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1 Optimal unemployment insurance (UI)

There is a large literature of optimal unemployment insurance. The basic issue is how to

provide the most efficient unemployment insurance when there is a moral hazard problem.

This is arising from an assumption that unemployed individuals can affect the probability

they find (and accept) a job offer. However, it is costly for the worker to increase this

probability, e.g., because of effort costs, reduced reservation wages or opportunity costs of

time.

1.1 The semi-static approach to optimal UI

The basic idea in Baily and Chetty is to simplify the dynamic problem into a static one. This

makes the model simple and tractable also when savings is allowed. An important lesson is

that when savings is allowed, we can use the drop in consumption at unemployment as a

measure of the welfare loss associated with unemployment. In a dynamic model, this does

not work when there is no market for savings. Why? The trade-off faced by the planner is

to balance the loss of welfare associated with unemployment against the negative effect on

search induced by UI.

1.1.1 The simplest model following Baily

• In the first period, the individual works and chooses how much to consume of the

income, normalized to unity, and how much to save.

• In the beginning of the second period, the individual becomes unemployed with prob-

ability 1− α and otherwise keeps his job.
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• During the second period, the individual can determine how long it takes to find a job

by choosing the reservation wage yn and costly search effort c. A share β = β (c, yn)

of the second period is spent working in the new job.

• While unemployed, the individual gets UI-benefits b.These are paid by taxes on workers.

• Agents have access to a market for precautionary (buffer stock) savings.

Total income in second period if laid off is therefore

(1− β) (b− c) + βyn (1− τ) ≡ yl.

In first periods, individuals decide how much to save, s. Interest rate and subjective

discount rate is normalized to zero. Welfare is

V = u (1− τ − s) + αu (1− τ + s) + (1− α) (u (yl + s)) .

Government budget constraint is

(1 + α+ (1− α) βyn) t = (1− α) (1− β) b.

=⇒ b =
(1 + α+ (1− α) βyn)

(1− α) (1− β)
τ ≡ µτ
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Denoting the endogenous total income by Y ≡ 1 + α+ (1− α) βyn, this implies

b =
Y

(1− α) (1− β)
τ

≡ µτ,

where we note that µ is not a constant, but depends on individual choices of yn and β and

thus indirectly on taxes and benefits. Given the budget constraint and individual choices,

we can therefore write µ = µ (τ) (provided there is a solution, which is not necessarily true

for all τ.Explain!)

Note that in first best, c should be chosen to satisfy

(yn + c) βc = 1− β

since the marginal gain in aggregate income is (yn + c) and the cost is 1− β. The individual

instead gains,

yn (1− τ) + c− b

so the private value of search is lower. Similarly, an increase in yn has benefits β and costs

− (yn + c) βyn .While private benefits are (1− τ) β and private costs− (yn (1− τ) + c− b) βyn .

We can now write

V = u (1− τ − s) + αu (1− τ + s) + (1− α) (u ((1− β) (µτ − c) + βyn (1− τ) + s))

V = V (c, yn, s, µ, τ)
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The optimal UI system maximizes solves

max
τ
V (c, yn, s, µ (τ) , τ)

Although, c, yn, s are affected by τ, these effects need not be taken into account since by

individual optimality,

Vc = VYn = Vs = 0.

This is the envelope theorem. Therefore, the first order condition for maximizing V by

choosing τ is

dV

dτ
= Vµ

dµ

dτ
+ Vτ = 0,

where

Vµ = (1− α)u′ (cu) (1− β) τ

Vτ = −u′ (c1)− au′ (c2)− (1− α)u′ (cu) βyn + (1− α)u′ (cu) (1− β)µ,

where c1 = 1− τ −s is first period consumption, c2 = 1− τ +s is second period consumption

if the job is retained and cu = (1− β) (µτ − c)+βyn (1− τ)+s is second period consumption

if the individual lost his job.
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Note that by individual savings optimization (the Euler equation)

u′ (c1) = au′ (c2) + (1− α)u′ (cu)

u′ (c1)− (1− α)u′ (cu) = au′ (c2)

implying

Vτ = −u′ (c1)− (u′ (c1)− (1− α)u′ (cu))− (1− α)u′ (cu) βyn + (1− α)u′ (cu) (1− β)µ

= −2u′ (c1) + (1− α) (1− βyn + (1− β)µ)u′ (cu) .

Approximating

u′ (c1) ≈ u′ (cu) + u′′ (cu) ∆c
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where ∆c ≡ c1 − cu is the fall in consumption if becoming unemployed. The first order

condition is then

0 = (1− α)u′ (cu) (1− β) τ
dµ

dτ
− 2 (u′ (cu) + u′′ (cu) ∆c)

+ (1− α) (1− βyn + (1− β)µ)u′ (cu)

2

(
1 +

u′′

u′
∆c

)
= (1− α) (1− β) τ

dµ

dτ
+ (1− α) (1− βyn + (1− β)µ)

2

(
1 +

u′′

u′
∆c

)
= (1− α) (1− β) τ

dµ

dτ
+ (1− α)

(
1− βyn + (1− β)

Y

(1− α) (1− β)

)
2

(
1 +

u′′

u′
∆c

)
= (1− α) (1− β) τ

dµ

dτ
+ (1− α)

(
1− βyn +

Y

(1− α)

)
2

(
1 +

u′′

u′
∆c

)
= (1− α) (1− β) τ

dµ

dτ
+ (1− α)

(
1− βyn +

1 + α+ (1− α) βyn

(1− α)

)
2

(
1 +

u′′

u′
∆c

)
= (1− α) (1− β) τ

dµ

dτ
+ 2

u′′

u′
∆c = (1− α) (1− β) τ

dµ

dτ

u′′

u′
∆c

Y
=
τ

µ

dµ

dτ

∆c

c
=
Eµ,t

−Rr

Y

where Eµ,t is the elasticity of µ with respect to taxes and Rr the relative risk aversion

coefficient. Note that we should not interpret Y as the aggregate level of income since

we have normalized the pre-unemployment income to unity. Assuming that yn ≈ 1, Y ≈

1 + α + (1− α) β which is the time people work. In this simple model, this is value is

overstated since no unemplyment occur in the first period. More realistically, it should be

close to one.
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Without moral hazard, dµ
dτ

= 0, in which case optimality requires ∆c = 0. With moral

hazard, higher taxes tends to reduce µ since the tax dependency ratio falls. τ
µ

dµ
dτ

= Eµ,t is

thus negative. Therefore, ∆c
c
> 0. We see that ∆c

c
increases if τ

µ
dµ
dτ

is large in absolute terms

and falls if risk aversion is large. Baily claims that Eµ,t is in the order .15-.4.

This approach has been generalized by Chetty showing that we can have repeated spells

of unemployment, uncertain spells of unemployment, value of leisure, private insurance and

borrowing constraints. The model can therefore be extended to evaluate UI reforms. With a

more dynamic model, and in particular if capital markets are imperfect, it should be noted

that one needs how the whole consumption profile is affected by unemployment. The drop

at entering unemployment may not be enough. Shimer and Werning (2007), shows that the

reservation wage can be used as a summary measure of how bad unemployment is.

In any case, this the model is not suitable to analyze

1. General equilibrium effects like impacts on wages, search spillovers and job creation.

2. Interaction with other taxes-fiscal spillovers.

3. Time varying benefits.

1.2 The dynamic approach with observable savings

The seminal paper by Shavel & Weiss (1979) focuses on the optimal time profile of benefits.

It is a simple infinite horizon discrete time model where the aim is to maximize utility of a
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representative unemployed subject to a government budget constraint. Utility is given by

∞∑
t=0

(
1

1 + r

)t

(u (ct)− et)

where ct is period t consumption and et is a privately chosen unobservable effort associated

with job search. The subjective discount rate is r, which is assumed to coincide with an

exogenous interest rate.

It is assumed that the individual has no access to capital markets so ct = bt when the

individual is unemployed. After regaining employment, the wage is w forever.

When the individual becomes employed he stays employed for ever for simplicity. Agents

have no access to credit markets (or equivalently, savings is perfectly monitored and benefits

can be made contingent on them) so the planner can perfectly control the consumption of

the individual. The mortal hazard problem is that individuals can affect the probability of

finding a job. As in Baily (1978), the individual controls both the search effort (here called

et) and the reservation wage (here w∗
t ).

Given an effort level et, the individual receives one job offer per period with an associated

wage drawn from a distribution with a time invariant probability density f (wt, et) . The

probability of finding an acceptable job in period t is thus

p (w∗
t , et) =

∫ ∞

w∗
t

f (wt, et) dwt
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with

pw (w∗
t , et) = −f (wt, et) ≤ 0 and

pe (w∗
t , et) > 0

where the latter is by assumption.

Let Et be the expected utility of an unemployed individual that choose optimally a

sequence
{
et+s, w

∗
t+s

}∞
s=0

. Define

ut = ũ (w∗
t , et) ≡

1 + r

r

∫ ∞

w∗
t

u (wt)
f (wt, et)

p (w∗
t , et)

dwt

This is the expected utility from next period, conditional on finding a job this period, which

starts next period. We note that

ũw (w∗
t , et) ≥ 0

ũe (w∗
t , et) ≥ 0.

The first inequality follows from the fact that conditional on finding a job, wages are

higher for higher reservation wages. The second inequality is by assumption, higher search

effort leads to no worse acceptable job offers.

Et satisfies the standard Bellman equation

Et = max
et,w∗

t

u (bt)− et +
1

1 + r
(p (w∗

t , et) ũ (w∗
t , et) + (1− p (w∗

t , et))Et+1)
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The first-order conditions are

et;
1

1 + r
(pe (w∗

t , et) (ũ (w∗
t , et)− Et+1) + p (w∗

t , et) ũe (w∗
t , et)) = 1

w∗
t ;−pw (w∗

t , et) (ũ (w∗
t , et)− Et+1) = p (w∗

t , et) ũw (w∗
t , et) .

In the first equation, the LHS is the marginal benefit of higher search effort, coming

from a higher probability of finding a job and better jobs if found. These balances the cost

which is 1. In the second equation, the LHS is the marginal cost of higher reservation wages,

coming from a lower probability of finding a job. The RHS is the gain, coming from better

jobs if accepted.

By the envelope theorem

dEt

dEt+1

=
∂Et

∂Et+1

=
1− p (w∗

t , et)

1 + r

Now, anything that reduce Et+1 will reduce 1− p (w∗
t , et) , i.e., make hiring more likely. To

see this, note that if Et+1 falls.

pe (w∗
t , et) (ũ (w∗

t , et)− Et+1) + p (w∗
t , et) ũe (w∗

t , et) , and

− pw (w∗
t , et) (u (w∗

t , et)− Et+1)

both becomes larger if choices are unchanged. In words, the marginal benefit of searching

higher and the marginal cost of setting higher reservation wages both increase. Thus, a

reduction in Et+1 increase search effort and reduce the reservation wage increasing p.
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Now, we can show that benefits should have a decreasing profile.

Proof:

Suppose contrary that bt = bt+1. Then consider an infinitessimal increase in bt financed

by an actuarially fair reduction in bt+1, that is

dbt = −1− p

1 + r
dbt+1 > 0

where p (w∗
t , et) is calculated at the initial (constant) benefit levels. The direct effect on

felicitity levels (period utilities) is

u′ (bt) dbt +
1− p

1 + r
u′ (bt+1) dbt+1

− u′ (bt)
1− p

1 + r
dbt+1 +

1− p

1 + r
u′ (bt+1) dbt+1

= 0

since u′ (bt) = u′ (bt+1) .By the envelope theorem, we need not take into account changes in

endogenous variables when calculating welfare. Therefore, Et is unchanged. Since u (bt) has

increased, Et+1 must have fallen. When calculating the budgetary effects we need to into

account the endogenous changes on p.

Let

Bt = bt +
1− p

1 + r
bt+1
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Then,

dBt = dbt +
1− p

1 + r
dbt+1 −

dp

1 + r
bt+1

= − dp

1 + r
bt+1

Since Et+1 has fallen, dp > 0. Thus dBt < 0. I.e., the cost of providing utility Et has

fallen. Equivalently, the insurance is more efficient than the starting point bt = bt+1.

1.2.1 Extensions

Hopenhayn and Nicolini extend the model by Shavel & Weiss in an important dimension – it

enriches the policy space of the government by allowing taxation of workers to be contingent

on their unemployment history. It is shown that the government should use this extra

way of ”punishing” unemployment. The intuition is that relative to the first best, which

is a constant unemployment benefit, the government must ”punish” unemployment. Doing

this by only reducing unemployment benefits is suboptimal, by spreading the punishment

of unsuccessful search over the entire future of the individual, a more efficient insurance

can be achieved. I.e., lower cost of providing a given utility level. It is shown that this

may be quantitatively important. Another contribution is to show that the problem can be

formulated in a recursive way with the promised utility as state variable.

Using H&N’s notation, we assume that individuals can choose an unobservable effort

level at that positively effect the hiring probability. In H&N 1997, it is assumed that p (at) is

an concave and increasing function and hiring is an absorbing state with a wage w forever.

In H&N 2005, it is instead assumed that spells are repeated, with an exogenous separation
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probability s and

p (a) =


p if a = 1

0 otherwise

which is the assumption we make here.

The individual has a utility function

E
∞∑

t=0

(
1

1 + r

)t

(u (ct)− at) .

Let θt ∈ {0, 1} be the employment status of the individual in period t, where θt = 1

represents employment. Let θt = (θ0, θ1, ...θt) be the history of the agent up until period t.

The history of a person that is unemployed in period t is therefore θt−1×0 = (θ0, θ1, ...θt, 0) ≡

θt
u, and similarly, θt−1 × 1 ≡ θt

e).

An allocation is now defined as a rule that assigns consumption and effort as a function

of θt at every point in time and for every possible history, ct = c (θt) . We focus on allocations

where at = 1. Individuals must be induced to volontarily choose at = 1. Allocations that

satisfies this are called incentive compatible allocations.

Given an allocation we can compute the expected discouted utililty at every point in

time for every possible history, Vt = V (θt) . The problem is now to choose the allocation

that minimizes the cost of giving some fixed initial utility level to the representative indi-

vidual. This problem can be written in a recursive way. In period zero, the planner gives a

consumption level c0, prescribes an effort level a0 (=1) and promised continuation utilities

V e
1 and V u

1 . The problem of the planner in period zero is to minimize costs of providing a

given expected utility level V0 subject to the incentive constraint the individual voluntarily
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chooses a0. The problem is recursive and at any node, costs of providing promised utilities

are minimized given incentive constraints

The problem of the unemployed individual is also recursive. – as unemployed, maximized

utility is (the agent only controls at)

V
(
θt

u

)
= u (ct)− 1 +

1

1 + r

(
pV
(
θt

u × 1
)

+ (1− p)V
(
θt

u × 0
))

with the incentive constraint

1

1 + r
p
(
V
(
θt+1

e

)
− V

(
θt+1

u

))
≥ 1.

Define W (Vt) as the minimum cost for the planner to provide a given amount of utility

Vt to an employed. Similarly, let C (Vt) denote the minimal cost of providing utility V to an

unemployed (are these function changing over time?). W satisfies

W (Vt) = min
ct,V e

t+1,V u
t+1

ct − w +
1

1 + r

(
(1− s)W

(
V e

t+1

)
+ sC

(
V u

t+1

))
s.t.Vt = u (ct) +

1

1 + r

(
(1− s)V e

t+1 + sV u
t+1

)
,

whereVt = V (θt
e) , ct = c (θt

e) , V
e
t+1 = V (θt

e × 1) and V u
t+1 = V (θt

e × 0) .

The constraint can be called promise keeping constraint and has a Lagrange multiplier

δe
t .
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C satisfies

C (Vt) = min
ct,V e

t+1,V u
t+1

ct +
1

1 + r

(
pW

(
V e

t+1

)
+ (1− p)C

(
V u

t+1

))
s.t.

1

1 + r
p
(
V e

t+1 − V u
t+1

)
≥ 1,

Vt = u (ct)− 1 +
1

1 + r

(
pV e

t+1 + (1− p)V u
t+1

)
.

where Vt = V (θt
u) , ct = c (θt

u) , V
e
t+1 = V (θt

u × 1) and V u
t+1 = V (θt

u × 0) .

The first constraint is the incentive constraint, with an associated Lagrange multiplier

γt and the second is the promised utility with Lagrange multiplier δu
t .1 Given that u (ct) is

concave and u−1 (Vt) therefore is convex, it is straightforward to show that C and W are

convex functions.

First order conditions when the agent is employed are

1 = δe
tu

′ (ct) (1)

W ′ (V e
t+1

)
= δe

t

C ′ (V u
t+1

)
= δe

t .

The envelope condition is

W ′ (Vt) = δe
t =

1

u′ (ct)
= W ′ (V e

t+1

)
= C ′ (V u

t+1

)
.

The fact that W ′ (Vt) = W ′ (V e
t+1

)
implies that nothing change for the employed indi-

1Note that the Lagrange multipliers depends on the history θt.
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vidual as long as his remains employed. In fact, his consumption does not upon loosing his

job either. This is due to the fact that there is no moral hazard problem on the job and full

insurance is therefore optimal.2

When the agent is unemployed, the FOC and envelope conditions are

1 = δu
t u

′ (ct+1)

W ′ (V e
t+1

)
= γt + δu

t

(1− p)C ′ (V u
t+1

)
= −γtp+ δu

t (1− p)

C ′ (Vt) = δu
t .

Giving

C ′ (Vt) =
1

u′ (ct)
(2)

W ′ (V e
t+1

)
=

1

u′ (ct)
+ γt

C ′ (V u
t+1

)
=

1

u′ (ct)
− γt

p

1− p

Results

Since the incentive constraint will bind3, γt > 0 and therefore

W ′ (V e
t+1

)
> C ′ (Vt) > C ′ (V u

t+1

)
.

2From now, I will mostly skip writing out the explicit dependence on history, hopefully without creating
confusion.

3Prove that it must by assuming that it doesn’t and derive the implications of that.
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The result C ′ (Vt) > C ′ (V u
t+1

)
and the convexity of C implies that the unemployed

should be made successively worse off (V u
t+1 < Vt) as long as he remains unemployed. Since

C ′ (Vt) = 1
u′(ct)

this means that consumption must fall. Furthermore, as the IC-constraint

1
1+r

p
(
V e

t+1 − V u
t+1

)
≥ 1 binds, if V u

t+1 keeps falling as long as the unemployed remains unem-

ployed, so must V e
t+1 implying that consumption when becoming employed is lower the lower

the agent has been unemployed.

1.2.2 The inverse Euler equation.

Multiplying the second line of (2) by p and the third by (1− p) and adding them yields,

1

u′ (ct)
= pW ′ (V e

t+1

)
+ (1− p)C ′ (V u

t+1

)
. (3)

Recall that V e
t+1 is the utility next period if the agent becomes employed, in which case,

by (1), W ′ (V e
t+1

)
= 1

u′(ct+1)
, where ct+1 = c

(
θe

t+1

)
denotes consumption in period t + 1

conditional on the getting a job in t+ 1 (and the history that led to consumption in t being

ct = c (θt)). Similarly, V u
t+1 is next periods utility if the agent remains unemployed. By

(2), C ′ (V e
t+1

)
= 1

u′(ct+1|θt+1=9)
, where ct+1|θt+1=0 denotes consumption if the agent remains

unemployed. Equation (3) can therefore be written

1

u′ (ct)
= p

1

u′
(
ct+1|θt+1=1

) + (1− p)
1

u′
(
ct+1|θt+1=0

)
1

u′ (ct)
= Et

1

u′ (ct+1)
.
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This is the famous ”Inverse Euler Equation” (Rogerson, -85 Econometrica)4. Note the

difference between this and the standard Euler equation.

u′ (ct) = Etu
′ (ct+1) .

The inverse Euler equation has an important implication. To see this, first note that

Jensen’s inequality,

Et
1

u′ (ct+1)
>

1

Etu′ (ct+1)
⇒ 1

Et
1

u′(ct+1)

< Etu
′ (ct+1)

since the inverse function is convex. Using this with the Inverse Euler equation gives,

u′ (ct) =
1

Et
1

u′(ct+1)

< Etu
′ (ct+1) .

The fact that u′ (ct) < Etu
′ (ct+1) in the optimal allocation means that the agent would

like to save more, i.e., he is savings constrained. The incentive constraint implies that it is

optimal to prevent the individual to save as much as he would like to. Suppose, for example,

that utility is logarithmic, then we have

1

ct
=

1

Etct+1

⇒ ct = Etct+1,

4With a difference between subjective and market discount rates (ρ and r, respectively), we would get

1
u′ (ct)

1 + r

1 + ρ
= Et

1
u′ (ct+1)

.
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while the Euler equation, guiding private preferences, implies the privately optimal consump-

tion c∗t given future consumption is

c∗t =
1

Et

(
1

ct+1

) < Etct+1.

The intuition is that with more wealth and higher consumption, it is more costly to

implement the incentive constraint. Thus, the benevolent planner want to prevent some

wealth accumulation. The standard interpretation of this is that when there are incentive

constraints, it may be optimal to tax the returns to savings. However, it may turn out

that this tax is nevertheless zero in expectation, thus not creating any revenue for the

planner/government (Kocherlakota 2005, Econometrica). How can such a tax discourage

savings? Hint: risk premium depends on covariance with marginal utility. Explain!

In the logarithmic example, suppose individuals can save and borrow a gross interest

rate r. Consider a marginal tax rate that depends on employment status and last period

individual asset holdings, τ e
t+1 = τ e (at) and τu

t+1 = τu (at) . For notational simplicity, let

ct+1|θt+1=1 ≡ cet+1 and ct+1|θt+1=0 ≡ cut+1.Then, to have the individual Euler equation satisfied,

we need

u′ (ct) = βEtu
′ (ct+1) (1 + r) (1− τ (at)) (4)

1

ct
=

(
p

1

cet+1

(
1− τ e

t+1

)
+ (1− p)

1

cut+1

(
1− τu

t+1

))
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The inverse Euler equation requires

ct = pcet+1 + (1− p) cut+1 (5)

Suppose we consider a zero expected tax rate, i.e., pτ e
t+1 = − (1− p) τu

t+1.Then,

τ e
t+1 =

− (1− p)

p
τu
t+1. (6)

Using (3) to replace ct (4) together with (6) yields

τu
t+1 =

p
(
cet+1 − cut+1

)
pcet+1 + cut+1 (1− p)

=
p∆ct+1

Etct+1

τ e
t+1 = −

(1− p)
(
cet+1 − cut+1

)
pcet+1 + cut+1 (1− p)

= −(1− p) ∆ct+1

Etct+1

These tax rates eads to both the Euler and the inverse Euler equation being satisfied.

Possibly together with lump sum transfers, they can implement the optimal allocation as

a private choice of the agents. Note that the tax is negative in case the agent becomes

employed, while positive if he remains unemployed. That is, it creates a net return that is

negatively correlated with marginal utility. N

Result: Rendahl (2007)

Consider the repeated H&N economy but where individuals have access to a safe observ-

able bond. A tax/transfer that only depends on last period asset holdings and employment

status can implement the second-best allocation. Unemployment benefits falls in the asset

position of the agent. Over an unemployment spell, unemployment benefits increase but
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consumption falls.

1.3 The Dynamic approach with unobservable saving

2 Optimal taxation – the Ramsey approach

2.1 Optimal taxation under commitment – the Ramsey problem

Consider a simple two period model, where individuals choose how much labor to supply

and how much to consume in the two periods. The government must tax consumption,

savings and/or labor to finance its spending needs. There will be three margins that can be

distorted, the labor leisure choice in the two periods and the relative level of consumption

in the two periods. Perhaps, on might think that optimal taxation should imply that all

three trade-offs should be distorted. As we will see, that turns out not to be the case. This

result can provide some understanding of the important Chamley & Judd result which we

will derive later.

Preferences

The representative agent has an additively separable utility function in consumption and

leisure,

U (c1, c2, l1, l2) =
2∑

t=1

βt−1u (c, l) .

Technology

Output is produced by labor only on a competitive labor market. One unit of labor
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produces w units of the consumption good. The consumption good can be stored between

periods. One unit of the good stored gives 1+r units of the second period, where r is positive

or negative. Individuals have one unit of labor each period to split between work and leisure

l.

Budget constraints

The government needs to finance its consumption by tax revenues. For simplicity, we

have already assumed that its consumption does not interfere with the individuals private

problem. We will assumed that the government cannot finance its consumption by lump

sum taxation. We do this without providing an explicit reason within the model. Instead,

the government has at its disposal, a linear labor income tax τl,t, a consumption tax τc,t and

a tax on savings, τs. Individual budget constraints are therefore

c1 (1 + τc,1) + i+ b = w (1− l1) (1− τl,1)

c2 (1 + τc,2) = w (1− l2) (1− τl,2) + (i+ b) (1 + r) (1− τs) ,

where i is physical investments (stored goods) and b is government borrowing assumed to

require a return 1 + r before taxes to be held. We can collapse this to

c1 (1 + τc,1) +
c2

1 + r

1 + τc,2
(1− τs)

= w (1− l1) (1− τl,1) +
w (1− l2) (1− τl,2)

(1 + r) (1− τs)
.

It turns out that it is convenient to divide this by (1 + τc,1) and multiply the last term
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in the RHS by 1+τc,2

1+τc,2
. We can then write the budget constraint as

c1 +
c2

1 + r

1 + τc,2
(1− τs) (1 + τc,1)

= w (1− l1)
1− τl,1
1 + τc,1

+
w (1− l2)

1 + r

1− τl,2
1 + τc,2

1 + τc,2
(1− τs) (1 + τc,1)

.

The aggregate resource constraint of the economy is

c1 +
c2

1 + r
+G = w (1− l1) +

w (1− l2)

1 + r
. (7)

Do we need to bother about the government budget constraint in addition to the private

and the aggregate?

Individual optimality

The first order conditions of the individual problem are5

c1;uc (c1, l1) = λ (8)

l1;ul (c1, l1) = λw
1− τl,1
1 + τc,1

c2; βuc (c2, l2) = λ
(1 + τc,2)

(1 + r) (1− τs) (1 + τc,1)

l2; βul (c2, l2) = λ
w

1 + r

1− τl,2
1 + τc,2

1 + τc,2
(1− τs) (1 + τc,1)

5We disregard the constraint that i1 ≥ 0, otherwise, we could have corner soluitions.
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2.1.1 A simple example with a labor tax and consumption taxes.

Let us now assume that the government only has access to a constant labor tax and a

consumption tax that is allowed to vary. Also assume for tractability that u (c, l) = ln c+ln l

The first order conditions of the individual problem are then

1

c1
= λ

1

l1
= λw

1− τl
1 + τc,1

β
1

c2
= λ

1 + τc,2
(1 + r) (1 + τc,1)

β
1

l2
=

λw

1 + r

1− τl
1 + τc,2

1 + τc,2
1 + τc,1

Eliminating λ, the individual optimality constraints are

l1
c1
w =

1 + τc,1
1− τl

c2
c1β (1 + r)

=
1 + τc,1
1 + τc,2

l2
c2
w =

1 + τc,2
1− τl

c1 +
c2

1 + r

1 + τc,2
1 + τc,1

= w (1− l1)
1− τl
1 + τc,1

+
w (1− l2)

1 + r

1− τl
1 + τc,2

1 + τc,2
1 + τc,1

with the solution
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c1 =
(1− τl)

(1 + τc,1)

w (2 + r)

2 (1 + β) (1 + r)
(9)

l1 =
2 + r

2 (1 + r) (1 + β)
(10)

c2 = β
(1− τl)

(1 + τc,2)

w (2 + r)

2 (1 + β)
(11)

l2 =
β (2 + r)

2 (1 + β)

The Ramsey problem is now to maximize utility over the tax rates, τl, τc,1 and τc,2, subject

to the resource constraint. Disregarding constants, this is

max
τl,τc,1,τc,2

ln (1− τl)− ln (1 + τc,1) + β (ln (1− τl)− ln (1 + τc,2))

subject to the resource constraint (7) where (9) is used to replace the private choice variables.

First order conditions are

τc,1; 1 + τc,1 = λ
w (2 + r)

2 (1 + β) (1 + r)
(1− τl)

τc,2; 1 + τc,2 = λ
w (2 + r)

2 (1 + β) (1 + r)
(1− τl)

τl;
1 + β

1− τl
= λ

w (1 + τ2 + β (1 + τ1)) (2 + r)

2 (1 + β) (1 + r) (1 + τ1) (1 + τ2)

As we see, the first order conditions for the consumption taxes are symmetrical – implying

that it is optimal to set consumption taxes equal in the two periods. To what level does not

matter, as long as τl is properly adjusted. For example, we could choose τc,1 = τc,2 = 0, in
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which case

1

1− τl
= λ

w (1 + β) (2 + r)

(1 + β) 2 (1 + β) (1 + r)
.

Substituting this into the FOC for or we could set τc,1 and τc,2 yields:

1 = λ
w (2 + r)

2 (1 + β) (1 + r) (1)2

(1 + β) 2 (1 + β) (1 + r)

λw (1 + β) (2 + r)

= 1

Alternatively, we could set τl = 0, in which case,

1 + τc,1 = 1 + τc,2 = λ
w (2 + r)

2 (1 + β) (1 + r)

which implies that the FOC for τl also is satisfied at τl = 0,

1 + β

1
= λ

w
((
λ w(2+r)

2(1+β)(1+r)

)
+ β

(
λ w(2+r)

2(1+β)(1+r)

))
(2 + r)

2 (1 + β) (1 + r)
(
λ w(2+r)

2(1+β)(1+r)

)2

= 1 + β

EXPLAIN! This provides distortion smoothing – the labor leisure choice is distorted

equally much in both period. Perhaps, this is not surprising.

Formally, we know τc,1 = τc,2 = τc. Given this, the first order conditions are

τc;
1 + τc
1− τl

= λ
w (2 + r)

2 (1 + β) (1 + r)

τl;
1 + τc
1− τl

= λ
w (2 + r)

2 (1 + β) (1 + r)
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2.1.2 The general case

Let us now define

1− τl,1
1 + τc,1

≡ W1, (12)

1− τl,2
1 + τc,2

≡ W2,

(1 + τc,2)

(1 + τc,1) (1− τs)
≡ Wi.

We can then write the system as

ul (c1, l1)

uc (c1, l1)w
= W1 (13)

ul (c2, l2)

uc (c2, l2)w
= W2

uc (c2, l2)

uc (c1, l1)
β (1 + r) = Wi

c1 +
c2

1 + r
Wi = w (1− l1)W1 +

w (1− l2)

1 + r
W2Wi

c1 + g +
c2 + g

1 + r
= w (1− l1) +

w (1− l2)

1 + r

The first two equations are the FOC for labor supply and the third is the Euler equa-

tion (FOC for savings (or c1, c2). The fourth is private budget constraints and the last the

aggregate resource constraint.

Provided g is not too high, this gives a solution for c1, c2, l1, l2 and one of the tax wedges,

as a function of two of the other wedges and parameters.

Result 1 Although the government has access to 5 different taxes, the distortion relative
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to the first best is a function of the three wedges W1,W2 and Wi.

Using result 1, we conclude that all tax systems that provide the same wedges as the one

with a constant labor tax and a constant consumption tax gives the same utility. Provide

some examples. Furthermore, the restriction we imposed, namely τl,1 = τl,2 and τs = 0, does

not reduce welfare. Explain!

Finally, in the optimal allocation Wi = 1,i.e., there is no intertemporal wedge. With a

constant consumption tax, this requires a zero tax on savings.

2.2 The primal approach

An often used way of solving the problem is the primal approach. The idea here is to write

the problem as the planner directly choosing the consumption and labor of the individual.

With access to lump sum taxes, the only constraint for the planner is the resource constraint

and first best will be achieved. With only proportional taxes, incentive compatibility must

be respected. It turns out that we can write this constraint without any taxes or prices. We

do this by substituting the first order constraints of the individual (first three equations of

(13) into the private budget constraint (the fourth equation of (13)). This yields,

c1 + c2
uc (c2, l2)

uc (c1, l1)
β = (1− l1)

ul (c1, l1)

uc (c1, l1)
+ (1− l2)

ul (c2, l2)

uc (c2, l2)

uc (c2, l2)

uc (c1, l1)
β. (14)

The Ramsey problem can then be expressed as

max
c1,c2,l1,l2

2∑
t=1

βt−1u (c, l)
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s.t. (14) and (7). As we see, no taxes or prices (interest rate) enter this problem except

through the aggregate resource constraint.

In our logarithmic example, (14) becomes

c1 (1 + β) = c1

(
1− l1
l1

+
(1− l2)

l2
β

)
=⇒ l1 =

l2
2l2 (1 + β)− β

since the c1 = 0 root is irrelevant. Substituting this into the objective function and taking

first order conditions w.r.t. c1 and c2 yields,

max
c1,c2,l2

ln c1 + ln
l2

2l2 (1 + β)− β
+ β (ln c2 + ln l2)

1

c1
= λ

β
1

c2
= λ

1

1 + r

⇒ c2
c1

= β (1 + r)

s.t.

(
w

(
1− l2

2l2 (1 + β)− β

)
+
w (1− l2)

1 + r
−
(
c1 +

c2
1 + r

+G

))

again confirming that the intertemporal margin should be zero, requiring Wi = 0.

Often, the focus is on the allocation, i.e., how consumption and leisure is allocated over

time. To go further, one might want to find a tax system that implements this allocation.

As we have seen, there are often many such systems.
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2.3 The Chamley-Judd result

There is an infinitely lived representative agent with preferences

∞∑
t=0

βtu (ct, lt)

The household has one unit of labor per period, to be split between leisure l and work

n.The aggregate budget constraint is

ct + gt + kt+1 = F (kt, nt) + (1− δ) kt (15)

The production function is constant returns to scale and factor markets are competitive.

Profit maximization of the representative firm implies

wt = Fn (kt, nt)

rt = Fk (kt, nt)

The government needs to finance an exogenous stream of expenditures {gt}∞t using taxes

on labor and capital and can smooth taxes by using a bond. Thus,

gt + bt = τ k
t rtkt + τn

t wtnt +
bt+1

Rt

= F (kt, nt)−
(
1− τ k

t

)
rtkt − (1− τn

t )wtnt +
bt+1

Rt
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where bt is government borrowing and Rt is the interest rate on government bonds.

Households have budget constraints

ct + kt+1 +
bt+1

Rt

= (1− τn
t )wtnt +

(
1− τ k

t

)
ktrt + (1− δ) kt + bt

First order conditions are:

ct;uc (ct, lt) = λt

lt;ul (ct, lt) = λt (1− τn
t )wt

kt+1;λt = βλt+1

((
1− τ k

t+1

)
rt+1 + (1− δ)

)
bt+1;λt

1

Rt

= βλt+1

Clearly, the first three implies

ul (ct, lt)

uc (ct, lt)
= (1− τn

t )wt

uc (ct, lt) = βuc (ct+1, lt+1)
((

1− τ k
t+1

)
rt+1 + (1− δ)

)

and the last two the no arbitrage condition

Rt =
(
1− τ k

t+1

)
rt+1 + (1− δ)
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Transversality conditions are

lim
T→∞

(
T−1∏
i=0

R−1
i

)
kT+1 = 0

lim
T→∞

(
T−1∏
i=0

R−1
i

)
bT+1

RT

= 0

We can now make the following definitions:

Definition 2 A feasible allocation is a sequence {kt, ct, lt, gt}∞t=0 that satisfies the aggregate

budget constraint (15).

Definition 3 A price system is a sequence of prices {wt, rt, Rt}∞t=0 that is bounded and non-

negative.

Definition 4 A government policy is a sequence
{
τn
t , τ

k
t , bt

}∞
t=0

and perhaps {gt}∞t=0 if that

can be chosen.

Definition 5 A competitive equilibrium is a feasible allocation, a price system and a gov-

ernment policy such that

1. Given the price system and the government policy, the allocation solves the maximiza-

tion problem of the individual and of the firm.

2. The government budget constraints are satisfied.

Definition 6 The Ramsey problem is to choose a competitive equilibrium (i.e.,pick a par-

ticular government policy) that maximizes the welfare of the representative individual.
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The Lagrangean of the Ramsey problem can be written

L =
∞∑

t=0

βt{u (ct, 1− nt)

+ ψt

(
F (kt, nt)−

(
1− τ k

t

)
rtkt − (1− τn

t )wtnt − bt − gt + bt+1/Rt

)
+ θt (F (kt, nt) + (1− δ) kt − ct − gt − kt+1)

+ µ1,t (ul (ct, lt)− uc (ct, lt) (1− τn
t )wt)

+ µ2,t

(
uc (ct, lt)− βuc (ct+1, lt+1)

(
1− τ k

t+1

)
rt+1 + (1− δ)

)

Now, the first order condition for kt+1 is

θt = βψt+1

(
Fk (kt+1, nt+1)−

(
1− τ k

t+1

)
rt+1

)
− θt+1 (Fk (kt+1, nt+1) + (1− δ))

and for ct

uc (ct, 1− nt) = θt

giving

uc (ct, 1− nt) = βψt+1

(
Fk (kt+1, nt+1)−

(
1− τ k

t+1

)
rt+1

)
+ βuc (ct+1, 1− nt+1) (Fk (kt+1, nt+1) + (1− δ)) .

34



Suppose there is a steady state of the model, then

uc = β
(
ψ
(
Fk −

(
1− τ k

)
Fk

)
+ uc (Fk + (1− δ))

)
= β

(
ψτ kFk + uc (Fk + (1− δ))

)
.

Private optimality (the Euler equation), implies in steady state

uc = βuc

((
1− τ k

)
Fk + (1− δ)

)
1 = β

(
Fk + (1− δ)− τ kFk

)
1

β
+ τ kFk = Fk + (1− δ)

giving

uc = β

(
ψτ kFk + uc

(
1

β
+ τ kFk

))
= β

(
(ψ + uc) τ

kFk + uc

(
τ kFk

))
+ uc

0 = β (ψ + uc) τ
kFk

requiring τ k = 0.

2.4 Discussion

We have shown that also in this simple economy, tax smoothing implies that the intertem-

poral margin should not be distorted. We have also found an equivalence between constant

consumption taxes and an investment tax. In an infinite horizon model, a positive investment
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tax in steady state has implications identical to ever increasing consumption taxes. This can

thus provide some intuition for Chamley & Judd’s result that investment taxes should not

be used in the long run. The result is quite robust. For example it extends to the case

of heterogeneity, if the government wants to use it’s revenues to support some capital poor

individuals, it should not tax capital accumulation in steady state. Here intuition could be

that the capital stock in steady state is elastic enough to imply the tax incidence of capital

taxes is on workers.

The result also extends to the stochastic case, in which case expected taxes should be

zero and not distort savings.

However, it does not go through in some cases:

1. If there are untaxed factors of production that generate profits and these factors are

strict complements to capital. Then capital should be taxed (negatively if they are

substitutes).

2. If market incompleteness makes people save too much for precautionary reasons.

In the short run, capital income taxes also collect revenue from sunk investments. Then,

the tax is partly lump sum, which provides an argument for such taxes early in the planning

horizon. But when is that zero? Has it already occurred a long time ago? In any case, we

see a time consistency problem here.

Not also that the long-run maybe quite far out and people alive today might loose by a

policy that maximizes the welfare of a constructed infinitely lived
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2.5 Time consistent taxation

TBW.

3 New Public Finance – the Mirrlees approach

Let us now consider the dynamic Mirrlees approach to optimal taxation. Here, individuals

are assumed to be different. These differences can be either in their productivity or in

their value of leisure. Such differences imply that there is differences between individuals

in their trade-off between leisure and work. It is assumed that the government cannot

directly observe this differences, only observe the individuals market choices. For example,

governments observe income, but not the effort exerted to get this income.

Consider a simple two-period example from GTW.

Individual preferences are:

E (u (c1) + v (n1) + β (u (c2) + v (n2)))

where ct is consumption and nt is labor supply/work effort. u is increasing and concave and

v decreasing and concave. Individuals differ in their ability, denoted θ. It is assumed that

there is a finite number i ∈ {1, 2, ..., N} of ability levels and ability might change over time.

We will interchangeably use type and ability to denote θ. Output is produced in competitive

firms using a linear technology where each individual i produces

yt (i) = θ (i)nt (i) .
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There is a continuum of individuals of a unitary total mass. In the first period, individuals

are given abilities by nature according to a probability function π1 (i). The ability can then

change to the second period. Second period ability is denoted θ (i, j) and the transition

probability is π2 (j|i) .

There is a storage technology with return R. Finally, the government needs to finance

some spendings G1 and G2. At first, we analyze the case of no aggregate uncertainty.

The aggregate resource constraint is

∑
i

(
y1 (i)− c1 (i) +

∑
j

y2 (i, j)− c2 (i, j)

R
π2 (j|i)

)
π1 (i) +K1 = G1 +

G2

R
(16)

where K1 is an aggregate initial endowment.

The problem is now to maximize the utilitarian welfare function subject to the resource

constraints and the incentive constraints, i.e., that individuals themselves choose labor sup-

ply and savings. A way of finding the second best allocation is to let the planner provide

consumption and work conditional on the ability an individual claims to have (and if rel-

evant, the aggregate state). Here this is in the first period c1 (i) , y1 (i) and in the second,

c2 (i, j) , y1 (i, j) . Individuals then report their abilities to the planner. The strategy of an

individual is his first period report and then a reporting plan as a function of the realized

period 2 ability. Let’s call the report ir and jr (j) , where the latter is the report as a function

of the true ability. The incentive constraint is then that individuals voluntarily report their

true ability. According to the revelation principle, this always yields the best incentive
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compatible allocation. The truth-telling constraint is then that

u (c1 (i)) + v

(
y1 (i)

θ1 (i)

)
+ β

∑
j

(
u (c2 (i, j)) + v

(
y2 (i, j)

θ2 (i, j)

))
π2 (j|i) (17)

≥ u (c1 (ir)) + v

(
y1 (ir)

θ1 (i)

)
+ β

∑
j

(
u (c2 (ir, jr (j))) + v

(
y2 (ir, jr (j))

θ2 (i, j)

))
π2 (j|i)

for any possible reporting strategy ir, jr (j). Note that the θs are the true ones in both sides

of the inequality. Note also that truth-telling implies that

u (c2 (i, j)) + v

(
y2 (i, j)

θ2 (i, j)

)
≥ u (c2 (ir, jr (j))) + v

(
y2 (ir, jr (j))

θ2 (i, j)

)
∀j, (18)

otherwise utility could be increased by reporting jr if the second period ability is j. The

planning problem is to maximize

∑
i

(
u (c1 (i)) + v

(
y1 (i)

θ1 (i)

)
+ β

∑
j

(
u (c2 (i, j)) + v

(
y2 (i, j)

θ2 (i, j)

))
π2 (j|i)

)
π (i)

subject to (16) and (17).

Letting stars ∗,denote optimal allocations. We can now define three wedges (distortions)

that the informational friction may cause. These are the consumption-leisure (intratemporal)

wedges

τy1 (i) ≡ 1 +
v′
(

y∗1(i)

θ1(i)

)
θ1 (i)u′ (c∗1 (i))

,

τy2 (i, j) ≡ 1 +
v′
(

y∗2(i,j)

θ2(i,j)

)
θ2 (i, j)u′ (c∗2 (i, j))

,
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and the intertemporal wedge

τk (i) ≡ 1− u′ (c∗1 (i))∑
j

βRu′ (c2 (i, j))π2 (j|i)
.

Clearly, in absence of government interventions, these wedges would be zero by perfect

competition and the first-order conditions of private optimization.

3.1 The inverse Euler equation

We will now show that if individual productivities are not always constant over time, the

intertemporal wedge will not be zero. The logic is as follows and similar to what we have done

above. In an optimal allocation, the resource cost (expected present value of consumption)

of providing the equilibrium utility to each type, must be minimized. Consider the following

peturbation around the optimal allocation for a given first period ability type i. Increase

utility by a marginal amount ∆ for all possible second period types {i, j} the agent could

become. To compensate, decrease utility by β∆ in the first period. Clearly, the objective

function is not changed. What about the thruth-telling constraint?.

First, note that expected utility is not changed.

Second, since utility is changed in parallel for all ability levels the individual could have

in the second period, there relative ranking cannot change. In other words, if we add ∆ to

both sides of (18) it must still be satisfied.

Thus, the incentive constraint is unchanged. However, the resource constraint is not
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necessarily invariant to this peturbation. Let

c̃1 (i; ∆) = u−1 (u (c∗1 (i))− β∆) ,

c̃2 (i, j; ∆) = u−1 (u (c∗2 (i, j)) + ∆)

denote the perturbed consumption levels. The resource expected resource cost of these are

c̃1 (i; ∆) +
∑

j

1

R
c̃2 (i, j; ∆)π2 (j|i)

= u−1 (u (c∗1 (i))− β∆) +
∑

j

1

R
u−1 (u (c∗2 (i, j)) + ∆)π2 (j|i) .

The first-order condition for minimizing the resource cost over ∆ must be satisfied at

∆ = 0, for the ∗ consumption levels to be optimal.

Thus,

0 =

=
−β

u′ (c∗1 (i))
+
∑

j

1

R

1

u′ (c∗2 (i, j))
π2 (j|i)

⇒ 1

u′ (c∗1 (i))
= E1

1

βRu′ (c∗2 (i, .))

From Jensen’s inequality, we find that

u′ (c∗1 (i)) < EβRu′ (c∗2 (i, .))

⇒ τk (i) > 0,
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if and only if there is some uncertainty in c∗2. Note that this uncertainty would come from

second period ability being random and the allocation implying that second period con-

sumption depends on the realization of ability. If second period ability is non-random, i.e.,

π2 (j|i) = 1 for some j, then τk (i) = 0.

3.2 A simple logarithmic example: insurance against low ability.

Suppose in the first period, ability is unity and in the second θ > 1 or 1
θ

with equal

probability.Disregard government consumption – set G1 = G2 = 0, although non-zero spend-

ing is quite easily handled. The problem is therefore to provide a good insurance against a

low-ability shock when this is not observed.

The first best allocation is the solution to

max
c1,y1,ch,cl,yh,yl

u (c1) + v (y1) + β

u (ch) + v
(

yh

θ

)
2

+
u (cl) + v

(
yl
1
θ

)
2


s.t.0 = y1 +

yh + yl

2R
− c1 −

ch + cl
2R
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First order conditions are

u′ (c1) = λ

v′ (y1) = −λ

βu′ (ch) =
λ

R

βu′ (cl) =
λ

R

βv′
(yh

θ

) 1

θ
= − λ

R

βv′ (θyl) θ = − λ

R

3.2.1 A simple example

Suppose for example that u (c) = ln (c) and v (n) = −n2

2
and βR = 1. Then, we get

1

c1
= λ

1

ch
= λ

1

cl
= λ

y1 = λ

yh

θ2
= λ

ylθ
2 = λ

c1 +
ch + cl

2
− y1 −

yh + yl

2
= 0

We see immediately that c1 = ch = cl while yh = θ2y1 and yl = y1

θ2 and y1 =
√

2

(1+ 1
2
(θ2+θ−2))

=
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n1. Therefore, nh = yh

θ
= θ2n1 and nl = ylθ = n1

θ
. Thus, if the individual becomes of high

ability in the second period, he should work more but don’t get any higher consumption. Is

this incentive compatible?

We conjecture that the binding incentive constraint is for the high ability type. High has

to be given sufficient consumption to make him voluntarily choose not to report being low

ability. If he misreports, he gets cl and is asked to produce yl. The constraint is therefore

u (c1) + v (y1) + β

(
u (ch) + v

(
yh

θ

)
2

+
u (cl) + v (θyl)

2

)

≥ u (c1) + v (y1) + β

(
u (cl) + v

(
yl

θ

)
2

+
u (cl) + v (θyl)

2

)

u (ch) + v
(yh

θ

)
≥ u (cl) + v

(yl

θ

)
ln ch − ln cl ≥

y2
h − y2

l

2θ2

We conjecture this is binding. The problem is then

max
c1,y1,ch,cl,yh,yl

ln (c1)−
y2

1

2
+

 ln ch −
( yh

θ )
2

2

2
+

ln cl − (θyl)
2

2

2


s.t.0 = y1 +

yh + yl

2
− c1 −

ch + cl
2

0 = ln ch − ln cl −
y2

h − y2
l

2θ2
.
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Denoting the shadow values by λr and λI the FOCs for the consumption levels are

c1 =
1

λr

ch =
1 + 2λI

λr

cl =
1− 2λI

λr

from which we see

c∗h
c∗1

= 1 + 2λI ,
c∗l
c∗1

= 1− 2λI

and

τk (i) ≡ 1− λr

λr

1+2λI

1
2

+ λr

1−2λI

1
2

= (2λI)
2 ,

: implying a positive intertemporal wedge if the IC constraint binds.

The intratemporal wedges are found by analyzing the FOC’s for the labor supplies

y∗1 = λr

y∗h =
λr

1 + 2λI

θ2 ⇒ y∗hc
∗
h =

λr

1 + 2λI

θ2 1 + 2λI

λr

= θ2

y∗l =
λr

θ4 − 2λI

θ2 ⇒ y∗l c
∗
l =

λr

θ4 − 2λI

θ2 1− 2λI

λr

=
1− 2λI

θ2 (1− 2λIθ−4)
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τy1 = 1− y∗1
1
c∗1

= 0,

τy2 (h) = 1 +
v′
(

y∗h
θ

)
θu′ (c∗h)

= 1 +
−y∗h

θ

θ 1
c∗h

= 1 +
−

λr
1+2λI

θ2

θ

θ 1
1+2λI

λr

= 0

and

τy2 (l) = 1 +
v′ (θy∗l )
1
θ
u′ (c∗l )

= 1 +
−θy∗l
1
θ

1
c∗h

= 1 +
−θ λr

θ4−2λI
θ2

1
θ

1
1−2λI

λr

= 2λI
θ4 − 1

θ4 − 2λI

> 0

As we see, the wedge for the high ability types is zero, but positive for the low ability

type.6 For later use, we note that

y∗1c
∗
1 = 1 (19)

y∗hc
∗
h =

λr

1 + 2λI

θ2 1 + 2λI

λr

= θ2

y∗l c
∗
l =

λr

θ4 − 2λI

θ2 1− 2λI

λr

=
1− 2λI

θ2 (1− 2λIθ−4)

6The wedge, asymptotes to infinity as λI approach θ4

2 . Can you explain?
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3.3 Implementation

It is tempting to interpret the wedges as taxes and subsidies. However, this is not entirely

correct since the wedges in general are functions of all taxes. Furthermore, while there

is typically a unique set of wedges this is generically not true for the taxes. As we have

discussed above, many different tax systems might implement the optimal allocation. One

example is the draconian, use 100% taxation for every choice except the optimal ones.

Only by putting additional restrictions is the implementing tax system found. Let us

consider a combination if linear labor taxes and savings taxes that together with type spe-

cific transfers implement the allocation in the example. To do this, consider the individual

problem,

max
c1,y1,s,yh,yl,ch,cl

ln (c1)−
y2

1

2
+

 ln ch −
( yh

θ )
2

2

2
+

ln cl − (θyl)
2

2

2


s.t.0 = y1 (1− τ1)− c1 − s+ T

0 = yh (1− τh) + s (1− τs,h)− ch + Th

0 = yl (1− τh) + s (1− τs,l)− cl + Tl

with Lagrange multipliers λ1, λh and λr.
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First order conditions for the indviduals are;

1

c1
= λ1

y1 = λ1 (1− τ1)

λ1 = λh (1− τs,h) + λl (1− τl,h)

yh

2θ2
= λh (1− τh) (20)

θ2yl

2
= λl (1− τl)

1

2ch
= λh

1

2cl
= λl

Using this, we see that

1

c1
=

1

2ch
(1− τs,h) +

1

2cl
(1− τl,h)

Setting,

τs,h = −2λI

τs,l = 2λI .

this gives

1

c1
=

1

2ch
(1 + 2λI) +

1

2cl
(1− 2λI)
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which is satisfied if we plug in the optimal allocation c∗h = c∗1 (1 + 2λI) and c∗l = c∗1 (1− 2λI)

1

c∗1
=

1 + 2λI

2c∗1 (1 + 2λI)
+

1− 2λI

2c∗11− 2λI

Note that the expected capital income tax rate is zero, but it will make savings lower

than without any taxes. Why?

Similarly, by noting from (19) that in the optimal second best allocation, we want

y1c1 = y∗1c
∗
1 = 1,

which is implemented by τ1 = 0. For the high ability type, the second best allocation in (19)

is that y∗hc
∗
h = θ2, which is implemented by τh = 0 since (20) implies that yhch = θ2 (1− τh) .

For the low ability type, we want y∗l c
∗
l = 1−2λI

θ2(1−2λIθ−4)
. From (20), we know ylcl = 1−τl

θ2 ,so

we solve

1− τl
θ2

=
1− 2λI

θ2 (1− 2λIθ−4)

⇒ τl = 2λI
θ4 − 1

θ4 − 2λI

.

Note that if λI = 1
2
, τl = 1. I.e., the tax rate is 100%. There is no point going higher

than that, so λI cannot be higher than 1
2
.

Finally, to find the complete allocation, we use the budget constraints of the private

individual and the aggregate resource constraint. This will recover the transfers T, Th and

Tl. We should note that Tl > Th is consistent with incentive compatibiity. Why? Because
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if you claim to be a low ability type you will have to may a high labor income tax which is

bad if you are high ability and earn a high income. Thus, by taxing high income lower, we

can have a transfer system that transfers more to the low ability types.

3.3.1 Third best – laizzes faire

The allocation in without any government involvements is easily found by setting all taxes

to zero.

1

c1
= λ1

y1 = λ1

λ1 = λh + λl

yh

2θ2
= λh (21)

θ2yl

2
= λl

1

2ch
= λh

1

2cl
= λl
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Using these and the budget constraints, we get

y1 =
1

c1

1

c1
=

1

2ch
+

1

2cl

yh

2θ2
=

1

2ch

θ2yl

2
=

1

2cl

y1 = c1 + s

yh + s = ch

yl + s = cl

which implies

c1 + s =
1

c1

1

c1
=

1

2ch
+

1

2cl

ch =
1

2
s+

1

2

√
s2 + 4θ2

cl =
1
2
sθ + 1

2

√
s2θ2 + 4

θ

I did not find an analytical solution to this, but setting θ = 1.1 I found the solution

{c1 = 0.997 75, ch = 1. 102 3, s = 4. 504 5× 10−3, cl = 0.911 35} .
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3.4 Time consistency

Under the Mirrlees approach, the government announces a menu of taxes or of consumption

baskets. People then make choices that in equilibrium reveal their true types (abilities) to

the government. Suppose the government could then re-optimize. Would it like to do this?

The problem is more severe in a dynamic setting provided abilities are persistent. Why?

In a finite horizon economy, there might only be very bad equilibria (Roberts, 84). But

better equilibria might arise in infinite horizon.
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