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1. Introduction

This paper examines how partial self-insurance and limited access to the credit market

affect the properties of optimal unemployment insurance provisions in a model of job-search

and moral hazard. The constrained Pareto-optimal allocations are implemented in a de-

centralized economy in which individuals may freely save using a one-period riskless asset,

but face liquidity constraints that restricts borrowing. I show that the optimal unemploy-

ment insurance scheme is recursive in an agent’s asset position and her current employment

transition, and that unemployment benefits are decreasing in an agent’s wealth level. Taxes

upon reemployment, as well as unemployment benefit payments, are constant whenever the

liquidity constraint is binding - arguably a relevant situation for many of the unemployed.

Over the course of unemployment, agents decumulate assets and the sequence of benefit

payments is thus observationally non-decreasing; a result that stands in sharp contrast

with the previous literature, in which benefit payments displays a declining pattern along

the duration of the unemployment spell (e.g. Shavell and Weiss (1979), and Hopenhayn

and Nicolini (1997)). In a quantitative exercise it is shown that the US unemployment

insurance programme is surprisingly close to optimal for the asset poor, but too generous

for wealthier individuals. The potential cost-savings of switching to the optimal program

ranges from roughly 33% of the present value insurance budget for the affluent, to 7% for

the less fortunate.

In their seminal study, Shavell and Weiss (1979) consider a model of optimal unemploy-

ment insurance in which taxes upon reemployment are exogenously fixed at a constant level.

They establish a celebrated result that benefit payments should be a decreasing function

of the duration of unemployment, as this declining profile provides incentives for agents to

undertake job search while still maintaining a considerable degree of consumption smooth-

ing. Hopenhayn and Nicolini (1997) extend the result of Shavell and Weiss by allowing

reemployment taxes to be set optimally. They show that taxes upon employment should

increase along the unemployment duration, and that the welfare gain of this additional

policy instrument is non negligible.

While these findings have repeatedly been confirmed in several studies (e.g. Pavoni

(2007), Pavoni and Violante (2007), and Alvarez-Parra and Sanchez (2006)), they hinge

upon a crucial assumption; individuals are precluded from any asset markets, and thus

behave according to a hand-to-mouth principle. In contrast, several empirical studies have

documented that (partial) self-insurance, and indeed, liquidity constraints, are relevant

factors to consider when thinking about unemployment insurance. Browning and Crossley

(2001) show that nearly half of job losers in the United States report zero liquid wealth at the

time of job loss, suggesting that liquidity is a concern for many of the unemployed. Gruber



UNEMPLOYMENT INSURANCE AND CREDIT FRICTIONS 3

(1997) finds that the consumption smoothing effect of benefit payments is particularly high

at late stages of the unemployment spell, arguing that this occurs when liquid wealth is

depleted. In a recent study, Chetty (2007) divides unemployed individuals in the United

States into subgroups based on how likely they are to be liquidity constrained. He finds that

while the effect of unemployment benefits on the hazard rate of reemployment is extremely

small for the unconstrained, the corresponding measure for the constrained group is severe.

Chetty therefore concludes that access to liquid funds (or lack thereof) is an important

aspect to consider when designing an unemployment benefits programme.

Motivated by these issues, this paper develops a theoretical model in order to characterize

an optimal unemployment insurance programme. The economic environment follows closely

Shavell and Weiss (1979) and Hopenhayn and Nicolini (1997), extended with partial self-

insurance and limited credit access. In particular, I allow agents to freely save using a one-

period riskless asset. I model the credit limitation as a restriction on short sales of future

expected labor income. While the qualitative results in the paper are robust to many other

alternative liquidity constraints, it seems a reasonable hypothesis that consumers cannot

borrow, on net, against non-traded assets such as future labor income.1

The utilitarian government has information on the agents’ consumption level and prefer-

ences, but not on their search effort. The government’s policy must therefore be incentive

compatible. Without any loss of generality, I proceed in two distinct steps: The first step

characterizes the incentive compatible Pareto-optimal consumption and search effort alloca-

tions. The second step implements these allocations through a tax system in a decentralized

economy in which individuals may save using a one-period riskless asset and in which access

to the credit market is limited.

The key assumption in identifying the unique role of the government’s policy vis-à-vis

the agent’s asset position, is an imposed presumption that all intertemporal transfers of

resources are done by the agent, and not by the government. This identifying assumption is

commonly used in the dynamic public finance literature (Kocherlakota, 2005; Albanesi and

Sleet, 2006), and is sometimes referred to as affordability ; if the agent could buy the optimal

allocations, she would period-by-period afford so. As a consequence, the structure of the

optimal policy resembles current unemployment insurance programmes adopted in many

modern economies, at actuarially fair prices; employed individuals pay a premium, unem-

ployed individuals receive a benefit payment, and the premium paid equals the expected

cost of the benefit payment.

1Short-selling constraints on expected future labor income is a standard ingredient in most models of

consumption and saving (e.g. Zeldes (1989) and Deaton (1991)).
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Under the proposed implementation, I show that unemployment benefits depend exclu-

sively on an individual’s current level of wealth and employment transition. This result

stands in contrast to previous recursive schemes in the literature, in which unemployment

benefits depend on the state variable “promised utility” (e.g. Hopenhayn and Nicolini

(1997), Pavoni (2007)). The result is not trivial; incentive compatibility constraints restrict

both current and future consumption choices, which usually renders wealth an insufficient,

or even irrelevant, state variable (e.g. Marcet and Marimon (1998); Spear and Srivastava

(1987)). Yet, I show that wealth entirely encodes an agent’s complete employment history.

As a corollary, benefit payments as well as reemployment taxes are constant whenever the

liquidity constraint is binding.

While taxes and benefit payments are constant only when the liquidity constraint is bind-

ing, this is arguably a relevant part of the state space for many of the unemployed; Gruber

(1997) reports that only 18.6% of the unemployed in the PSID have savings of more than

two months of labor income, and Engen and Gruber (2001) show that the median unem-

ployed has gross financial assets equivalent to less than three weeks of income (an average

unemployment spell lasts for 13.1 weeks). Thus, for the sub-group of liquidity constrained

individuals, these results conform much better to many modern economies’ unemployment

insurance programmes than previous results in the literature, in which unemployment ben-

efits and taxes displays significant and complicated duration dependence.2

Unemployment benefits are negatively related to an agent’s wealth level. Thus, as assets

decline, benefits rise and peak when the liquidity constraint binds. During the course of

unemployment, the agent decumulates assets, and the sequence of benefit payments is in-

creasing. This result is of course in marked contrast with the existing literature, in which

benefit payments is a decreasing function of the duration of unemployment. The underlying

reason is the presence of self-insurance: First, wealth has a first order insurance effect. The

higher is an agent’s wealth, the less she needs to worry about loss of consumption if she

loses her job. Second, in order to provide incentives to exert search effort, the government

wishes to generate a positive correlation between consumption and employment. When the

agent’s utility function is concave, a higher level of savings makes it costlier for the govern-

ment to induce such a correlation and the agent’s search effort decreases. By generating a

negative correlation between savings and unemployment benefits, the government manages

to mitigate the distortionary effect of savings on search.

2In the OECD countries, benefits payments are typically given as a constant replacement rate for a fixed

amount of time. Thereafter, unemployment- or social-assistance takes over, following the same constant

pattern, although at a lower level. Taxes, or contributions to the unemployment insurance fund, are duration

independent and constant (OECD, 2004; Pavoni, 2007).
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In a calibrated version of the model I characterize the optimal benefit payments in relation

to an individuals wealth level. The replacement rate for constrained agents with zero

liquid wealth is optimal at 60%, markedly in line with the average current US level at

66% (Meyer, 1990; Hopenhayn and Nicolini, 1997). As a consequence, the potential cost-

savings of switching to the optimal programme is for this group small. For the more affluent

however, the current system is far too generous; the replacement rate is optimal at a mere

1.5%. The reason behind this swift increase in benefit payments as wealth decreases, is

due to a “liquidity effect” (Chetty, 2007): Low benefit payments to individuals for which

credit is a concern generates a higher than socially optimal search pressure. Increasing

the insurance level compensates for the missing credit market, reduces search effort, and

boosts present value utility. Switching to the optimal programme, affluent agents would be

prepared to give up roughly 33% of their expected value of future benefit payments under

the current system.

In a sequence of papers, Shimer and Werning (2006; 2007a; 2007b) consider a problem

closely related to the question explored in this paper. As here, they stress the importance

of self-insurance in considering unemployment insurance programmes. In particular, in

Shimer and Werning (2007a) they reach the conclusion that both reemployment taxes and

unemployment benefits should be constant at all elements of the state space, contrasting

to this paper in which the equivalent result hold for the sub-group of liquidity constrained

individuals. However, their results are derived under fundamentally different assumptions

than mine. Departing from the main literature on unemployment insurance, Shimer and

Werning consider versions of McCall’s (1970) search model with hidden reservation wages.

This paper closely follows the existing literature by considering hidden search effort deci-

sions. More importantly, all qualitative properties explored by Shimer and Werning hinge

on the assumption of CARA utility; on potentially negative consumption levels; and thus

on the absence of credit frictions. Their results do not extend to utility functions that pre-

clude negative consumption levels, such as CRRA utility. Notwithstanding some standard

regulatory conditions, this paper puts no restrictions on the specific functional form of the

agents’ momentary utility function, and I do consider credit frictions. Needless to say, this

paper builds upon, and I believe complements, the pioneering work of Shimer and Werning.

2. Structure of the economy

The economy is populated by a utilitarian government and a continuum of risk-averse

agents. The planning horizon is infinite. Time is discrete and denoted by t = 0, 1, . . . At any

given period t, an agent can either be employed or unemployed and the agent’s employment

status is publicly observable.
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When an agent is employed, she earns a gross wage, w. There is no on-the-job search

and the probability of being fired is exogenously given at the constant hazard rate 1− γ.

When unemployed, the agent receives unemployment benefits and searches for a job with

effort e. The probability of finding a job, conditional on search effort, is denoted p(e). Search

effort - and thus the probability of finding a job - is considered private information, not

observable by the government or by any other agent in the economy.3 The wage distribution

is degenerate, and a job offer is, consequently, always accepted.

The agents save using a riskless asset that pays pre-tax return equal to r > 0. The

intertemporal price of consumption, 1/(1 + r), is denoted q. Borrowing is restricted by a

liquidity constraint that prevents short-sales of future labor income.

2.1. Model. An agent’s employment status in any period t is given by θt ∈ Θ = {0, 1}.
Let θt = 1 denote employment. The history of employment status up to period t is given by

θt = (θ0, . . . , θt) ∈ Θt, where Θt = {(θ0, . . . , θt)|θi ∈ Θ, i = 0, . . . , t}, represent all possible

histories up to period t.

At time zero, each agent is born as either employed or unemployed, and she is entitled

some level of initial resources, b0. The initial entitlement/employment status-pair, (b0, θ0),

is taken as given by each agent in the economy (the government included). The joint

distribution of (b0, θ0) is given by ψ(b0, θ0), with support on B×Θ, where B is some subset

of the real numbers, B ⊆ R. Thus, at every date, t, each agent is distinguished by her

initial entitlements and history of employment status, (b0, θ
t).

Without any loss of generality, I will henceforth formulate the problem such the agents

choose p - the probability of finding a job - rather than effort e. The agent then ranks

contemporaneous consumption and search effort allocations according an additively sep-

arable felicity function, {u(c) − (1 − θ)v(p)}. The function u is strictly concave, strictly

increasing, and once continuously differentiable. The function v is strictly convex, strictly

increasing, and twice continuously differentiable. In addition, u(0) = −∞, limp↓0 v′(p) = 0

and limp↑1 v′(p) = ∞. There is no disutility from working.4

An allocation in this economy is denoted σ = {ct, pt}∞t=0, where

ct : B ×Θt → R+

pt : B ×Θt → [0, 1]

Here, ct(b0, θ
t) is the amount of consumption an (b0, θ0)-agent is assigned under history

θt. The contemporaneous probability of finding a job, pt(b0, θ
t), is defined equivalently.

3This is the source of moral hazard in the model; if benefit payments would be made contingent upon

search effort, the economy would reach its first best allocation.
4Including disutility from working would not change any of the results in the paper.



UNEMPLOYMENT INSURANCE AND CREDIT FRICTIONS 7

Let λ(b0, θ
t+1) denote the probability measure for history θt+1, conditional on (b0, θ0). For

notational convenience let pt(b0, θ
t) be defined as γ if and only if θt = 1. λ(b0, θ

t+1) is then

recursively given by

λ(b0, θ
t+1) =

{
pt(b0, θ

t)λ(b0, θ
t), θt+1 = 1

(1− pt(b0, θ
t))λ(b0, θ

t), θt+1 = 0

An agent’s net present value utility of an allocation σ is given as

V (σ, b0, θ0) =
∞∑

t=0

βt

∫

Θt

{u(ct(b0, θ
t))− (1− θt)v(pt(b0, θ

t))}λ(b0, θ
t)dθt (1)

Given the joint initial distribution of (b0, θ0)-pairs, ψ, the utilitarian government wishes

to find σ that maximizes the sum of net present value utilities

V̂ (ψ) = max
σ

∫

B×Θ
{V (σ, b0, θ0)}dψ (2)

subject to each agent’s present value budget constraint

b0 ≥
∞∑

t=0

qt

∫

Θt

{ct(b0, θ
t)− θtw}λ(b0, θ

t)dθt, ∀ (b0, θ0) ∈ B ×Θ (3)

Furthermore, since the search effort allocation is private information, the optimal allocation

must respect incentive compatibility

{pt}∞t=0 = argmax{V (σ, b0, θ0)}, ∀ (b0, θ0) ∈ B ×Θ (4)

The motivation behind the incentive compatibility constraint is simple: Each agent takes the

consumption allocation as given and chooses search effort to maximize her private utility.

Without any loss of generality, the problem is formulated such that the government directly

proposes a search effort allocation that coincides with the agent’s private optimal choice.

Additionally, the government faces the following sequence of liquidity constraints
∞∑

s=1

qs−1

∫

Θt+s

ct+s(b0, θ
t+s)

λ(b0, θ
t+s)

λ(b0, θt)
dθt+s (5)

≥
∞∑

s=1

qs−1

∫

Θt+s

θt+sw
λ(b0, θ

t+s)
λ(b0, θt)

dθt+s, ∀ (b0, θ
t) ∈ B ×Θt

The left-hand side in (5) represent the period t expected net present value of consumption

allocations, conditional on history θt. The right-hand side is the equivalent expected net

present value of labor income. The constraint states that the value of future consumption

allocations must be greater than the value of future wages. In other words, short-selling

expected future labor income is not permitted.

It should be noted that constraint (3) together with the liquidity constraint ensures

feasibility. Constraint (3) will always hold as an equality; if it did not, the government
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could simply increase the agent’s period zero consumption without interfering with neither

incentive compatibility nor the liquidity constraint. An allocation that is both incentive

compatible and feasible will be referred to as incentive feasible.

The following lemma states that maximizing (1) subject to the individual budget con-

straint, incentive compatibility and the liquidity constraint, is equal to solving the more

complicated problem given in (2). The result is standard and the proof is merely included

for completeness.

Lemma 1. Define σ∗ as the allocation that maximizes (1) for each (b0, θ0) ∈ B×Θ, subject

to individual incentive compatibility, feasibility and the liquidity constraint. Define σ̂∗ as

the allocation that solves (2). Then

V̂ (ψ) =
∫

B×Θ
V (σ∗, b0, θ0)dψ

Proof. By construction, V̂ (ψ) ≥ ∫
B×Θ V (σ∗, b0, θ0)dψ. If the inequality was strict, then

there exist some (b0, θ0) such that V (σ̂∗, b0, θ0) > V (σ∗, b0, θ0). Since σ̂∗ is incentive

compatible, delivers b0, and satisfies the liquidity constraint, σ∗ could not have attained

the maximum in (1). ¤

Remarks. There are several reasons to why I adopt the specific liquidity constraint in

(5). Constraining allocations allows me to restrict borrowing without explicitly stating

the government’s policy vis-á-vis the agents’ asset positions. In particular, it stipulates an

underlying procedure of the credit sector in which the storage technology available to agents

and the policy conducted by the government are unimportant; what is important is the total

amount of resources outstanding. In this respect, the constraint is not subject to the Lucas

Critique on optimal policy - for any policy and asset structure, any “decentralized” liquidity

constraint must endogenously respond in order for (5) to hold. Additionally it should be

noted that adding an arbitrary constant to either side of (5), virtually leaving open for a

continuum of different constraints, will not change any of the qualitative results derived the

the subsequent sections. However, I proceed under the, quite reasonable, hypothesis that

consumers cannot borrow, on net, against non-traded assets such as future labor income.

It should be noted that the liquidity constraint facing consumers also restricts the allo-

cations attainable by the government. An alternative, and welfare improving policy, would

thus be for the government to borrow in an agent’s name, effectively relieving the agent any

impediment caused by the liquidity constraint. However, such a liquidity providing policy

is an additional instrument, unrelated to what we generally perceive as unemployment in-

surance. Liquidity providing policies, such as “unemployment insurance savings accounts”

(Feldstein and Altman, 1998), are thus ruled out a priori.
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2.2. A recursive formulation. Following the insights provided by Lemma 1, the problem

of interest is given by

V (b0, θ0) = max
σ

∞∑

t=0

βt

∫

Θt

{u(ct(b0, θ
t))− (1− θt)v(pt(b0, θ

t))}λ(b0, θ
t)dθt (6)

s.t. {pt}∞t=0 = argmax{V (σ, b0, θ0)} (7)

b0 =
∞∑

t=0

qt

∫

Θt

{ct(b0, θ
t)− θtw}λ(b0, θ

t)dθt (8)

0 ≥ −
∞∑

s=1

qs−1

∫

Θt+s

{ct+s(b0, θ
t+s)− θt+sw}λ(b0, θ

t+s)
λ(b0, θt)

dθt+s, ∀ t (9)

Under an optimal allocation, σ∗, equations (6), (8) and (9) can be written as

V (b0, θ0) = u(c∗0(b0, θ0))− (1− θ0)v(p∗0(b0, θ0)) + β

∫

Θ1

V (σ∗, b∗(θ1), θ1)λ(b0, θ
1)dθ1 (10)

b0 = c∗0(b0, θ0)− θ0w + q

∫

Θ1

b∗(θ1)λ(b0, θ
1)dθ1 (11)

0 ≥ −q

∫

Θ1

b∗(θ1)λ(b0, θ
1)dθ1 (12)

The following lemma asserts that, given the budget b∗(θ1), re-optimizing the problem in

period one, does not alter period zero present value utility.

Lemma 2. V (σ∗, b∗(θ1), θ1) maximizes the agent’s utility subject to the budget b∗(θ1), the

liquidity constraint, and incentive compatibility. That is, V (σ∗, b∗(θ1), θ1) = V (b∗(θ1), θ1).

Proof. See Appendix A. ¤

The result is nontrivial. If V (b∗(θ1), θ1) > V (σ∗, b∗(θ1), θ1) for some θ1, period zero in-

centive compatibility is violated. The idea behind the proof lies in the fact that V (b0, θ0)

is strictly increasing in b0, and that b∗(θ1) must therefore be resource minimizing given

utility V (σ∗, b∗(θ1), θ1). The proof then proceed by showing that duality holds: If b∗(θ1) is

resource minimizing under utility V (σ∗, b∗(θ1), θ1), V (σ∗, b∗(θ1), θ1) must be utility maxi-

mizing under the budget b∗(θ1).

Let be and bu denote period t + 1 contingent claims in the employed and unemployed

state, respectively. Then - by exploiting the insights provided by Lemma 2 and following

the arguments outlined in Spear and Srivastava (1987) - problem (6) can be made recursive

as

V (b, θ) = max
c,p,be,bu

{u(c)− (1− θ)v(p) + β(pV (be) + (1− p)V (bu))} (13)

subject to

p = argmaxp{u(c)− θv(p) + β(pV (be) + (1− p)V (bu))} (14)
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and

b = c− θw + q(pbe + (1− p)bu) (15)

and

0 ≥ −pbe − (1− p)bu (16)

in which (16) is the recursive representation of the liquidity constraint in (9).

Since the function v is differentiable, strictly convex, and fulfills the Inada conditions,

the incentive compatibility constraint (14) can be replaced by its first order condition

v′(p) = β(V (be)− V (bu))

The solution to (13)-(16) yields a value function, V (b, θ), associated with policy functions

c(b, θ), p(b, θ), be(b, θ) and bu(b, θ).5 When there is no confusion regarding the agent’s

employment status, the policy functions will be addressed by their respective initial letter,

and reliance on b will be left implicit.

Previous studies on optimal unemployment insurance adopt a dual formulation to the

problem in (13)-(16). Specifically, the literature has, without exception, followed the cost-

minimization framework commonly employed in the repeated-agency literature. Fundamen-

tally, this approach amounts to minimize (3) such that the agent receives a pre-specified

level of present value utility, and subject to incentive compatibility. Due to Spear and

Srivastava (1987), Thomas and Worrall (1988), Abreu, Pearce and Stacchetti (1990), and

Phelan and Townsend (1991), this dual formulation lends itself straightforwardly to a re-

cursive representation. In contrast, this paper adopts a primal approach. The reason for

this is twofold: First, the primal formulation simplifies the subsequent analysis and provides

an intuitive recursive representation in terms of (non-labor) cash-on-hand, b. Second, this

way of formulating the problem has a quite appealing and natural interpretation: Akin to a

social planner, the government maximizes the agent’s utility by choosing current consump-

tion, search effort, and one period ahead Arrow securities at prices qp and q(1 − p). By

respecting incentive compatibility, moral hazard is internalized through individually and

quantity contingently priced assets.

3. Analysis

Consistent with the formulation of the problem in (13)-(16), the government chooses

allocations rather than policies. While it facilitates the analysis of the governments optimal

policy problem, it also restricts the subsequent analysis to proceed in two separate steps.

5Although these policy functions may well be correspondences, I will consistently refer to them as policy

functions.
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The first step concerns the optimal allocations. The second step considers the tax functions

that implement these allocations in a decentralized economy.

Although the two steps presented above may appear distinctly separate, they are, in

effect, intimately related. Thus, as a third, clarifying, step, Section 3.3 will show how the

shape of the derived tax functions are closely tied to the incentive compatibility constraint,

and how a quite esoteric optimality condition, commonly known as the inverse Euler equa-

tion, relate to a more familiar form of the standard Euler equation.

3.1. Allocations. Analogous to the definition of be and bu, let ce and cu denote period

t+1 consumption at the associated employment states. During employment, moral hazard

is absent and the first order necessary conditions from (13) (together with the envelope

condition) gives

u′(c)− µ =
β

q
u′(ce) =

β

q
u′(cu), µ ≥ 0 (17)

Where µ is the Lagrange multiplier on the liquidity constraint (16). When β = q and

µ = 0, condition (17) implies that consumption is constant for any two consecutive periods;

on a period-by-period basis, the agent is fully insured. This result is hardly surprising in

the current setting; when agents are employed, moral hazard is absent, and first-best is

attainable. When µ > 0, consumption at t + 1 is higher than consumption at t. However,

consumption is still constant across states, ce = cu.

The equivalent optimality conditions for an unemployed agent gives

1
u′(c)− µ

=
q

β

(
p

1
u′(ce)

+ (1− p)
1

u′(cu)

)
, µ ≥ 0 (18)

λ2v
′′(p) = λ1q(be − bu) (19)

λ2

λ1
= p(1− p)

(
1

u′(cu)
− 1

u′(ce)

)
(20)

Where λ1 and λ2 are the Lagrange multipliers on the budget- and the incentive compatibility

constraint, respectively.

When µ = 0, equation (18) is commonly known as the “inverse Euler equation” (Rogerson,

1985). When ce 6= cu, Jensen’s inequality implies (Golosov, Kocherlakota and Tsyvin-

ski, 2003)

u′(c) <
β

q
(pu′(ce) + (1− p)u′(cu)) (21)

Rearranging terms, equation (21) infers that there is a wedge between the agent’s marginal

rate of substitution and the economy’s marginal rate of transformation. In particular,

(21) implies that current marginal utility of consumption is lower than the expected future

marginal utility (the interest rate). In other words, the agent is savings constrained relative
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to an economy with no private information. Golosov et al. (2003) interpret this wedge as

an “implicit tax”.

According to the standard Euler equation, an optimal intertemporal plan has the property

that any marginal, temporary and feasible change in behavior equates marginal benefits to

marginal costs in the present and in the future. The inverse Euler equation appears to violate

this logic. For a given value of p, consider the choice of reallocating resources from period t to

period t+1. If an increase in savings would bring about a proportional increase in be as well

as bu, equation (21) reveals that, at least on the margin, such a policy would increase overall

utility. However, the incentive compatibility constraint in (14) does generally not permit a

proportional increase in be and bu. To keep the choice of p unaltered - which is without loss

of generality if we consider marginal changes - the incentive compatibility constraint forces

the increase in resources to be relatively low in future states where the marginal utility of

resources is relatively high, and vice versa.6 Period t + 1 marginal utilities will thus be

“weighted” by their respective incentive compatible inflow of state contingent resources. In

contrast, utility maximization implies relatively high weights of resource inflow to states

in which the marginal benefit of resources is relatively high. Since incentive compatibility

inflicts with period t + 1 resources only, it is thus optimal to relegate a high degree of

resources to period t consumption. As a result, the agent appears savings constrained. The

inverse Euler equation is simply the resulting expression when these conflicting forces are

internalized. Section 3.3 will more algebraically confirm the validity of this interpretation

of the inverse Euler equation.

The following lemma extends the results of Hopenhayn and Nicolini (1997) to a model

with multiple employment spells.

Lemma 3. If V (b, θ) is concave, q = β and µ = 0, then

(i) ce(b, 0) > c(b, 0) > cu(b, 0).

(ii) c(b, 1) > c(b, 0).

(iii) b > bu(b, 0) > be(b, 0) and bu(b, 1) > b = be(b, 1).

Proof. (i) Assume that cu(b, 0) ≥ ce(b, 0). Then from equation (19), be(b, 0) ≥ bu(b, 0).

From (18) it is immediate that c ∈ (ce, cu) and thus that bu(b, 0) ≥ b. By concavity of

V , c(b, θ) is non-decreasing, and thus c(b, 0) ≥ ce(b, 0) ≥ c(b, 1), where the last inequality

follows from be(b, 0) ≥ bu(b, 0) ≥ b. When θ = 1, we have that b = be(b, 1). Moreover, since

c(b, 0) ≥ c(b, 1) = cu(b, 1), b ≥ bu(b, 1). Collecting inequalities yield

be(b, 0) ≥ bu(b, 0) ≥ b = be(b, 1) ≥ bu(b, 1)

6One may see this from the incentive compatibility constraint: v′(p) = β(V (be)− V (bu)). How should a

given inflow of period t + 1 resources be divided between be and bu such that p is kept constant?
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From the budget constraint, and using the fact that w > 0, this implies that c(b, 1) > c(b, 0),

which contradicts c(b, 1) ≤ c(b, 0). Since c(b, 1) ≤ c(b, 0) was a corollary of cu(b, 0) ≥ ce(b, 0),

we must have cu(b, 0) < ce(b, 0).

Claims (ii) and (iii) are immediate consequences of the proof of (i). ¤

The mechanisms underlying the proof can be seen from equation (20), in which the

utility gain/cost from a marginal increase in p is equalized. If cu > ce, the left-hand side in

equation (20) states the utility gained through a marginal increase in p. It is a gain since a

small increase in ce, accompanied with a decrease in cu, attains the marginal change in the

right-hand side of the incentive compatibility constraint (14) necessary to accompany the

change in p. Such a change provides more insurance and thus increases utility. However,

due to interiority, there is an associated utility cost ; from equation (19), be must be larger

than bu, and an increase in p thus increase the share of the budget spent on period t + 1

resources. The proof then proceeds by showing that cu > ce together with bu < be, cannot

be budget feasible since the wage when employed is strictly positive.

In a two period setting, the terms be and bu in equation (19) may be replaced by ce − w

and cu, respectively. The intuition behind the result in Lemma 3 is then straightforward:

To provide incentives to exert search effort, the government generates a positive correlation

between employment and consumption, ce > cu. Insurance is provided by a low intertem-

poral variance, ce > c > cu. Concavity then ensures that this logic extends to a setting

with an infinite planning horizon.

Remarks. In Lemma 3, concavity of V (b, θ) is assumed.7 The assumption is common

in the literature and is indispensable for the analysis (Hopenhayn and Nicolini, 1997;

Ljungqvist and Sargent, 2004). The difficulty in proving concavity lies in the fact that

the choice set in (13) is not necessarily convex, and that (functions of) some choice vari-

ables do not enter the Bellman equation additively.8

Previous studies on optimal unemployment insurance abstract from self-insurance (e.g.

Shavell and Weiss (1979), Hopenhayn and Nicolini (1997) and Pavoni (2007)). In the

absence of savings, the policy implication from Lemma 3 is lucid; the tax/subsidy policy

is defined as the difference between consumption and labor income, and benefit payments

should therefore decrease along the duration of an unemployment spell. While Lemma 3

7Indeed, conditions (17)-(20) are derived using Benveniste and Scheinkman’s (1979) envelope theorem -

a theorem that requires concavity.
8Note that these are sufficient, but not necessary conditions for concavity. All numerical solutions in

this paper and, for instance, in Hopenhayn and Nicolini (1997) and Ljungqvist and Sargent (2004) display

a strictly concave value function (or, equivalently, a strictly convex cost function).
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reveals that the consumption pattern remains unaltered in the current setting with self-

insurance (given µ = 0), there are strong a priori reasons to believe that the unemployment

benefit policy does not: Most theoretical models of self-insurance and unemployment risk

(e.g. Aiyagari (1994)) display a decreasing consumption profile even in the absence of any

unemployment benefit programme. It is thus the aim of the next section to characterize

the policy that can implement the optimal allocations in an economy with self-insurance.

3.2. Decentralization. The previous section characterized the constrained Pareto-optimal

allocations attainable in the economy. This section will demonstrate how these allocations

may be attained in a setting in which the agents choose consumption, search effort, and

savings, taking the government’s policy as given. The ultimate task of this section is thus to

find the a policy such that the agents’ private choices corresponds to the optimal allocations

derived above.

This section is divided into two parts. The first part will show that there exist a decen-

tralized unemployment insurance policy that implements the optimal allocations. Moreover,

it is shown that this policy is recursive in an agent’s wealth level, and that benefit pay-

ments, as well as any reemployment taxes, are constant when the liquidity constraint is

binding. The aim of the second part is then to characterize the shape of the optimal pol-

icy functions, and the sequence of benefit payments along the duration of an employment

spell. It is shown that benefits payments are decreasing in an agent’s asset position and

peaks when the liquidity constraint is binding. Over the course of unemployment, the agent

decumulates assets and the sequence of benefit payments is thus non-decreasing.

3.2.1. A fiscal implementation. The agents in the decentralized economy have access to

a riskless bond, a, that pays net (pre-tax) return equal to r. Borrowing is subject to a

liquidity constraint, φ, such that at ≥ φ for all t. At time zero, the agents enter a market

economy with a given level of cash-on-hand equal to b0. For a given tax policy, the agents

maximize their utility by choosing consumption, savings, and search processes that fulfill

their intertemporal budget constraint. If there is a one-to-one correspondence between

the chosen processes and the optimal allocation, σ∗, the tax allocation is called a fiscal

implementation of σ∗.

Formally,

Definition 1. Let b0 = a0 − T0 be given. If there exist a tax allocation T̂ = {Tt}∞t=0,

Tt : Θt × Rt → R, such that {ct, at+1, pt}∞t=0 solves

V (b0, θ0) = max
{ct,at+1,pt}∞t=0

∞∑

t=0

βt

∫

Θt+1

{u(ct(b0, θ
t))− (1− θt)v(pt(b0, θ

t))}λ(b0, θ
t)dθt (22)
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subject to

wθt + at(b0, θ
t−1)− Tt(θt, a(b0, θ

t)) = ct(b0, θ
t) + qat+1(b0, θ

t) (23)

and

at+1 ≥ φ, for t = 0, 1, . . . (24)

and {ct, pt}∞t=0 equals the optimal allocation σ∗, then T̂ is said to be a fiscal implemen-

tation of σ∗.

Note that the tax allocation has a very general form. Taxes in any period t may de-

pend on the full history of employment as well on the full history of asset positions. The

motivation underlying this formulation is not obvious; since the agents choose t + 1 assets

using information available up to period t, it is plausible to conjecture that taxes in t + 1

will themselves only depend on information available up to period t. However, as shown

by Kocherlakota (2005), this intuition may fail; when actions are hidden there might not

exist a fiscal implementation limited to this information set. Section 3.3 will explore the

underlying reasons behind this conclusion further.

The following proposition shows that a fiscal implementation exists and that the resulting

tax functions are simple: The tax level is recursive and contingent on the agent’s current

transition and her level of wealth. The proof of the proposition provides some important

insights and is therefore included in the main text.

Proposition 1. There exist a time invariant tax function, Tt = T (at, θt, θt−1), that imple-

ments σ∗.

The proof is direct and establishes a one-to-one relationship between the government’s

and the agent’s problem.

By Bellman’s Principle of Optimality, the government’s problem in (13)-(16) can be split

up as

V (b, θ) = max
c,ζ
{u(c) + X(ζ, θ)} (25)

s.t. b = c− θw + qζ (26)

ζ ≥ 0 (27)

X(ζ, θ) = max
p,be,bu

{−(1− θ)v(p) + β(pV (be) + (1− p)V (bu))} (28)

s.t. v′(p) = β(V (be)− V (bu)) (29)

ζ = pbe + (1− p)bu (30)



16 PONTUS RENDAHL

Define functions Te and Tu as Te(ζ, θ) = ζ−be(ζ, θ) and Tu(ζ, θ) = ζ−bu(ζ, θ), respectively.

By definition,

X(ζ, θ) = max
p
{−(1− θ)v(p) + β(pV (ζ − Te(ζ, θ)) + (1− p)V (ζ − Tu(ζ, θ)))}

Thus,

V (b, θ) = max
c,ζ
{u(c) + max

p
{−(1− θ)v(p) + β(pV (ζ − Te(ζ, θ)) + (1− p)V (ζ − Tu(ζ, θ)))}}

= max
c,ζ,p

{u(c)− (1− θ)v(p) + β(pV (ζ − Te(ζ, θ)) + (1− p)V (ζ − Tu(ζ, θ)))}

s.t. b = c− θw + qζ

ζ ≥ 0

Where the last equality follows, again, from the Principle of Optimality. By construction, if

a′ = ζ, the above Bellman equation is the recursive formulation of the decentralized problem

given in Definition 1. ¤

The above proposition hinges upon an important assumption: As in Kocherlakota (2005)

and Albanesi and Sleet (2006), I assume that the fiscal implementation is such that the

optimal allocation is “affordable”. Affordability means that if the agent had the possibility

to buy the optimal allocation, she would period-by-period afford it. That is,

wθt + at − Tt = ct + q(ptbe,t+1 + (1− pt)bu,t+1)

This restriction is crucial for separating the effect of savings and taxes on consumption.

Affordability implies that the government’s state variable, bt, must equal the agent’s non-

labor cash-on-hand at − Tt. As a consequence, taxes are strictly redistributive

at+1 = (pt(at+1 − Te,t+1) + (1− pt)(at+1 − Tu,t+1)) (31)

Or, said differently, the insurance system is actuarially fair : The premium paid, ptTe,t+1,

equals the expected cost, −(1− pt)Tu,t+1.

By Lemma 3, it is thus immediate that bu,t+1 > at+1 > be,t+1. The agent is consequently

positively taxed when employed and negatively taxed when unemployed (or equivalently,

receiving an unemployment benefit).

When savings and taxes are identified as above, the intuition underlying Proposition 1

is quite straightforward. Bellman’s Principle of Optimality reveals that savings, a′, is a

sufficient state variable for the choice of be, bu and p. The tax functions are then defined

as the difference between savings and the optimal t + 1 non-labor cash-on-hand, be and

bu. By the design of the tax function, the agent can always choose the assigned allocation.

Any other (privately) feasible choice amounts to imitating the t + 1 allocation of some
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other agent. By construction, imitating someone else is incentive feasible. Thus, since the

allocation is optimal under incentive compatibility and budget feasibility, imitation cannot

be optimal.

The tax functions in Proposition 1 are recursive in an agent’s wealth, her current and

previous employment state. Akin to the tax functions that map savings to state contin-

gent cash-on-hand, functions be(b, θ) and bu(b, θ) map period t resources to period t + 1

state contingent cash-on-hand. Why, then, could the tax functions not be recursive in

(b, θ)? Inasmuch the optimal allocation still would be attainable for an agent operating in

the decentralized economy, choosing the allocation would no longer be optimal: Imitating

someone else is feasible, but not incentive compatible with respect to the imitatee. By the

same logic underlying the inverse Euler equation, the agent would, then, increase savings

to equalize equation (21), violating the incentive compatibility of the optimal allocation.

The following corollary states that unemployment benefits as well as any reemployment

taxes must be constant whenever the liquidity constraint is binding.

Corollary 1. For all b such that the liquidity constraint is binding, benefit payments and

taxes are independent of b.

Proof. By Proposition 1, savings is a sufficient state for the choice of Te and Tu. Thus,

conditional on a′ = 0, Te and Tu are independent of b. ¤

Remarks. It is important to note that the results in Proposition 1 and Corollary 1

are derived under quite general conditions. In particular there are no assumptions on the

economy’s interest rate or concavity/convexity assumptions on equilibrium functionals.

There is a continuum of tax systems that may implement any incentive feasible allocation.

To appreciate this, consider an arbitrary incentive feasible allocation at time t. The agent

consumes c and she exerted search effort in the previous period inducing p−1. Her asset

position and unemployment benefit handouts equal a and τ , respectively. Then another

allocation with a′ = a + ε, τ ′ = τ − ε and c′ = c, is still incentive compatible, feasible, and

generates the same level of utility to the agent for any real value of ε.9 At one extreme,

100% wealth- and labor taxes with lump-sum transfers equal to consumption, would in-

deed implement any allocation. Arguably, such a tax system is quite draconian and does

not resemble the combined usage of taxes and markets to reallocate resources observed in

most current economies. At another extreme, zero taxes and individually and quantitative-

contingently priced Arrow securities could be designed to exactly mimic the problem in

9Note that since c is left unchanged, the new allocation also respects the liquidity constraint.
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(13)-(16). While perhaps elegant, and by construction optimal, such a market arrange-

ment requires an elaborate pricing system relying on common knowledge of individual asset

positions and preferences.

Ruling out such elaborate asset structures and focusing on the one bond scenario, one

may, alternatively, view the problem of indeterminacy as a question regarding savings.

Specifically, it is a question regarding whether it is the government, or the agent (or any

combination of the two), that carries out the intertemporal allocations of resources. Of

course, inasmuch there are a continuum of possible storage arrangements, one may legiti-

mately wonder on what basis one can rationally chose between those arrangements. As in

Kocherlakota (2005) and Albanesi and Sleet (2006), this paper imposes two assumptions

in order to identify the effect of self-insurance from taxes/benefits on consumption. First,

agents save using a riskless bond. The presence of a riskless bond can be thought of as

a parsimonious representation of a more elaborate underlying diversified portfolio choice

of assets uncorrelated with private employment status. Second, the optimal allocation is

assumed to be period-by-period affordable. Fundamentally this assumes that all intertem-

poral transfers of resources are actualized by the agents’ savings. As a consequence, the

optimal policy closely resembles a non-profit insurance program with actuarially fair prices;

the premium of the insurance equals the expect cost of the benefit payment. This iden-

tification scheme guarantees to attain the optimal allocation with minimal governmental

interference.10

3.2.2. The shape of the benefit function. While taxes has been shown to have a simple

recursive representation, so far little has been shown regarding their properties. Examining

the qualitative properties of the tax function T corresponds to examine how T = a − b

responds to a change in a. To this end, I will derive and exploit the properties of the

marginal tax functions.

This section will state the main results, supported by brief comments. In the following

section, I will relate the results presented here to properties of a “weighted” Euler equation,

and, in turn, relate this equation to the inverse Euler equation. Since taxes when employed

are lump-sum and constant, focus is put on the case of interest at θ = 0. To facilitate

notation, let Te(a′) and Tu(a′) denote period t + 1 taxes at the associated employment

states at θ = 0.

10Allowing the government to intertemporally allocate resources using her own storage technology, how-

ever subject to some “iceberg cost”, would endogenously identify savings, and thus taxes, as in the current

setting.
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Proposition 2. If V (b, θ) is concave, there exist marginal tax functions given by

T ′e(a
′) = 1− u′(cu)

pu′(cu) + (1− p)u′(ce)
, T ′u(a′) = 1− u′(ce)

pu′(cu) + (1− p)u′(ce)

Proof. See Appendix A. ¤

The idea behind the proof is to consider an infinitesimal change in a′. The resulting

marginal change in taxes must be such that the government’s first order conditions hold,

incentive compatibility is preserved and the budget balances. In addition, the agent’s

decentralized first order condition must hold

u′(c)− µ =
β

q
(pu′(ce)(1− T ′e(a

′)) + (1− p)u′(cu)(1− T ′u(a′)))

Corollary 2. If V (b, θ) is concave, β = q, and µ = 0, then both unemployment benefits

and “reemployment taxes” are decreasing with the agents asset position.

Proof. Combining the marginal taxes in Proposition 2 with the inverse Euler equation in

(18) gives

T ′e(a
′) = 1− q

β

u′(c)− µ

u′(ce)
, T ′u(a′) = 1− q

β

u′(c)− µ

u′(cu)

If β = q, µ = 0, and since ce > c > cu, it is evident that T ′e(a′) < 0 and 1 > T ′u(a′) > 0.11 ¤

The intuition behind this result is simple, yet subtle, and is relegated to Section 3.3.

3.2.3. Benefit payments and the duration of unemployment. The main part of the literature

on optimal unemployment insurance has concluded that benefit payments ought to decrease

along the duration of unemployment. The result is intuitive; in the absence of savings, a

decreasing benefit profile induces a decreasing consumption profile, providing both insurance

as well as sufficient search effort incentives. Abstracting from savings, Lemma 3 confirms this

result. Nevertheless, Proposition 1 shows that this result does not immediately generalize

to a setting in which partial self-insurance is present: The tax policy is time-invariant and

thus independent of the duration of the unemployment spell. In addition, the following

two propositions reveal that the intuition supporting a decreasing benefit profile fails in

the current setting. Indeed, along the duration of the unemployment spell, the agent will

decumulate assets and the sequence of unemployment benefits will observationally be non-

decreasing.

Proposition 3. If V (b, θ) is concave, µ = 0, and β = q, then (i) a > a′, (ii) Tu(a) > Tu(a′),
and (iii) Te(a) < Te(a′).

11Note that the assumption of µ = 0 is without any loss of generality. As was shown in Corollary 1,

benefit payments are constant when µ > 0.
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Proof. By Proposition 2, 1 > T ′u(a′) > 0. Thus for any a1 and a2, such that a1 > a2,

Tu(a1) > Tu(a2). If a′ ≥ a, 1 > T ′u(a′) implies that bu ≥ b, which contradicts Lemma 3,

part (iii). Thus a > a′, Tu(a) > Tu(a′) and, by Proposition 2, Te(a) < Te(a′). ¤

The result is intuitive. During unemployment, the agent exploits the insurance effect of

savings by decumulating assets. Proposition 2 infers that unemployment taxes are positively

related to the agent’s asset position. Thus, as the agent’s level of assets decline, so does the

level of the tax. Since unemployment taxes are negative this implies that unemployment

benefits will increase.

Proposition 4. If X(a′, θ) in (28) is concave, and q = β, there exist an interval [b, b], such

that for any b ∈ [b, b], a′(b, 0) = 0 and bu(0, 0) = b.

Proof. Let θ = 0 be implicit throughout the proof. Note that concavity of X implies strict

concavity of V . From the first order conditions of (25)-(27), a′(b) is strictly increasing in

b when µ = 0. By the Maximum Theorem, a′(b) is a continuous function (Stokey, Lucas

and Prescott, 1989). Thus there exist a b such that a′(b) = 0 and µ = 0. By Lemma 3,

b > bu(0). Now, consider a b ∈ (b, bu(0)]. The proposition claims that a′(b) = 0 and that

µ > 0. Assume the opposite; that is, a′(b) ≥ 0 and µ = 0. Since concavity of X implies

strict concavity of V , c(b) ≥ c(b). By the budget constraint (26), this implies that b ≥ b

which contradicts b ∈ (b, bu(0)]. Thus for any two b, b′ ∈ [b, bu(0)], a′(b) = a′(b′) = 0 and

b = bu(0). ¤

The intuition underlying the proposition is straightforward: If the constraint is binding

at a certain b, then it is binding for any b′ < b. The policy function from (28)-(30) is

denoted bu(a′). Since for any binding b, a′ is by definition equal to 0. As long as b is a

binding value, bu is independent of b (see Corollary 1). Thus, bu(0) is the lowest possible

value of b, and a′(b) = 0 at b = bu(0).

Accompanied with the inverse Euler equation, Proposition 3 has an intuitive explanation.

First, wealth has a first order insurance effect. The higher is an agent’s wealth, the less she

needs to worry about loss of consumption if she loses her job. Second, in order to provide

incentives to exert search effort, the government wishes to generate a positive correlation

between consumption and employment. When the agent’s utility function is concave, a

higher level of savings makes it costlier for the government to induce such a correlation and

the agent’s search effort decreases. By generating a negative correlation between savings

and unemployment benefits, the government manages to mitigate the distortionary effect

of savings on search.

3.3. The Euler equation, taxes, and the inverse Euler equation. I now provide a

deeper intuition underlying some of the results presented in the preceding sections. To
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this end I will consider an equivalent version of the government’s problem in which the

sole choice is strictly intertemporal, and not state contingent. For expositional clarity, it is

assumed throughout that µ = 0. It will be shown how this problem formulation leads to a

“weighted Euler equation”, and further how these weights relate to marginal taxes. At the

optimum, the weighted Euler equation implies the inverse Euler equation.

As noted in Section 3.1, the inverse Euler equation can be thought of as the outcome

when savings are chosen to balance two conflicting forces: To maximize utility, resources

should be allocated to where the marginal benefit of resources is relatively high. For incen-

tive compatibility, resources should be allocated to states in which the marginal benefit of

resources is relatively low. Since incentive compatibility inflicts with period t + 1 resources

only, it is thus optimal relegate a relatively high degree of resources to period t consumption.

As a result, the agent appears savings constrained.

For a given value of savings, it is instructive to think of the optimal division of period

t+1 resources across employment states as functions fulfilling two restrictions: The incentive

compatibility constraint and the budget constraint. Similar to the tax functions explored in

the previous section, these functions then allocate, for a given level of savings, resources to

the different employment states. Let the government choose savings, a′, and let the functions

δe(a′) and δu(a′) allocate resources between employment states such that the budget is

balanced and incentive compatibility holds. That is, for a given p, a′ = pδe(a′)+(1−p)δu(a′)
and v′(p) = β(V (δe(a′))− V (δu(a′))).

The government then faces the following intertemporal maximization problem

V (b) = max
a′
{u(b− qa′) + β(pV (δe(a′)) + (1− p)V (δu(a′)))}

The first order condition to the above problem, evaluated at the optimal solution, is given

by

u′(c) =
β

q
(pV ′(be)δ′e(a

′) + (1− p)V ′(bu)δ′u(a′)) (32)

Equation (32) resembles a standard Euler equation, and has an interpretation in terms

of marginal intertemporal trade-offs: The utility cost of an marginal increase in savings

(left-hand side) equals its feasible marginal utility gain (right-hand side). As with standard

intertemporal problems, the t + 1 feasible marginal utility gain is determined by the fea-

sible inflow of resources in period t + 1 - a marginal decrease of period t consumption is

accompanied by a proportional marginal increase of period t+1 resources, weighted by the

interest rate: 1 = pδ′e(a′) + (1− p)δ′u(a′). In addition, however, there is a further restriction

on how the period t + 1 resources must be divided between employment states. In order to

leave p unaltered, a marginal incentive compatibility constraint must hold

V ′(δe(a′))δ′e(a
′) = V ′(δu(a′))δ′u(a′) (33)
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One can combine this marginal incentive compatibility constraint with the “marginal budget

constraint” above, to solve for the weights δ′(a′)

δ′e(a
′) =

V ′(bu)
pV ′(bu) + (1− p)V ′(be)

, δ′u(a′) =
V ′(be)

pV ′(bu) + (1− p)V ′(be)
(34)

The expressions above reveals an important feature: Whenever V ′(bu) > V ′(be), δ′e(a′) >

δ′u(a′), and vice versa. That is, for states in which the marginal value of resources is

relatively high, the marginal inflow of resources should be relatively low. Substituting the

relationship in (34) into (32) gives the inverse Euler equation.

It is important to note that the functions in (34) are directly related to the marginal

taxes derived in Proposition 2. In particular, δ′(a′) = 1− T ′(a′). The intuition underlying

the shape of the tax function then becomes evident: For a certain choice of p to remain

incentive compatible, an increase in savings must be divided between employment states

such that the incentive compatibility constraint holds. That is, the inflow of resources

must be relatively high at states in which the marginal value of resources is relatively low.

By Lemma 3, the marginal value of resources is high in the unemployed state, and the

additional inflow must therefore be low. Since the optimal policy is recursive in an agent’s

wealth, a higher level of assets must induce a lower level of unemployment benefits.

Additionally, the marginal incentive compatibility constraint in (33) illuminates the an-

swer to a further inquiry explored in the literature (e.g. Kocherlakota (2005), Section 3):

As savings are chosen on the basis of information available in period t, could period t + 1

taxes be a function of period t information only? That is, could δ′e(a′) equal δ′u(a′)? From

equation (33) it is straightforward to see that this cannot be the case. In order for incentive

compatibility to hold, period t + 1 taxes can only be a function of period t information if

(and only if) V ′(be) = V ′(bu), or, equivalently, if ce = cu. Under all other circumstances,

a tax contingent on period t information only would, with certainty, violate the incentive

compatibility constraint.

4. Quantitative Analysis

To shed further light on the properties of the optimal unemployment insurance program,

I turn to a calibrated version of the model. The aim of this section is to quantitatively

characterize the optimal unmployment insurance programme, and to calculate the potantial

cost-savings of the optimal versus the current insurance system in the United States.

As will be shown, benefit payments equal roughly 60% of the preunemployment wage for

liquidity constrained individuals, and swiftly declines to - and levels off at - around 1.5%
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for the affluent. As percentage of the total expected cost of the current US insurance pro-

gramme, the potential cost-savings of the optimal programme ranges from 7% for liquidity

constrained individuals with zero liquid wealth, to approximately 33% for the wealthy.

4.1. Calibration. Following the main macroeconomic literature the function u is chosen

to be of the type constant relative risk aversion

u(c) = lim
ρ→σ

c1−ρ

1− ρ

The coefficient of risk-aversion σ is set to 2.12 As in Pavoni (2007) and Pavoni and Violante

(2007), the length of each period is assumed to be one month. The yearly interest rate is

set at 5% and the intertemporal discount factor β is thus 1.05−1/12. In order for the results

to be comparable with the previous (contractual) literature on unemployment insurance,

the hazard rate of unemployment, 1− γ, is set to zero.13 Employment is thus an absorbing

state. The net wage, w, is normalized to unity.

The function governing the disutility of search effort, v, is assumed to have the following

functional form

v(p) = − ln(1− p)
α

− p

α

Note that v is strictly convex on [0, 1] and that v(0) = 0, v′(0) = 0 v(1) = ∞ and

limp↑1 v′(1) = ∞. Several articles on optimal unemployment insurance (e.g Hopenhayn

and Nicolini (1997), Young (2004) and Wang and Williamson (2002)), assume that p(e) =

1 − exp(−αe) and that the disutility of search is linear and equals e. A choice consistent

with the literature would thus be v(p) = − ln(1− p)/α. To simplify computation, however,

the above simple modification to the standard function is employed.14

To calibrate the parameter α in the function v - the parameter determining the degree

of moral hazard in the model - an auxiliary economy is used. The auxiliary economy is

given as the problem in equations (22)-(24), but in which the government’s policy, T , is

exogenously specified. I describe this economy in detail in Appendix B. The exogenous

replacement rate T is constant for perpetuity and is set to 66% (Meyer, 1990; Hopenhayn

and Nicolini, 1997).15 I choose α such that the elasticity of the hazard rate of reemployment

with respect to T for a liquidity constrained individual, matches the estimate obtained for

12Empirical estimates show that this parameter roughly ranges from 1 to 3. (Mehra and Prescott, 1985).
13With the previous literature, I refer to Shavell and Weiss (1979), Hopenhayn and Nicolini (1997),

Pavoni (2007) and Pavoni and Violante (2007).
14Note that without this modification v′(0) = 1

α
6= 0, and interiority is not guaranteed.

15Although unemployment benefits in the United States lapses after six months, I consider as an approx-

imation a perpetually lasting replacement rate as a benchmark for calibration.
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this group by Chetty (2007). In particular, α is set to 1.4 which generates an elasticity of

−.72.

Table 1 summarizes the baseline parameter calibration.

Table 1. Calibration of Parameters

Parameter β σ r γ w α

Value .996 2 .41% 1 1 1.4

It should be noted that I target the elasticity of the hazard rate of reemployment with re-

spect to this replacement rate for a liquidity constrained individual. The underlying reason

is simple: Since the interest rate is set exogenously, the auxiliary economy displays a partial

equilibrium. As such, the economy does not generate a realistic endogenous distribution of

wealth holdings, and terms such as average agent, or median wealth holdings become mean-

ingless. On the other hand, the constraint restricting access to liquid funds is exogenously

given and constant, and for any endogenous distribution there will be an atom of agents at

the binding level of the liquidity constraint. Thus, a calibration targeted to match features

of the data at this part of the distribution is still a consistent practice.

4.2. Computational Procedure. I compute the model by jointly solving the three equi-

librium functionals in (18)-(20), together with the incentive compatibility constraint (14),

the budget constraint (15), and the liquidity constraint (16). The numerical method used is

time-, or policy function, iteration as described in Coleman (1990). The main advantage of

this procedure is its (virtually) global convergence properties for Pareto-optimal problems,

even in the presence of inequality constraints, such as restricted borrowing (Rendahl, 2006).

Time iteration also does not rely on discretization of the state space, but instead requires

interpolation techniques that preserve the continuous nature of the state space. This is a

salient feature since it dramatically increases accuracy (Judd, 1998). In order to simplify

the numerical computations, I follow Carroll (2006) and create a grid in savings, a′, rather

than in non-labor cash-on-hand b. I use 200 logarithmically spaced gridnodes for savings,

ranging from value of the liquidity constraint at zero to 12. Linear interpolation is employed

to evaluate functions at values in between nodes. Further increasing the number of nodes,

or altering the interpolation procedure, does not lead to any changes in the results.

4.3. Numerical Results. The solid line in Figure 1 depicts how the level of unemployment

benefits are related to an agent’s asset position. An agent’s wealth is featured on the

horizontal axis. Wealth ranges from zero to the US median labor income to wealth ratio

(which is, on yearly basis, equal to one). The vertical axis displays the level of unemployment

benefits as a percentage of the monthly wage.
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Figure 1. Unemployment benefits and wealth (solid line).

The figure reveals three illuminating patterns. First, the replacement rate for constrained

agents with zero liquid wealth is optimal at 60%, markedly in line with the average current

US level at 66%, which was used for calibration (Meyer, 1990; Hopenhayn and Nicolini,

1997).16 Thus, at least for this subgroup, there are reasons to believe that the current

level of the US replacement rate is close to optimal. Second, unemployment benefits for

the asset poor ought to be orders of magnitude of that of a wealthy agent. For instance,

unemployment benefits paid to an agent with wealth equal to three month labor income

- wealth enough to sustain an average unemployment spell - is 5% of the level paid to a

constrained agent with zero liquid wealth. Third, unemployment benefits for the affluent

appears to be extremely close to constant. Taken together, these observations give support

for an asset based means tested unemployment insurance programme.

It is tempting to conclude that the swift negative relationship between unemployment

benefits and wealth is a consequence of the qualitative results proved in Proposition 2 and

Corollary 2. This is not the case. The dashed line in Figure 1 represents the solution to

the optimal problem in the absence of credit restrictions.17 As is clear from the figure, the

liquidity constraint is responsible for virtually the entire effect. The reason is due to what

16Re-calibrating to a replacement rate of 50% (as in Davidson and Woodbury (2002)), leaves the optimal

level of 60% virtually unchanged. In fact, this level is surprisingly robust to changes in the parameter α.
17As Proposition 2 and Corollary 2 predicts, this line is strictly decreasing, although the scale in Figure

1 conceals this fact.
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Chetty (2007) refers to as a “liquidity effect”: Absent the ability to smooth consumption

through borrowing, a relatively low level of benefit payments is accompanied by a very low

present value utility of unemployment. A constrained agent thus faces severe pressure of

finding a new job quickly, leading to a short duration of unemployment. However, this

enhanced search intensity is driven by a market failure - incomplete credit and risk-sharing

markets - and thus widely exceeds the social optimum. As a consequence, benefit payments

should be increased in order to compensate for this missing market, and the search effort

will then approach its socially optimal level.

4.3.1. Potential cost-savings. Figure 2 depicts the potential cost-savings gained by replacing

the current US system with the optimal benefits programme. An agent’s net-worth under

the current US system, defined as current wealth plus the expected net present value of

future benefit payments, is depicted on the horizontal axis. By construction of the liquidity

constraint in Appendix B, net-worth ranges, as wealth in the optimal programme, from

zero to twelve. The vertical axis displays the potential cost-savings of switching to the

optimal programme as a percentage of the net present value of future benefit payments of

the current programme.
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Figure 2. The potential cost-savings of an optimal unemployment insur-

ance scheme as percentage of the expected cost of the current unemployment

insurance programme.
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Not surprisingly, the potential cost-savings are quite low for the group of constrained

individuals. The reason is of course that the optimal-, in similarity to the current pro-

gramme, are both constant and remarkably comparable in level. Cost-savings of around 7%

can however be gained by reducing the replacement rate from 66% to 60%. For the more

affluent however, potential cost-savings increases dramatically, and levels off at around 33%.

As a consequence, for any initial distribution of wealth in the economy, cost-savings ranges

from the minimum at 7% to the, perhaps more likely, maximum of around 33%. According

to Green and Riddell (1993), roughly 0.4% of US GDP is devoted to the unemployment

insurance budget. Putting the numbers in Figure 2 in context thus reveals that potential

cost-savings range from 0.03% to 0.13% of total US GDP.

Considering Figure 1 and 2 together, it appears as if affluent individuals would be better

off reducing their level of insurance. This conclusion is not correct. Affluent agents would

be better off with a lower insurance level accompanied by a lump-sum transfer of resources

equal to the reduction in the present value of future benefit payments. In fact, according to

Figure 2 they are willing to forgo 33% of this lump-sum transfer in order to stay indifferent.

5. Concluding Remarks

This paper has studied a model of optimal redistribution policies in which the foremost

risk in an agent’s life is unemployment. Moral hazard arises as job search effort is unob-

servable. The model permits agents to self-insure by means of a riskless bond, but access

to the credit market is limited.

In contrast with previous studies in the literature, the optimal benefit payments policy

shows no duration dependence, and relies exclusively upon an individual’s current asset

position. Benefit payments are decreasing in wealth and, as a consequence, peaks at a

constant level when the liquidity constraint is binding. Over the course of unemployment,

individuals decumulate assets and the sequence of benefit payments is thus observationally

non-decreasing. In a quantitative exercise it is shown that the US unemployment insurance

programme is surprisingly close to optimal for the asset poor, but too generous for wealthier

individuals. The potential cost-savings of switching to the optimal program ranges from

roughly 33% of the present value insurance budget for the affluent, to 7% for the less

fortunate.

The policy implications from the analysis are stark; unemployment benefits should be

asset based and relate negatively to wealth. As wealth itself encodes insurance possibilities,

the negative relation between wealth and unemployment benefits is intuitive. There are

several ways in which an asset based unemployment insurance programme could be accom-

plished. As with Medicaid, food stamps, and until recently, Aid to Families with Dependent
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Children (AFDC), to mention a few social policies in the United States, unemployment ben-

efits may be asset based means tested; that is, unemployment benefits are paid only if an

agent has assets below a specified maximum amount. Alternatively, and obviously, schemes

may be more elaborate with a continuous decline in benefit payments as assets increases.

However, the most favorable, simple, asset based scheme appears to build upon two distinct

features: Benefits should be positive across the whole wealth distribution, but significantly

higher for the asset poor, and affluent agents should receive a one-shot lump-sum transfer

that compensates for their reduction in insurance.



UNEMPLOYMENT INSURANCE AND CREDIT FRICTIONS 29

References

Abreu, D., Pearce, D. and Stacchetti, E.: 1990, Toward a theory of discounted repeated games with imperfect

monitoring, Econometrica 58(5), 1041–1063.

Aiyagari, R. S.: 1994, Uninsured idiosyncratic risk and aggregate saving, Quarterly Journal of Economics

109(3).

Albanesi, S. and Sleet, C.: 2006, Dynamic optimal taxation with private information, The Review of Eco-

nomic Studies 73(1), 1–30.

Aliprantis, C. D. and Border, K. C.: 1999, Infinite Dimensional Analysis: A Hitchhiker’s Guide, 2 edn,

Springer Verlag.

Alvarez-Parra, F. A. and Sanchez, J. M.: 2006, Unemployment insurance in an economy with a hidden labor

market, MPRA Paper No. 2531 .

Benveniste, L. M. and Scheinkman, J. A.: 1979, On the differentiability of the value function in dynamic

models of economics, Econometrica 47(3), 727–732.

Browning, M. and Crossley, T. F.: 2001, Unemployment insurance benefit levels and consumption changes,

Journal of Public Economics 80, 1–23.

Carroll, C. D.: 2006, The method of endogenous gridpoints for solving dynamic stochastic optimization

problems, Economics Letters 91(3), 312–320.

Chetty, R.: 2007, Moral hazard vs. liquidity in unemployment insurance, Mimeo, UC Berkeley .

Coleman, W. J.: 1990, Solving the stochastic growth model by policy function iteration, Journal of Business

and Economic Statistics 8(1), 27–29.

Davidson, C. and Woodbury, S. A.: 2002, Search Theory and Unemployment, Kluwer Academic Publishers,

chapter Optimal Unemployment Insurance with Risk Aversion and Job Destruction, pp. 177–213.

Deaton, A.: 1991, Savings and liquidity constraints, Econometrica 59(5), 1221–1248.

Engen, E. M. and Gruber, J.: 2001, Unemployment insurance and precautionary saving, Journal of Monetary

Economics 47(3), 545–579.

Feldstein, M. and Altman, D.: 1998, Unemployment insurance savings accounts, NBER Working Paper

6860.

Golosov, M., Kocherlakota, N. and Tsyvinski, A.: 2003, Optimal indirect and capital taxation, The Review

of Economic Studies 70(3), 569–587.

Green, D. A. and Riddell, C. W.: 1993, The economic effects of unemployment insurance in canada: An

empirical analysis of ui disentitlement, Journal of Labor Economics 11(1), 96–147.

Gruber, J.: 1997, The consumption smoothing benefits of unemployment insurance, American Economic

Review 87(1), 192–205.

Hopenhayn, H. A. and Nicolini, J. P.: 1997, Optimal unemployment insurance, Journal of Political Economy

105(2), 412–438.

Judd, K. L.: 1998, Numerical Methods in Economics, The MIT Press.

Kocherlakota, N.: 2005, Zero expected wealth taxes: A mirrlees approach to dynamic optimal taxation,

Econometrica 73(5), 1587–1621.

Ljungqvist, L. and Sargent, T. J.: 2004, Recursive Macroeconomic Theory, 2 edn, The MIT Press, Cam-

bridge, Massachusetts.

Marcet, A. and Marimon, R.: 1998, Recursive contracts, Mimeo, European University Institute .

McCall, J.: 1970, Economics of information and job search, Quarterly Journal of Economics 84(1), 757–782.



30 PONTUS RENDAHL

Mehra, R. and Prescott, E. C.: 1985, The equity premium: A puzzle, Journal of Monetary Economics

15(2), 145–161.

Meyer, B. D.: 1990, Unemployment insurance and unemployment spells, Econometrica 58(4), 757–782.

OECD: 2004, Benefits and wages: Oecd indicators.

Pavoni, N.: 2007, On optimal unemployment compensation, Journal of Monetary Economics .

Pavoni, N. and Violante, G. L.: 2007, Optimal welfare-to-work programs, The Review of Economic Studies

74(1), 283–318.

Phelan, C. and Townsend, R. M.: 1991, Computing multi-period, information constrained optima, The

Review of Economic Studies 69(6), 853–881.

Rendahl, P.: 2006, Inequality constraints in recursive economies, EUI Working Paper Series 6.

Rogerson, W.: 1985, Repeated moral hazard, Econometrica 53(1), 69–76.

Shavell, S. and Weiss, L.: 1979, The optimal payment of unemployment insurance benefits over time, Journal

of Political Economy 87(6), 1347–1362.

Shimer, R. and Werning, I.: 2006, On the optimal timing of benefits with heterogeneous workers and human

capital depreciation, Mimeo, University of Chicago .

Shimer, R. and Werning, I.: 2007a, Liquidity and insurance for the unemployed, Mimeo, University of

Chicago .

Shimer, R. and Werning, I.: 2007b, Reservation wages and unemployment insurance, Quarterly Journal of

Economics 122(3), 1145–1185.

Spear, S. E. and Srivastava, S.: 1987, On repeated moral hazard with discounting, The Review of Economic

Studies 54(4), 599–617.

Stokey, N. L., Lucas, R. E. and Prescott, E. C.: 1989, Recursive Methods in Economic Dynamics, Harvard

University Press, Cambridge, Massachusetts.

Thomas, J. and Worrall, T.: 1988, Self-enforcing wage contracts, The Review of Economic Studies 55, 541–

554.

Wang, C. and Williamson, S. D.: 2002, Moral hazard, optimal unemployment insurance, and experience

rating, Journal of Monetary Economics 49, 1337–1371.

Young, E. R.: 2004, Unemployment insurance and capital accumulation, Journal of Monetary Economics

51, 1683–1710.

Zeldes, S. P.: 1989, Consumption and liquidity constraints: An empirical investigation, Journal of Political

Economy 97(2), 305–346.



UNEMPLOYMENT INSURANCE AND CREDIT FRICTIONS 31

Appendix A. Proofs

A.1. Lemma 2.

Proof. By the Principle of Optimality, the problem in (6)-(9) can be split up as

V (b0, θ0) = max
c0,a1

{u(c0)− θ0v(p0) + X(a1, θ0)} (A1)

s.t. b0 = c0 − θ0w + qa1 (A2)

0 ≥ φ− a1 (A3)

X(a1, θ0) = max
σ(a1)

∞∑
t=1

βt

∫

Θt

{u(ct(a1, θ
t))− (1− θt)v(pt(a1, θ

t))}λ(a1, θ
t)dθt (A4)

s.t. {pt}∞t=0 = argmax{X(a1, θ0)} (A5)

a1 =

∞∑
t=1

qt

∫

Θt

{ct(a1, θ
t)− θtw}λ(a1, θ

t)dθt (A6)

0 ≥ φ−
∞∑

s=1

qs−1

∫

Θt+s

{ct+s(a1, θ
t+s)− θt+sw}λ(a1, θ

t+s)

λ(a1, θt)
dθt+s, for t = 1, 2, . . . (A7)

Under an optimal allocation, equations (A4) and (A6) can be written as

X(a1, θ0) = −v(p∗0(a1, θ0)) + β

∫

Θ1
V (σ∗, b∗(a1, θ1), θ1)λ(a1, θ

1)dθ1 (A8)

a1 = q

∫

Θ1
b∗(a1, θ1)λ(b0, θ

1)dθ1 (A9)

The proof then proceeds in three steps. The first step shows that X(a1, θ0) is strictly increasing in a1.

By exploiting this fact, the second step will then proceed by showing that b∗(a1, θ1) must be resource

minimizing under promised utility V (σ∗, b∗(a1, θ1), θ1). Lastly, the third step then shows that duality holds:

If b∗(a1, θ1) is resource minimizing under utility V (σ∗, b∗(a1, θ1), θ1), then V (σ∗, b∗(a1, θ1), θ1) must be

utility maximizing under resources b∗(a1, θ1).

Step 1. Assume that there is an inflow of resources to the left-hand side of (A6) equal to ε > 0. For

notational convenience, define c1 and c0 as period one consumption in the employed and unemployed state

respectively. Pick an ε1 ≥ 0 and ε0 ≥ 0 such that

u(c1 + ε1)− u(c0 + ε0) = u(c1)− u(c0)

ε1 + ε0 = ε

Since the relative value between employment states are unaltered, p∗0(a1, θ0) is still incentive compatible and

period zero expected utility has increased by

β(p0(u(c1 + ε1)− u(c1)) + (1− p0)(u(c0 + ε0)− u(c0))) > 0

Where p0 = p∗0(a1, θ0).

Step 2. Consider the following resource minimization problem:

b(V, θ̂0) = min
σ

∞∑
t=0

qt

∫

Θt

{ct(V, θ̂t)− θ̂tw}λ(V, θ̂t)dθ̂t (A10)

s.t. V ≤
∞∑

t=0

βt

∫

Θt

{u(ct(V, θ̂t))− (1− θ̂t)v(pt(V, θ̂t))}λ(V, θ̂t)dθ̂t (A11)
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and subject to the incentive compatibility and liquidity constraint. A “hat” on the sequence θt is used to

distinguish it from the values of θt in the original problem (6)-(9). It is important to note if constraint (A11)

in problem (A10)-(A11) is slack, then c0(V, θ̂0) is interior; if it was not, since u(0) = −∞, the right-hand side

in (A11) would equal minus infinity, and V ≥ −∞. It is then straightforward to see that constraint (A11)

will hold as an equality. If it did not, period zero consumption could simply be reduced without interfering

with neither incentive compatibility nor the liquidity constraint, reducing the objective function.

Now, consider the scenario in which θ̂0 = θ1 and V = V (σ∗, b∗(a1, θ1), θ1). Could b(V, θ̂0) in (A10) be

smaller than b∗(a1, θ1), for at least one value of θ1? Assume that it is. Define a′1 as a′1 = p0(a1, θ
0)b(V, 1) +

(1 − p0(a1, θ
0))b(V, 0), and note that a1 > a′1, and that a′1 is budget feasible, incentive compatible and

delivers utility V (b0, θ0). a′1 might not, however, respect the time zero liquidity constraint. Pick an a′′1 such

that a1 > a′′1 > a′1. Then, since X(a′1, θ0) is strictly increasing and continuous (Aliprantis and Border, 1999),

X(a′′1 , θ0) > X(a1, θ0), which violates the optimality of V (b0, θ0). Thus, b∗(a1, θ1) is resource minimizing

under promised utility V (σ∗, b∗(a1, θ1), θ1).

Step 3. In order to complete the proof, it must be shown that V (σ∗, b∗(a1, θ1), θ1) attains the maximum

value under resources b∗(a1, θ1).

Assume that V (b∗(a1, θ1), θ1) > V (σ∗, b∗(a1, θ1), θ1). By Berge’s Maximum Theorem (Aliprantis and

Border, 1999), V (b∗(a1, θ1), θ1) is continuous in b. By the same argument as above, c1(b
∗(a1, θ1), θ1) > 0

since u(0) = −∞. Thus there exist a b∗∗(a1, θ1) arbitrarily close to b∗(a1, θ1) such that b∗(a1, θ1) > b∗∗(a1, θ1)

and V (b∗∗(a1, θ1), θ1) > V (σ∗, b∗(a1, θ1), θ1). This contradicts that b∗(a1, θ1) was resource minimizing for

V (σ∗, b∗(a1, θ1), θ1). Thus V (b∗(a1, θ1), θ1) = V (σ∗, b∗(a1, θ1), θ1). ¤

A.2. Proposition 2.

Proof. The proof is direct and derives the implied marginal taxes from an infinitesimal change in assets.

By construction, the equilibrium tax functions satisfies

a′ = p(a′)(a′ − Te(a
′)) + (1− p(a))(a′ − Tu(a′))

Thus, if the tax functions are differentiable, the following must hold for the marginal tax

p′(a′)(Tu(a′)− Te(a
′)) = pT ′e(a

′) + (1− p)T ′u(a′) (A12)

From the incentive compatibility constraint we have

v′′(p)p′(a′) = β(V ′
e (a′)(1− T ′e(a

′))− V ′
u(a′)(1− T ′u(a′))) (A13)

Substituting the relationships be = a′ − Te(a
′) and bu = a′ − Tu(a′) into (19) (the government’s first order

condition for p) gives

q(Tu(a′)− Te(a
′)) = ζv′′(p) (A14)

Where ζ is the ratio of the multipliers on the budget and incentive compatibility constraint, respectively.

Elementary algebra shows that ζ = p(1−p)(1/u′(cu)−1/u′(ce)) (see equations (19) and (20)). Substituting

(A14) into (A12)

p′(a′)v′′(p)ζ = pT ′e(a
′) + (1− p)T ′u(a′) (A15)

Substituting (A13) into (A15)

β

q
(V ′

e (a′)(1− T ′e(a
′))− V ′

u(a′)(1− T ′u(a′)))ζ = pT ′e(a
′) + (1− p)T ′u(a′) (A16)
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In addition, the agent’s decentralized first order condition must hold:

u′(c)− µ =
β

q
(pu′(ce)(1− T ′e(a

′)) + (1− p)u′(cu)(1− T ′u(a′))) (A17)

Using equation (18) and solving equations (A16) and (A17) yields

T ′e(a
′) = 1− u′(cu)

pu′(cu) + (1− p)u′(ce)
, T ′u(a′) = 1− u′(ce)

pu′(cu) + (1− p)u′(ce)
¤
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Appendix B. An auxiliary economy

The auxiliary economy is characterized by the following Bellman equation

V (a, θ, δ) = max
c,a′,p

{u(c)− (1− θ)v(p) + β(pV (a′, 1) + (1− p)V (a′, 0, δ′))} (B1)

s.t. qa′ + c = θw + (1− θ)T + a (B2)

a′ ≥ −δ for θ = 0 (B3)

δ′ = h(δ) (B4)

where of course p = 1 if θ = 1. The parameter δ and its law of motion h(·) is taken as given by the agent,

and equals the net present value of future benefit payments

δ0 =

∞∑
t=1

qt−1(1− pt)T = E0

∞∑
t=1

qt−1(1− θt)

= (1− p1)(T + qδ1)

In order for the problem in (B1)-(B4) to be consistent with the government’s problem (13)-(16), it has to

be shown that the liquidity constraint in (B3) is equal to the liquidity constraint in (5).

Iterating the budget constraint (B2) forward, ruling out explosive paths, yields

a0 = E0

∞∑
t=0

qt{ct − θtw − (1− θt)T}

or, equivalently

a0 + (1− θ0)T + qδ0 = E0

∞∑
t=0

qt{ct − θtw}

= c0 − θ0w + qp0E1[

∞∑
t=1

qt{ct − θt}|θ1 = 1] + q(1− p0)E1[

∞∑
t=1

qt{ct − θt}|θ1 = 0]

= c0 − θ0w + qp0a1 + q(1− p0)(a1 + T + qδ1)

= c0 − θ0w + qa1 + q(1− p0)(T + qδ1)

= c0 − θ0w + qa1 + qδ0

Thus as long as qa1 + qδ0 ≥ 0, equation (5) will hold. Constraint (B3) is sufficient to guarantee this.


