to maximize the expected utility of an agent by choosing an

allocation that is incentive compatible and feasible7 for government expenditures e

and last period shock θ0 :

Ψq(e, θ0) = max
Z∈Zq(e,θ0)

W (Z, θ0). (3)

I will refer to this problem as a sequence utility maximization problem of the social

planner.

The incentive compatibility constraint (1) requires that all possible reporting

strategies σ ∈ Σ must be weakly dominated by the truthful reporting strategy. It

turns out, however, that it is not necessary to check whether all possible report-

ing strategies satisfy this. It is enough to check one period deviations are weakly

dominated by truthtelling. The following Lemma, which extends a similar result of

Fernandes and Phelan [8], shows this result formally.8

Lemma 1 An allocation Z is incentive compatible if and only if for all t ≥ 1, for
6Note that the set Zq(E, θ0) may be empty for some E, if the present value of the expenditures

is high enough so that no incentive compatible allocation can finance it.
7In principle, the social planner could assign different Pareto weights to different agents, but since

all agents are ex ante identical, I will assume that they all have equal weights. This assumption

simplifies the algebra considerably but can be easily relaxed.
8The proof of Lemma (1) can be found in the Appendix, as well as all the other proofs in this

paper (unless mentioned otherwise).
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almost all histories θt−1 ∈ Θt−1 and almost all current period shocks θt ∈ Θ,

U(Ct(θ
t), Yt(θ

t), θt)+βWt+1(Z, θ
t, θt) ≥ U(Ct(θt−1, θ̂), Yt(θt−1, θ̂), θt)+βWt+1(Z, (θ

t−1, θ̂), θt)

(4)

for all reports θ̂ ∈ Θ.

Lemma (1) shows that, although shocks are persistent in the model, there is no

persistence in deviations. The incentive to tell the truth is unaffected by the agent’s

past behavior, in particular whether the agent reported truthfully in the previous

periods. The reason why the temporary incentive compatibility constraint (4) holds

is that although θt−1 affects the preferences at the beginning of period t, the report is

made after the current shock θt is realized. At this point, θt−1 is no longer relevant:

future preferences depend only on θt. Consequently, θt−1 does not affect the incentive

to tell the truth.

4 Dual Recursive Formulation

In this section I will study a dual problem where the social planner minimizes costs of

delivering certain promised utility w1 ∈W and, in addition, I will formulate the dual

problem recursively. In each period t > 1, the social planner’s choice is conditioned

on a function w(·) : Θ → W, called a promised utility function. This function

determines the agent’s lifetime utility entitlement for each possible shock the agent

may have received in the previous period: if last period’s shock was θ̂−, then the agent

is entitled to receive lifetime utility w(θ̂−). Even though the social planner does not

observe the agent’s true last period shock, he is now able to deliver the promised

utility to any such agent, regardless of whether or not the agent has reported her

shock truthfully.

I define an allocation rule z̃ = {c̃t, ỹt, w̃t+1}∞t=1 as follows. Let LΘ be the space of

functions w :Θ→W. Define, for each t > 1, a consumption function c̃t : LΘ×Θ2 →
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R+, an output function ỹt : LΘ × Θ2 → R+ and a continuation utility function

w̃t+1 : LΘ×Θ3 →W. The continuation utility function w̃t+1(w(·), θ−, θ̂, θ) determines

the continuation utility of an agent who is promised w(·), reported θ− in the previous

period, reports θ̂ in the current period and has current shock θ. The consumption and

output functions c̃t(w(·), θ−, θ̂) and ỹt(w(·), θ−, θ̂)) determine the consumption and

output of such an agent, but unlike the continuation utility function, do not depend

on the current shock θ. For t = 1, the definition is modified to take into account that,

at the beginning of period 1, only the promised utility w1 ∈ W must be delivered.

Define therefore c̃1 :W ×Θ2 → R+, ỹ1 :W ×Θ2 → R+ and wt+1 :W ×Θ3 →W.

An allocation rule must satisfy three constraints: it must deliver the promised

utility function, it must be incentive compatible and the continuation utility function

must be consistent with future choices. The promise keeping constraint states that

for all t > 1 the allocation rule must deliver lifetime utility w(θ̂−) for an agent whose

previous period shock was θ̂− and that this has to be true for all θ̂− ∈ Θ :9

w(·) =
Z
Θ

[U(c̃t(θ), ỹt(θ), θ) + βw̃t+1(θ, θ)]Π(·, dθ). (5)

This is the promise keeping constraint in the usual sense only when w(·) is evalu-

ated at the previous period shock θ−. For any other values θ̂− 6= θ− it corresponds to

the threat keeping constraint in the sense of Fernandes and Phelan [8] and determines

what lifetime utility the agent would have been entitled to, were her previous period

shock θ̂− but she still reported θ−. The first period needs to be treated differently

since the time zero shock θ0 is publicly known. The promise keeping constraint only

requires that promised utility w1 must be delivered to the agent:

w1 =

Z
Θ

[U(c̃1(θ), ỹ1(θ), θ) + βw̃2(θ, θ)]Π(θ0, dθ). (6)

The temporary incentive compatibility constraint ensures that it is in the agent’s

9For notational convenience, the state variables w(·) and θ− will be kept implicit whenever

possible.
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interest to report, in each period t ≥ 1, her current type truthfully:

U(c̃t(θ), ỹt(θ), θ) + βw̃t+1(θ, θ) ≥ U(c̃t(θ̂), ỹt(θ̂), θ) + βw̃t+1(θ̂, θ) ∀θ̂, θ ∈ Θ2. (7)

To rule out the possibility that the social planner chooses a continuation util-

ity function that will later be impossible to deliver, one needs to put an additional

restriction on the social planner’s set of choices: for all t ≥ 1, it is required that

w̃t+1(θ, ·) ∈ Ũ∗ ∀θ ∈ Θ, (8)

where Ũ∗ is a fixed point of the following operator:

T Ũ = {w ∈ LΘ:∃c̃ : Θ→ R+, ỹ : Θ→ R+, w̃
0 : Θ2 → R

such that (5) and (7) holds and w̃0(θ, ·) ∈ Ũ ∀θ ∈ Θ}.

Standard arguments of Abreu, Pearce and Stacchetti [2] imply that Ũ∗ is nonempty,

convex and compact. Denote the set of all allocation rules that satisfy, for a given

w1 and θ0 the promise keeping constraints (6) and (5), the incentive compatibility

constraint (7) and the constraint (8) by z̃(w1, θ0).

An allocation rule implies a sequence of distributions of the continuation utility

functions for t > 1. Let D be a subset of LΘ. The distribution of the promised utility

functions at the beginning of period 2, ϕ̃2 is given by

ϕ̃2(D) =

Z
M̃1(D)

Π(θ0, dθ1)

where M̃1(D) = {θ ∈ Θ : w̃2(w1, θ0, θ, ·) ∈ D}. Suppose now that ϕ̃t is the dis-

tribution of the promised utility functions at the beginning of period t > 2. The

distribution next period ϕ̃t+1 satisfies the difference equation

ϕ̃t+1(D) =

Z
M̃t(D)

µtt−1(θ0, dθ
t
t−1)dϕ̃t (9)

where M̃t(D) = {(w(·), θ−, θ) ∈ LΘ ×Θ2 : w̃t+1(w(·), θ−, θ, ·) ∈ D}.10

10Note that, unlike the case of i.i.d. shocks, the evolution of the distribution always depends on

the initial shock θ0 and so cannot be written recursively, as in Atkeson and Lucas [5].
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Any allocation rule z̃ implies certain present value of the social planner’s resource

costs. It is denoted by a function Ẽq and satisfies

Ẽq(z̃, w1, θ0) =

Z
Θ

[c̃1(w1, θ0, θ1)− ỹ1(w1, θ0, θ1)]Π(θ0, dθ1)

+
X∞

t=2
Qt

Z
Θ2×LΘ

{c̃t(w(·), θt−1, θt)− ỹt(w(·), θt−1, θt)}dµtt−1dϕ̃t.

For any allocation rule z̃ define an allocation Z as follows. Let e = Ẽq(z̃, w1, θ0) be

the implied costs of the allocation rule z̃. Let Ŵt(e, θ̂
t−1
, θt−1) solve the following dif-

ference equation: Ŵ1(e, θ̂1, θ1) = w̃2(w1, θ0, θ̂1, θ1) and for t > 1 Ŵt+1(e, θ̂
t
, θt) =

w̃t+1[Ŵt(e, θ̂
t−1
, ·), θ̂t−1, θ̂t, θt]. Set consumption Ct(e, θ̂

t
) = c̃t[Ŵt(e, θ̂

t−1
, ·), θ̂t−1, θ̂t]

and output Yt(e, θ̂
t
) = ỹt[Ŵt(e, θ̂

t−1
, ·), θ̂t−1, θ̂t]. Call Z an allocation generated by

the allocation rule z̃.

The relationship between allocations and allocation rules is shown in the next

lemma.

Theorem 2 i) Suppose that z̃ is an allocation rule and that z̃ ∈ z̃(w1, θ0). Let e =

Ẽq(z̃, w1, θ0) be its implied resource costs. Then the allocation Z that is generated by

the allocation rule satisfies Z ∈ Zq(e, θ0) and delivers lifetime utility W (Z, θ0) = w1.

ii) Suppose that Z is an allocation and that Z ∈ Zq(e, θ0). Let w1 = W (Z, θ0) be

the lifetime utility it delivers. Then there exists an allocation rule z̃ ∈ z̃(w1, θ0) that

has implied resource costs Ẽq(z̃, w1, θ0) = e.

The proof of the theorem can be found in Appendix 2. It follows closely the proof

of Lemmas 3.1 and 3.2 in Atkeson and Lucas [5] and can be found in the Appendix..

Theorem (14) implies that, instead of solving the social planner’s problem (3),

one can as well look at the problem of minimizing the resource costs subject to

the constraint that the lifetime utility of the agent must be w1 and then find w1

such that the desired present value of expenditures is reached. The cost function

Ωq :W ×Θ→ R is

Ωq(w1, θ0) = min
z̃∈z̃(w1,θ0)

Ẽq(z̃, w1, θ0). (10)
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Let z̃∗ be the efficient allocation rule that solves this problem. Theorem (14) implies

that the allocation Z∗ that is generated by z̃∗ solves the sequence utility maximization

problem (3) for government expenditures e = Ωq(w1, θ0).

The Bellman principle of optimality implies that the cost minimization problem

(10) can be written recursively as follows. For t ≥ 1 define a cost function Ωqt :

LΘ × Θ → R recursively to be the minimal costs of delivering a promised utility

function w(·) to an agent who has reported a shock θ− in period t− 1:

Ωqt (w(·), θ−) = min
c̃,ỹ,w̃0

Z
Θ

{c̃(θ)− ỹ(θ) + qtΩqt+1(w̃0(θ, ·), θ)}Π(θ−, dθ), (11)

subject to the temporary incentive compatibility constraint (7), the promise keeping

constraint (5) and the constraint (8). The solution to the Bellman equation (11) is

related to the solution of the cost minimization problem (10) in the next Lemma,

which is proved in the Appendix:

Lemma 3 The cost function Ωq satisfies, for all w1 ∈W,

Ωq(w1, θ0) = min
w(·)∈LΘ

Ωq1(w(·), θ0) s.t. w(θ0) = w1. (12)

5 First Order Approach

While the recursive approach of the previous section works well in theory, it is clear

that having a function as a state variable prevents one not only from solving for the

efficient allocations numerically, but also from gaining more insights into the efficient

mechanism. To deal with this weakness, I now develop a first order approach to the

problem. The advantage of the first order approach is that, as long as it is justified, one

does not need to specify the continuation utility function w̃t+1 for the off-equilibrium

values. I show that this in turn implies that one does not need to specify the off-

equilibrium values of the state variable as well. Rather, the recursive structure of the

problem will depend only on the equilibrium promised utilityw(θ−) of the truthtelling

agent and on her marginal promised utility ∂
∂θ
w(θ−), instead of on the whole promised
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utility function w(·). A corresponding recursive cost minimization problem will then

depend only on a handful of simple state variables and can be numerically computed

and analyzed.

The application of the first order approach is complicated by the fact that, as fol-

lows from (7), lifetime utility of the agent in the recursive cost minimization problem

is a sum of two terms: U(c̃t(θ̂), ỹt(θ̂), θ) and w̃t+1(θ̂, θ). The first term is just a period

utility function and its properties of interest, namely differentiability with respect to

θ, can be imposed exogenously. But w̃t+1(θ̂, θ) is endogenous to the social planner’s

problem and its properties are not immediately known. Fortunately, I show that the

necessary properties of w̃t+1(θ̂, θ) can be determined quite easily. The reason is that,

for a given report θ̂, the function w̃t+1(θ̂, ·) needs to satisfy (5) at the beginning of

period t + 1. Hence, if the right-hand side of (5) is differentiable in θ, the left-hand

side must be as well. But the right-hand side of (5) depends on θ only through the

transition function Π. Hence, if the function Π(θ, ·) is differentiable in θ, which it

is by assumption, then w̃t+1(θ̂, θ) is also differentiable in θ. Put differently, the set

Ũ∗ contains only functions that are differentiable in θ. Lemma (4) shows this result

formally and also finds the bounds on ∂
∂θ
w̃0(θ̂, θ).

Lemma 4 Suppose that w̃0(θ̂, ·) ∈ Ũ∗ for all θ̂ ∈ Θ. Then w̃0(θ̂, θ) is differentiable

with respect to θ for all θ̂ ∈ Θ. Moreover, its derivative ∂
∂θ
w̃0(θ̂, θ) is bounded for all

(θ̂, θ) ∈ Θ2.

The next theorem builds on Lemma (4) and derives necessary and sufficient con-

ditions for an allocation rule to be incentive compatible. The proof is similar in many

aspects to the one used in static economies, e.g. in Mirrlees [17].

Theorem 5 An allocation rule z̃ satisfies the temporary incentive compatibility con-

straint (7) for t ≥ 1 if and only if

U(c̃t(θ), ỹt(θ), θ)+βw̃t+1(θ, θ) =

Z θ

θ

[Uθ(c̃t(ε), ỹt(ε), ε)+β
∂

∂θ
w̃t+1(ε, ε)]dε+ w̃0, (13)

and Uθ(c̃t(θ̂), ỹt(θ̂), θ) + β ∂
∂θ
w̃t+1(θ̂, θ) is increasing in θ̂ for all θ.
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The envelope condition (13) is obtained by applying the Envelope Theorem to the

incentive compatibility constraint (7). It shows how lifetime utility must vary with

the current period shock in order to be incentive compatible. The expression under

the integral consists of two terms. The first term is the current informational rent:

the extra current period utility an agent receives from a marginal increase in current

skills. The second term corresponds to the future informational rent: extra lifetime

utility from tomorrow on that an agent receives from a marginal shift in the future

distribution of shocks. The second term is zero if shocks are i.i.d. because current

private information bears no information about future shocks.

The global second order condition requires Uθ(c̃t(θ̂), ỹt(θ̂), θ)+β ∂
∂θ
w̃t+1(θ̂, θ) to be

increasing in θ̂ for all θ. If the shocks are i.i.d., the second term drops out and this

condition is equivalent to a simple requirement that ỹt(θ) is increasing in θ, provided

that the utility function satisfies the Spence-Mirrlees condition. When the shocks are

persistent, monotonicity of ỹt is neither required nor implied. In principle, one can

have an incentive compatible allocation rule such that ỹt(θ) is decreasing, if
∂
∂θ
w̃t+1

increases sufficiently fast in θ̂.

In what follows, I will adopt the usual approach by considering a relaxed social

planner’s problem where the monotonicity condition is ignored. The monotonicity

condition will only be checked after the solution to the relaxed social planner’s prob-

lem is found, with the hope that it will not bind.

The envelope condition (13) shows that everything except for the continuation

utility and the marginal continuation utility is irrelevant for determining whether

an allocation rule is incentive compatible. This suggests that everything else may

be also irrelevant for the recursive formulation itself. With that in mind, I define a

modified allocation rule z = {ct, yt, wt+1, gt+1}∞t=1 as follows. Let G ⊆ R be the set

of all feasible marginal promised utilities.11 For each t > 1, the modified allocation

rule consists of the functions ct : W × G × Θ2 → R+, yt : W × G × Θ2 → R+,

11It follows from Lemma (5) that one can take G to be a bounded subset or R.
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wt+1 : W × G × Θ2 → W and gt+1 : W × G × Θ2 → G. For t = 1 it is defined by

c1 :W×Θ2 → R+, yt :W×Θ2 → R+, wt+1 :W×Θ2 →W and gt+1 :W×Θ2 → G.

The function wt+1 now represents the continuation utility of the truthtelling agent,

while gt+1 represents the marginal change (with respect to the true shock) of the same

agent. Compared to the allocation rule, the domain of the modified allocation rule

has been modified for t > 1 and the promised utility function w(·) has been replaced

by the promised utility w and the marginal promised utility g.

The modified allocation rule z is required to satisfy four conditions. The first is

the envelope condition: For all t ≥ 1,

U(ct(θ), yt(θ), θ) + βwt+1(θ) =

Z θ

θ

[Uθ(ct(ε), yt(ε), ε) + βgt+1(ε)]dε+ w0, (14)

which is equation (13) applied to the modified allocation rule. The second re-

quirement is that for all t ≥ 1, the promise keeping constraint must hold:

w =

Z
Θ

[U(ct(θ), yt(θ), θ) + βwt+1(θ)]Π(θ−, dθ) (15)

where, unlike constraint (5), it is required to hold only for the last period shock θ−.

The third constraint, called the marginal promise keeping constraint, is new. For

all t > 1, the social planner to restricted to increase the marginal continuation value

of an agent with last period shock θ− at the rate g:

g =

Z
Θ

[U(ct(θ), yt(θ), θ) + βwt+1(θ)]Π1(θ−, dθ). (16)

Finally, the last requirement is that for all t > 1 the modified allocation rule

must be such that next period promised utility wt+1(θ) and marginal promised utility

gt+1(θ) is delivered:

[wt+1(θ), gt+1(θ)] ∈ U∗(θ) ∀θ ∈ Θ, (17)

where U∗(θ) ⊆ W ×G is the fixed point of the following operator:

TU(θ−) = {(w, g) ∈W ×G : ∃c : Θ→ R+, y : Θ→ R+, w
0 : Θ→W, g0 : Θ→ G

such that (15), (16) and (14) holds and [w0(θ), g0(θ)] ∈ U(θ)}.
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The set U∗(θ) can again be shown to be nonempty, compact and convex for all

θ ∈ Θ. The set of all allocation rules that satisfy, for given w1 and θ0 the promise

keeping constraint (15), the marginal promise keeping constraint (16), the incentive

compatibility constraint (14) and the constraint (17) will be denoted by z(w1, θ0).

One may be tempted to prove now that an analogue of Theorem 14 holds and that

the set of modified allocation rules is in some sense identical to the set of allocation

rules or allocations. Such an effort would be unsuccessful. As long as the first

order approach is valid, the set of modified allocation rules z(w1, θ0) will be strictly

smaller than the set of allocation rules z̃(w1, θ0) : for each z ∈ z(w1, θ0) one can

construct z̃ ∈ z̃(w1, θ0) that delivers the same consumption and output assignment

after each history of reports. The reverse, however, is not true. The reason is that

the first order approach is unable to provide arbitrary restrictions off the equilibrium

path. But I will show in theorem (6) that these restrictions can only increase the

costs to the social planner and will therefore never be used in the optimum. Hence

the recursive formulation relying on the first order approach is sufficient to find the

efficient allocation.12

For these reasons, I will now focus on the cost minimization problem of the social

planner directly. Define V qt :W ×G ×Θ→ R recursively by

V qt (w, g, θ−) = min
c,y,w0,g0

Z
Θ

[c(θ)− y(θ) + qtV qt+1(w0(θ), g0(θ), θ)]Π(θ−, dθ), (18)

subject to (15), (16), (14) and (17). It can then be shown that the smallest present

value of the costs of delivering promised utility w1 to an agent with last period shock

θ0 is given by the following function V
q :W ×Θ:

V q(w1, θ0) = min
g∈G
V q1 (w1, g, θ0) s.t. (w1, g) ∈ U∗(θ0). (19)

12Thus, there is an asymmetry between a first order approach in static models and a first order

approach in this model. In static models there are no off-equilibrium allocations and so the first

order approach does not limit the set of available allocations in any way.
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The next theorem relates the solution to the social planner’s problem (19) to the

solution of the problem (12) and justifies the recursive formulation of this section.

Theorem 6 Suppose that the relaxed social planner’s problem is valid. Then V q =

Ωq.

The intuition behind the proof is the following. I first define a set Υ(w, g, θ−) ⊆ Ũ∗

that contains all the promised utility functions w(·) that deliver promised utility

w(θ−) = w and marginal promised utility ∂
∂θ−
w(θ−) = g to an agent with the last

period shock θ−. I first show that the value function V
q
t (w, g, θ−) attains the minimum

of Ωqt (w(·), θ−) over the set Υ(w, g, θ−). That is, as long as the first order approach

is valid, constraining the social planner only by w and g does no harm. This in

turn implies that V q ≤ Ωq. On the other hand, the first period choice of the promised

utility function is constrained only by a requirement thatw(θ0) = w1 and so the social

planner can attain the minimum of Ωq1(w(·), θ−) over Υ(w1, g, θ0). Hence Ωq = V q.

6 Taste Shock Economy with Random Walk

I will now consider a simple economy with multiplicative shocks, labeled as taste

shocks, and logarithmic utility. The period utility is thus given by U(c, y, θ) = θ ln c.

Since the utility is logarithmic, the assumption that the utility function is bounded

will not apply and W = R. I will study an economy where the taste shocks follow

a random walk and where the innovations are Pareto distributed. Let η > 1 be the

scale parameter. If θ− is the last period shock then the location parameter of the

Pareto distribution is given by θ−θL. In order to ensure that E(θ|θ−) = θ− and the

shocks follow a random walk, I set θL =
η−1
η
. Hence the density function π(θ−, θ) is

given by π(θ−, θ) =
η
θ
( θ
θ−θL

)−η if θ ≥ θ−θL and zero otherwise. The intertemporal

price is set to be equal to the discount factor in all periods: qt = β for all t ≥ 0.13

13Because the price of consumption is constant, the efficient modified allocation rule will be time

independent. I will therefore drop the time subscript and denote next period with prime.
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Instead of working with the consumption allocation directly, I follow the usual

change of variables and define current period utility u = ln c.14 With this change, the

incentive compatibility constraint (14) takes the form

θu(θ) + βw0(θ) =

Z θ

θ−θL

[u(ε) + βg0(ε)]dε+ w0, (20)

the promise keeping constraint becomes

w =

Z ∞

θ−θL

[θu(θ) + βw0(θ)]π(θ−, θ)dθ, (21)

and the marginal threat keeping constraint can be written as

g =

Z ∞

0

[θu(θ) + βw0(θ)]Π1(θ−, dθ). (22)

One can significantly simplify the marginal promise keeping constraint by using

the fact that with the Pareto distribution π1(θ−, θ) =
η
θ−
π(θ−, θ). Rewriting the right-

hand side of (22), one sees that the marginal threat keeping constraint holds if and

only if

g =
η

θ−
(w − w0). (23)

This version of the marginal threat keeping constraint gives an additional inter-

pretation to marginal promised utility g. Marginal promised utility is proportional

to the spread between the expected utility of the agent w and the utility of the agent

with the lowest possible shock, w0. High marginal promised utility indicates that the

variation in the lifetime utilities of agents (after the shock has been revealed) will be

large. Furthermore, since w0 can be uniquely determined from the knowledge of w, g

and θ−, the social planner’s commitment to deliver a given marginal promised utility

g can alternatively be seen as a commitment to obey a lower bound on agent utilities

w0. The equation (23) also implies that G = R and that U∗(θ) = R2 for all θ and so

the requirement (17) is never binding.

14It is customary to call u the utility, although the period utility is in fact θu.
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The efficient modified allocation rule can now be found as a solution to the fol-

lowing Bellman equation:15

V q(w, g, θ−) = min
u,w0,g0

Z ∞

θ−θL

[eu(θ) + βV q(w0(θ), g0(θ), θ)]π(θ−, θ)dθ, (24)

subject to the incentive compatibility constraint (20), the promise keeping constraint

(21) and the marginal threat keeping constraint (23). Since all the constraints are

homogeneous of degree one in the choice variables and the period return function is

strictly convex, the value function V q(w, g, θ−) is strictly convex in w, g.

6.1 Two Normalizations

It turns out that with permanent shocks and log utility, the value function and the

optimal policy functions take a very simple functional form in both the last period

shock θ− and promised utility w. One can use these functional forms to simplify the

dynamic program (24) and to transform it into a simpler one that involves only one

state variable: marginal promised utility g. I will first show the normalization of the

last period shock θ−.

Lemma 7 The value function satisfies V q(w, g, θ−) = V
q( w

θ−
, g, 1). The optimal pol-

icy functions satisfy u(w, g, θ−, θ) = u(
w
θ−
, g, 1, θ

θ−
), w0(w, g, θ−, θ) = θ−w

0( w
θ−
, g, 1, θ

θ−
)

and g0(w, g, θ−, θ) = g
0( w
θ−
, g, 1, θ

θ−
).

The current utility u and marginal continuation utility g0 for an agent with last

period shock θ− can be obtained by proportionally stretching (if θ− > 1) or com-

pressing (if θ− < 1) the current utility u and marginal continuation utility g
0 of an

agent with the last period shock 1 and a rescaled promised utility w
θ−
. In addition,

the continuation utility is proportionally scaled up or down by θ−. The intuition for

why the optimal policy functions take these special functional forms can be obtained

15As follows from the assumptions, the sequence of intertemporal prices is now q = {β}∞t=1, a
constant sequence.
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by looking at the properties of the shock distribution. Because the shocks follow a

random walk with Pareto distributed innovations, the distribution of shocks for an

agent with last period shock θ− look like a stretched or compressed distribution of

shocks for an agent with last period shock 1. Since the shocks are permanent, the

agent’s utility of consumption in all the future periods (and hence the continuation

utility) is expected to be scaled up or down by θ− as well. Lemma (7) shows that the

optimal policy functions inherit all these properties.

The second normalization involves promised utility w.

Lemma 8 The value function satisfies V q(w, g, 1) = e(1−β)wV q(0, g −w, 1). The op-

timal policy functions satisfy u(w, g, 1, θ) = (1−β)w+u(0, g−w, 1, θ), w0(w, g, 1, θ) =

θw + w0(0, g − w, 1, θ) and g0(w, g, 1, θ) = w + g0(0, g − w, 1, θ).

If shocks were i.i.d., one could show that the value function is exponential in w

and the optimal policy functions are linear in w. Lemma (8) shows that this result

partially carries over to the economy with permanent shocks. There are, however,

two differences. First, one needs to adjust the marginal promised utility g by w as

well. Second, the additive term in the continuation utility function is θw, rather than

only w. An important implication of Lemma (8) is that the value function is not

necessarily increasing in the promised utility. The intuition is that a given marginal

promised utility g may be easily obtainable for some levels of promised utility, but

be very costly to deliver for some other levels of promised utility. A decrease in the

promised utility may thus impose additional costs on the social planner and if these

costs are large enough, the value function will increase.

Define the normalized value function v(g) = V q(0, g, 1) and the normalized current

utility function r(g, θ) = u(0, g, 1, θ), continuation utility function h0(g, θ) = w0(0,g,1,θ)
θ

and the marginal continuation utility functionm0(g, θ) = g0(0, g, 1, θ)− w0(0,g,1,θ)
θ

. Note

that h0 is normalized in such a way that the direct effect of the current taste shock on

h0 is zero. Let also π(θ) ∼ π(1, θ) be simplified notation for the normalized density
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function. Using Lemmas (7) and (8), the dynamic program (24) has been reduced to

the following:

v(g) = min
r,h0,m0

Z ∞

θL

[er(θ) + βe(1−β)h
0(θ)v(m0(θ))]π(θ)dθ (25)

s.t.

0 =

Z ∞

θL

θ[r(θ) + βh0(θ)]π(θ)dθ (26)

θ[r(θ) + βh0(θ)] =

Z θ

θL

[r(ε) + βh0(ε) + βm0(ε)]dε− g
η
, (27)

where the marginal threat keeping constraint (and a choice of w0) has been eliminated

completely by substituting − g
η
for w0 in the incentive compatibility constraint.

I will denote the cost minimizing marginal promised utility by g∗ = argmin
G
v(g).

One may conjecture that the minimum will be interior and that the value function v

will be U-shaped, decreasing for g ≤ g∗ and increasing for g ≥ g∗. The cost minimizing

marginal promised utility g∗ is significant for two reasons. First, the social planner

will choose g∗ in the first period when he is not constrained by the marginal promise

keeping constraint. Second, I will later show that g∗ is also a lower bound on the

relevant domain of the social planner’s problem: provided that the social planner

starts with g ≥ g∗, he will always choose m0 ≥ g∗.

6.2 Properties of Efficient Allocations

The constraints (26) and (27) differ from their original counterparts (21) and (20)

in one important respect: both current and continuation utility are multiplied by

the current shock θ. This is clearly a consequence of the way the optimal policy

functions were normalized in Lemma (7) and in principle says nothing about the

optimal allocations themselves. But it indicates that insurance against taste shocks

works in a dramatically different way. In an economy with i.i.d. shocks the social

planner provides insurance by giving relatively high current utility to agents with

high shocks, in exchange for a lower continuation utility. Such a trade-off preserves
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incentive compatibility, because low shock agents benefit very little from high current

consumption but are hit as hard as anyone else by the lower continuation utility.

When the shocks are permanent, this trade-off is considerably weakened. A high

current shock means that the agents expect to receive high shocks in the future as

well - as if the shock directly affected both the current and continuation utility. It

is therefore likely that they will receive relatively high consumption in the future as

well. The efficient allocation will in such case give the agents both high current utility

and high continuation utility.

To ensure incentive compatibility, the social planner now introduces a new trade-

off, in the form of varying marginal promised utility m0 or, equivalently, in the form

of a varying lower bound on next period lifetime utilities. To see how this trade-off

works, consider first the following Lemma that simplifies the incentive compatibility

constraint (27):

Lemma 9 The policy functions r, h0 and m0 satisfy the incentive compatibility con-

straint if and only if

r(θ) + βh0(θ) = β

Z θ

θL

m0(ε)
dε

ε
− g

η − 1 . (28)

A simple proof, relying on the differentiability of the optimal policy functions in θ

can be easily obtained by differentiating (27), cancelling terms and integrating back.

A proof that does not assume differentiability is also available, but is omitted here.

The equation (28) shows that the marginal continuation utility is proportional to the

slope of agent’s lifetime utility profile r + βh0. If the social planner wants to reward

higher shock agents with higher lifetime utility, he needs to choose a high marginal

continuation utility profile. Indeed, if m0 = 0 for all agents, then the only incentive

compatible lifetime utility profile is independent of the shock, which is the autarchic

utility profile. Any other lifetime utility profile will not be incentive compatible and

some agents will deviate by reporting higher skills than they truly have.
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The reason why a high marginal continuation utility profile allows the social plan-

ner to choose a steeper lifetime utility profile and provide more insurance is the fol-

lowing. High marginal continuation utility implies, as can be seen from the marginal

promise keeping constraint (23), that next period there will be a large spread between

the lower bound on lifetime utility and average utility. As a consequence, the lifetime

utility profile next period will be steep as well. Such a lifetime utility profile is very

harmful for a low shock agent who considers falsely reporting a high shock today. The

reason is that she expects that her shock values next period will be low. Therefore

her continuation utility next period is also expected to be low. This in turn implies

that reporting high shock is costly and so deters her from doing so.

Since the social planner must simultaneously fulfill both (26) and (28), he is not

completely free to choose the marginal continuation utilities. For instance, choosing

m0 = 0 for all agents is feasible only for g = 0, otherwise the promise keeping con-

straint (26) is violated. One can substitute (28) into (26) and integrate to show that

the function m0 must satisfy

g = β

Z ∞

θL

θm0(θ)π(θ)dθ. (29)

That is, the expected value of θm0 is equal to g
β
> g. This implies that there must

be some degree of persistence in the choice of marginal continuation utilities: if g is

high, the function m0 will also have high values. At least some fraction of agents

will be assigned m0 > g and, unless there is a sufficiently strong negative covariance

between θ andm0, one can expect an upward drift in the marginal continuation utility.

A negative covariance between θ and m0 will be a likely feature of the solution at least

for g ≥ g∗ since for such values the value function is increasing in g and it is especially

costly to increase the marginal continuation utilities further.

The equation (28) also shows that the global second order conditions now take a

very simple form. They are equivalent to a requirement that m0 ≥ 0 for all θ, which

in turn implies that r + βh0 is increasing in θ. If the second order condition binds

for some range of taste shocks, then r + βh0 will be constant in that range and no
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insurance against the taste shocks will be provided. I will show in the next section

that the second order condition never binds in a relevant range of the domain.

6.2.1 First Order Conditions

Let λ(g) be the Lagrange Multiplier on the promise keeping constraint and γ(g, θ)

be the Lagrange Multiplier on the incentive compatibility constraint. The first order

conditions in r and h0 yield the following necessary condition for the optimum:

r = (1− β)h0 + ln[(1− β)v(m0)]. (30)

This equation determines the division of resources between the current utility r and

the continuation utility h0. The relative costs of delivering current and continuation

utility depend on the choice of m0. In particular, if m0 moves further away from

g∗, the relative costs of delivering continuation utility increase and more emphasis

is put on current utility. Equation (30) underlies the intuition that with permanent

shocks, the trade-off between delivering r versus h0 is not key to understanding the

efficient allocations. The trade-off between r and h0 depend on the current shock only

indirectly through the choice of m0, and if m0 were constant across types, r would

differ from h0 only by a constant.

Define now

x =
1

θ
e(1−β)h

0
v(m0). (31)

Assuming that the value function is differentiable, it is easy to show that the first

order condition in m0 combined with (30), yields the following equation in x and m0:

πθ2²v(m
0)x =

Z ∞

θ

πε[λ− (1− β)x]dε, (32)

where ²v(g) =
vg(g)
v(g)

is the the semielasticity of the value function. Equations (30) and

(32), together with the envelope condition (28) and definition (31) are four equations

in four functions u, h0,x and m0 that need to be solved for the efficient allocations.
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Put t = ln θ and rewrite equations (30), (32) and definition (31) as differential

equations in t. By eliminating r and h0, one sees that the functions m0 and x satisfy

dm0

dt
=

x(1− β)− λ− x²v(m0)[(1− β)βm0 − η]

x[²0v(m
0) + β²2v(m

0)]
(33)

dx

dt
= x[(1− β)βm0 + β²v(g

0)
dm0

dt
− 1]. (34)

The next lemma establishes the boundary conditions for the differential equations

(33) and (34) and finds the minimum of the value function.

Lemma 10

i) For all g ∈ G, limθ→∞m
0(g, θ) = g∗ and limθ→∞ x(g, θ) =

λ(g)
1−β .

ii) The value function v(g) is minimized at g∗ = 1
β−β2 .

The first part of Lemma (10) shows that, in the limit, the cost minimizing marginal

continuation utility is always chosen, independently of the promised utility g. This

is essentially the well known “no distortion at the top” result: for the agent with the

highest possible shock (here represented by the limiting agent), there is no distortion

in the choice of marginal continuation utility. But there is another implication of the

result. If g 6= g∗, the solution to the social planner’s problem is not time consistent.

At the beginning of the period, the social planner would like to default on his promise

to deliver the marginal promised utility g. Delivering the marginal promised utility

g∗ decreases the costs but the promised utility of the truthtelling agent is unchanged.

Lemma (10) then shows that there is no time consistency problem for the limiting

agent.

I will now show that the social planner will always operate in the increasing part

of the value function and, unless he starts with g < g∗ (which he never will), he will

always choose the marginal continuation utility to be greater or equal to g∗.

Lemma 11 Suppose that g ≥ g∗. Then m0(g, θ) ≥ g∗ for all θ ≥ θL.
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Lemma (11) has two important implications. First, it implies that the social

planner will have a tendency to overinsure the agents. One can show that the marginal

continuation utility chosen in the first best allocation is equal to 1
β−β2 = g

∗. Thus, the

marginal continuation utility is always greater than the first best one and, by (28),

the lifetime utility profile r + βh0 will respond more strongly to the current shock

than it would respond in a first best allocation. In contrast, an otherwise identical

economy with i.i.d. shocks will typically exhibit underinsurance: the lifetime utility

profile will be less responsive to the current shocks than the first best allocation would

dictate. The distortions from the optimum thus exhibit a very different pattern. But

the intuition for why there is overinsurance is fairly straightforward. As discussed in

previous section, making the lifetime utility profile more responsive to current shocks

deters lower skilled agents from reporting higher types and therefore weakens the

incentive compatibility constraint. A second implication of Lemma (11) is that the

second order condition will never bind for g ≥ g∗ and one can safely ignore it.

It is shown in the course of the proof of Lemma (11) that m0(g∗, θL) = g
∗. Since

g∗ is the marginal promised utility chosen in the first period, there is thus no time

consistency problem for the agent with the lowest shock as well, as long as the agent

always had the lowest shock in the past. Note that time consistency at the bottom

is much weaker than time consistency at the top: the efficient allocation is time

consistent for any limiting agent, regardless of the past history, but only for the

lowest shock agent who has always had the lowest shock in the past.

6.2.2 Wedges

This section studies intertemporal wedges in this economy. I define an ex-ante in-

tertemporal wedge ∆(g, θ) as a percentage wedge between the expected marginal util-

ity of consumption tomorrow and the marginal utility of consumption today:

θ

c(θ)
= [1−∆(g, θ)]E(

θ0

c0(θ0)
|θ).
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where c0(θ0) = c[w0(θ), g0(θ), θ, θ0]. It is worth noting that, since the taste shock enters

multiplicatively, the inverse Euler equation will not hold. Hence there is no reason to

expect that the intertemporal wedge will be always positive.

I will also define an ex-post intertemporal wedge δ(g, θ, θ0) as a wedge between

marginal utility of consumption today and ex-post marginal utility of consumption

tomorrow:
θ

c(θ)
= [1− δ(g, θ, θ0)]

θ0

c0(θ0)
.

The importance of the ex-post intertemporal wedge is that it is likely that, in any

decentralization of the efficient allocation with taxes, the ex-post intertemporal wedge

would correspond to capital income taxes. Since the inverse Euler equation fails to

hold, the expected ex-post intertemporal wedge is in general not zero.

Jensen’s inequality implies that ∆(g, θ) > E(δ(g, θ, θ0)|θ). The difference between

the ex-ante intertemporal wedge and the expected ex-post intertemporal wedge is of

interest because it helps to separate two forces that constitute the ex ante intertem-

poral wedge. The ex-ante intertemporal wedge equals to the ex-post intertemporal

wedge E(δ(g, θ, θ0)|θ), which can be positive or negative, plus the difference between

these two, ∆(g, θ) − E(δ(g, θ, θ0)|θ), which is always positive. If the inverse Euler

equation were to hold, the expected ex-post intertemporal wedge would be zero and

the ex-ante intertemporal wedge would be solely determined by the second force. In

the next section I will quantitatively determine the relative importance of both forces.

7 Numerical simulations

In this section I quantitatively investigate the efficient allocations in the taste shock

economy with random walk. I set β = 0.96 and η = 2. For the numerical exercise

I truncate the upper 0.0001% of the Pareto distribution and discretize the space of

shocks with 1000 gridpoints. I solve the differential equation (33) and iterate on the

28



value function (25) until it converges.16

Figure 1 studies the issue of overinsurance. It plots the current utility function

r(g, ·) for several selected high values of g against the logarithm of the shock.17 I

contrast the results with the current utility function in an otherwise identical economy

with i.i.d. shocks. In a first best allocation the slope of all these functions would be

one and so if the policy function is over the 45◦ line there is overinsurance, while

if it is under the 45◦ degree line there is underinsurance. The picture shows that

overinsurance becomes significant especially in the middle range of shocks. On the

other hand, insurance in the i.i.d. economy is almost perfect for low shock values but

agents become more underinsured when their shock increases.

Figure 2 shows the continuation utility function h0(g, ·) for selected values of g and

contrasts it again with the continuation utility function in an i.i.d. economy. One can

see that the continuation utility function goes in exactly the opposite direction: it

increases with shocks when the shocks are persistent but decreases when the shocks are

i.i.d. Moreover, h0 is much more sensitive to the current shock than the continuation

utility in an i.i.d. economy.18

The ex-ante intertemporal wedge ∆ is depicted in figure 3, together with the the

intertemporal wedge when shocks are i.i.d. One can see that the magnitude of the

wedge depends critically on the marginal promised utility. For low values of marginal

promised utility it is mostly negative but becomes positive for higher values of g. The

16Unfortunately, the nature of the problem prevents me from imposing an upper bound on the the

space of marginal promised utilities. As follows from (11), for any g and any feasible contract, there

must be some set of agents with m0 > g. I solve this problem by extrapolating the value function

beyond a certain value of ḡ.
17All the functions are normalized to have the same intercept.
18Note that h0 is continuation utility normalized by θ. Thus, the actual continuation utility is θh0,

which is even more sensitive to θ. But it is more appropriate to compare h0 and the continuation

utility in an i.i.d. economy, because h0 is cleared from any “mechanic” shifts resulting purely from a

shift in the distribution of shocks. Variations in h0 thus represent only the economic forces in play,

as do variations in the continuation utility in an i.i.d. economy.
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Figure 1: Current Utility

wedge tends to decrease with the shock. This is a very different pattern than one

can observe in an i.i.d. economy, where the wedge is very small for low shocks, but

becomes significant for very high shocks.

Figure 4 then addresses the question which of the two forces described in the

previous section contribute more to the ex-ante intertemporal wedge. It plots both

the ex-ante intertemporal wedge and the ex-post intertemporal wedge for g = g∗. It

shows that the distortions in the inverse Euler equation are mainly responsible for the

large magnitudes of the ex-ante intertemporal wedge.19 However, even the difference

between these two is quite sizable, at least when compared to the same difference in an

i.i.d. economy where it is almost negligible. Thus, the force stemming from Jensen’s

inequality is stronger when shocks are permanent. This conclusion is consistent with

the findings of Zhang [21], who reports that the ex-ante intertemporal wedge in a

19Similar result can be found for any other g.
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Figure 2: Continuation Utility

Mirrleesean economy where the inverse Euler equation holds becomes more significant

once the shocks are permanent.

8 Conclusions

The contribution of this paper is twofold. First, it develops a method of solving

dynamic private information models with persistent shocks that is simple enough

to be solved numerically, even for a continuum of shocks. Second, I show that the

pattern of efficient allocations in a taste shock economy with shocks that follow a

random walk is very different from the pattern of efficient allocations in an otherwise

identical i.i.d. economy. In particular, I show that the continuation utility increases

in the current shock, rather than decreases, and that the efficient allocations involve

too much insurance, rather than too little.
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Figure 3: Ex Ante Intertemporal Wedge

While the taste shock economy is a very special one, it is likely that insurance will

work in a similar way in more general Mirrleesean economies with persistent produc-

tivity shocks and endogenous labor supply. In particular, the continuation utility is

still likely to be increasing in the current shock, because the future informational rent

will also be positive. If the incentive compatibility can be weakened by increasing the

slope of the lifetime utility, then the social planner will still overinsure the agents.

This feature may be troubling if one wants to take these models as a positive foun-

dation of market frictions. But, obviously, all these conclusions may be overturned

if one assumes less than full persistence of the shocks. More quantitative studies are

needed before any of the conclusions of this paper can be generalized in any direction.

The first order approach developed in this paper makes such studies tractable.
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9 Appendix

Proof of Lemma (1). Take any history of reports θt−1 ∈ Θt−1 and any last period

shock θt−1 ∈ Θ. For any reporting strategy σ such that σt−1(θt−1) = θ̂
t−1
the lifetime

utility Wt(Z ◦ σ, θ̂
t−1
, θt−1) is well defined and one can show that it can be written

recursively as follows:

Wt(Z ◦ σ, θ̂
t−1
, θt−1) =

Z
Θ

{U [Ct[θ̂
t−1
,σt(θ

t)], Yt[θ̂
t−1
,σt(θ

t)], θt]

+βWt+1[Z ◦ σ, (θ̂
t−1
,σt(θ

t)), θt]}Π(θt−1, dθt). (35)

I will show necessity and sufficiency of (4).

(a) Necessity of (4). The proof is by contradiction. Suppose there is some period

t and sets D ⊆ Θ and D̂ ⊆ Θt−1, both of nonzero measure such that for all θt ∈ D, all

θt−1 ∈ D̂ the temporary incentive compatibility constraint (4) does not hold. That

is, there is some function σ̃t : D × D̂→ Θ such that for all θt ∈ D, all θt−1 ∈ D̂,

U [Ct(θ
t), Yt(θ

t), θt] + βWt+1(Z, (θ
t), θt)

< U [Ct(θ
t−1, σ̃t(θ

t−1, θt)), Yt(θ
t−1, σ̃t(θ

t−1, θt)), θt] + βWt+1[Z, (θ
t−1, σ̃t(θ

t−1, θt)), θt].

Define a new reporting strategy σ as follows. For j 6= t, j ≥ 1 define σj(θj) = θj for

all θj ∈ Θj. For j = t and θt ∈ D̂×D define σt(θt) = σ̃t(θ
t) and for θt /∈ D̂×D define

σt(θ
t) = θt. I will now show that σ dominates truthtelling. For any θt−1 ∈ D̂,

Wt(Z, θ
t−1, θt−1) =

Z
D

{U [Ct(θt), Yt(θt), θt] + βWt+1[Z, (θ
t), θt]}Π(θt−1, dθt)

+

Z
Dc

{U [Ct(θt), Yt(θt), θt] + βWt+1[Z, (θ
t), θt]}Π(θt−1, dθt)

<

Z
Θ

{U [Ct[θt−1,σt(θt−1, θt)], Yt[θt−1,σt(θt−1, θt)], θt]

+βWt+1[Z, (θ
t−1,σt(θ

t−1, θt)), θt]}Π(θt−1, dθt)

= Wt(Z ◦ σ, θt−1, θt−1). (36)

The inequality follows from the fact that the integral over D is strictly smaller on

the left hand side by assumption and the integral over Dc is equal since σt(θ
t−1, θt) =
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θt for θt ∈ Dc. The last equality then follows from (35) and from the fact that, by

construction, σt−1(θt−1) = θt−1 for all θt−1 ∈ Θt−1. But (36) implies that

W (Z, θ0) =
Xt−1

j=1

Z
Θj

βj−1U [Cj(θ
j), Yj(θ

j), θj]dµ
j

+βt−1
½Z

D̂

Wt[Z, θ
t−1, θt−1]dµ

t−1 +

Z
D̂c

Wt[Z, θ
t−1, θt−1]dµ

t−1
¾

<
Xt−1

j=1

Z
Θj

βj−1U [Cj(θ
j), Yj(θ

j), θj]dµ
j

+βt−1
½Z

D̂

Wt[Z ◦ σ, θt−1, θt−1]dµt−1 +
Z
D̂c

Wt[Z ◦ σ, θt−1, θt−1]dµt−1
¾

= W (Z ◦ σ, θ0),

where the inequality follows from the fact that the integral over D̂ is strictly smaller

on the left hand side by (36) while the integral over D̂c is identical since σ(θt−1) = θt−1

for θt−1 ∈ D̂. Thus, σ dominates truthtelling, a contradiction.

(b) Sufficiency of (4). The proof is by induction. Consider any function σ̃1 : Θ→

Θ. Equations (1) and (35) imply that

W (Z, θ0) =

Z
Θ

{U [C1(θ1), Y1(θ1), θ1] + βW2[Z, θ1, θ1]}Π(θ0, dθ1)

≥
Z
Θ

{U [C1(σ̃1(θ1)), Y1(σ̃1(θ1)), θ1] + βW2[Z, (σ̃1(θ1)), θ1]}Π(θ0, dθ1)

= W (Z ◦ σ(1), θ0),

where σ1, defined by σ
(1)
1 (θ1) = σ̃1(θ1) and σ

(1)
j (θ

j) = θj for j ≥ 2 for all θj ∈ Θj.is

a strategy involving only first period deviations.

Assume now that, for any t ≥ 1, W (Z, θ0) ≥ W (Z ◦ σ(t−1), θ0),where σ(t−1) is

a reporting strategy involving only deviations in periods 1, 2, ..t − 1. Let θ̂
t−1

=

σ(t−1)(t−1)(θt−1) by the history of reports in the first t − 1 period for some shock

history θt−1 ∈ Θt−1. The temporary incentive compatibility constraint (4) applied in
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period t implies that, for any function σ̃t : Θ→ Θ

Wt(Z, θ̂
t−1
, θt−1)

=

Z
Θ

{U [Ct(θ̂
t−1
, θt), Yt(θ̂

t−1
, θt), θt] + βWt+1[Z, (θ̂

t−1
, θt), θt]}Π(θt−1, dθt)}

≥
Z
Θ

{U [Ct(θ̂
t−1
, σ̃t(θt)), Yt(θ̂

t−1
, σ̃t(θt)), θt] + βWt+1[Z, (θ̂

t−1
, σ̃t(θt)), θt]}Π(θt−1, dθt)}

= Wt(Z ◦ σ(t), θ̂
t−1
, θt−1). (37)

By expanding the expression for W (Z ◦ σ(t−1), θ0) one gets

W (Z ◦ σ(t−1), θ0) =
Xt−1

j=1

Z
Θj

βj−1U [Cj(σ
(t−1)j(θj)), Yj(σ

(t−1)j(θj)), θj]dµ
j

+βt−1
Z
Θt−1

Wt[Z,σ
(t−1)(t−1)(θt−1), θt]dµ

t−1

≥
Xt−1

j=1

Z
Θj

βj−1U [C(σ(t−1)j(θj)), Yj(σ
(t−1)j(θj)), θj]dµ

j

+βt−1
Z
Θt−1

Wt[Z ◦ σ(t), (σ(t)(t−1)(θt−1)), θt−1]dµj

= W (Z ◦ σ(t), θ0),

where the inequality follows from application of (37). Hence W (Z, θ0) ≥ W (Z ◦

σ(t), θ0) and incentive compatibility holds for any reporting strategies involving de-

viations in the first t periods only. To prove that any strategy σ(∞) = σ involving

infinite period deviations is also suboptimal, suppose on the contrary there is such

strategy σ(∞) that dominates truthtelling. Then there must be a period T such that

the gains in periods 1 to T also dominate truthtelling, since the utility is bounded

and so the gains after period T can be made arbitrarily small. But this means that

a reporting strategy σ(T ) dominates truthtelling, which is a contradiction.

Proof of Lemma (3). Define Ω̄q(w1, θ0) = min
w(·)∈LΘ

Ωq1[w(·), θ0] subject to

w(θ0) = w1. It will be shown that Ω̄
q = Ωq. Define an allocation rule z̄ as follows.

Let {c̃1, ỹ1, w̃01} solve (11) for t = 1 and w̄(w1, ·) solves (12). Then define consump-

tion c̄1(w1, θ0, θ1) = c̃1(w̄(w1, ·), θ0, θ1), output ȳ1(w1, θ0, θ1) = ỹ1(w̄(w1, ·), θ0, θ1) and
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continuation utility function w̄01(w1, θ0, θ1, ·) = w̃01(w̄(w1, ·), θ0, θ1, ·). For t > 1, let z̄

solves the Bellman equation (11).

It is easy to see that Ẽq(z̄, w1, θ0) ≥ Ωq(w1, θ0) because z̄ satisfies (5) for t > 1,

(6) for t = 1, and (7) and (8) for all time periods. To show that Ẽq(z̄, w1, θ0) ≤

Ẽq(z̃∗, w1, θ0) = Ωq(w1, θ0) note that

Ωqt [w(·), θ−] =
Z
Θ

{c̄t(θ)− ȳt(θ) + qtΩqt+1[w̄0t(θ, ·), θ]}Π(θ−, dθ) (38)

≤
Z
Θ

{c̃∗t (θ)− ỹ∗t (θ) + qtΩqt+1[w̃∗0t (θ, ·), θ]}Π(θ−, dθ)

for any t > 1, since {c̃∗t , ỹ∗t , w̃∗0t } that satisfy (7), (5) and (8) but not necessarily attain

the minimum of (11). Similarly, for t = 1,

Ω̄q(w1, θ0) =

Z
Θ

{c̄t(θ)− ȳt(θ) + q1Ωq2[w̄01(θ, ·), θ]}Π(θ−, dθ)

≤
Z
Θ

{c̃∗1(θ)− ỹ∗1(θ) + q1Ωq2[w̃∗01 (θ, ·), θ]}Π(θ−, dθ).

By recursively substituting Ωqt out of the right-hand side using (38), one gets that

Ẽq(z̄, w1, θ0) = Ω̄q(w1, θ0) ≤ Ẽq(z̃∗, w1, θ0) = Ωq(w1, θ0).

Hence Ω̄q(w1, θ0) = Ẽ
q(z̄, w1, θ0) = Ωq(w1, θ0).

Proof of Lemma (4). By definition of the set Ũ∗, for any function w̃0 ∈ Ũ∗

there must exist some functions c̃ : Θ → R+, ỹ : Θ → R+, w̃
00
: Θ2 → R, such that

for any θ̂ ∈ Θ,

w̃0(θ̂, θ) =

Z
Θ

[U(c̃(θ0), ỹ(θ0), θ0) + βw̃
00
(θ0, θ0)]Π(θ, dθ0) (39)

and w̃
00
(θ, ·) ∈ Ũ∗ for all θ ∈ Θ. The right hand side of (39) depends on θ only through

the function Π(θ, ·) which it is twice continuously differentiable. Thus, w̃0(θ̂, θ) is also

twice continuously differentiable in θ, otherwise (39) cannot be satisfied. Hence if

w̃0(θ, .) is not twice differentiable then w̃0(θ, .) /∈ Ũ∗.
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To prove the second part of the Lemma, note that

∂

∂θ
w̃0(θ̂, θ) =

Z
Θ

[U(c̃(θ0), ỹ(θ0), θ0) + βw̃
00
(θ0, θ0)]

Π1(θ, dθ
0)

Π(θ, dθ0)
Π(θ, dθ0).

By assumption there exists a constant K < ∞ such that
¯̄̄
Π1(θ,B)
Π(θ,B)

¯̄̄
≤ K for all

(θ0, B) ∈ Θ×BΘ. Hence¯̄̄̄
∂

∂θ
w̃0(θ̂, θ)

¯̄̄̄
≤ K

¯̄̄̄Z
Θ

[U(č(θ0), y̌(θ0), θ0) + βw̌0(θ0, θ0)]Π(θ, dθ0)

¯̄̄̄
≤ Kmax( |u|

1− β
,
ū

1− β
),

and so
¯̄̄
∂
∂θ
w̃0(θ̂, θ)

¯̄̄
is bounded.

Proof of Theorem (5). i) Necessity. Let X(θ̂, θ) = U(c̃(θ̂), ỹ(θ̂), θ)+βw̃0(θ̂, θ).

Let X∗(θ) = X(θ, θ).One has, for θ > 0 and for θ̂ ∈ Θ,

∂

∂θ
X(θ̂, θ) = Uθ(c̃t(θ̂), ỹt(θ̂), θ̂) +

∂

∂θ
w̃0(θ̂, θ).

It follows from Lemma (4) that the derivative is correctly defined. Take θ0 > θ. For

θ ≥ θ0 the expression is bounded. The first term Uθ is bounded because utility is

bounded and linear in θ. The second term is bounded by Lemma (4). By the mean

value theorem, αη(θ) =
1
η
[X(θ, θ + η)−X∗(θ)] is also bounded. Because lim

η→0
αη(θ) =

∂
∂θ
X(θ̂, θ), Lebesgue theorem on bounded convergence implies that for θ ≥ θ0,

lim
η→0

Z θ

θ0

αη(ε)dε =

Z θ

θ0

lim
η→0

αη(ε)dε =

Z θ

θ0

∂

∂θ
X(ε, ε)dε.

Hence

η

Z θ

θ0

αη(ε)dε =

Z θ

θ0

[X(ε, ε+ η)−X∗(ε)]dε

≤
Z θ

θ0

[X∗(ε+ η)−X∗(ε)]dε =

Z η

0

[X∗(θ + η̃)−X∗(θ0 + η̃)]dη̃.

where the inequality follows from the fact that, by incentive compatibility,X∗(θ+η) ≥

X(θ, θ+η) and the last equality follows from the fact that integration over the interval

[η, θ] cancels out.
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Take now limits for η converging to 0 from the left and for η converging to 0 from

the right. The limits must satisfy

lim
η→0+

1

η

Z η

0

[X∗(θ+η̃)−X∗(θ0+η̃)]dη̃ ≥ lim
η→0

Z θ

θ0

αη(ε)dε ≥ lim
η→0−

1

η

Z η

0

[X∗(θ+η̃)−X∗(θ0+η̃)]dη̃.

The inequalities follow from the fact that η has different signs in the first and

third terms. But both these terms converge to X∗(θ)−X∗(θ0) and so

X∗(θ)−X∗(θ0) =

Z θ

θ0

∂

∂θ
X(ε, ε)dε.

Letting θ0 → θ concludes the first part of the proof.

ii) Sufficiency. Suppose that ∂
∂θ
X(θ̂, θ) is nondecreasing in θ̂ for all θ. Assume that

θ̂ < θ.

X∗(θ)−X∗(θ̂) =

Z θ

θ̂

∂

∂θ
X(ς, ς)dς ≥

Z θ

θ̂

∂

∂θ
X(θ̂, ς)dς = X(θ̂, θ)−X∗(θ̂)

where the first equality follows from the fact that the necessary envelope condition is

supposed to hold. Similar arguments apply for θ̂ > θ and so one gets X∗(θ) ≥ X(θ̂, θ)

for all θ̂ ∈ Θ.

Proof of Theorem (6). Define, for each (w, g, θ−) ∈W ×G ×Θ a set

Υ(w, g, θ−) = {w̃(·) ∈ Ũ∗ : w̃(θ−) = w,
∂

∂θ
w̃(θ−) = g}.

The set Υ(w, g, θ−) ⊆ Ũ∗ is a set of all the promised utility functions that deliver

promised utility w and marginal promised utility g to an agent whose previous period

shock was θ−.

Let

Ṽ qt (w, g, θ−) = min
w(·)∈Υ(w,g,θ−).

Ωqt [w(·), θ−]

be the minimum of the cost function Ωqt (·, θ−) over Υ(w, g, θ−) in period t and let

w∗t,w,g,θ−(·) be the promised utility function that attains the minimum. For each t ≥ 1

define a set Û∗t (θ−) = {w̃(·) ∈ Ũ∗ : ∃ (w, g) ∈ W × G : w̃(·) = w∗t,w,g,θ−(·)}. The set
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Û∗t (θ−) contains only the promised utility functions that, for some w and g, reach the

minimum of Ωqt [w(·), θ−] over Υ(w, g, θ−).

I first show that all the promised utility functions that do not belong to Ũ∗t (θ−) are,

in a sense, redundant: they will never be chosen by the social planner because there

is some other promised utility function that delivers lower costs and satisfies all the

constraints of the social planner’s problem. The proof is by contradiction. Suppose

that (c̄t, ȳt, w̄t+1) are the optimal policy functions in period t that attain the minimum

of (11) and that w̄t+1(θ, ·) /∈ Ũ∗t+1(θ) for almost all θ ∈ Θ. Define an alternative

continuation utility function ŵt+1(θ̂, θ) by ŵt+1(θ̂, θ) = w∗
t+1,w̄t(θ̂,θ̂),

∂
∂θ
w̄0t(θ̂,θ̂),θ̂

(θ). The

policy functions (c̄t, ȳt, ŵt+1) have lower costs than (c̄t, ȳt, w̄t+1) :

Ωqt [w(·), θ−] =
Z
Θ

{c̄t(θ)− ȳt(θ) + qtΩqt+1[w̄t+1(θ, ·), θ]}Π(θ−, dθ)

>

Z
Θ

{c̄t(θ)− ȳt(θ) + qtΩqt+1[ŵt+1(θ, ·), θ]}Π(θ−, dθ).

because by definition of the set Ũ∗t+1(θ), Ωqt+1[w̄t+1(θ, ·), θ] > Ωqt+1[ĥt+1(θ, ·), θ] for

almost all θ ∈ Θ. The policy functions (c̄t, ȳt, ŵt+1) satisfy the promise keeping con-

straint (5) because, by construction, w̄t+1(θ, θ) = ŵt+1(θ, θ) and (c̄t, ȳt, w̄t+1) satisfies

(5). They also satisfy the temporary incentive compatibility constraint (7) because

(c̄t, ȳt, w̄t+1) satisfies (7) and hence the envelope condition (13), the first order ap-

proach is valid, w̄t+1(θ, θ) = ŵt+1(θ, θ) and
∂
∂θ
w̄t+1(θ, θ) =

∂
∂θ
ŵt+1(θ, θ). Clearly,

(c̄t, ȳt, ŵt+1) ∈ Ũ∗. Therefore, (c̄t, ȳt, w̄t+1) does not minimize (11), which is a contra-

diction.

Hence, it must be true that w̄t+1(θ, ·) ∈ Ũ∗t+1(θ) for almost all θ ∈ Θ. The value

function Ωqt then satisfies, by construction of the set Ũ∗t+1(θ),

Ωqt [w(·), θ−] =
Z
Θ

{c̄t(θ)− ȳt(θ) + qtṼ qt+1(w̄t+1(θ, θ),
∂

∂θ
w̄t+1(θ, θ), θ)}Π(θ−, dθ).

By taking the minimum of both sides over the set Υ(w(θ−),
∂
∂θ
w(θ−), θ−), one gets

that the value function Ṽ qt satisfies

Ṽ qt [w(θ−),
∂

∂θ
w(θ−), θ−] =

Z
Θ

{ĉt(θ)− ŷt(θ) + qtṼ qt+1[w̄t+1(θ), ḡt+1(θ), θ]}Π(θ−, dθ)

(40)
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where

ĉt(w(θ−),
∂

∂θ
w(θ−), θ−, θ) = c̄t(w

∗
t,w(θ−),

∂
∂θ
w(θ−),θ−

(·), θ−, θ)

ŷt(w(θ−),
∂

∂θ
w(θ−), θ−, θ) = ȳt(w

∗
t,w(θ−),

∂
∂θ
w(θ−),θ−

(·), θ−, θ)

ŵt+1(w(θ−),
∂

∂θ
w(θ−), θ−, θ) = w̄t+1(w

∗
t,w(θ−),

∂
∂θ
w(θ−),θ−

(·), θ−, θ, θ)

ĝt+1(w(θ−),
∂

∂θ
w(θ−), θ−, θ) =

∂

∂θ
w̄t+1(w

∗
t,w(θ−),

∂
∂θ
w(θ−),θ−

(·), θ−, θ, θ).

are the policy functions that attain the minimum. The functions (ĉt, ŷt, ŵt+1, ĝt+1)

satisfy the envelope condition (14) since (c̄t, ȳt, w̄t+1) satisfy the envelope condition

(13). They also satisfy the promise keeping constraint (15) and the marginal promise

keeping constraint (16) for w(θ−) and
∂
∂θ
w(θ−) since (c̄t, ȳt, w̄t+1) satisfy the promise

keeping constraint (5) for w∗
t,w(θ−),

∂
∂θ
w(θ−),θ−

(·). Moreover, (ŵt+1(θ), ĝt+1(θ)) belongs

to U∗(θ) since w̄t+1 ∈ Ũ∗. The functions (ĉt, ŷt, ŵt+1, ĝt+1) minimize the right-hand side

of (40) subject to (14), (15), (16) and (17): if not, one can find another allocation rule

(c̈t, ÿt, ẅt+1) that delivers lower costs than (c̄t, ȳt, w̄t+1), a contradiction. Therefore,

V qt (w, g, θ−) = Ṽ
q
t (w, g, θ−). Consequently,

V q(w1, θ0) = min
g∈G:(w1,g)∈U∗(θ0)

Ṽ q1 (w1, g, θ0)

= min
g∈G:(w1,g)∈U∗(θ0)

{ min
w(·)∈Υ(w,g,θ0).

Ωq1[w(·), θ0]}

= min
w(·)∈LΘ:w(θ0)=w1.

Ωq1[w(·), θ0]

= Ωq(w1, θ0).

where the second equality follows from the definition of Ṽ q1 and the third equality

follows from the fact that by construction of the set Υ, min
g∈G:(w1,g)∈U∗(θ0)

Υ(w, g, θ−) =

{w̃(·) ∈ Ũ∗ : w̃(θ−) = w}.

Proof of Lemma 7. It will be first verified that the value function satisfies the

guess. It will then be shown that all the constraints satisfy the guess as well. Using
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the guess for the right hand side of the Bellman equation, one gets

V (w, g, θ−) =

Z ∞

θ−θL

{eu(w,g,θ−,θ) + βV [w0(w, g, θ−, θ), g
0(w, g, θ−, θ), θ]}π(θ−, dθ)

=

Z ∞

θ−θL

{eu(
w
θ−
,g,1, θ

θ−
)
+ βV [θ−w

0(
w

θ−
, g, 1,

θ

θ−
), g0(

w

θ−
, g, 1,

θ

θ−
), θ]}π(1, dθ

θ−
)

=

Z ∞

θ−θL

{eu(
w
θ−
,g,1, θ

θ−
)
+ βV [

θ−
θ
w0(

w

θ−
, g, 1,

θ

θ−
), g0(

w

θ−
, g, 1,

θ

θ−
), 1]}π(1, dθ

θ−
)

=

Z ∞

θL

[e
u( w

θ−
,g,1,ε)

+ βV (
1

ε
w0(

w

θ−
, g, 1, ε), g0(

w

θ−
, g, 1, ε), 1)]π(1, dε)

= V (
w

θ−
g, 1)

where the first equality uses the fact that u,w0 and g0 attain the minimum of the Bell-

man equation, the second equality uses the guess about the optimal policy functions

and the properties of the density function, the third equality uses the guess about

the value function, the fourth equality substitutes ε for θ
θ−
and the last equality uses

again the fact that u,w0 and g0 are optimal policy functions.

The promise keeping constraint (21) can be, using the guess about the optimal

policy functions, written as

w =

Z ∞

θ−θL

[θu(w, g, θ−, θ) + βw0(w, g, θ−, θ)]π(θ−, dθ)

= θ−

Z ∞

θ−θL

[
θ

θ−
u(
w

θ−
, g, 1,

θ

θ−
) + βw0(

w

θ−
g, 1,

θ

θ−
)]π(1,

dθ

θ−
)

= θ−

Z ∞

θL

[εu(
w

θ−
, g, 1, ε) + βw0(

w

θ−
, g, 1, ε)]π(1, dε)

where again the substitution ε = θ
θ−
was used.

To show that the marginal threat keeping constraint satisfies the normalization

as well, note that w0(w, g, θ−) = θ−w0(
w
θ−
, g, 1). Hence (23) can be written as

g =
η

θ−
[w − w0(w, g, θ−)] = η[

w

θ−
− w0(

w

θ−
, g, 1)]

and so the guess satisfies the marginal threat keeping constraint as well.
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Finally, for the incentive compatibility constraint (20) one gets that

θ

θ−
u(
w

θ−
, g, 1,

θ

θ−
) + βw0(

w

θ−
, g, 1,

θ

θ−
)

=
1

θ−
[θu(w, g, θ−, θ) + βw0(w, g, θ−, θ)]

=
1

θ−
{
Z θ

θ−θL

[u(w, g, θ−, ε) + βg0(w, g, θ−, ε)]dε+ w0(w, g, θ−)}

=

Z θ

θ−θL

[u(
w

θ−
, g,

ε

θ−
, 1) + βg0(

w

θ−
g,

ε

θ−
, 1)]

dε

θ−
+ w0(

w

θ−
, g, 1)

=

Z θ
θ−

θL

[u(
w

θ−
, g, ε̃, 1) + βg0(

w

θ−
, g, ε̃, 1)]dε̃+ w0(

w

θ−
, g, 1),

where the first equality uses the guessed functional forms, the second equality uses

the incentive compatibility constraint, the third one uses the guesses again and the

last one makes a substitution ε̃ = ε
θ−
in the integration. It follows that the incentive

compatibility constraint is satisfied for the guess.

Proof of Lemma 8. The proof follows similar structure as the proof of Lemma

(7). To simplify notation, define the normalized variables as follows. Let ṽ(w, g) =

V (w, g, 1) be the normalized value function. Define the the current utility function

by r̃(w, g, θ) = u(w, g, 1, θ), the normalized continuation utility h̃0(w, g, θ) = w0(w,g,1,θ)
θ

and the marginal continuation utility by m̃0(w, g, θ) = g0(w, g, 1, θ).

The value function satisfies

ṽ(w, g) =

Z ∞

θL

{er̃(w,g,θ) + βṽ[h̃0(w, g, θ), w + m̃0(w, g, θ)]}πdθ

=

Z ∞

θL

{e(1−β)w+r̃(0,g−w,θ) + βṽ[w + h̃0(0, g − w, θ), w + m̃0(0, g − w, θ)]}πdθ

= e(1−β)w
Z ∞

θL

{er̃(0,g−w,θ) + βe(1−β)W
0(0,g−w,θ)ṽ[m̃0(0, g − w, θ)− h̃0(0, g − w, θ)]}πdθ

= e(1−β)wṽ(0, g − w).

where the first and last equality uses the fact that r̃, h̃0 and m̃0 attain the maximum

of the Bellman equation, the second equality uses the guess about the functional
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forms of the optimal policy functions and the third equality uses the guess about the

functional form of the value function.

The promise keeping constraint satisfies, using the guess,

w =

Z ∞

θL

{θr̃(w, g, θ) + βθh̃0(w, g, θ)]}πdθ

=

Z ∞

θL

{θ[(1− β)w + r̃(0, g − w, θ)] + βθ[w + h̃0(0, g − w, θ)]}πdθ

= w +

Z ∞

θL

[θr̃(0, g − w, θ) + βθh̃0(0, g − w, θ)]πdθ

and the promised utility w cancels out.

For the marginal threat keeping constraint note that h̃0(w, g) = θLw+h̃0(0, g−w).

The marginal threat keeping constraint can then be written as

g = η[w − h̃0(w, g)]

= η[w − θLw − h̃0(0, g − w)]

= w − µh̃0(0, g − w)

where the last equality uses the fact that η(1− θL) = 1.

Finally, the incentive compatibility constraint can be rewritten as follows:

θ[r̃(0, g − w, θ) + βh̃0(0, g − w, θ)]

= θ[r̃(w, g, θ) + βh̃0(w, g, θ)]− θw

=

Z θ

θL

[r̃(w, g, θ) + βz̃0(w, g, θ)]dε+ h̃0(w, g)− θw

=

Z θ

θL

[r̃(0, g − w, θ) + βz̃0(0, g − w, θ) + w]dε+ h̃0(0, g − w) + (θL − θ)w

=

Z θ

θL

[r̃(0, g − w, θ) + βz̃0(0, g − w, θ)]dε+ h̃0(0, g − w)

where the guess about the optimal policy functions is used in the first and third

equality, while the second equality uses the incentive compatibility constraint and the

fourth equality cancels all the term involving the promised utility w.
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Proof of Lemma (10). Letm0
∞ = limθ→∞m

0(θ) and x∞ = limθ→∞ x(θ)Consider

a truncated problem, where the distribution of shocks is truncated at θ̄ > θL. Let

m0
θ̄
and xθ̄ be the optimal policy functions for such a problem. Equation (32) implies

that m0
θ̄
(θ̄) = g∗

θ̄
where g∗

θ̄
minimizes the value function in the truncated problem.

Since ²v(m
0
θ̄
(θ̄)) = 0, equation (33) implies that

dm0
θ̄
(θ̄)

d ln θ̄
∼ λ− (1− β)xθ̄(θ̄).

Now let θ̄ →∞. Then x∞ = lim
θ̄→∞

xθ̄(θ̄) and m
0
∞ = lim

θ̄→∞
m0

θ̄
(θ̄) = lim

θ̄→∞
g∗
θ̄
= g∗. But,

since m0
θ̄
(θ̄) tends to g∗,

dm0
θ̄
(θ̄)

d ln θ̄
tends to zero and so λ = (1− β)x∞. Thus, x∞ =

λ
1−β ,

is finite and by equation (34), m0
∞ =

1
β−β2 . Thus, g

∗ = 1
β−β2 .

Proof of Lemma (11). I will show that the Lemma holds for g = g∗ and only

note that the arguments hold a fortiori for g > g∗.

If g = g∗ the envelope theorem and the fact that vg(g
∗) = 0 implies that

R
fε[λ−

(1 − β)x]dε = 0. Hence, by equation (32), m0(g∗, θL) = g∗. It is also easy to show

that (1 − β)x(θL) =
1
θL
e−

1
β(η−1) [(1 − β)v(g∗)]β, a fact that will become useful later.

The proof proceeds in two steps.

i) I will first show that m0(g∗, θ) is increasing in the neighborhood of θL. The

proof is by contradiction. Suppose that dm
0(g∗,θL)
dt

≤ 0. It follows from (33)

0 ≥ dm
0(g∗, θL)

dt
=
x(θL)(1− β)− λ

x(θL)²0v(g
∗)

.

Since the value function is convex, ²0v(g
∗) > 0 and so (1− β)x(θL) < λ. Now assume

that there is some θ̄, θL < θ̄ < ∞ such that m0(g∗, θ̄) = g∗. Such θ̄ must exists,

otherwise (29) is violated. If there is more than one such θ̄, take the smallest one.

Then, m0(θ) < g∗ for all θ ∈ (θL, θ̄) by construction and m0 must be increasing at θ̄.

The incentive compatibility constraint implies

r(θ̄) + βh0(θ̄) = β

Z θ̄

θL

m0(ε)
dε

ε
− g∗

η − 1 <
1

1− β
[ln(

θ̄

θL
)− 1

β(η − 1)].

where the inequality follows from the fact that m0(θ) < g∗ = 1
β−β2 for all θ ∈ (θL, θ̄).

47



By definition of x and by (30),

(1− β)x(θ̄) =
1

θ
e(1−β)[r(θ̄)+βh

0(θ̄)][(1− β)v(g∗)]β <
1

θL
e−

1
β(η−1) [(1− β)v(g∗)]β

= (1− β)x(θL).

Hence (1 − β)x(θ̄) < λ and, by (33), dm
0(g∗,θ̄)
dt

< 0. The marginal continuation

utility is decreasing at θ̄, which is a contradiction. Therefore dm0(g∗,θL)
dt

> 0 and the

marginal continuation utility is locally increasing at θL.

ii) I will now show by contradiction thatm0 will be always greater than g∗. Assume

that there is some θ̄, θL < θ̄ <∞ such that m0(g∗, θ̄) = g∗ If there is more than one

such θ̄, take the smallest one. By construction, m0(θ) ≥ g∗ for all θ ∈ (θL, θ̄) and

m0 must be decreasing at θ̄. Similarly to part i), one can show that (1 − β)x(θ̄) ≥

(1− β)x(θL) and so
dm0(g∗,θ̄)

dt
> 0, which is a contradiction. Thus, there is no such θ̄

and m0(g∗, θ) > g∗ for all θ > θL.

10 Appendix 2: Proof of Theorem 14

Several preliminary results and definitions are needed before one can prove Theorem

14. Define a sequence cost minimization problem as a dual formulation of the sequence

utility maximization problem. For a given promised utility w1 ∈W, the social planner

selects a pair of consumption and output functions Cdt : W×Θt → R+ and Y
d
t :

W×Θt → R+ for each period. Call the collection of these assignments for all period

Zd = {Cdt , Y dt }∞t=1 an allocation in a sequence cost minimization problem. Define the

set of allocations that satisfy the incentive compatibility constraint (1) and a promise

keeping constraint

W (Zd, θ0) = w1 (41)

by Zd(w1, θ0). For a given w1 and θ0, the present value of the resource costs implied

by Zd is

ed =
X∞

t=1
Qt

Z
Θt

[Cdt (θ
t)− Y dt (θt)]µt(θ0, dθt).
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I will now show that for any allocation in the sequence cost minimization problem

one can construct another one that satisfies an equal treatment property, defined as

follows: All the agents that arrive in period t with identical promised utility will receive

an identical allocation in the current period and an identical continuation utility from

tomorrow on, regardless of their past history. The Lemma closely parallels Lemma

A.2 of Atkeson and Lucas [5].

Lemma 12 Suppose Z ∈ Zd(w1, θ0) is an allocation in the sequence cost minimiza-

tion problem that is incentive compatible and satisfies the promise keeping constraint

(41). Then there is another allocation Z̄ ∈ Zd(w1, θ0), that is incentive compatible,

satisfies the promise keeping constraint (41), delivers weakly lower costs each period

and exhibits the following equal treatment property:

Wt(Z̄, θ̂
t−1
, ·) =Wt(Z̄, θ̃

t−1
, ·)

for all (θ̂
t−1
, θ̃
t−1
) ∈ Θ2t implies

Ȳt(w1, θ̂
t−1
, θt) = Ȳt(w1, θ̃

t−1
, θt)

C̄t(w1, θ̂
t−1
, θt) = C̄t(w1, θ̃

t−1
, θt)

Wt+1(Z̄, (θ̂
t−1
, θt), ·) =Wt+1(Z̄, (θ̃

t−1
, θt), ·)

for all θt ∈ Θ.

Proof. Fix w1. Let t be the earliest date when Z does not satisfy the equal treat-

ment property. Suppose there is a set of histories D ⊆ Θt−1 such thatWt(Z, θ̂
t−1
, ·) =

Wt(Z, θ̃
t−1
, ·) but the equal treatment property fails onD. For j ≥ t define Ūt+j[θ̂

t−1
, θt+jt ), θt+j]

to be the average over the period utilities: For any θ̂
t−1 ∈ D,

Ūt+j[(θ̂
t−1
, θt+jt ), θt+j] =

Z
Θt−1

U [Ct+j(θ̂
t−1
, θt+jt ), Yt+j(θ̂

t−1
, θt+jt ), θt+j]µ̃

t−1(dθ̂
t−1
)

where µ̃t−1(B) is defined for any Borel measurable B ⊆ D by µ̃t−1(B) = µt−1(θ0,B)
µt−1(θ0,D)

.
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Since the utility is linear in θ, it can take two possible forms. The first is that

U(C, Y, θ) = θU1(C, Y )+U2(Y ) , the second is that U(C, Y, θ) = θU1(C, Y )+U2(C).

I will show the result for the first case; the second one can be treated analogously.

Define a new allocation Z̄ as follows. For any θ̂
t−1 ∈ D, let

Ȳt+j(θ̂
t−1
, θt+jt ) =

Z
Θt−1

Ȳt+j(θ̂
t−1
, θt+jt )µ̃t−1(dθ̂

t−1
) (42)

C̄t+j(θ̂
t−1
, θt+jt ) = U1−1{Ūt+j[(θ̂

t−1
, θt+jt ), θt+j], Ȳt+j(θ̃

t−1
, θt+jt )}. (43)

Let Z̄ = Z after all other histories. By construction, the allocation Z̄ satisfies for

any θ̂
t−1 ∈ D

Wt+1[Z̄, (θ̂
t−1
, θt), ·]

=
∞X
j=0

Z
Θj+1

βjŪt+j[(θ̂
t−1
, θt+jt ), θt+j]µ

t+1+j
t+1 (·, dθt+1+jt+1 )

=
∞X
j=0

Z
Θj+1

βj
Z
Θt−1

U [Ct+j(θ̂
t−1
, θt+jt ), Yt+j(θ̂

t−1
, θt+jt ), θt+j]µ̃

t−1(dθ̂
t−1
)µt+1+jt+1 (·, dθt+1+jt+1 )

=

Z
Θt−1

⎧⎨⎩
∞X
j=0

Z
Θj+1

βjU [Ct+j(θ̂
t−1
, θt+jt ), Yt+j(θ̂

t−1
, θt+jt ), θt+j]µ

t+1+j
t+1 (·, dθt+1+jt+1 )

⎫⎬⎭ µ̃t−1(dθ̂t−1)
=

Z
Θt−1

Wt+1[Z, (θ̂
t−1
, θt), ·]µ̃t−1(dθ̂

t−1
). (44)

It also satisfies the temporary incentive compatibility constraint since for all θ̂t ∈

Θ,

Ūt[(θ̂
t−1
, θt), θt] + βWt+1[Z̄, (θ̂

t−1
, θt), θt]

=

Z
{U [Ct(θ̂

t−1
, θt), Yt(θ̂

t−1
, θt), θt] + βWt+1[Z, (θ̂

t−1
, θt), θt]}µ̃t−1(dθ̂

t−1
)

≥
Z
{U [Ct(θ̂

t−1
, θ̂t), Yt(θ̂

t−1
, θt), θ̂t] + βWt+1[Z, (θ̂

t−1
, θt), θ̂t]}µ̃t−1(dθ̂

t−1
)

= Ūt[(θ̂
t−1
, θ̂t), θt] + βWt+1[Z̄, (θ̂

t−1
, θ̂t), θt]

where both equalities follow from (44) and the inequality follows from the fact that

Z satisfies the temporary incentive compatibility constraint. The same result applies
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after any history (θ̂
t−1
, θt+jt ) ∈ Θj for all j ≥ 0. After all other histories, Z̄ is identical

to Z and so satisfies the temporary incentive compatibility constraint as well. Hence

Z̄ is incentive compatible.

The allocation Z̄ delivers the same utility as Z. It also requires weakly less

resources than Z. This follows from the fact that expected revenues are the same

as before because of (42), but expected costs are weakly lower because of (43) and

because U1(C, Y ) is concave in C. The argument applies for any number of instances

when the equal treatment property fails. This completes the proof.

The next Lemma relates the allocations in the sequence cost minimization problem

to the recursive allocations.

Lemma 13 i) Suppose z̃ ∈ z̃(w1, θ0) is an allocation rule. Let e = Ẽq(z̃, w1, θ0)

be the implied resource costs. Then there exists an allocation in the sequence cost

minimization problem Zd ∈ Zd(w1, θ0) that has the implied resource costs ed = e.

ii) Suppose Zd ∈ Zd(w1, θ0) is an allocation in the sequence cost minimization

problem. Let ed be the implied resource costs it delivers. Then there exists an alloca-

tion rule z̃ ∈ z̃(w1, θ0) that has the implied resource costs Ẽq(z̃, w1, θ0) = ed.

Proof. (i) For a given allocation rule z̃ define an allocation in the sequence cost

minimization problem as follows. Let Ŵ d
t (w1, θ̂

t−1
, θt−1) solve a difference equation

Ŵ d
1 (w1, θ̂1, θ1) = w̃2(w1, θ0, θ̂1, θ1), (45)

Ŵ d
t+1(w1, θ̂

t
, θt) = w̃t+1[Ŵ

d
t (w1, θ̂

t−1
, ·), θ̂t−1, θ̂t, θt] t > 1.

Set Cdt (w1, θ̂
t
) = c̃t[Ŵ

d
t (w1, θ̂

t−1
, ·), θ̂t−1, θ̂t] and Y dt (w1, θ̂

t
) = ỹt[Ŵ

d
t (w1, θ̂

t−1
, ·), θ̂t−1, θ̂t].

Call Zd an allocation generated by the allocation rule z̃.

I will show that Zd delivers the expected utility w1 and that it is incentive com-

patible.
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(ia) Promise keeping. Let Zd be generated from z̃ and let {Ŵ d
t+1(w1, θ̂

t
, θt)}∞t=0

solve (45). Fix w1, θ̂
t−1

and θt−1. The promise keeping constraint (5) implies that

Ŵ d
t (w1, θ̂

t−1
, θt−1) (46)

=

Z
Θ

{U [c̃t[Ŵ d
t (w1, θ̂

t−1
, ·), θ̂t−1, θt], ỹt[Ŵ d

t (w1, θ̂
t−1
, ·), θ̂t−1, θt], θt]

+βw̃t+1[Ŵ
d
t (w1, θ̂

t−1
, ·), θ̂t−1, θt, θt]}Π(θt−1, dθt)

=

Z
Θ

{U [Cdt (w1, θ̂
t−1
, θt), Y

d
t (w1, θ̂

t−1
, θt), θt] + βŴ d

t+1[w1, (θ̂
t−1
, θt), θt]}Π(θt−1, dθt).

where the last equality follows from the definition of Ŵ d
t , C

d
t and Y

d
t . Using (5)

repeatedly T − 1 times to substitute for Ŵ d
t+j, j = 1..T − 1 one gets

Ŵ d
t (w1, θ̂

t−1
, θt−1) =

TX
j=0

Z
Θj+1

βjU [Cdt+j(w1, (θ̂
t−1
, θt+jt ), Y dt+j(w1, (θ̂

t−1
, θt+jt ), θt+j)µ

t+j
t (θt−1, dθ

t+j
t )

+βT
Z
ΘT

Ŵ d
t+T [w1, (θ̂

t−1
, θt+Tt ), θT ]}Π(θT−1, dθT ).

Using the fact that utility function is bounded, one can take the limit as T →∞

and obtains

Ŵ d
t (w1, θ̂

t−1
, θt−1) =

∞X
j=0

Z
Θj

βjU [Cdt+j(w1, (θ̂
t−1
, θt+jt ), Y dt+j(w1, (θ̂

t−1
, θt+jt ), θt+j)µ

t+j
t (θt−1, dθ

t+j
t ).

(47)

Hence

Ŵ d
t (w1, θ̂

t−1
, θt−1) =Wt(Z

d, θ̂
t−1
, θt−1). (48)

Setting t = 1 and θt−1 = θ0 proves (41) because the initial condition of the difference

equation (45) implies that the left hand side of (48) is equal to Ŵ d
1 (w1,∅, θ0) = w1.

(ib) Incentive compatibility. By Lemma (1), it suffices to show that Zd satisfies

(4) to show that Zd is incentive compatible. Take any (w1, θ
t−1) pair. Applying (7),
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one gets that

U [Cdt (w1, θ̂
t−1
, θt), Y

d
t (w1, θ̂

t−1
, θt), θt] + βŴ d

t+1[w1, (θ̂
t−1
, θt), θt]

= U [c̃t[Ŵ
d
t (w1, θ̂

t−1
, ·), θ̂t−1, θt], ỹt[Ŵ d

t (w1, θ̂
t−1
, ·), θ̂t−1, θt], θt]

+βw̃0t+1[Ŵ
d
t (w1, θ̂

t−1
, ·), θ̂t−1, θt, θt]

≥ U [c̃t[Ŵ
d
t (w1, θ̂

t−1
, ·), θ̂t−1, θ̂t], ỹt[Ŵ d

t (w1, θ̂
t−1
, ·), θ̂t−1, θ̂t], θt]

+βw̃0t+1[Ŵ
d
t (w1, θ̂

t−1
, ·), θ̂t−1, θ̂t, θt]

= U [Cdt (w1, θ̂
t−1
, θ̂t), Y

d
t (w1, θ̂

t−1
, θ̂t), θt] + βŴ d

t+1[w1, (θ̂
t−1
, θ̂t), θt],

where the equalities follow from the definition of Ŵ d
t , C

d
t and Y

d
t . Applying (48),

one gets that Zd satisfies (4).

(ic) Resource clearing. I will first show by induction that for any function ϑ :

LΘ → R and for any t > 1,

Z
LΘ

ϑ[w(·)]dϕ̃t =
Z
Θt−1

ϑ[Ŵ d
t (w1, θ

t−1, ·)]dµt−1. (49)

The relationship clearly holds for t = 2 sinceZ
LΘ

ϑ[w(·)]dϕ̃2 =

Z
Θ

ϑ[w̃2(w1, θ0, θ1, ·)]Π(θ0, dθ1)

=

Z
Θ

ϑ[Ŵ d
2 (w1, θ1, ·)]µ1(θ0, dθ1).

where the first line follows from the definition of ϕ̃2 and the second one follows from

the definition of Ŵ d
2 . For t > 2 one hasZ

LΘ

ϑ[w(·)]dϕ̃t+1 =

Z
Θ2×LΘ

ϑ{w̃t+1[w(·), θt−1, θt, ·]}dϕ̃tdµtt−1

=

Z
Θt

ϑ{w̃t+1[Ŵ d
t (w1, θ

t−1, ·), θt−1, θt, ·]}dµt

=

Z
Θt

ϑ{Ŵ d
t (w1, θ

t, ·)}dµt
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where the first line follows from definition of ϕ̃t+1, the second one from the induction

hypothesis and the last one from the definition of Ŵ d
t . Applying the equality for

ϑ[w(·)] =
Z
Θ2

c̃t[w(·), θt−1, θt]dµtt−1 one gets that

Z
Θ2×LΘ

c̃t[w(·), θt−1, θt]dϕ̃tdµtt−1 =

Z
Θt

c̃t[Ŵ
d
t (w1, θ

t−1, ·), θt−1, θt]dµt

=

Z
Θt

Cdt (w1, θ
t)dµt.

Applying the inequality again for ϑ[w(·)] =
Z
Θ2

ỹt[w(·), θt−1, θt]dθt−1dµtt−1 one gets a

similar equality. Substracting both equations, discounting by Qt and summing over

all t yields that the present value of resources is the same for both the allocation rule

z̃ and the allocation Zd.

ii.) I first define a candidate allocation rule z̃. By Lemma (12) one can take Zd

such that it satisfies the equal treatment property. For any function w(·) ∈ LΘ and

θ− ∈ Θ construct a set

Ht[w(·), θ−] = {θ̂
t−1 ∈ Θt−1 :Wt(Z

d, θ̂
t−1
, ·) = w(·), θ− = θ̂t−1}

for t > 1. Ht is the set of all histories and initial utility entitlements such that the

promised utility function is w(·) and last period shock was truthfully reported to

be θ−. If the set Ht[w(·), θ−] is empty, set ỹt(w(·), θt−1, θ−) = 0, c̃t(w(·), θt−1, θ−) =

U−1[(1− β)w(θ−), 0] and w̃t+1(w(·), θt−1, θ̂, ·) = w(·) for all θ̂t ∈ Θ. If not, let

c̃t(w(·), θt−1, θ̂t) = Cdt (θ̂
t−1
, θ̂t) for all θ̂

t−1 ∈ Ht[w(·), θt−1]

ỹt(w(·), θt−1, θ̂t) = Y dt (θ̂
t−1
, θ̂t) for all θ̂

t−1 ∈ Ht[w(·), θt−1]

w̃t+1(w(·), θt−1, θ̂t, θt) = Wt+1[Z
d, (θ̂

t−1
, θ̂t), θt] for all θ̂

t−1 ∈ Ht[w(·), θt−1]

In the first period, set c̃1(w1, θ̂1) = C
d
1 (θ̂1), ỹ1(w1, θ̂1) = Y

d
1 (θ̂1) and w̃2(w1, θ̂1, θ1) =

W2(Z, θ̂1, θ1) if w1 = W (Z, θ0). Otherwise, set ỹ1(w1, θ̂1) = 0, c̃1(w1, θ̂1) = U
−1[(1−

β)w, 0], and w̃2(w1, θ̂1, θ1) = w.
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One needs to show that z̃ satisfies the promise keeping constraints (5) and (6),

the temporary incentive compatibility constraint (7), that w̃t+1 belongs to set Ũ∗ and

that z̃ implies the same present value of resources as Zd.

(iia) Promise keeping. For any w1 and all θ̂
t−1 ∈ Ht[w(·), θt−1],

w(·) = Wt(Z
d, θ̂

t−1
, ·)

=

Z
Θ

{U [Cdt (w1, θ̂
t−1
, θt), Y

d
t (w1, θ̂

t−1
, θt), θt] + βWt+1[Z

d, (θ̂
t−1
, θt), θt]}Π(·, dθt)

=

Z
Θ

{U{c̃t[w(·), θt−1, θt], ỹt[w(·), θt−1, θt], θt}+ βw̃t+1[w(·), θt−1, θt, θt]}Π(·, dθt).

The first equality uses the definition of Ht, the second one property (35) and the

third one the definition of Ht again. Hence z̃ satisfies (5) for any t > 1. For the first

period one gets that

w1 =

Z
Θ

{U [c̃1(w1, θ1), ỹ1(w1, θ1), θ1] + βw̃2(w1, θ1, θ1)}Π(θ0, dθ1),

which is (6). Hence, z̃ satisfies the promise keeping constraint for all periods.

(iib) Incentive compatibility. Take any w1, θ̂
t−1 ∈ Ht(w(·), θt−1). For any θ̂t ∈ Θ,

U [c̃t(w(·), θt−1, θt), ỹt(w(·), θt−1, θt), θt] + βw̃t+1[w(·), θt−1, θt, θt]

= U [Cdt (w1, (θ̂
t−1
, θt), Y

d
t (w1, (θ̂

t−1
, θt), θt] + βWt+1[Z

d, (θ̂
t−1
, θt), θt]

≥ U [Cdt (w1, (θ̂
t−1
, θ̂t), Y

d
t (w1, (θ̂

t−1
, θ̂t), θt] + βWt+1[Z

d, (θ̂
t−1
, θ̂t), θt]

= U [c̃t(w(·), θt−1, θ̂t), ỹt(w(·), θt−1, θ̂t), θt] + βw̃t+1[w(·), θt−1, θ̂t, θt],

where the equalities follow from the definition of z̃ and the inequality follows from

Lemma (4). Thus, z̃ is incentive compatible. Similar arguments show that z̃ satisfies

the incentive compatibility constraint in period t = 1.

(iic) Inclusion in Ũ∗. I will now show that w̃t+1(w(·), θt−1, θt, ·) ∈ Ũ∗ for all t, all

w(·)LΘ, all (θt−1, θt) ∈ Θ2.
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Fix T. Let ŨTT = LΘ. Define for t = 1..T

ŨTt−1 = {w(·) ∈ LΘ:∃c̃ : Θ→ R+, ỹ : Θ→ R+, w̃
0 : Θ2 → R

such that

w(·) =
Z
Θ

[U(c̃(θ), ỹ(θ), θ) + βw̃0(θ, θ)]Π(·, dθ)

U(c̃(θ), ỹ(θ), θ) + βw̃0(θ, θ) ≥ U(c̃(θ̂), ỹ(θ̂), θ) + βw̃0(θ̂, θ) ∀θ̂ s.t. (ỹ(θ̂), θ) ∈ Y, all θ

w̃0(θ, ·) ∈ ŨTt }

It follows from parts (iia) and (iib) that w̃0T (w(·), θt−1, θt, ·) ∈ ŨTT−1 for all w(·) ∈

LΘ, all (θt−1, θt) ∈ Θ2.20An induction argument implies that w̃t+1(w(·), θt−1, θt, ·)

∈ ŨTt ,all w(·) ∈ LΘ, all (θt−1, θt) ∈ Θ2, all t = 1...T.

The proof is complete when one shows that lim
T→∞

ŨTt = Ũ∗ for all t. To show

this, note first that ŨTt = ŨT−t+11 by construction. Thus, it is enough to show that

lim
T→∞

ŨT1 = Ũ . This follows from the fact that Ũ∗ is a fixed point of (8).

(iid) Resource clearing. A proof analogous to (ic) shows that the allocation rule

z̃ implies the same present value of the resource costs as Zd.

Theorem 14 i) Suppose that z̃ is an allocation rule and that z̃ ∈ z̃(w1, θ0). Let e =

Ẽq(z̃, w1, θ0) be the implied resource costs. Then the allocation Z that is generated by

the allocation rule satisfies Z ∈ Zq(e, θ0) and delivers lifetime utility W (Z, θ0) = w1.

ii) Suppose that Z is an allocation and that Z ∈ Zq(e, θ0). Let w1 = W (Z, θ0) be

the lifetime utility it delivers. Then there exists an allocation rule z̃ ∈ z̃(w1, θ0) that

has the implied resource costs Ẽq(z̃, w1, θ0) = e.

Proof of Theorem (14).

i) By Lemma (13) part (i) there exists an allocation in the sequence cost mini-

mization problem Zd that satisfies (4) and (41). By Lemma (13) part (ic) the present

value of resources implied by Zd is Ẽq(z̃, w1, θ0).

20For instance, c̃T (w(·), θT−1, ·), ỹT (w(·), θT−1, ·).and w̃0T+1(w(·), θT−1, θT , ·) satisfy the require-
ments of the definition of ŨTT−1.
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Define Z(Ẽq(z̃, w1, θ0)) = Zd(w1). Then Z is generated by z̃ ,satisfies (4), and

implies the same present value of costs as Zd, which are ed. Hence Z ∈ Zq(ed, θ0). By

construction, W [Z(ed), θ0] =W [Z
d(w1), θ0] = w1.

ii) Conversely, construct an allocation in the sequence cost minimization problem

by Zd[W (Z, θ0)] = Z(e). It is straightforward to see that both have the same present

value of costs e, that Zd satisfies (4) and that Zd delivers promised utility W (Z, θ0).

By Lemma (13) part (ii) there exists an allocation rule z̃ ∈ z̃(W (Z, θ0), θ0) and has

the implied resource costs Ẽq(z̃,W (Z, θ0), θ0) = e.
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