ASSET PRICES UNDER HABIT FORMATION AND CATCHING UP WITH THE JONESES

Andrew B. Abel

Working Paper No. 3279

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
March 1990

This paper is part of NBER's research program in Financial Markets and Monetary Economics. Any opinions expressed are those of the author and not those of the National Bureau of Economic Research.
ASSET PRICES UNDER HABIT FORMATION AND CATCHING UP WITH THE JONESES

ABSTRACT

This paper introduces a utility function that nests three classes of utility functions: (1) time-separable utility functions; (2) "catching up with the Joneses" utility functions that depend on the consumer's level of consumption relative to the lagged cross-sectional average level of consumption; and (3) utility functions that display habit formation. Closed-form solutions for equilibrium asset prices are derived under the assumption that consumption growth is i.i.d. The equity premia under catching up with the Joneses and under habit formation are, for some parameter values, as large as the historically observed equity premium in the United States.

Andrew B. Abel
Department of Finance
Wharton School
University of Pennsylvania
3620 Locust Walk
Philadelphia, PA 19104-6367
(215)898-4801
This paper introduces a utility function that nests three classes of utility functions: (1) time-separable utility functions; (2) "catching up with the Joneses" utility functions that depend on the consumer's level of consumption relative to the lagged cross-sectional average level of consumption; and (3) utility functions that display habit formation. Incorporating this utility function into a Lucas (1978) asset pricing model allows calculation of closed-form solutions for the prices of stocks, bills and consols under the assumption that consumption growth is i.i.d. Then equilibrium asset prices are used to examine the equity premium puzzle.

I. The utility function

At time t, each consumer chooses the level of consumption, c_t, to maximize $E_t(U_t)$ where $E_t(\cdot)$ is the conditional expectation operator at time t and

$$U_t = \sum_{j=0}^{\infty} \beta^j u(c_{t+j}, \nu_{t+j})$$

where ν_{t+j} is a preference parameter. Suppose that the preference parameter ν_t is specified as
\[\nu_t = \left[c_{t-1}^{D} c_{t}^{1-D} \right]^{\gamma} \quad \gamma \geq 0 \text{ and } D \geq 0 \]

where \(c_{t-1} \) is the consumer's own consumption in period \(t-1 \) and \(c_{t} \) is aggregate consumption per capita in period \(t-1 \). If \(\gamma = 0 \), then \(\nu_t = 1 \) and the utility function in (1) is time-separable. If \(\gamma > 0 \) and \(D = 0 \), the parameter \(\nu_t \) depends only on the lagged level of aggregate consumption per capita. This formulation is the relative consumption model or "catching up with the Joneses."\(^1\) Finally, if \(\gamma > 0 \) and \(D = 1 \), the parameter \(\nu_t \) depends only on the consumer's own past consumption. This formulation is the habit formation model.

Consider the effects on utility of a change in an individual's consumption at date \(t \), holding aggregate consumption unchanged. Substituting (2) into (1) and then differentiating with respect to \(c_t \) yields

\[\frac{\partial U_t}{\partial c_t} = u_c(c_t, \nu_t) + \beta u_\nu(c_{t+1}, \nu_{t+1}) \gamma \nu_{t+1}/c_t \]

Suppose that the period utility function \(u(c_t, \nu_t) \) has the following isoelastic form

\[u(c_t, \nu_t) = \left[c_t/\nu_t \right]^{1-\alpha} / (1 - \alpha), \quad \alpha > 0 \]

When \(\gamma = 0 \), the utility function in (4) is the standard constant relative risk aversion utility function and \(\alpha \) is the coefficient of relative risk aversion. More generally, utility depends on the level of consumption relative to some endogenous
time-varying benchmark ν_t. \footnote{time-varying benchmark ν_t. Under the isoelastic utility function in (4), the expression for $\partial U_t/\partial c_t$ in (3) becomes

$$
(5) \frac{\partial U_t}{\partial c_t} = [1 - \beta \gamma D(c_{t+1}/c_t)^{1-\alpha} (\nu_t/\nu_{t+1})^{1-\alpha}] \\
\times (c_t/\nu_t)^{1-\alpha} (1/c_t)
$$

II. Equilibrium

Let y_t be the amount of the perishable consumption good per capita produced by the capital stock. In equilibrium, all output is consumed in the period in which it is produced, as in Lucas (1978). Because all consumers are identical, $c_t = C_t = y_t$ in every period. Now let $x_{t+1} = y_{t+1}/y_t$ be the gross growth rate of output. Because $c_t = C_t = y_t$, it follows that $c_{t+1}/c_t = C_{t+1}/C_t = x_{t+1}$. Therefore, equation (2) implies that $\nu_{t+1}/\nu_t = x_t \gamma$ which allows us to rewrite (5) as

$$
(6) \frac{\partial U_t}{\partial c_t} = H_{t+1} \nu_t^{\alpha-1} c_t^{-\alpha}
$$

where $H_{t+1} = 1 - \beta \gamma D x_{t+1}^{1-\alpha} x_t^{-\gamma(1-\alpha)}$

Note that $H_{t+1} = 1$ if $\gamma D = 0$, which is the case for both time-separable and relative consumption preferences. \footnote{Note that $H_{t+1} = 1$ if $\gamma D = 0$, which is the case for both time-separable and relative consumption preferences.}

III. Asset Pricing
To calculate asset prices, we examine a consumer who considers purchasing an asset in period t and then selling it in period $t+1$. If asset prices are in equilibrium, this pair of transactions does not affect expected discounted utility. Suppose that a consumer reduces c_t by 1 unit, purchases an asset with a gross rate of return R_{t+1}, sells the asset in period $t+1$, and increases c_{t+1} by R_{t+1} units. The equilibrium rate of return, R_{t+1}, must satisfy

$$(7) \quad E_t(-\frac{\partial U_t}{\partial c_t} + \beta R_{t+1}\frac{\partial U_{t+1}}{\partial c_{t+1}}) = 0$$

Equation (7) can be rewritten as

$$(8) \quad E_t(\beta R_{t+1}\frac{\partial U_{t+1}}{\partial c_{t+1}})/E_t(\partial U_t/\partial c_t) = 1$$

Equation (8) is the familiar result that the conditional expectation of the product of the intertemporal marginal rate of substitution and the gross rate of return equals one. We can obtain an expression for $(\partial U_{t+1}/\partial c_{t+1})/E_t(\partial U_t/\partial c_t)$ using equation (6) to divide $\partial U_{t+1}/\partial c_{t+1}$ by $E_t(\partial U_t/\partial c_t)$ to obtain

$$(9) \quad (\partial U_{t+1}/\partial c_{t+1})/E_t(\partial U_t/\partial c_t) = \frac{[H_{t+2}/E_t(H_{t+1})]x_t^{\gamma(\alpha-1)}x_{t+1}^{\alpha}}{x_t}$$

IV. The Price of Risky Capital
Let p_t^S be the ex-dividend price of a share of stock in period t, which is a claim to a unit of risky capital. The rate of return on stock is $R_t^{S_{t+1}} = (p_t^S + y_{t+1})/p_t^S$. Let $w_t = p_t^S/y_t$ be the price-dividend ratio. Therefore, $p_t^S = w_t y_t$ and $p_t^{S_{t+1}} = w_{t+1} y_{t+1}$ so that

$$R_t^{S_{t+1}} = (1 + w_{t+1}) x_{t+1}/w_t$$

Substituting (10) into (8) yields

$$w_t = \beta E_t ((1 + w_{t+1}) x_{t+1} \partial U_{t+1}/\partial c_{t+1})/E_t (\partial U_t/\partial c_t))$$

V. Bills and Consols

A one-period riskless bill can be purchased in period t at a price of s_t; in period $t+1$, the bill is worth 1 unit of consumption. The gross rate of return on the bill is $R_t^{B_{t+1}} = 1/s_t$. Substituting $1/s_t$ for the rate of return in (8) yields

$$s_t = \beta E_t ((\partial U_{t+1}/\partial c_{t+1})/E_t (\partial U_t/\partial c_t))$$

A consol bond, which pays one unit of consumption in each period, can be purchased at an ex-coupon price p_t^C in period t. In period $t+1$, the consol pays a coupon worth one unit of consumption and then sells at a price of p_{t+1}^C. The one-period rate of return on the consol is $R_t^{C_{t+1}} = (1+p_{t+1}^C)/p_t^C$. Substituting $R_t^{C_{t+1}}$ into (8) yields
(13) \(p^C_t = \beta E_t((1+p^C_{t+1})(\partial U_{t+1}/\partial c_{t+1}) / E_t(\partial U_t/\partial c_t)) \)

VI. I.I.D. Consumption growth

Suppose that consumption growth \(x_{t+1} \) is i.i.d. over time. In this case, we can obtain explicit solutions for the prices of stock, bills, and consols. The price-dividend ratio, \(w_t \), is

(14) \(w_t = A x_t^\theta / J_t \)

where \(\theta = \gamma(\alpha-1) \)

\[A = \beta E(x^{1-\alpha})(1-\beta \gamma DE(x^{1-\alpha})(1-\gamma))/[1-\beta E(x^{1-\alpha})(1-\gamma)] \]

\[J_t = E_t(H_{t+1}) = 1 - \beta \gamma DE(x^{1-\alpha})x_t^\theta \]

The price of a one-period riskless bill is

(15) \(s_t = q x_t^\theta / J_t \)

where \(q = E(x^{-\alpha}) - \beta \gamma D E(x^{1-\alpha}) E(x^{\theta-\alpha}) \)

and the price of a consol is

(16) \(p^C_t = Q x_t^\theta / J_t \)
where $Q = \beta q/[1 - \beta E(x^{\theta - \alpha})]$

Given a distribution for x, the moments of x can be calculated and the three asset prices are easily calculated. For time-separable preferences ($\gamma = 0$) and relative consumption ($\gamma > 0; D = 0$), we can obtain closed-form solutions (in terms of preference parameters and the moments of x) for the unconditional expected returns $E(R^S)$, $E(R^B)$ and $E(R^C)$:

(17) $E(R^S) = E(x^{-\theta})[E(x) + A E(x^{1+\theta})]/A$

(18) $E(R^B) = E(x^{-\theta})/\beta q$

(19) $E(R^C) = E(x^{-\theta})[1 + Q E(x^\theta)]/Q$

Under habit formation, unconditional expected returns can be calculated numerically using the asset prices in (14)-(16).

VII. The Equity Premium

Mehra and Prescott (1985) report that from 1889 to 1978 in the United States, the average annual real rate of return on short-term bills was 0.80% and the average annual real rate of return on stocks was 6.98%. Thus the average equity premium was 618 basis points. They calibrated an asset pricing model with time-separable isoelastic utility to see whether the model could deliver unconditional rates of return close to the historical
average rates of return on stocks and bills. They used a 2-point Markov process for consumption growth with \(E(x_t) = 1.018 \), \(\text{Var}(x_t) = (0.036)^2 \), and correlation \((x_t, x_{t-1}) = -0.14 \). For values of the preference parameters that Mehra and Prescott deemed reasonable, the model could not produce more than a 35 basis point equity premium \((E(R^S) - E(R^B)) \) when the expected riskless rate, \(E(R^B) \), was less than or equal to 4% per year. This result is the equity premium puzzle.

Table 1 reports the unconditional expected rates of return on stocks, bills, and consols under the assumption that \(x_t \) is i.i.d, \(E(x) = 1.018 \) and \(\text{Var}(x) = (0.036)^2 \). For time-separable and relative consumption preferences, two unconditional expected returns are reported in each cell: the first is calculated under a 2-point i.i.d. distribution; the second, which is in brackets, is calculated under a lognormal distribution for \(x \).

The top panel of Table 1, which reports the unconditional expected rates of return under time-separable preferences, displays the equity premium puzzle. Although \(E(R^S) \) increases as \(\alpha \) increases from 0.5 to 10.0, \(E(R^B) \) also increases. The equity premium, \(E(R^S) - E(R^B) \), does not come anywhere close to the 600 point historical average. Incidentally, the unconditional expected rates of return of bills and consols are exactly equal under time-separable preferences.

The middle panel of Table 1 reports the unconditional expected rates of return in the relative consumption model. For \(\alpha = 6 \), the equity premium is 463 basis points and the unconditional riskless rate is 2.07% per year. Although the
unconditional expected returns on stocks and bills are much
closer to their historical averages, the conditional expected
rates of return (not reported in the table) vary too much. For
the 2-point distribution for \(x \), the standard deviation of
\(E_t(R^B_{t+1}) \) is 17.87\% when \(\alpha = 6 \). This unrealistic implication of
the model poses a challenge for future research.

The top and middle panels of Table 1 report unconditional
rates of return for a lognormal distribution with \(E(x) = 1.018 \)
and \(\text{Var}(x) = (0.036)^2 \). For the parameter values reported, it
makes no substantial difference for expected returns whether the
growth rate is lognormal or has a 2-point distribution.

The third panel of Table 1 presents the unconditional
expected rates of return under habit formation. The expected
rates of return on both long-lived assets--stocks and consols--
are extremely sensitive to the value of \(\alpha \). Under logarithmic
utility \((\alpha = 1) \), the expected rates of return are the same as
under time-separable preference and relative consumption.
However, with \(\alpha = 1.14 \), the expected rates of return on stocks
and consols are both greater than 35\%.

Further research using the utility function introduced in
this paper will explore the implications of other settings for
the parameters \(\gamma \) and \(D \). For instance, if \(D \) is between zero and
one, the utility function would contain elements of both
catching up with the Joneses as well as habit formation. Also
the assumption of i.i.d. consumption growth rates can be
relaxed, and asset prices can then be analyzed numerically.
References

Gali, Jordi, "Keeping up with the Joneses: Consumption Externalities, Portfolio Choice and Asset Prices," mimeo, Graduate School of Business, Columbia University, September 1989.

Table 1
Unconditional expected returns
$\beta = 0.99; \ E(x) = 1.018; \ Var(x) = (0.036)^2$

Time-separable preferences ($\gamma = 0$)

<table>
<thead>
<tr>
<th>α</th>
<th>stocks</th>
<th>bills</th>
<th>consols</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.93</td>
<td>1.87</td>
<td>1.87</td>
</tr>
<tr>
<td></td>
<td>[1.93]</td>
<td>[1.87]</td>
<td>[1.87]</td>
</tr>
<tr>
<td>1.0</td>
<td>2.83</td>
<td>2.70</td>
<td>2.70</td>
</tr>
<tr>
<td></td>
<td>[2.83]</td>
<td>[2.70]</td>
<td>[2.70]</td>
</tr>
<tr>
<td>6.0</td>
<td>10.34</td>
<td>9.52</td>
<td>9.52</td>
</tr>
<tr>
<td></td>
<td>[10.33]</td>
<td>[9.51]</td>
<td>[9.51]</td>
</tr>
<tr>
<td>10.0</td>
<td>14.22</td>
<td>12.85</td>
<td>12.85</td>
</tr>
<tr>
<td></td>
<td>[14.13]</td>
<td>[12.72]</td>
<td>[12.72]</td>
</tr>
</tbody>
</table>

Relative consumption ($\gamma = 1; \ D = 0$)

<table>
<thead>
<tr>
<th>α</th>
<th>stocks</th>
<th>bills</th>
<th>consols</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>2.80</td>
<td>2.76</td>
<td>2.73</td>
</tr>
<tr>
<td></td>
<td>[2.80]</td>
<td>[2.76]</td>
<td>[2.73]</td>
</tr>
<tr>
<td>1.0</td>
<td>2.83</td>
<td>2.70</td>
<td>2.70</td>
</tr>
<tr>
<td></td>
<td>[2.83]</td>
<td>[2.70]</td>
<td>[2.70]</td>
</tr>
<tr>
<td>6.0</td>
<td>6.70</td>
<td>2.07</td>
<td>5.84</td>
</tr>
<tr>
<td></td>
<td>[6.72]</td>
<td>[2.06]</td>
<td>[5.86]</td>
</tr>
<tr>
<td>10.0</td>
<td>14.73</td>
<td>1.59</td>
<td>13.16</td>
</tr>
<tr>
<td></td>
<td>[14.95]</td>
<td>[1.55]</td>
<td>[13.32]</td>
</tr>
</tbody>
</table>

Habit formation ($\gamma = 1; \ D = 1$)

<table>
<thead>
<tr>
<th>α</th>
<th>stocks</th>
<th>bills</th>
<th>consols</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.86</td>
<td>33.56</td>
<td>4.53</td>
<td>35.25</td>
</tr>
<tr>
<td>0.94</td>
<td>6.83</td>
<td>3.48</td>
<td>7.44</td>
</tr>
<tr>
<td>1.00</td>
<td>2.83</td>
<td>2.70</td>
<td>2.70</td>
</tr>
<tr>
<td>1.06</td>
<td>8.43</td>
<td>1.93</td>
<td>7.40</td>
</tr>
<tr>
<td>1.14</td>
<td>38.28</td>
<td>0.93</td>
<td>35.16</td>
</tr>
</tbody>
</table>
Footnotes

*Department of Finance, Wharton School of the University of Pennsylvania. I thank Mike Perigo for helpful discussion and excellent research assistance.

1The phrase "catching up with the Joneses", rather than "keeping up with the Joneses", reflects the assumption that consumers care about the lagged value of aggregate consumption. The April 1989 version (page 10) of Jordi Gali (1989), but not in the September 1989 revision, examines the utility function \(u(c_t, c_{t-1}) = [1/(2-\beta-\gamma)]c_t^{1-\beta}c_{t-1}^{(1-\gamma)} \) and shows that when \(\beta = 1 \), asset pricing will be equivalent to an economy without consumption externalities and with log utility.

3A sufficient condition for \(\partial U_t / \partial c_t > 0 \) when \(\gamma = D = 1 \) (habit formation) is \(1 + \ln \beta / \ln(\max(x)/\min(x)) < \alpha < 1 + \ln \beta / \ln(\min(x)/\max(x)) \). For \(\beta = 0.99 \) and the 2-point distribution in Table 1, the sufficient condition is \(0.858 < \alpha < 1.142 \).

4In the conventional time-separable formulation of this problem, \(\partial U_t / \partial c_t \) is known as of time \(t \), and hence \(E_t(\partial U_t / \partial c_t) \) on the left hand side of (8) equals \(\partial U_t / \partial c_t \).
Appendix

This appendix derives the solutions for the prices of the three assets.

Stocks

Substituting the expression for \(\frac{\partial U_{t+1}}{\partial c_{t+1}}/E_t(\partial U_t/\partial c_t) \) from (9) into (11) yields

\[
(A1) \quad w_t = \beta E_t((1+w_{t+1})H_{t+2}x_t\gamma(\alpha-1)x_{t+1}^{1-\alpha})/E_t(H_{t+1})
\]

Now use the facts that \(\theta = \gamma(\alpha-1) \) and that \(x_t \) is known as of time \(t \) to rewrite (A1) as

\[
(A2) \quad w_t = [\beta x_t^\theta / E_t(H_{t+1})] E_t((1+w_{t+1})H_{t+2}x_{t+1}^{1-\alpha})
\]

Using the law of iterated projections we can write (A2) as

\[
(A3) \quad w_t = [\beta x_t^\theta / E_t(H_{t+1})] E_t((1+w_{t+1})E_{t+1}(H_{t+2})x_{t+1}^{1-\alpha})
\]

Now use the definition of \(J_t = E_t(H_{t+1}) \) to obtain

\[
(A4) \quad w_t = [\beta x_t^\theta / J_t] E_t((1+w_{t+1})J_{t+1}x_{t+1}^{1-\alpha})
\]

Now suppose that \(w_t \) is given by (14) and use the method of undetermined coefficient to determine the coefficient \(A \).

Substituting (14) for \(w_t \) and \(w_{t+1} \) in (A4) yields
(A5) \(Ax_t^\theta / J_t = [\beta x_t^\theta / J_t] E_t(1 + A x_{t+1}^\theta / J_{t+1})J_{t+1}x_{t+1}^{1-\alpha}\)

Dividing both sides of (A5) by \(x_t^\theta / J_t\) and simplifying yields

(A6) \(A = \beta \ E_t(J_{t+1}x_{t+1}^{1-\alpha}) + \beta A \ E_t(x_{t+1}^\theta x_{t+1}^{1-\alpha})\)

Using the fact that \(\theta = \gamma(\alpha-1)\), observe that \(\theta + 1 - \alpha = (1-\gamma)(1-\alpha)\). Therefore (A6) implies

(A7) \([1 - \beta E_t(x_t+1^{1-\gamma}(1-\alpha))] A = \beta \ E_t(J_{t+1}x_{t+1}^{1-\alpha})\)

Under the assumption that \(x_t\) is i.i.d., we have \(J_t = E_t(H_{t+1}) = 1 - \beta \gamma DE(x_t^{1-\alpha})x_t^\theta\) so that

(A8) \(J_{t+1}x_{t+1}^{1-\alpha} = [1 - \beta \gamma DE(x_t^{1-\alpha})x_t^\theta]x_t^{1-\alpha}\)

Calculating the conditional expectation of both sides of (A8) yields

(A9) \(E_t(J_{t+1}x_{t+1}^{1-\alpha}) = E_t(x_{t+1}^{1-\alpha}) - E_t(\beta \gamma DE(x_t^{1-\alpha})x_{t+1}^{1-\gamma}(1-\alpha)(1-\alpha))\)

Because \(x_t\) is i.i.d., the conditional expectations on the right hand side of (A9) are equal to the unconditional expectations so that
(A10) \(E_t(J_{t+1} x_{t+1}^{1-\alpha}) = E(x^{1-\alpha})[1 - \beta \gamma DE(x^{1-\gamma}(1-\alpha))] \)

Now substitute (A10) into (A7) and use the assumption that \(x \) is i.i.d. to obtain

(A11) \[[1 - \beta E(x^{1-\gamma}(1-\alpha))]A = \beta E(x^{1-\alpha})[1 - \beta \gamma DE(x^{1-\gamma}(1-\alpha))] \]

Finally we can obtain \(A \) by dividing both sides of (A11) by the factor multiplying \(A \) on the left hand side of (A11)

(A12) \[A = \beta E(x^{1-\alpha})[1 - \beta \gamma DE(x^{1-\gamma}(1-\alpha))] / [1 - \beta E(x^{1-\gamma}(1-\alpha))] \]

One-period riskless bonds

Substituting the expression for \(\partial U_{t+1}/\partial c_{t+1} / E_t(\partial U_t/\partial c_t) \) from (9) into (12) yields

(A13) \[s_t = \beta E_t([H_{t+2}/E_t(H_{t+1})]x_t^{\gamma(\alpha-1)} x_{t+1}^{1-\alpha}) \]

Recalling that \(\theta = \gamma(\alpha-1) \) and \(J_t = E_t(H_{t+1}) \), we rewrite (A13) as

(A14) \[s_t = [\beta x_t^{\theta}/J_t] E_t(H_{t+2}x_{t+1}^{1-\alpha}) \]

Using the law of iterated projections to simplify the right-hand side of (A14) we obtain

(A15) \[s_t = [\beta x_t^{\theta}/J_t] E_t(E_{t+1}(H_{t+2})x_{t+1}^{1-\alpha}) \]
Now use the definition $J_{t+1} = E_{t+1}(H_{t+2})$ to obtain

\[(A16) \quad s_t = \left[\beta x_t^\theta / J_t \right] E_t(J_{t+1}x_{t+1}^{-\alpha}) \]

Suppose that the price of the one-period riskless bond is given by (15). We will use the method of undetermined coefficients to determine the coefficient q by substituting (15) into the left-hand side of (A16) to obtain

\[(A17) \quad q \beta x_t^\theta / J_t = \left[\beta x_t^\theta / J_t \right] E_t(J_{t+1}x_{t+1}^{-\alpha}) \]

Dividing both sides of (A16) by $\beta x_t^\theta / J_t$ yields

\[(A18) \quad q = E_t(J_{t+1}x_{t+1}^{-\alpha}) \]

Under the assumption that x_t is i.i.d., we have $J_t = E_t(H_{t+1}) = 1 - \beta \gamma DE(x^{-\alpha})x_t^\theta$ so that

\[(A19) \quad E_t(J_{t+1}x_{t+1}^{-\alpha}) = E_t(1 - \beta \gamma DE(x^{-\alpha})x_{t+1}^\theta x_{t+1}^{-\alpha}) \]

Using the fact that x_t is i.i.d., we can simplify the right-hand side of (A19) to obtain

\[(A20) \quad E_t(J_{t+1}x_{t+1}^{-\alpha}) = E(x^{-\alpha}) - \beta \gamma DE(x^{-\alpha})E(x^{\theta-\alpha}) \]

Substituting (A20) into (A18) yields
(A21) \(q = E(x^{-\alpha}) - \beta_\gamma DE(x^{1-\alpha})E(x^{\theta-\alpha}) \)

Consists

Substituting the expression for \((\partial U_{t+1}/\partial c_{t+1})/E_t(\partial U_t/\partial c_t) \)

from (9) into (13) yields

(A22) \(p_t^C = \beta E_t((1+p_t^C)[H_{t+2}/E_t(H_{t+1})]x_t^{\gamma(\alpha-1)}x_{t+1}^{-\alpha}) \)

Using the definitions \(\theta = \gamma(\alpha-1) \) and \(J_t = E_t(H_{t+1}) \), we can rewrite the right-hand side of (A22) as

(A23) \(p_t^C = \beta [x_t^\theta / J_t] E_t((1+p_t^C)H_{t+2}x_{t+1}^{-\alpha}) \)

Using the law of iterated projections, we have

(A24) \(p_t^C = \beta [x_t^\theta / J_t] E_t((1+p_t^C)E_{t+1}(H_{t+2})x_{t+1}^{-\alpha}) \)

Because \(J_{t+1} = E_{t+1}(H_{t+2}) \), equation (A24) can be rewritten as

(A25) \(p_t^C = \beta [x_t^\theta / J_t] E_t((1+p_t^C)J_{t+1}x_{t+1}^{-\alpha}) \)

Now suppose that \(p_t^C \) is given by (16) so that (A25) becomes

(A26) \(Qx_t^\theta / J_t = \beta [x_t^\theta / J_t] E_t((1+Qx_{t+1}^\theta / J_{t+1})J_{t+1}x_{t+1}^{-\alpha}) \)
Dividing both sides of (A26) by x_t^{θ}/J_t, and simplifying the right hand side yields

\[(A27) \quad Q = \beta E_t(J_{t+1} x_{t+1}^{-\alpha}) + Q \beta E_t(x_{t+1}^{\theta - \alpha})\]

Subtracting $Q \beta E_t(x_{t+1}^{\theta - \alpha})$ from both sides of (A27) and then dividing both sides by $[1 - \beta E_t(x_{t+1}^{\theta - \alpha})]$ yields

\[(A28) \quad Q = \beta E_t(J_{t+1} x_{t+1}^{-\alpha})/[1 - \beta E_t(x_{t+1}^{\theta - \alpha})]\]

Substituting (A18) into (A28) yields

\[(A29) \quad Q = \beta q/[1 - \beta E_t(x_{t+1}^{\theta - \alpha})]\]

Using the fact that x_t is i.i.d., we obtain

\[(A30) \quad Q = \beta q/[1 - \beta E(x^{\theta - \alpha})]\]