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Chapter 1

Introduction

1.1 About the course

This course is mainly about dynamic systems and infinite-dimensional (‘dynam-
ic’) optimization, but contains a number of supporting topics as well. It is pri-
marily designed for macroeconomics (it is a prerequisite for Macroeconomics 1),
but the material has plenty of applications in micro, finance and econometrics as
well. It builds on Mathematics 1 in the sense that it draws upon many of the

definitions and results established there.

The main emphasis is on conceptual understanding and practical calculation
rather than on the details of the proofs. Often proofs are omitted (with a refer-
ence to one usually given instead), and sometimes a heuristic argument (‘kind-of
proof’) will replace or complement a real proof to give some intuition for why
a result holds and also a sense of why in the world anyone might dream up the

result of a theorem.

Similarly, when concepts are defined I have tried as far as possible to say

something about the intuitive notion that the formal definition is an attempt to
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capture. Notice that we can always ask of a definition whether it does a good job
in capturing an intuitive notion and in generating useful theorems. In spite of the
conventional wisdom, definitions are not at all arbitrary, and should be studied
critically.

However, although the proofs are sometimes omitted, the definitions are kept
precise and the results usually stated exactly.

Even though Jorgen’s compendium and this one are rather thick, it mustn’t
be thought that Math 1 and 2 deal with all of the mathematics that an economist
needs in order (1) to understand the literature and (2) to do research (although
we do give at least an introduction to most of what you'll need). Examples of
important topics excluded from both Math I and these lecture notes include (1)
partial differential equations, stochastic differential equations, It6 calculus and
continuous time stochastic dynamic optimization and (2) line integrals on C and
the theory of transforms (Fourier, Laplace). If you are into finance, you will
eventually want to understand (1)}, and if you are into probability and statistics
and especially the spectral analysis of time series, you will eventually want to
understand (2).

Moreover, most econometricians will want to learn even more matrix differen-
tial calculus and linear algebra than I have included in chapters 4 and 8. And if
you are into numerical methods (which certainly any empirically oriented macro-
economist or econometrician should be) you will want to know much more than is
covered in chapter 11. See [37] or [36] for useful surveys of the methods available.
If you are really keen, a treasure trove for numerical methods is Ellen McGrattan’s
ftp site at [48].

Other omissions reflect my occasionally idiosyncratic views about what is im-

1 Good references on these topics are [24] and [44].
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portant. One example is the matrix Riccati differential equation and the algebraic
matrix Riccati equation, which arise in linear-quadratic dynamic optimization
problems. As you will see, one can do perfectly well without these equations (we
will use similarity transforms instead) so I will simply ignore them. If you are
interested in the matrix Riccati differential equation, I don’t even know where
to look, although apparently entire journals are devoted to them. On the other
hand, a book that is full of algebraic matrix Riccati equations is [5].

The omissions notwithstanding; if you work hard, you should be able to ac-
quire enough sophistication during Math 1 and 2 in order to be able to read up
on the omitted topics yourself if and when you need to, or at least the ability to
follow courses (e.g. the Finance and Econometrics sequences) which contain some
of these omitted topics. To the extent that we focus on at least some of the proofs
rather than just the results, this is the reason: it should help you lose respect
for mathematics in general and achieve at least some confidence in approaching
initially scary concepts and expressions.

The only required reading for this course is (selected parts of) these lecture
notes. However, if you want to learn more, I strongly recommend looking at some

of the books, handouts and internet sites in the bibliography, especially those on

the Reading List (Lang and Chow).

1.2 Notation

An ordered n-tuple or sequence will be denoted by (x1, ..., z,,) or sometimes just

(xk) . Sequences (xy) will often be written as x, and so will functions z : A — B.
A set is written using curly brackets, e.g. {1,2,...} or {z1,...,x,}.

An equality put forward as a definition will be written f (z) £ sinz.



4 CHAPTER 1. INTRODUCTION

An equality which is also an identity will be written cos? x + sin? z = 1.
The notation g, will usually mean the kth element of the vector y, but some-

times the kth vector y. What is intended is hopefully clear from the context.



Chapter 2

The Riemann integral

2.1 Definition
The purpose of this section is to make sense of expressions like

]f () dz. (2.1)

The idea will be to capture in a precise way the notion that an integral is the area
under a curve. The strategy will be to approximate the area under a curve by
the union of rectangles whose area we can calculate in an obvious way, and then
try to make the approximation arbitrarily good. Note that our approximation
will be based on a partition of the z-axis.

Let f : [a,b] — R be a bounded function. Now divide the interval [a, b] into
subintervals, choosing a = x¢g < 1 < 23 ... < x, 1 < x, = b. Since f is bounded,

we can find numbers h, and Hy such that, for each k = 1,2,....n, we have
hi < f(x) < Hp forall z € [z 1,z . (2.2)
Now introduce lower sums of the form

S = Z hk (iEk — iEk,l) (23)

5
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and upper sums of the form

S=> Hy(xy— zp1) (2.4)

Note that for each partition of the interval [a,b] and choice of numbers h; and
Hj. we can define an upper and lower sum. We now consider the set of all such

upper and lower sums. Define the sets
A= {s:sis alower sum} (2.5)

and

B £ {S:S is an upper sum} (2.6)
Apparently A has an upper bound and B has a lower bound. Hence we can define
R2supA (2.7)

and

R=infB (2.8)

Definition 2.1.1 Let f be a bounded function on the interval |a,b]. Let R and
R be defined as above. If R = R = R, then f is said to be Riemann integrable

on [a,b] and we define
b
/f@MméR (2.9)

We now want to know which functions are integrable, but a full answer to that
question would take us further than we need to go right now. For our present

purposes, it suffices to note the following theorems.

Theorem 2.1.1 Let f be bounded and continuous, except possibly at a countable
number of points, on the compact interval [a,b]. Then f is Riemann integrable

on |a,b)].
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Proof See [17].

Theorem 2.1.2 Let f and g be Riemann integrable on the compact interval [a, b].

Then fg is Riemann integrable on |a,b].
Proof. See [17].1

Remark 2.1.1 Unfortunately, there are many bounded functions which are not
Riemann integrable. Indeed, it may even happen that {fy),, is a uniformly
bounded sequence (a sequence with a common upper bound) of Riemann integrable
functions defined on a compact interval, yet the pointwise limit f (the function
defined by setting, for each x, f(x) £ lch—{glo fr (z)) is not Riemann integrable. A

famous example is the following. Let <qj);i

| be an enumeration of the rational

numbers, and let fi, : [0,1] — R; k= 1,2, ... be defined via

fo(o) 2 1 if x = q; for some j <k (2.10)
0 otherwise

Then the pointwise limit f is

A | 1 is rational
f)e (2.11)
0 of x 1s wrrational
and all the fi are Riemann integrable on [0,1], yet f is not. This pathological
property of the Riemann integral provides good motivation for (although histori-

cally it has little to do with) the development of the Lebesgue integral (see chapter
6).!

We now note some important properties of the Riemann integral. Note that
they are intimately connected with the fact that the Riemann integral is the limit

of a sum.

! In chapter 6, we will define an integral concept such that klim f; fre(@)de =

klim f; klim fr (x) dz so long as the convergence of (fi) is monotone. However, even with
¢—00 —00

the Riemann integral, the result holds if the convergence of (fi) is uniform. See [17].
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Theorem 2.1.3 1. Let f be Riemann integrable on [a,c] and let a < b < c.

Then f is Riemann integrable on |a,b] and [b,c| and
c b c
f(x)yde= [ f(x)de+ | f(z)dx (2.12)
froes o]

2. Let f,g be Riemann integrable on [a,b] and let ¢ be a scalar. Then f + g

and cf are Riemann integrable, and we have

(a) ][f(fb) +g ()] dr = 7f(fr)dw+7g(fr)dl‘ and

(b) 7 [cf (z)] dz = C]f (z) d.

Proof. See [17]. ®

2.1.1 The improper Riemann integral

We would also like to know how to deal with unbounded functions and integration
over unbounded intervals rather than just compact ones. Within the Riemann
theory, this is done by introducing the so-called improper Riemann integral. For
example, suppose f is unbounded on [a, b) but bounded on each closed subset of

[a,b). Then we can try the definition

7]” (z)dzx = éig})?f (z) de. (2.13)

If this limit exists, then the improper Riemann integral is said to exist and be
equal to the right hand side. Note that this definition works for [a, c0) as well.
The extension to integration over (a,b|, (—o0,b] is obvious. The extension to

(—00, 00) is more tricky, however. One option is

K—oo

7 f(z)dz £ lim 7 f (z)da. (2.14)
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This definition is called the Cauchy principal value. Another option is

K—oo K—oo

7f(m) dr £ lim 7f(m) dz + lim 7f(x) dz. (2.15)

By looking at the function f(z) = x you may want to convince yourself that
K

these two definitions are not equivalent. The point is that lim f (z) dx may

K—oo
—K
K

exist even when lim [ f(z)dxz does not.

K—o0

2.2 The fundamental theorem of calculus

There is a very strong sense in which integration is the inverse of differentiation,

as revealed by the following theorems.

Theorem 2.2.1 (the fundamental theorem of calculus, part 1) Let f be Rie-

mann integrable on [a,b] and define

F(z) = / f(t)dt. (2.16)

Then F' is continuous on |a,b], and at any point xo where f is continuous, F is

differentiable with derivative F' (xo) = f (zo) -
Proof. See [17].1
Kind-of proof. Define the ‘discrete’ integral
Yn & Xn: fi(z; —xiq) (2.17)
i=1
Let Ayn = ¢y — Y1 and Az; 2 2; — ;1. Then

Ayn = anxn (218)
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Hence
Ay,
Az,

= fn (2.19)

Our theorem is just a continuous version of this rather banal conclusion.

Theorem 2.2.2 (the fundamental theorem of calculus, part 2) Let f be Rie-
mann integrable on [a,b] and suppose there is a function F on [a,b] such that

F' = f. Thenfbf(:c)dx:F(b)—F(a).

Proof. See [17]. 1
A useful consequence of the linearity of the integral is that it enables one
to ‘differentiate under the integral sign’. Combining this fact with a version of

Theorem (2.2.1), we get the following theorem.

of (z,1)
ox

a closed rectangle [a,b] X [to, t1], let u(z) and v () be continuously differentiable

Theorem 2.2.3 (Leibniz’ formula) Let f (z,t) and be continuous on

on [a,b], and suppose that u ([a,b]) C [to,t1] and v ([a,b]) C [to,t1]. Then, for all

z € [a,b], we have

v(x) v()
] . | , 0f (.1
| [ ftdt| = f(z,0(@)v (@) = f (z,u(@)v (@) + / oz

u(z) u(z)

(2.20)
Proof. See [7]. H[7] also contains conditions under which one can differentiate

under the integral sign in the case where the integration limits are infinite.

2.3 Calculating the Riemann integral

Having acquainted ourselves with the Riemann integral, we now want to calculate

it in concrete instances. In some cases, this is easy; the fact that integration is
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the inverse of differentiation is enough. For example, for k # —1,

b

1
k k k
/.’E d(lf = k——H (b o a +1) (221)
and for £k = —1, we have, so long as 0 ¢ [a, b],
/ d
& b —In|al (2.22)
x

In a similar fashion, it is sometimes possible to integrate functions by just guessing
a function whose derivative is that function. Usually, however, that doesn’t work,
and we need more sophisticated tricks. We will present some of the most basic
tricks below. These tricks are useful, and there are other, even more ingenious and
powerful tricks used to calculate integrals. (The most ingenious trick is perhaps
the calculus of residues. See [39].) But it is often hard to figure out what trick to
use, and sometimes there is no trick; the integral just can’t be rewritten in terms
of elementary functions. (An example is the integral of the density function of
a normal random variable.) We then have to resort to numerical methods; see
[37] or [36]. But these methods can be rather slow, so before going that far, you

should at least be familiar with the following basic pencil-and-paper techniques.

2.3.1 Change of variables

Theorem 2.3.1 Let f be continuous on [g(a),g (b)], let g be continuously dif-

ferentiable on [a,b] and let f o g be continuous on [a,b]. Then

b g(b)
/ fla®)g dt= [ f(x)de (2.23)

a g(a)

Proof. See [17]. W
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Kind-of proof.

b

/ flg@)g Wt = / Flo) Dar =

a

(2.24)
0

- [ 10

(a)

Q

Q

2.3.1.1 The f'/f method

!/
Proposition 2.3.1 Let f and g be such that g (x) = ff((:cx; on [a,b] and suppose
f(x) #0 for all z € [a,b]. Then
b

[ 9@ do=1alf ®)] - 1n|f (@) (225)
Proof. Change of variables. &
Example 2.3.1 Consider

t
/ L 4 (2.26)
s(s+1) ° '
1
where t > 1. Now note that
1 572 —572
= = — _ 2.2

s(s+1) 14s7! 1+ st (2:27)
Hence

t 1 t 9

[t = [m=t S
s(s s
s / (2.28)

=—-In(1+tH+mI((?2) = Int—In(t+1)+1n2

2.3.2 Integration by parts and the Neatest Trick

From the product rule of differentiation, we can derive the following theorem.
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Theorem 2.3.2 (integration by parts). Suppose F' and G are differentiable func-

tions on [a, b, and that F' = f and G' = g are Riemann integrable on |a,b]. Then
b b
/F () g(x)dx = F (b)G(b) — F (a) G (a) — /f (x) G (x) du. (2.29)

Proof. Define H (r) £ F(z)G (x). By the product rule of differentiation,

H' (z) = f(x)G(x) + F(z)g(x). Hence

/b F(2)g(z)de = /b H' (z) do — /b £(2)G (2)dz (2.30)

and the theorem follows by the fundamental theorem of calculus. B

Usually, the way to take advantage of partial integration is to let F' be a
function that becomes simpler when differentiated, and let g be a function that
does not become much more complicated by being integrated. This is seen clearly

in the following example.

Example 2.3.2 When calculating

1

/xe“dm (2.31)
0

T

it makes sense to define F (z) £ x and g(x) = e*. Consistent with this choice,

set f(x) =F'(z) =1 and G (z) = €. Using this, we find that
1 1
/xemdmzl'el—&eo—/1~e“dx:e—e+60:1. (2.32)
0 0

Example 2.3.3 The I' function. Define, for 0 < z < 0o,
I'(z)2 / t* e tdt (2.33)
0
We now use integration by parts to show that, for 0 < x < oo, we have

I'(z+1) =2l (x) (2.34)
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Let F(t) =t*, g(t) = e and G (t) = —e™". Then G' (t) = g(t) and F'(t) =

f(t) = at* L. Using integration by parts, we find that

I'(z+1) = /tmetdt = — blim be ™’ + 0% 0 + /xtmletdt =

0 0

=z / t* e tdt = 2T () (2.35)
0

where we used that the exponential function eventually grows faster than any

polynomial and, also, the linearity of the integral.

Example 2.3.4 The Neatest Trick. Suppose we want to calculate

™

R= /ew sin xdx (2.36)

0
d . , ‘
where we know that 7 SnT = cosz. (See chapter 3.) Neither the exponential
x
function nor the sine function becomes more or less complicated by integration or

differentiation, so we seem to be in trouble. Nevertheless, upon repeated use of

partial integration, we find that
R= /e“ sinzdr = e"sinm — e’ sin0 — /em cos zdx =

0
™ Iy

= —/ex cosxdr = —e" cosT + e cos 0 — /ew sin xdx =
0 0
=e¢" +1—R. (2.37)
Hence i
™+ 1
R= /ew sin zda = < ; (2.38)

0

Example 2.3.5 A tricky one. Suppose we want to calculate

Y

/ In zda (2.39)

1
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The way forward is to note that Inx = Inx - 1. Now 1 does not become much
more complicated by integration, so set F'(x) =Inz and g (x) = 1. It follows that
1
F'(z) = f(z) = — and we may choose G (x) = z. We get
x

y y
/lna:dleny-y—lnl-1—/lxd:v:

T

=y(lny—1)+1 (2.40)

2.4 The Riemann-Stieltjes integral

The purpose of this section is to make sense of expressions like

/ (@) dF (z). (2.41)

where F' is a non-decreasing function. These expressions appear, for example,
when we want to calculate the expected value of a random variable that doesn’t
have a density function. (A random variable fails to have a density function
whenever its distribution function is discontinuous, and sometimes even when it

is continuous).

Definition 2.4.1 Let f : [a,b] — R be a bounded function and let F : [a,b] — R
be a non-decreasing function. Now partition |a,b] and define numbers hy and Hy,

as in Definition 2.1.1. This time, the lower and upper sums take the form

5= b (F (ai) — F (25-1)) (2.42)

and

3

k=1

and the definition proceeds exactly as Definition 2.1.1.
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Proposition 2.4.1 Suppose F is differentiable with derivative f. Then

/ g () dF (z) = / 9(0) f (z) da (2.44)

b
a a

Proof. Exercise. i

For more properties of the Riemann-Stieltjes integral, see [17].



Chapter 3

Trigonometry and complex

numbers

3.1 Trigonometry

3.1.1 Geometric definition of the trigonometric functions

Consider the unit circle in R2.

We first establish the unit of measurement for angles.

Definition 3.1.1 Consider two rays from the origin. The angle between them is
the length of the arc on the unit circle between the points of intersection between
each of the rays and the unit circle. This unit of measurement is called radians.

By the definition of the number 7, the angle of an entire revolution is 27 radians.

Having established a unit of measurement, we can now define the trigonomet-

ric functions.

Definition 3.1.2 Let 0 < 6 < 27 be a real number. Then cos6 (sinf) is the

abscissa (ordinate) of the point of intersection between the unit circle and a ray

17
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(cosb, sinB)
0.5F |

_05 - -

-1.5 -1 -0.5

o

0.5 1 15

Figure 3.1:
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from the origin which is at an angle 0 with a ray from the origin through (1,0).

For 0 outside this range, we extend the definition via
cos (0 + 2nm) = cos b (3.1)
sin (0 + 2n7) = siné (3.2)
for alln € 7Z.

Definition 3.1.3 A function f : R =R is said to be periodic with period p and

amplitude a if

1. Forallz € R, f(z+p) = f(x) and

2. sup |f (x)| = a.

zeR
Proposition 3.1.1 Let f be defined via f (x) £ Asin (wx). Then f is a periodic

function with period T and amplitude |A|.
w
Proof. Obvious. &
Remark 3.1.1 The number w is sometimes called the frequency of f.

When calculating the value of sin and cos in simple cases, the following table,
derived from basic geometry and Pythagoras’ theorem, is useful. Notice the

pattern.

Table 1.

0 sinf cos®
0 |3V0|3v4
/6 %\/T %\/g
A ENARN.
/3 %\/3 % 1
/2 | +V4 | 310
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We now define some of the most commonly used trigonometric functions.

in 6
Definition 3.1.4 Let 6 be a real number such that cos@ # 0. Then tan £ S 7
cos
0
Definition 3.1.5 Let 0 be a real number such that sinf # 0. Then cot 6 £ 0989.
sin
1
Definition 3.1.6 Let 0 be a real number such that cos@ # 0. Then secd = 7
cos

Definition 3.1.7 Let 0 be a real number such that sin # 0. Then cosecf £
1

sinf’

Definition 3.1.8 Let z € [—1,1]. Then arcsinz is that angle 6 € [—g, g} such

that sin @ = .

Remark 3.1.2 [t follows from the definition that sin (arcsinz) = x on the entire

domain [—1,1]. But arcsin (sinf) = 0 only holds for 6 € [—g, g]

Definition 3.1.9 Let x € [—1,1]. Then arccosz is that angle 6 € [0, 7] such that

cosf = .

Definition 3.1.10 Let z € R. Then arctanx is that angle 6 € (—g, g) such
that

tanf = x. (3.3)

We now list some properties of the trigonometric functions.

3.1.2 Trigonometric identities

Below, we will write sin? 6 for (sin6)* etc.

Theorem 3.1.1 For all real numbers 8 and ¢ such that the expressions below

are defined, we have
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1. cos’6 +sin?f = 1

2. sec’ =1+ tan*6

3. cosf =sin <g — 9)

4. sin(f+m) = —sind

5. cos (0 + ) = —cosf

6. sin(—60) = —sind

7. cos (—0) = cos b

8. sin (0 + ) = sinf cos ¢ + cosfsin @

9. cos (0 + p) = cosfcosp —sinfsin g

10. sin @ + sinp = 25sin (M) cos (9__90)

2 2
1 26
11. cos?0 = 2t cosab
2
1— 260
12. sin2f = %

Sketch of proof. (1) and (2) are consequences of Pythagoras’ theorem, (3-7) are
geometrically obvious, and (8-9) are a little bit tricky to prove geometrically
(see [6]), but follow from Euler’s formula (see below). (It is essential that
they can be proved geometrically, though, since otherwise we can’t prove

Euler’s formula itself.) (10) follows from the others.

There are many more trigonometric identities, but the above are more than

enough for our purposes.
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3.1.3 Derivatives of trigonometric functions

Lemma 3.1.1

~1. (3.4)
Proof. See [38]. ®

Theorem 3.1.2 1. Let f(z) = sinx. Then f'(z) = cos .
2. Let f (v) = cosz. Then f'(z) = —sinz.

3. Let f(z) = tanz. Then f' (x) = sec’x.

Proof [t is tempting to use Fuler’s formula (see below) here (and the quotient
rule for the derivative of tan). But since our sketch of the proof of Euler’s
formula invokes the derivatives of the trigonometric functions, that would
be circular. So here follows a direct proof of (1). We use the definition of

the derivative, and find that

o S0 (x +h)—sinz _ im 2cos (x + h/2)sin (h/2) _
h—0 h h—0 h

in (h/2
= fILiH(I)COS (x+h/2) % (3.5)
= cos(x)
where we used that cos is a continuous function.
1

Corollary 3.1.1 1. Let f(z) £ arcsinz. Then f' (z) =

V1—22

2. Let f(z) £ arccosx. Then f'(z) = —
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Example 3.1.1 Let’s calculate f' (x) when f(x) = arctanz. Note that, by defi-

nition, f (z) € <—g,

it follows that

™

2) for each x € R. By the definition of the arctan function,

tan f (x) = . (3.6)

Differentiating both sides (using the chain rule on the left hand side), we get

sec’ f (z) f' (z) = 1. (3.7)
Hence
, B 1 B 1 B
@) = i@~ Tt @) (38)
1
T 1+

where the final equality holds since, by definition, f (x) € <—g, g) The some-

what surprising consequence s that

T
/ T2 dr = :cli»rgo [arctan x — arctan (—x)] = 7. (3.9)

3.1.4 Integrating trigonometric functions

Generally speaking, trigonometric functions are integrated by making good use
of trigonometric identities, integration by parts and change of variables. Plenty
of practice is needed. Good exercises are found in [38].

Here we will just take some examples. An example where a trigonometric

identity comes in handy is the following.

x T

1 20 1 1

/cos2 0do = /idﬁ = —x + —sin2zx (3.10)
2 2 4

0 0

An example of where the fact that cos@ is the derivative of sin @ is useful is the

following.

T sin z

/sin@cos 6df = / tdt = %sinQ:l: (3.11)

0 0
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3.2 Complex numbers

3.2.1 Motivation

The set R of real numbers is rich, but not quite rich enough for some purposes.
For example, it does not contain solutions to all polynomial equations (and hence
not all eigenvalue problems). An example is 22 + 1 = 0. We will define a set of
complex numbers C that contains solutions to all polynomial equations with real
coefficients. Some mathematicians in the 19th century worried that, if we allowed
complex coefficients, we would have to invent an even richer set of numbers to
house the solutions to the resulting polynomial equations, and so on ad infinitum.
They were wrong. The fundamental theorem of algebra (see below) shows that
the extension from R to C is enough to solve polynomial equations with complex

coefficients too.

3.2.2 Definition

Definition 3.2.1 The set C of complex numbers is the set R? together with the
usual (elementwise) addition and (real) scalar multiplication operations inR? and
the following multiplication operation. Let x = (x1,x2) and y = (y1,y2) be two

members of C. Then
zy £ (T1y1 — Tays, T1Ya + Tay) (3.12)

So as to distinguish R? from C (so that it is clear which rules of arithmetic

apply) we adopt the following notation.

Definition 3.2.2 Let x = (x1,22) be a complex number. Then we write x =

x1 + ixe. The complex number (0,1) =i is called the imaginary unit.
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Theorem 3.2.1

it =—1. (3.13)

Proof. Exercise. B

Note that, with our definition of multiplication and the notation x = x1 +ix»,
multiplication is just like calculating (a + b) (¢ + d) in the usual way, keeping in
mind that i = —1. Also, note that all the usual laws of arithmetic such as the
distributive and associative laws hold for complex numbers as well as real ones.

Often one writes, for z € C, 2 = z + iy where x = 2; and y = z5. Also,
one sometimes defines the real part of z via Re (z) = x and the imaginary part
via I'm (z) = y. (Note that the imaginary part of a complex number is a real
number.) When I'm (z) = 0 we will regard z as a real number, and in this sense
we will say that R C C.

Actually, the rule of multiplication mentioned above isn’t the only difference
between C and R?. Another (and this is the final difference between the two sets)
is that the word ‘scalar’ changes meaning when one passes from R? to C. When
talking about R?, a scalar is any member of R. When talking about C, a scalar
is any member of C. This is of crucial importance in defining the set of linear
operators on 7' : C — C and hence in defining the notion of differentiability for

complex-valued functions defined on C (see below).

Definition 3.2.3 A linear operator T' : C — C is a function such that, for all

scalars o € C and all complex numbers x,y € C, we have
T(a(z+vy))=aT (z)+aT (y). (3.14)

Proposition 3.2.1 The linear functions T' : C — C are precisely those repre-
sentable as T'(z) = az for some o € C. As stressed below, this is a much smaller

class of linear operators than the set of linear operators T : R? — R2.
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Proof. Copy the corresponding proof for R. B

Definition 3.2.4 The complex conjugate Z of a complex number z = x + 1y is

defined via

20—y (3.15)
Definition 3.2.5 The modulus |z| of a complex number is defined via

2| £ V27 (3.16)
If z = x + 1y, then we have the practical formula

2| & Va2 + 2. (3.17)

Remark 3.2.1 For this to make sense, zZ must be a non-negative real number.

As the ‘practical formula’ shows, it always is.

Remark 3.2.2 This modulus serves as a norm (see chapter 5) and hence defines

the open sets in C.

Remark 3.2.3 The modulus of a compler number z is the length of the corre-

sponding vector in R2.

Proposition 3.2.2 Let x,y be complex numbers. Then

TY=7TT. (3.18)

Proof. Exercise. i
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3.2.3 The fundamental theorem of algebra

Theorem 3.2.2 (the fundamental theorem of algebra) Letn > 1 be a nat-
ural number and let ay, ay, ...,a, be complexr numbers with a, # 0. Define the

function f : C — C via
f(2) =ag+ a1z +a2® + -+ a,2". (3.19)
Then there is a z € C such that f (z) = 0.

Proof. See [39]. 1

3.2.4 The exponential function on C and Euler’s formula

Definition 3.2.6 For all z € C, define

©  _k
e’ 2 exp(z) = Z % (3.20)
k=0

where we adopt the convention that 0° = 1.

For this definition to make sense, we must prove that the sum converges for
all z € C. It does. See [17].

In many cases we want to differentiate a function f : C — C. For example,
we want it to be true that exp’ (z) = exp(z) and for that we must at the very
least know what this would mean. A fuller treatment of this (very exciting) topic
is given in [39]. Here we just give the definition, which is almost the same as in
R2. As usual, the idea is to capture the notion that the local behavior of f is
well approximated by a linear function plus a constant, keeping in mind what the

class of linear functions T : C — C is.

Definition 3.2.7 Let f : QQ — C be a function, where 2 C C is an open set. If

there for each zy € § is a complex number f'(zy) such that for each € > 0 there
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is a 6. > 0 such that

f(2) = f(20) = f'(20) - (2 — 20)

Z— 20

<e (3.21)

forallz € {z€Q:0 < |z— 20| <6} then f (z) is said to be differentiable (holo-

morphic, analytic) on Q with derivative f'(z).

Remark 3.2.4 Because of the smaller class of linear operators on C than R?,
the requirement that a function f : C — C is differentiable is much stronger than
the requirement that f : R* — R? is (in the latter case, all that is needed is that
the partial derivatives exist). Essentially the reason for the difference is that a
linear operator T : R? — R? is represented by a 2 x 2 matriz, but a linear operator
T : C — C is represented by a single complex number, i.e. essentially a2 x 1
vector. For the local behavior of a function to be captured by just two numbers
rather than four requires consistency between the partial derivatives in a certain

sense, as expressed by the so-called Cauchy-Riemann equations. For details, see

/39].
Theorem 3.2.3 The function exp is holomorphic in C and exp’ (z) = exp (2).

Proof. Just use the definition of exp and differentiate term by term. To show
that term-by-term differentiation is justified, we need to confirm that the sum in

the definition of exp converges uniformly. For details, see [17]. B
Theorem 3.2.4 (Euler’s formula) For all real numbers 0,
e’ = cos + isin. (3.22)

Sketch of proof. Show that both sides have the same Taylor series expansion.
Or, more suggestively, show that both sides solve the same differential equa-

tion, which has a unique solution. (See section 9.1.) Hint: the differential
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equation is f'(t) = if (t), f(0) = 1. Alternatively, we can define the cos
and sin functions on C via Fuler’s formula. Then we would have to show

that these definitions agree with the geometric ones for real arguments.

3.2.5 The Cartesian and polar representation of a com-

plex number

Euler’s formula enables us to represent complex numbers in polar coordinates
(modulus-argument form). We write 2 = re® where the nonnegative real number
r is the modulus of z (check that this is consistent with the definition of modulus

given above!) and the real number 6 € (—m, 7] is the argument.

Suppose we have a complex number z in so-called Cartesian form, i.e. we
know the numbers x and y in the representation z = x + iy. Our project now is
to translate that into the modulus-argument form z = re?. Finding the modulus
is easy - for that there is a simple formula. And finding the argument is not too

hard once we see the geometry involved.

Take a new look at Figure 3.1.1. Let the point (cos #, sin §) represent the point

—z. Knowing z and y evidently implies knowing cos § and sin 8! Indeed, it seems
-

cos o .
- = —, and it is tempting to say that
sinfl y

that all we need to find 6 is the ratio

f = arctan (g> But that unfortunately isn’t always right, because the range
x

of arctan is confined to the first and fourth quadrants, whereas the argument

of z could easily be in the second or third quadrant (z could be negative). If

x is negative, one right answer is evidently 6 = arctan (y> + m. Another is
x

6 = arctan (2) — m. A common convention is to choose the value of § that lies
T

in [0,27). Another is to choose the value that lies in (—m, 7] The case x = 0 may

seem to be problematic here. But again the geometry makes things obvious. If
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3
y = 0 the choice of 6 is arbitrary. If y < 0, then 6 = g (or —g) and if y > 0,

T
then 6 = —.
en 5

3.3 The space C"

The space C™ is just like the set R™ except that the conventional inner (‘dot’)

product is defined via
(z,y) 2> ol (3.23)
i=1

This makes C™ into a Hilbert space (see chapter 5) with complex scalars.



Chapter 4

Calculus with vectors and

matrices

4.1 Matrix differential calculus

4.1.1 The gradient and the Hessian

The purpose of this section is to make sense of expressions like

of (x)

oxT

=Vof(z) =Vf(z) = f(z) = fa (z) (4.1)

where f : R” — R™. Of course, we already know what a partial derivative is and

how to calculate it. What this section will tell us is how to arrange the partial

derivatives into a matrix (gradient), and the rules of arithmetic that follow from

adopting our particular arrangement convention.

Definition 4.1.1 Let f : R™ — R™ have partial derivatives at x. Then

Of1(x)
Oz
of (z) Iy
oxT
mxn Ofm ()
6.’[1

31

Of1(x)

n (4.2)

Ofm ()
Oxy,
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and
G (5 @

nxm

where AT is the transpose of A.

Definition 4.1.2 Let f : R® — R"™ have partial derivatives at x. Then the

(scalar-valued) Jacobian of f at x is defined via

Of (x)

Jf(m)édet axT .

(4.4)

of (z)
oxT

the Jacobian is defined as the determinant of the gradient.

Remark 4.1.1 Sometimes the gradient

itself is called the Jacobian. Here

The following properties of the gradient follow straightforwardly from the

definition.

Proposition 4.1.1 1. Let x be ann x 1 vector and A an m xn matriz. Then

0
T [Az] = A. (4.5)

i

2. Let x be an n x 1 vector and A an n X m matrixz. Then

7 A] = A7 (4.6)

3. Let xz be an n x 1 vector and A an n X n matriz. Then

o 17 Ae) = o (A+ A7), (4.7)

4. Let x be ann x 1 vector and A an n x n symmetric matriz. Then

0

T (27 Az] = 22" A (4.8)
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If f is scalar-valued, it is straightforward to define the second derivative

(Hessian) as follows.

Definition 4.1.3 Let f : R” — R have continuous first and second partial deriv-

atives at x (so as to satisfy the requirements of Young’s theorem). Then

Pf@) . P
an( ) Oz? 010z,
X . . .
BT = : . : 2 (z). (4.9)
nxn 62f(:1?) . 62f($)
0x,011 ox2

Note that, by Young’s theorem, the Hessian of a scalar-valued function is sym-

metric.

Proposition 4.1.2 Let f (v) = 2" Az where A is symmetric. Then
0*f (x)

O0xoxT

=24 (4.10)

Occasionally we run into matrix-valued functions, and the way forward then

is to vectorize and then differentiate.

Definition 4.1.4 Let A= | &1, A& ° @Qn | he anm X n matriz. Then
mx1 mx1 mx1

aj

a
vec (A)= (4.11)

N——r :

mnx1
- a,rL =

Definition 4.1.5 Let f : R¥ — R™™ have partial derivatives at . Then

Of (z) o Ovec f ()

orT oxT

nmxk

(4.12)

Having defined the vec operator, we quickly run into cases where we need the

Kronecker product, defined as follows.
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Definition 4.1.6 Let A and B be matrices. Denote the element in the i:th

mxn kxl

row and j:th column of A by a;;. Then

CbllB tee alnB
A® B2 S : (4.13)
mkxlIn

CLmlB s amnB

Proposition 4.1.3 Let A, B and C be matrices. Then

kxl mxn pXq

vec (ABC) = (CT ® A) vec (B) (4.14)

Proof. Exercise. B
Occasionally we find ourselves wanting to differentiate a vector-valued func-

tion with respect to a matrix. Again the way forward is to vectorize.

Definition 4.1.7 Let f : R™™ — R* have partial derivatives at z. Then

Of (x) o _0f (x)
DA 9 (vec A)T (4.15)
nmxk

Example 4.1.1 Let f : R™™ — R" be defined via f (®) £ ®k where k € R™ is

a constant vector. Then f(®) = (k" @ I,,) vec® and hence

of (x)
aPT

= (K" ® L) . (4.16)

We are now in a position to state rather general versions of the product and

chain rule for matrices.
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4.1.2 The product rule

Proposition 4.1.4 (the product rule) Let A : R® — R™™ gnd B : R! —

R™* have partial derivatives at x € R!. Then

Ovec A (z) dvec B (x)

_ T
= [A() B (2)] = (B @) ® In> e+ (L @A) o (417)
Kind-of proof. Suppose A(x) = A. Then, by Proposition 4.1.3,

vec (AB (z)) = (I ® A) vec B (). (4.18)

Since differentiation is a linear operator, it follows that

dvec (AB (z)) dvec B (x)
5T =([; ® A) 5T (4.19)

Conversely, assume that B (x) = B. Then
Ovec(A(z) B) dvec A (z)

Combining the two results yields the product rule.

Corollary 4.1.1 When we have vector- rather than matriz-valued functions, the
formula is drastically simplified. Let f : Rt — R™ and g : R — R™ have partial

derivatives at x € R'. Then

Er [f (JC)Tg(af)] =g(z)" 5+ f)" T (4.21)

4.1.3 The chain rule

Proposition 4.1.5 (the chain rule) Let f and g have partial derivatives at x,
and let h(z) = (fog)(x) = f(g9(x)). Definey = g(z). Then h has partial

derivatives at x and

Oh(z) _ 0f (y) g (x)
oxT  oyT 02T

(4.22)
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With an alternative piece of notation, we have

0f (g(x)) _ 9f(g(x)) 0y ()
oxT  9gT 02T’ (4.23)

Proof. The scalar chain rule and the definition of matrix multiplication. B

4.1.4 Taylor’s formula in n dimensions

Proposition 4.1.6 Let f : S — R™ be differentiable on the open set S C R".
Let xg € S. Then there is a function r : R™ — R™ (which typically depends on

xg) such that

1. Forallx €8S,

f(x) = f(w0) + agiﬁo) (x —x0) + 7 (2 — 20) . (4.24)
2.
o T
fim i =0 (4.25)

Proof. See [26]. W

Proposition 4.1.7 Let f : S — R be twice differentiable on the open setS C R".

Let xog € S. Then there is a function r : R™ — R such that

1. Forallx €8S,

F@) = £ @+ 220 (@ 2oy 2 (@),
(4.26)
2.
on
I e

Proof. See [26]. W
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4.2 Integrating over R"

4.2.1 Definition

Within the Riemann theory, integrating over rectangles (and the n—dimensional
counterparts) is just a matter of iterating the process of integration. More pre-
cisely, suppose E C R? is a closed rectangle, i.e. E = [ay,bi] X [ag, bs] where we
require a; < b; and as < by so that the orientation of our set E is not an issue.

We then have the following definition.

Definition 4.2.1 Let E C R? be a closed rectangle and let f : E — R be a

continuous function. Let x = (x,y). Define

e (y) = 72 f(z,y)dz (4.28)
Then . )
[rax=[| [ fayac| = [oway (4.29)

Happily, the order of integration does not matter under our assumptions. We

have the following proposition.

Proposition 4.2.1 Let E be a closed rectangle and let f : E — R be a continuous

function. Then

b1 b2

/ ?f(x,y)dm dy:/f(x)dx:/ /blf(m,y)dy dr. (430

ay E a2

Proof. See [17]. W
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Remark 4.2.1 If you think this is a surprising result, recall that integrals are
Just sums, and sums (avoiding pathologies where infinity is involved) are the same

independent of the order of the terms.

We can of course generalize this definition and proposition to integration over
closed rectangles E C R™, i.e. sets of the form E = [ay, b1 X [ag, ba] X - - - X [ay, by] -

Just keep on iterating the process of integration!

4.2.2 Change of variables

Definition 4.2.2 Let f be an arbitrary function on R™ into R. Then the set
Sp={xeX: f(x)#0} (4.31)

is called the support of f. If Sy is a compact set, then f is said to have compact

Support.

Theorem 4.2.1 Let T be a 1-1 (injective) continuously differentiable function
from an open set E C R™ into R™ such that the Jacobian Jr(x) # 0 for all
x € E. Let f be a continuous function from R™ into R such whose support is

compact and lies in T (E). Then
[twas= [ (@)1 ) do (1.32)
Rr Rr

Proof. See [17]. W

Remark 4.2.2 The reason for having |Jr (z)| instead of Jr (z) is that, with the
definition of the integral used in this section, we integrate over subsets of R™

without regard for their orientation. For example, in the scalar case, we consider

b a
[ f(z)dz and [ f(x)dx to be the same. Given that these are defined to be the
a b
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same, we must take steps to assure that, say, the change of variablesT (z) = —x
makes no difference, and that is guaranteed by taking the absolute value of the

Jacobian.

Example 4.2.1 (from Econometrics II; calculating the volume of a cylinder)

Let ¢,k > 0. Let f: R* — R be defined via

c if ®+y? < k?
f(zy) = (4.33)
0 otherwise

(Draw a picture of this!) We now want to calculate
/ f () dx (4.34)
R2

and it turns out to be convenient to use the change of variables approach, noting
with satisfaction that f has compact support. Looking at the picture, it seems that

a switch to polar coordinates makes sense. So define

r
E = ER*:0<r<kand0<6<2r (4.35)
0
and T on E via
rcosf
rsin @

Apparently the Jacobian is

cos —rsinf
Jr(r,8) = det =r (4.37)
sinf rcosf

and

c f0<r<kand0<60<2r
f(T(r,0) = (4.38)

0 otherwise.

Hence
2

k
/f (x,y) = / crdr| df = ck*r. (4.39)

R2 0 0
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Chapter 5

Abstract spaces

5.1 Metric spaces

5.1.1 Introduction

The idea of a metric space is to generalize from a Euclidean space to any space for
which it makes sense to talk about the distance between two points. This distance
is called a metric, as defined below. Notice how the axioms are tailor-made to fit

our intuitions about distances in physical space.

5.1.2 Definitions

Definition 5.1.1 A metric space is a non-empty set X associated with a function

(called a metric) p : X x X—R such that, for all x,y,z € X,
1. p(x,y) > 0 with equality iff x = v,

2. p(x,y) = p(y,r), and

3. w(z,z) < p(zyy)+ wu(y,z) (the triangle inequality).

41
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Remark 5.1.1 Subsets Y C X inherit the same metric as X is associated with

and are themselves metric spaces.

Definition 5.1.2 A subset O of a metric space (X, u) is said to be open if for

each © € O there is a real number e, > 0 such that
{ye X :p(x,y) <e,} CO. (5.1)

Remark 5.1.2 By defining the open sets, we have also defined the continuous
mappings on X (into some other space where the open sets are defined). Just
declare any mapping f : X — Y to be continuous whenever f=1(0) is open
for every open set O C Y. Similarly, we have defined the convergent sequences.
Just declare any sequence {(x,) to converge to the element x € X if for every
neighborhood O of x (recall that a neighbor hood of x is any open set O such that

x € O) there is a natural number N with the property that x, € O for alln > N.

Definition 5.1.3 A subset F' of a metric space (X, ) is said to be closed if its

complement F* ={x € X : = ¢ F} is open.

Definition 5.1.4 A Cauchy sequence is a sequence ()., such that for each

e > 0 there exists an N such that p (zp, xmy) < e for alln,m > N..

Definition 5.1.5 A sequence (z,,).-, is said to converge to an element x € X

if for each € > 0 there exists an N, such that pu (z,,x) < e for alln > N..

Definition 5.1.6 A metric space (X, p) is said to be complete if every Cauchy

sequence from X converges to some element x € X.

The property of completeness is closely linked to the property of closedness.

Indeed, we have the following propositions.
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Proposition 5.1.1 Let X be a complete metric space and let Y C X be closed.

Then Y is complete.

Proof. Let (xy),., be a Cauchy sequence from Y. By the completeness of X,
(k) e, converges to some element z € X. But since Y is closed, it contains all

its limit points. Hence x € Y. R

Proposition 5.1.2 Let X be a complete metric space and letY C X be complete.
Then Y 1is closed.

Proof. It suffices to show that Y contains all its limit points. But this follows

from the fact that every convergent sequence is a Cauchy sequence. B

5.1.3 The contraction mapping theorem

We now come to the highlight of this section, which is the contraction mapping

theorem, also known as the contraction principle, or Banach’s fixed point theorem.

Definition 5.1.7 Let (X, ) be a metric space. A function ¢ : X — X is called

a contraction if there is a 0 < 8 < 1 such that, for all x,y € X,

p(p (), (y) < Bu(z,y) (5.2)

Lemma 5.1.1 Let p be a contraction on (X, ). Then ¢ is uniformly continuous.

Proof. We need to show that, for each € > 0 there corresponds a 6. > 0 such
that p(p (), ¢ (y)) < e for all z,y € satistying p (z,y) < 6.. Put 6. = % and we

are done.

Theorem 5.1.1 (Banach’s fixed point theorem) Let (X, u) be a complete

metric space and let ¢ be a contraction. Then there is a unique v € X such
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that ¢ (x) = x. (v has a unique fized point.) Moreover, the proof of this theo-
rem 1s constructive, in the sense that it gives us an algorithm which delivers an

arbitrarily good approximation to the fixed point x.

Proof. Uniqueness is obvious, since if ¢ (y) = y and ¢ () = z then u (¢ (x), ¢ (y)) =
p(z,y) < Bu(z,y) for some § < 1 which can only happen for p(z,y) = 0 and
hence z = y. To show existence, pick z( arbitrarily and define (x,,) recursively

by setting

Tpy1 =@ (xz,) n=0,1,2,.. (5.3)

We now show that (z,,) is a Cauchy sequence. Choose < 1 so that (5.2) holds

for all x,y € X. For n > 1 we have

1 (@ns1, @) = p (@ (2n) ;0 (Tn-1)) < Bp (T, Tn1) - (5.4)

By induction,
1 (Tnt1, Tn) < B0 (21, 20) (5.5)
Putting (without loss of generality since p(x,, %) = p(Tm,x,)) n < m, it

follows, by the triangle inequality, that

(@, @) < g, i) - (5.6)
i=n+1
By (5.5),
S @) < (B 48+ 4 ) p(r, a0) (5.7)

i=n+1
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But
(8" + 5" 4 4 B i, 30) =

= B"(14+8+-+0"" Y p(z,z0) <
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Hence p (z,, x,,) is arbitrarily small when n and m are sufficiently large. It follows

Z1, mo)

that (x,) is a Cauchy sequence. Since X is complete, z,, — z for some z € X.

Since ¢ is continuous,

p(r)=¢ ( lim mn> = lim ¢ (z,) = r}ggo Tpy1 =T (5.9)

n—oo n—oo

so x is a fixed point of . A

5.2 Banach spaces

In the following, a ‘scalar’ will refer to a real number. With minor modifications

of some of the axioms and proofs, we could have used complex scalars instead.

Definition 5.2.1 A vector space is a non-empty set S associated with an addition
operation + : § X § — S and a scalar multiplication operation - : RxS — S such
that for all x,y € S and all scalars o, a(x +y) € S. For + and - to qualify as

addition and scalar multiplication operators, we require the following axioms.

l.z4+y=y+ax forallx,ye S

2.2+ (y+z2)=(@+y) +z foralzyzeS
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3. There exists an element 8 € S such that x +0 =x forallx € S
4. a(z+y)=ax+ay foralaeR and allz,y €S

5. (a+fB)x=ax+ Pz forala,fER and allz €S

6. a(fx) = (af)x foralla,f €R and allz € S

7. 0x =0 forallzeS

8 lx=x forallx €S8

Remark 5.2.1 It is not hard to see that the zero element 0 is unique. Also,
subtraction is defined via x—y = x+(—1) y. It follows thatx—z = (1 + (—1)) z =
Oz =0 forallx € S.

Definition 5.2.2 A norm on a vector space S is a function || - || : S — R such

that

1. For each x € S, ||z|| > 0 with equality for and only for the zero element

fesS.

2. For each x € S and every scalar «, ||az|| = |a||z]|.

3. (The triangle inequality.) For all z,y € S, ||z + y|| < ||z||+ ||yll-

Proposition 5.2.1 Let (S,| - ||) be a vector space with an associated norm. De-

fine the function p:S xS =R via

p(z,y) = [lz =yl (5.10)
Then (S, 1) is a metric space, and u is called the metric generated by || - ||

Proof FEzxercise.
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Definition 5.2.3 A Banach space is an ordered pair (S, | - ||) such that S is a
vector space and S is complete in the metric generated by the norm ||-||. (Once the

norm has been defined, it is usually suppressed in the notation for convenience.)

The property of completeness is closely linked to the property of closedness.

Indeed, we have the following propositions.

Proposition 5.2.2 Let S be a Banach space and let T C S be closed. Then T

s complete.

Proof. Let (xx),., be a Cauchy sequence from 7. By the completeness of S,
(xk) e, converges to some element x € S. Since the sequence is taken from
7T, x must be a point of closure of 7. But since 7 is closed, it contains all

its points of closure. Hence xz € 7. O

Proposition 5.2.3 Let S be a Banach space and let T C S be complete. Then

S is closed.

Proof. It suffices to show that 7 contains all its limit points. But this follows

from the fact that every convergent sequence is a Cauchy sequence. B

5.3 Hilbert spaces

5.3.1 Definitions and basic properties

Definition 5.3.1 An inner product on a vector space H is a function (-,-) :

H x H — R such that

1. Fordlz,y€eH, (z,y) = (y,x).!

! When the scalar field is C rather than R, this axiom becomes (z,y) = (y, z) where Z is the
complex conjugate of z. You may want to check that this holds for the Euclidean inner product
n

in C", ie. (z,y) = ZIZE
i=1
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2. For all z,y € H and all scalars o, B, (ax + Py, z) = a(x,2) + 6 (y, 2) .

3. For allxz € H, (z,x) > 0 with equality iff x = 6.

Proposition 5.3.1 The function |- || defined via |z|| = /(z, x) is a norm. This

norm is called the norm generated by (-, -).

Proof To show the triangle inequality, square both sides and use the Cauchy-

Schwarz inequality (see below).
Definition 5.3.2 A Hilbert space is an ordered pair (H, (-,-)) such that

1. 'H s a vector space.
2. (-,+) is an inner product.

3. The normed space (H, | - ||) is complete, where || - || is the norm generated

by ('7 ) :

Henceforth whenever the symbol H appears, it will denote a Hilbert space
(with some associated inner product).

Intuitively, a Hilbert space is a generalization of R with the usual inner prod-
uct (z,y) = Zn;xzy@ (and hence the Euclidean norm), preserving those properties
which have 17:,; do with geometry so that we can exploit our ability to visualize
(our intuitive picture of) physical space in order to deal with problems that have

nothing whatever to do with physical space. In particular, the ideas of distance,

length, and orthogonality are preserved. As expected, we have

Definition 5.3.3 The distance between two elements x,y € H is defined as ||x —

yll, where || - || is the norm generated by the inner product associated with H.

Definition 5.3.4 Two elements x,y € H are said to be orthogonal if (x,y) = 0.
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Some further definitions and facts are needed before we can proceed.

Definition 5.3.5 A Hilbert subspace G C 'H is a subset G of H such that G, too,

1s a Hilbert space.

The following proposition is very useful, since it guarantees the well-definedness

of the inner product between two elements of finite norm.

Proposition 5.3.2 (The Cauchy-Schwarz inequality). Let H be a Hilbert space.

Then, for any x,y € H, we have

(@, y)| < [l[[]ly] (5.11)

Proof. If x = 0 ory = 0 the inequality is trivial. So suppose ||z, ||ly|| > 0 and
let A > 0 be a real number. We get
0<[[z—yl* = (z — Ay, — Ny) = (5.12)
= [zl + A[lyl* = 2A (z,y)
Dividing by A, it follows that

1
2(w,y) < el + Ayl (5.13)

Clearly this is true for all A > 0. In particular it is true for A\ = H which
)

is strictly positive by assumption. It follows that (xz,y) < ||z||||y||. To show

that — (z,y) < ||z||||ly||, note that — (x,y) = (—x,y), and since (—z) € H

we have just shown that (—x,y) < ||z||||y]|.? O

Proposition 5.3.3 (The parallelogram identity) Let H be a Hilbert space.

Then, for any x,y € 'H, we have

lz +ylI* + llz = yl* = 2 (l]* + llyl*) (5.14)

2 In the case where the scalar field is C rather than R, the proof is slightly different, but
just as simple. See [18].
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Proof. Exercise. B
The following proposition states that the inner product is (uniformly) contin-

uous.

Proposition 5.3.4 Let 'H be a Hilbert space, and let y € 'H be fixed. Then for
each e > 0 there exists a 6 > 0 such that |(z1,y) — (x2,y)| < e forallzi, 20 € H

such that ||x; — z5|] < 6.
Proof.

|(z1,y) — (z2,y)| = |(x1 — z2,y)| < {Cauchy-Schwarz} (5.15)

N

<l = zafllly]

Set 6 = ﬁ, and we are done. H
Y

Definition 5.3.6 Let G C H be an arbitrary subset of H. Then the orthogonal

complement G+ of G is defined via G+ 2 {lyeH:(z,y) =0 forallx € G}.

Proposition 5.3.5 The orthogonal complement G+ of a subset G of a Hilbert

space 'H is a Hilbert subspace.

Proof. It is easy to see that G+ is a vector space. By the fact that any closed
subset of a Hilbert space is complete, all that remains to be shown is that G+ is
closed. To show that, we use the continuity of the inner product. Consider first
the set

rt={yecH: (z,y) =0} (5.16)

But this is easily recognized as the inverse image of the closed set {0} under a

continuous mapping. Hence z+ is closed. Now notice that

Gt =" (5.17)

zeG
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Hence G+ is the intersection of a family of closed sets. It follows that G* is itself
closed. B
A useful corollary is that if G is dense in G, then G*=G*. More explicitly,

we have the following definition and proposition.

Definition 5.3.7 A set G CGC H (where H is a Hilbert space) is said to be
dense in G if the closure of G (relative to G) is equal to G. Equivalently, G is
said to be dense in G if G CG and if for every z € G there exists a sequence

{zk}re, such that z, € G for each k and z, — z as k — oo.

Proposition 5.3.6 Let G be an arbitrary subset of a Hilbert space H, and let G

be a dense subset of G. Then G+ = G,

Proof. Exercise. R

We now state the most important theorem in Hilbert space theory.

5.3.2 The projection theorem

Theorem 5.3.1 (the projection theorem) Let G C 'H be a Hilbert subspace

and let x € H. Then

1. There exists a unique element & € G (called the projection of = onto G)
such that

— Z|| = inf ||z — 5.18
lz — &} = inf [|lz — ]| (5.18)

where || - || is the norm generated by the inner product associated with H.

2. T is (uniquely) characterized by

(r—1) e G (5.19)
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Remark 5.3.1 The word ‘characterize’ is used here in the strong sense, i.e. it

is claimed that (5.18) and (5.19) are equivalent.

Proof. In order to prove part 1 we begin by noting that G, since it is a Hilbert
subspace, is both complete and convex. Note that any vector space is convex,

but that the converse does not hold. Now fix z € ‘H and define
d = inf ||z — y||? 5.20
inf |lz — ] (5.20)

Clearly d exists since the set of squared norms ||z — y||* is a set of real numbers
bounded below by 0. Now since d is the greatest lower bound of ||z — y||* there
exists a sequence (yx),., from G such that, for each € > 0, there exists an N,
such that

|z — il < d+e (5.21)

for all £ > N.. We now want to show that any such sequence (y;) is a Cauchy

sequence. For that purpose, define

U = T—Yn (5.22)

vo= -y, (5.23)
Now applying the parallelogram identity to v and v, we get
122 = Ym = Yall® + 19m = vl = 2 (Il2 = v 1> + [|2 = wal|*) (5.24)
which may be manipulated to become

1
Al = 5 @+ 90 12 + [ = all* =2 (2 = gl + o = all?)  (5:25)

1
Now since G is convex, B (Ym + Yn) € G and consequently |z — 3 (yn + yn) |* > d.

It follows that

ym = ol < 2 (2 = yul* + |2 — 3 ]|*) — 4d (5.26)
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Now consider any € > 0, choose a corresponding N. such that ||z — y;||* < d+&/4
for all £ > N, (such an N; exists as we have seen). Then, for all n,m > N, we

have

Ym — Ynll* <2 (|2 = Yyl > + ||z — ynl|?) —4d < € (5.27)

Hence (yx) is a Cauchy sequence. By the completeness of G, it converges to some
element Z € G. By the continuity of the inner product, ||z — Z||* = d. Hence &
is the projection we seek. To show that 7 is unique, consider another projection
y € G and the sequence (Z,y,7,y,7,y...). By the argument above, this is a
Cauchy sequence. But then = y. Hence (1) is proved. The proof of part (2)
comes in two parts. First we show that any Z that satisfies (5.18) also satisfies
(5.19). Suppose, then, that T satisfies (5.18). Define ¢ = x — ¥ and consider an
element y = 7 + az where z € G and a € R. Since G is a vector space, it follows

that y € G. Now since 7 satisfies (5.18), y is no closer to = than 7 is. Hence
lell? < lle—az|? = (e —az,e —az) = (5.28)

= el + &?llz]I* — 2a (e, 2)

Simplifying, we get

0 < o®||z|]* — 2a (e, 2) (5.29)
This is true for all scalars . In particular, set a = (g,2). We get
0< (62 (212 - 2) (5.30

For this to be true for all z € G we must have (g,z) = 0 for all z € G such that
|z]|? < 2. But then (why?) we must have (g, z) = 0 for all z € G. Hence € € G*.
Now we want to prove the converse, i.e. that if = satisfies (5.19), then it also

satisfies (5.18). Thus consider an element z € G which satisfies (5.19) and let
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y € G. Mechanical calculations reveal that

||m—y||2 = (—-24+T—-yr—-T+T—y) = (5.31)

~

= llz=Z1* + 7 -yl +2(z - 2,7~ y)

Now since (z —7) € G+ and (T —y) € G (recall that G is a vector space), the
last term disappears, and our minimization problem becomes (disregarding the
constant term ||z — Z||?)

in ||z — 5.32
ggng Y| (5.32)

Clearly Z solves this problem. (Note that it doesn’t matter for the solution
whether we minimize a norm or its square.) Indeed, since |7 — y|| = 0 implies
T = y we may conclude that if some 7 satisfies (5.19), then it is the unique

solution. ®

Remark 5.3.2 Given our definition of distance, T is by definition that element

in G which is closest to x.

Remark 5.3.3 A good way to understand intuitively why the projection theorem
is true is to visualize the projection of a point in R® onto a 2-dimensional plane

through the origin.

Remark 5.3.4 Note that our characterization in terms of orthogonality of the
projection onto G is closely linked to the fact that G is assumed to be a vector

space. Meanwhile, our proof that the projection problem
i — 5.33
221:11 |z —yll ( )

has a unique solution works for any closed and convex subset G C'H. For such
general G, then, we know that there is a unique solution, but we have not shown

that the projection error must be orthogonal to G. Indeed it need not be. Consider
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for example the projection of an arbitrary point x € R™ onto the k-dimensional
plane G = {z ER": z =2t + AB for some 3 € R’“} where z' € R™ and A is an
n x k matriz. (Note that G is not a vector space unless z* = 0). Then it is (at
least intuitively) clear that the projection of x onto G must be orthogonal to every
vector along the plane rather than to every vector in the plane. More precisely,

the projection Tq satisfies
(z—y,x—2g)=0 (5.34)
for all z,y € G.

Corollary 5.3.1 (the repeated projection theorem) Let G C F C H be
Hilbert spaces. Let T be the projection of x € H onto G and let Tr be the

projection of x onto F. Then the projection of Tr onto G is simply ZT¢.

Proof. By the characterization of the projection, it suffices to prove that
(tp — 2g) € G*. To do this, we rewrite (2r — 2¢) = (v — Zg) — (x — 2F).
Since the orthogonal complement of a Hilbert subspace is a vector space
and hence closed under addition and scalar multiplication, it suffices to
show that (z —Zg) € G+ and that (z — ) € G*. The truth of the first
statement follows immediately from the characterization of the projection.

The truth of the second one can be seen by noting that F+ c G+. O

5.3.3 Fourier analysis

The previous section asserted that the projection existed, was unique and had a
certain orthogonality property. But how is the projection calculated in concrete
cases? That question was left unanswered, but will be addressed in this section.

You will recall from linear algebra in R" that a useful way of represent-

ing a vector x € R” is as a linear combination of some orthogonal basis B =
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{z; k=1,2,...,n}. You will remember that if B spans R”, then for each x € R”

there exist scalars {¢,; k =1,2,...,n} such that

= Z OLTk (5.35)
k=1

where the xj are the elements of B. A popular choice of orthogonal basis vectors
is of course the unit vectors, but there are many other orthogonal bases of R™.

These ideas can easily be generalized to any Hilbert space, since the essential
part of the whole program is orthogonality, and orthogonality is, as we have seen,
what Hilbert spaces are all about.

There are, however, two issues to be dealt with before taking the leap from R"
into Hilbert space. One is that Hilbert spaces don’t always have a finite basis (i.e.
they may be infinite-dimensional). Actually, there are many interesting finite-
dimensional Hilbert spaces (e.g. the set of polynomials of a fixed degree defined on
a compact interval), but we don’t want to exclude the infinite-dimensional ones.
Nevertheless, in some cases we would like our Hilbert spaces to have a countable

basis. After all this loose talk it is time for some definitions and propositions.

Definition 5.3.8 Let (H,(-,-)) be a Hilbert space and let B ={xy : k =1,...} be

a countable subset of H. Then B is called orthogonal if, for all j # k we have
(xj,zr) = 0. (5.36)
If, in addition, (xj,z;) =1 for all j = 1,2, ..., then B is called orthonormal.

Definition 5.3.9 Let (H,(-,-)) be a Hilbert space and let B ={xy; k=1,2,...}
be a countable subset of H. Then the closed span Sp(B) of B is defined as
follows. Let sp (B) be the set of elements x € H such that there exist scalars

{¢p; k=1,2,...} with the property that

= Z OLTk (5.37)
k=1
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where the xy, are elements of B. We then define Sp (B) as the closure of sp (B).
Intuitively, taking the closure means that we include all the infinite sums as well

as the finite ones.

Definition 5.3.10 Let (H, (-,-)) be a Hilbert space and let B ={xy; k= 1,2,...}

be a countable subset of H. Then B is said to span ‘H if Sp (B) = H.

Proposition 5.3.7 Let (H,(-,-)) be a Hilbert space and let B ={xy; k =1,2,...}

=

be a countable subset of H. Suppose B spans H. Then, for each x € 'H, there are

scalars {¢y; k=1,2,...} such that

lim |z =) g =0 (5.38)
and we sometimes write
T = Z OLT- (5.39)
k=1

Proof Obuvious.

Proposition 5.3.8 Let (H,(-,-)) be a Hilbert space and let B ={xy; k =1,2,...}

be a countable subset of H. Then Sp (B) is a Hilbert subspace.
Proof Obuvious.

Definition 5.3.11 Let (H,(-,-)) be a Hilbert space and suppose B is orthogonal

(orthonormal) and spans H. Then B is called an orthogonal (orthonormal) basis

for H.

Definition 5.3.12 A Hilbert space (H, (-,-)) is called separable if it has a count-

able dense subset.

Proposition 5.3.9 A Hilbert space has a countable orthogonal basis iff it is sep-

arable.
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Usually it is hard to figure out whether a particular Hilbert space is separable
or not. Indeed, even if we are given a countable subset B, it is not always easy
(for an economist, that is) to check whether this set spans H. Happily, we can
often draw upon standard results, such as the Stone-Weierstrass theorem which
asserts that the set of polynomials of arbitrary degree spans the set of continuous
functions on R. We also have the remarkable result that the set of trigonometric
polynomials (linear combinations of sinnz and cosnz where n is an arbitrary
integer) span the set of square integrable functions defined on a compact interval.

Usually, though, orthogonality is much more important than spanning, and
orthogonality is usually not too hard to confirm in concrete cases. To see why
orthogonality is more important than spanning, consider the following example.
Suppose we want to approximate a function by a polynomial of fixed degree.
Then (we will see why!) it makes a lot of sense to project our function onto a set
of orthogonal polynomials. In this context, we are not too worried about the fact
that the polynomials of a fixed degree may fail to span the set of functions that
we are trying to approximate. After all, what we sought was approximation, not
perfect representation.

In any case, suppose (H, (+,-)) is a Hilbert space with the (countable!) ortho-
normal subset B = {zy; k =1,2,...} . Now consider an arbitrary element x € H.
Our project now is to find the projection Z onto 5p (B). By the definition of the

closed span, there are scalars {¢,; k= 1,2, ...} such that

T = Z OpL- (5.40)

k=1
The scalars {¢;; k= 1,2,...} are called the Fourier coefficients of x (with respect
to B). But what values do they have? To find out, recall the characterization
of the projection. The idea is to choose the ¢, so that the projection error is

orthogonal to every vector y € Sp (B). Actually, it suffices to set the projection
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error orthogonal to every vector x, € B. Then, for every j = 1,2, ... we have

(m — Z OLTk, mj> = 0. (5.41)
k=1

But
(90 =) o, xj) = (z,m5) = ) oy (w5, m) =
k=1 k=1
. . (5.42)
= {orthogonality!} = (z,2;)— ¢; (2}, ;) = {orthonormality!} =
= (:Ea xj) — ¢
Hence ¢; = (x,z;) for each j =1,2,..., and we have the following proposition.

Proposition 5.3.10 Let (H, (-,-)) be a Hilbert space and letB = {xy; k =1,2,...}
be a countable orthonormal subset of H. Let x € H. Then the projection & of x
onto 5 (B) is

T =

(, zk) - (5.43)

k=1
Corollary 5.3.2 (Bessel’s inequality) Since (why?) ||z|| = ||z|| + ||z — 2|,

we have ||Z|| < ||z|| and consequently

(2, @) <l

NE

>
Il

1

Corollary 5.3.3 (Parseval’s identity) If B spans H then x = & and hence

2 2
(2, )™ = [l

M]3

T

1

Remark 5.3.5 This is a generalization of Pythagoras’ theorem.



60

CHAPTER 5. ABSTRACT SPACES



Chapter 6

The Lebesgue integral

The purpose of this chapter is to make sense of expressions like

[ fan= [ 1@ du@ = [ 1@, (6.1)

6.1 Motivation

From our point of view, there are at least two reasons for introducing the Lebesgue

integral. The first is that we want certain limit theorems of the following form

1}520 fr (x)dx = /khjgo fr (z)dz (6.2)
A A

to hold under weaker conditions than we need for the Riemann integral (weaker,
at any rate, than uniform convergence of (f;)). As we have seen, the Riemann
integral does not have this property even when very strong restrictions (short of
uniform convergence) are put on (f;). This means that if we try to construct
an abstract space (say a Banach space) of Riemann integrable functions, we will
find that it is incomplete (and hence not a Banach space), and this renders the

Riemann integral almost useless in functional analysis.

65
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The second reason is that we often want to integrate over a more or less
arbitrary space X, not just R or R™. This is particularly important in probability
theory, since we want to define the expected value of a random variable as its
integral over the sample space.

Note that, in this chapter, we will be integrating real- (scalar-)valued functions
nearly all of the time, but that it is very easy to extend our theory to integrating
functions with values in R?, C or C". The idea is just to integrate component
by component. We could have been even more abstract and tried to integrate
functions with values in more or less arbitrary spaces, but that would take us
much further than we usually need to go as economists.

Many of the definitions and results in this chapter nevertheless are somewhat
abstract, and to avoid getting dizzy, it is worth always thinking about the case
when X is a finite set. Then all the results are trivial, and it is easy to believe the
more general results even without the proof. When you find a concept difficult
to grasp, always take a simple example with a finite X, or if you have a talent

for spatial visualization, think of X as R? or R3.

6.2 Definition

Recall that the basic idea behind the Riemann integral is to partition the z-axis
and see what happens as this partition becomes arbitrarily fine. Lebesgue chose
the opposite strategy and decided to partition the y-axis instead. Roughly, the
program ahead of us looks like this. Let f : X — R be a real-valued function on
an arbitrary space X. Suppose the range of f is compact, and divide this range

into subintervals. For each sub-interval [yx_1, yx], define an upper sum as follows.

S = Z it (F 7 ([We—1, ve])) (6.3)
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where 1 (f~' ([yx_1,yx])) is the (generalized) length of the set of points x € X
with their image in [yx_1, Y]-

Now if X = R and every set f = ([yx_1, y&|) is an interval, we have no problems.
We know how to calculate the length of an interval. But even if X =R and f is
continuous, there is no guarantee whatsoever that the inverse image of [yx_1, Y]
is an interval. So we need to generalize our notion of length to apply to a wider

class of sets than just intervals. This is the subject of measure theory.

6.2.1 Measure theory

Suppose we have a set X and want to be able to define a measure y on the
subsets of X, i.e. a function which assigns a non-negative real number to some
(or perhaps all) of the subsets of X. It turns out that we don’t always want to
include all subsets of X in the domain F of u. One reason is that some subsets
may be so bizarre that it is impossible to assign a measure to them in a reasonable
way (this happens when X = R; see below). Another is that a restriction of the
domain of our measure is a very elegant way to model information in probability
theory (see chapter 7).

In any case, we want the domain F of our measure y to be well-behaved in
certain ways. In particular, we want it to be ‘closed’ under certain set operations,
so that we don’t suddenly leave F when we perform the usual set operations on
members of F. The most convenient approach is to require F to be a o-algebra
(o-field). Below we will denote the complement of a set A by A¢ and the family

of all subsets of X (the power set of X) by 2%.

Definition 6.2.1 Let X be an arbitrary set. Let F C2%X be a family of subsets

of X. Then F is called a o-algebra if
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1. X e F,
2. for each A e F, A€ F, and

3. for every countable family of sets {Ay},—, with Ay, € F for k=1,2,..., we
have

k=1

By definition, then, we stay within 7 when we perform complementation and
countable unions. By de Morgan’s laws, it follows that we also stay within F
when we perform countable intersections (why?). Note that it is essential that
these operations are countable. We do not require F to be closed under arbitrary
unions and intersections.

In case you should have forgotten de Morgan’s laws, I state them here.

Proposition 6.2.1 (de Morgan’s laws) Let A be an arbitrary family of sets.

Then ) .
JAal =N« (6.5)
LACA ] A€A
and ) .
N4l =] (6.6)
| AcA ] AcA

Proof. Exercise. B
We now note some useful and simple-to-prove properties of o-algebras. (We

will use these properties later.)

Proposition 6.2.2 Let {F, : o € I} be an arbitrary (not necessarily countable)

family of o-algebras. Then the intersection F = (| Fo is a o-algebra.

acl

Proof. To show that F is closed under complementation, suppose A € F. Then
A € F, for all a € I. Since all the F, are c—algebras, we have A¢ € F, for all

a € I as well. Hence A¢ € F. The other parts of the proof have the same form. B
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Remark 6.2.1 The o in the term o—algebra indicates that it is closed under
countable unions and not just finite unions. Recall that an infinite series (sum)
has countably many terms and begins with the letter s. There has to be a connec-

tion here.

Proposition 6.2.3 Let A be an arbitrary (not necessarily countable) family of
subsets of some basic set X. Then there is a unique smallest extension of this

family to a o-algebra, i.e. a unique o-algebra F such that

1. ACF, and

2. For any o—algebra G such that A CG, we have F C G.
We write F = o (A) and call F the o—algebra generated by A.

Proof. Let {F,} be the family of o-algebras such that A CF, for each F,. This

family is non-empty, since 2% is a o-algebra with this property. Now define

F =()Fa (6.7)

and it is clear (why?) that this defines a o-algebra with the desired properties. B

We sometimes want to take the union of a family of o-algebras, but since
that union is not necessarily itself a o-algebra, we usually want to extend it to
a o-algebra in a minimal way. The preceding proposition shows that this can be

done in a unique way, and we have the following definition.

Definition 6.2.2 Let {F, : a € I} be a family of o-algebras. Then the smallest
o-algebra F such that A € F whenever there is an o € I such that A € F, is
denoted by F = \/ Fa.

acl
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Definition 6.2.3 Let X be an arbitrary non-empty set and let F be a o-algebra.
Then (X, F) is called a measurable space. The sets A € F are called the F-
measurable sets. When the o-algebra F is taken as understood, we will sometimes

suppress it and talk simply about the measurable sets.

We now want to define a measure on a measurable space (X, F) , and we want
to impose some reasonable requirements on a function p : F —RU {+o0o} for it
to qualify as a measure. (The number +oo is defined to be a positive number
greater than any real number; we want to allow u to take this value since X might
be unbounded in some sense.) When studying the definition, keep in mind that
we are trying to generalize the notion of length (or area, or volume, or mass, or

something like that).

Definition 6.2.4 Let (X, F) be a measurable space and let pn : F —RU {400}

be a function. Then  is called a (positive) measure if

2. for each A€ F, u(A) >0, and

3. (countable additivity) for each family { Ax} -, with Ay, € F and A;NAy = @

for j # k (for every countable family of disjoint measurable sets) we have

H (U Ak) = Z 1 (Ak) - (6.8)

An important subfamily of F are the sets of measure zero. If a certain property
holds at all points of X except on a set of points A € F such that u(A) = 0,
then we say that it holds almost everywhere (1), and we abbreviate this by a.e.
(). Sometimes when the measure p is taken as understood, we suppress it and

write just a.e.
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Definition 6.2.5 Let (X, F) be a measurable space and let pu : F — RU{+o0} be
a measure. Then (X, F, u) is called a (positive) measure space, and if p(X) < oo

it 1s called a finite measure space.

6.2.2 The Lebesgue integral

We now go on to define the Lebesgue integral, and the idea will be to approximate
the integrand by functions which are simple in a certain sense, integrate the
simple functions in an obvious way, and then try to make the approximation
arbitrarily good. We also characterize the functions which can be arbitrarily well
approximated by simple functions. Those functions turn out to be the measurable

ones, defined as follows.

Definition 6.2.6 Let (X, F) be a measurable space, and let f : X — R be a
real-valued function on X. Then f is said to be measurable with respect to F

(or F—measurable) if, for every (open or closed) interval I C R,
(I eF. (6.9)

Actually, once the inverse images of all intervals are measurable, there is a
much larger class of sets whose inverse image is measurable. In fact, we have the

following proposition.

Proposition 6.2.4 Let (X,F) be a measurable space and let f : X — Y be a

function. Then the family of subsets A C'Y such that f~' (A) € F is a o-algebra.

Proof. The proof uses that F is a o-algebra, and that the inverse image preserves

the relevant set operations, noting that

1. f1(Y)=X€eF.
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2. Let A be a set such that f=' (4) € F. Then f~' (A°) = [f~' (A)]" € F.

3. Let { Ay}, , be afamily of sets such that f~! (A4y) € F. Then f~* <Ej Ak) =
k=1

k['jl HA) eF.m

So when f is a measurable function, the family of all sets A C R such that
/7' (A) is measurable is a o-algebra. Clearly it contains all the intervals. At
the very least, then, it contains all the sets in the so-called Borel o-algebra on R
which is the smallest o-algebra on R that contains all the intervals. This example

is so important that we restate it in a formal definition.!

Definition 6.2.7 Let T C 2% be the set of all intervals. Then B(R)=0 (I)
is called the Borel o-algebra on R. Note that B (R) = o (open subsets of R) =
o (closed subsets of R). A set A € B(R) is called a Borel (measurable) set. A
function f : R — R which is B (R)-measurable is called a Borel (measurable)

function.

We can now characterize measurability in an interesting way, which is often

used to define measurability.

Proposition 6.2.5 Let (X,F) be a measurable space, and let f : X — R be a

real-valued function on X. Then f is F—measurable iff f~* (B (R)) C F.

Remark 6.2.2 f 1 (A) where A is a family of sets is of course the family of

inverse images f~' (A) with A € A.

Having defined measurability of a function, it is interesting to note that we

can always construct a o-algebra so that a given family of functions is measurable.

! In 1924, Emile Borel became active in the French government serving in the French Cham-
ber of Deputies (1924-36) and as Minister of the Navy (1925-40). After his arrest and brief
imprisonment under the Vichy regime he worked for the Resistance. He was awarded The
Resistance Medal (1945), and the Grand Croix Légion d’Honneur (1950).
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Just take the union of all inverse images of Borel sets under the functions in the
family. Then extend to a o-algebra in a minimal way as in Proposition (6.2.3).

This leads us to the following definition.

Definition 6.2.8 Let (X, F) be a measurable space, and let {fo :a € I} be a
famaly of real-valued functions on X. Then the minimal o—algebra F such that

all the fo are F—measurable is called the o-algebra generated by {f, :a € I},

and we write F =0 ({fo : € I}).
We also have the following almost trivial but very important result.

Proposition 6.2.6 Let (X, F) and (X,G) be two measurable spaces such that

G C F, andlet f be an F-measurable function on X. Then f is also G-measurable.
Proof Exercise.

Happily, measurability is preserved under most common operations. In par-

ticular, we have the following theorem.

Theorem 6.2.1 Let (X,F) be a measurable space. Let f, g be measurable func-

tions on X and let o be a scalar. Then

1. f+g, af, and fg are measurable,
. f .
2. if g # 0, = is measurable,
g
3. h =max|f,g| is measurable,

4. if (fa)oy is a (countable!) sequence of measurable functions, then the fol-

lowing functions are also measurable:

(a) sup fy,

neN
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(b) inf f,,

(¢) limsup f,, and

n—oo

(d) liminf f,.

Proof. See [18]. ®
Just in case you should have forgotten, the definition of lim sup (limit superior)

and liminf (limit inferior) are as follows.

Definition 6.2.9 Let (x,) be a sequence of real numbers. Then

limsup z,, = inf {sup l‘k} (6.10)
n—o0 neN | g>n
and
liminf z,, = sup {inf xk} (6.11)
n—00 neN | k>n

In words, if limsup z, = M then x, eventually stops ever going above M, and
M s the smallest number with this property. Note that, by the least upper bound
property of R, every bounded sequence of real numbers has alimsup and a lim inf,
and when they are equal, the sequence is convergent with a limit equal to the

common value.

Also, we have the following very useful fact.

Theorem 6.2.2 Let (X, F) be a measurable space. Let g be an F—measurable
function on X, and let f : R — R be a Borel function. Then the composite

mapping h = f o g is F—measurable.
Proof Ezxercise.

Measurability is a rather abstract concept, but there is a way of making it

concrete in an illustrative class of cases.
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Definition 6.2.10 Let X be a set and letP ={P;},_, be a finite family of subsets

of X. Then P is called o finite partition of X if
1. PN P, =@ whenever j # k and
2. U P.=X.
k=1

Theorem 6.2.3 Let X be a set and let P ={Py},_, be a finite partition of X.
Let F = o (P) be the o-algebra generated by P. Let f be a real-valued function on

X. Then f is F-measurable iff it vs constant on each Py, i.e. if there are numbers

fr; k=1,2,....,n such that f () = fi for each x € Ax; k=1,2,...,n.
Proof Fzxercise.

Although, ‘usually’, o-algebras are not generated by partitions, it is very
helpful to think of them as having been so generated, since this makes both the

notion of a o-algebra and that of measurability easier to grasp intuitively.

Definition 6.2.11 (indicator function) Let (X, F) be a measurable space and

let A€ F. Then the function I, is defined via

1 ifeeA
Iy (z) = (6.12)

0 otherwise

Remark 6.2.3 Sometimes an indicator function I5 s called a characteristic

function and is denoted by x , or Ka.

Definition 6.2.12 Let (X, F) be a measurable space, and let ¢ : X — R be a
real-valued function on X. Then ¢ is called F-simple if it 1s F-measurable and
its range is a finite set. It follows that an F-simple function can be represented

as

p(@) =Y pila, (2) (6.13)
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where ¢, k = 1,2,....n are real numbers and the sets Ay are F-measurable.
Note that the sum on the right hand side has finitely many terms. Sometimes the
o—algebra F will be taken as understood, and we will talk (simply!) about simple

functions.

Definition 6.2.13 Let (X, F, u) be a measure space and let ¢ be a simple func-

tion with the representation

o)=Y gla, (2) (6.14)

Then, rather naturally,

/w(r) dp (z) = /soduz > o (A) (6.15)

X X
and it is not too hard to establish that this definition is independent of the precise
representation of ¢ (which unfortunately isn’t unique). Recall that the Ay are
measurable by definition, and that this is essential for the definition of the integral

of a simple function to make sense.

Having defined the integral of a simple function, we now generalize in three
steps. First, in order to state a theorem relating integrability and measurability,
we define the integral for a bounded function on a finite measure space. Then we
define the integral of a measurable non-negative function. Finally, we define the

integral of an arbitrary integrable function.

Definition 6.2.14 Let (X, F, ) be a finite measure space and let f be a bounded

real-valued function. Define

L= inf /gpdu (6.16)

@ simple
p2f X
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and

L= sup /gpdu (6.17)

@ simple
e<f X

If L =L =L then f is said to be Lebesgue integrable on (X, F, ) and
/ Fdu = L. (6.18)
X

We now want to know what functions are Lebesgue integrable and the reader

may already suspect what the answer is.

Theorem 6.2.4 Let (X, F, ) be a finite measure space and let f be a bounded

real-valued function. Then f is Lebesque integrable iff it is F-measurable.
Proof See [40].

The idea of the proof is that F-measurable functions, and only F-measurable
functions, can be arbitrarily well approximated by F-simple functions. This idea

will be reiterated in a slightly different context below.

Example 6.2.1 (a non-measurable function) Let X = [0, 1],let

F={[0,1],2,[0,1],(3, 1]}, and let f (z) =x. Then L =3 and L = 1.

) 4
We now define the integral of a non-negative measurable function.

Definition 6.2.15 Let (X, F,u) be a measure space and let f be a non-negative

measurable real-valued function. Then we define

/ fdu= sup / wd. (6.19)

@ simple
X e<f X

Remark 6.2.4 If the right hand side has no upper bound, we write | fdu = +occ.
X
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Remark 6.2.5 The reason for confining our attention initially to non-negative
functions is to avoid getting into trouble with functions such as f (x) = x on R
into R where the improper Riemann integral over R of f is finite but that of |f|

18 not.

We now state a very important theorem which we have already hinted at and
which we’ll find very useful later on. It motivates (again) why we confined our

attention to measurable non-negative functions in the preceding theorem.

Theorem 6.2.5 Let (X, F) be a measurable space and let f : X — R be non-
negative and F-measurable. Then, and only then, do there exist F-simple func-

tions ¢,; n =1,2,... such that
LO0<¢@ <pp<---<f
2. ¢, () — f(x) for each x € X.

Proof 1. (=) To each positive integer n and each real number y corresponds a

unique integer k =k, (y) such that k-27" <y < (k+1)-2"". Define

=" A (6.20)
n otherwise
Note that the s, are Borel functions. Now define for eachn = 1,2, ...
the functions
P =5n o0 f (6.21)
which are F-simple by Theorem (6.2.2).

2. (<) The converse is left as an exercise.
Remark 6.2.6 Note that it is possible for the convergence to be monotone. This

will be essential for the usefulness of the Monotone Convergence Theorem (see

below).
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It is now time to define the integral of signed functions. That is done as
follows. The idea is to integrate the positive and negative parts of a function
separately. The point of this, as we pointed out above, is to avoid the problematic

phenomenon of infinities cancelling out as in the case of f (z) = x on R.

Definition 6.2.16 Let f : X — R be an arbitrary real-valued function on X.

Then the positive part of f is defined via

fT(x) = max([f (x), 0] (6.22)
and the negative part of f is defined via

f~ (@) = max [~ (2) 0] (6.23)

Note that the negative part of f is a nonnegative function and that
f=fr-f (6.24)

Definition 6.2.17 Let (X, F,u) be a measure space and let f be a measurable

function such that

/ | dpt < o0 (6.25)

(Note that |f| is measurable since |f| = f* + f~ and also nonnegative so the
Lebesgue integral is defined by Definition 6.2.15.) Then f is said to be Lebesgue
integrable on (X, F,pn). We write f € LY (X, F,n) and define

[ fan= [ rrau= [ (6.26)
g ]

Finally, we want to define the integral over subsets of X. That is done in the

following way.
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Definition 6.2.18 Let (X, F,pu) be a measure space and let f be an integrable

function. Let A € F. Then

fdu = / (L f)dy (6.27)

X

B —

We now list some basic properties of the Lebesgue integral. As with the
Riemann integral, they are intimately related to the fact that the integral is a

limit of a sum.

Theorem 6.2.6 Let f,g € L' (X, F,pn) and let o, 3 be scalars. Then

1. ){ af + Bg) du—oszdu+ﬂfgdu,

2. f<g = [fdu< [gdu, and
X X

‘Sf!f\du-
X

Proof See [17].

6.3 The Monotone Convergence Theorem

6.3.1 Motivation

Many theorems are easy to prove if the functions involved are indicator functions,
and by the linearity of the integral, they also hold for simple functions. The next
step is to show that the theorem holds for arbitrary non-negative measurable func-
tions, and this is done by invoking the Monotone Convergence Theorem (MCT).
The final step, which proves the theorem for arbitrary integrable functions, proves
it for f* and f~ separately by invoking the MCT and then adds up. So the only

hard part is taken care of by the MCT; the rest is trivial. Having motivated it,
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we now present the Monotone Convergence Theorem, which is the centerpiece of

Lebesgue’s achievement.

6.3.2 The theorem

Theorem 6.3.1 Let (X, F, ) be a measurable space and let (f,,) be a sequence
of non-negative measurable functions such that 0 < f; < fo < ---f, < .-+ and

fu(x) — f(x) for allz € X. Then

[ fdn=tim [ fuda (6:29)
X

X

Proof See [17].

This is by far the most important convergence theorem. Others include the

dominated convergence theorem and Fatou’s lemma. See, for example, [24].

6.4 Integrating on R

Although we have stressed that X can be virtually any set, the case X = R is
an important special case. Preferably we would like to show that the Lebesgue
integral of f on [a,b] C R is the same as the (proper) Riemann integral on [a, b]
whenever f is Riemann integrable, and that turns out to be possible.

First, however, we need a measure m on R which is a generalization of the

length of an interval. Ideally, we would like it to have the following properties.

1. m is defined for every A € 28,

2. m is translation invariant, i.e. if a is a real number, A C R and B =

{r+a€eR:z¢e A}, then m(A) =m(B),

3. m is countably additive, and
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4. when I is an interval, m (I) is its length.

(Translation invariance looks abstract, but what it means is that the measure
of a set should not change if the set is merely shifted by a.)

Unfortunately, there is no such measure (if we accept the axiom of choice,
see [18].) So we will drop requirement (1), and define a measure m on as many
subsets of R as we can. This can be done in several ways, but the following seems

to me to be the most intuitive one (if not perhaps technically the most elegant).

6.4.1 Lebesgue measure

To make things simple, let’s try to measure the subsets of the bounded interval
[0, 1]. We begin with the open intervals. They are easy to measure; their measure
is just their length. Then take the open sets. Fortunately, (see [18]) every open set
is the countable union of disjoint open intervals. So we use countable additivity to
measure all the open sets. For the closed sets F' C [0, 1], we set m (F) = 1—m (F*)

where F is open by definition. For an arbitrary set A C [0, 1], put

m(A) = Oéréa m(0), (6.29)
open

and

m(A)= sup m(F). (6.30)
F/(X‘%)f(;(l

Whenever m (A) = m (A) = m (A) we declare A to be Lebesgue measurable,
and define its measure to be m (A).

We now want to know whether the family of Lebesgue measurable sets is
suitable as the domain of a measure (is it a o-algebra?) and what relation, if any,
it has to the family of Borel sets (are they the same?). We also want to know
whether the function we have defined is a measure (is it countably additive?).

We have the following results.
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Theorem 6.4.1 The family L ([0,1]) of Lebesgue measurable subsets of [0, 1] is
a o—algebra. Moreover, every Borel set is Lebesque measurable, i.e. B ([0,1]) C
L ([0,1]). Also, for any Lebesque measurable set A that is not Borel measurable,

we have m(A) = 0. Finally, the function m is a (positive) measure on both

B ([0,1]) and L ([0, 1]).
Proof See [30].

It is possible to extend m from B ([0,1]) to B (R) in a unique reasonable way
(see [30]) and for our purposes that will suffice as the definition of the Lebesgue

measure 1.

Example 6.4.1 Consider the set of rational numbers Q. Since Q s countable,
it is the countable union of intervals of the form [qx, qx] and hence of length zero.

By the countable additivity of m, we have m (Q) = > m([qx, qx]) = > 0 = 0.
k=1 k=1

Consequently Q and hence Iy is Borel measurable, and / Igpdm = 0.

R

We now want to reassure ourselves that the object we’ve just constructed is
the same as the Riemann integral whenever the latter exists. To our lasting relief,

we have the following result.

Theorem 6.4.2 Let a,b be real numbers and let f be Riemann integrable (and

hence bounded) on [a,b]. Then f € L ([a,b],B ([a,b]),m) and

/ fdm = /b f (@) da (6.31)

[a,b]
where the left hand side is a Lebesgue integral and the right hand side is a Riemann

integral.

Proof. See [40]. W
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Idea of proof. The upper and lower Riemann sums approximate f by step func-
tions. But every step function is also a simple function, so R < L < L < R.

Hence when R = R we also have L = L.

Remark 6.4.1 [t may happen that the improper Riemann integral exists but the
Lebesgue integral does not. An example is f (x) = x on R. However, so long as
|f| is both Lebesgue and improperly Riemann integrable on R, the two integrals

are the same.

b
Remark 6.4.2 Henceforth, the notation [ f (x) dx will be used to mean the Lebesgue

integral of f over [a,b] with respect to m.

Equipped with the Lebesgue apparatus, it is possible to prove (although we
won’t) that the Riemann integrable functions are precisely those which are such
that the set of points of discontinuity has Lebesgue measure zero. So one (sloppy)
way to think about our results so far is that the Riemann integrable functions
are the nearly continuous ones, and the Lebesgue integrable functions are the
slightly less nearly continuous ones, where ‘slightly less nearly continuous’ means
measurable. To see how measurability is really a generalization of continuity,
recall that the inverse image of an open set under a continuous function is again
an open set. Similarly, the inverse image of a Borel set under a Borel function is
again a Borel set.

Mathematicians often stress that the step from Riemann to Lebesgue integra-
tion is a process of closure, i.e. of ‘filling in the holes’ in a certain sense. The

following theorem substantiates that claim.

Theorem 6.4.3 Let R ([a,b]) be the space of Riemann integrable functions f on
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la, b] with the norm b

11 = [ 17 @] da (6:32)
Then L' ([a,b], B ([a,b]) ,m) is the cltom’e of R ([a,b]).
Proof See [{1].

We now know that the Riemann integrable functions are also Lebesgue in-
tegrable. This implies, for example, that the bounded continuous functions
f : R — R are Lebesgue integrable on ([a, b, B ([a,b]) ,m) . More generally, The-
orem 6.2.4 tells us that the bounded Borel functions are Lebesgue integrable on

this space.

Exercise 6.4.1 Show that every continuous function f : R — R is Borel mea-
surable. Hint: Use that the inverse image of every open set under a continuous

mapping is open.

6.5 The L? spaces

Here the idea is to define interesting metric, Banach and Hilbert spaces of func-
tions, taking advantage of the fact that (given suitable norms) spaces of Lebesgue

integrable functions are complete.

Definition 6.5.1 Let (X, F, u) be a measure space and let p be a positive integer
or the number +00. For p < oo, LP (X, F, ) is the space of measurable functions

f such that
/ FPdp < o (6.33)
X

with the norm
1/p

11, = / £ dp (6.34)
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For p = oo, we require for f € L>(X,F,un) that there is a number M such
that|f| < M almost everywhere (1), and define || f||., to be the smallest such

number. Formally, we write

1Flo = inf {If1 <M ace. ()} (6.35)

and call || ||, the essential supremum of f.

Remark 6.5.1 For this to make sense, we need to confirm that the functions

|l really are norms, and that is actually hard work. But it can be done. See
[18].

We now have the following theorems, which establish the usefulness of the

Lebesgue integral for functional analysis.

Theorem 6.5.1 Let (X, F, 1) be a measure space and let p be a positive integer
or the number +0o. Suppose also that we regard two functions f and g as the
same if f = g a.e. Now associate the space LP (X, F, ) with the natural addition
and scalar multiplication operations, i.e. define (f + g)(z) = f(z) + g(z) and
(af)(z) = af (x). Then LP (X, F,pn) is a Banach (and hence also a complete

metric) space.
Proof. See [18]. 1

Remark 6.5.2 The bit about identifying functions which are equal a.e. is to
guarantee that the metric A (f,qg) = ||f — g|| satisfies the aziom A(f,g) = 0 iff
f = g. Note that whenever applying a metric, Banach or Hilbert space theorem
which guarantees a unique element which satisfies some set of conditions to the LP
spaces, it will mean that if f, g are two elements which both satisfy the conditions,

then f = g a.e.

2 A formal way of dealing with this problem is to say that the elements of £P are not
functions but equivalence classes of functions under the equivalence relation a.e.-equality. See



Chapter 7

Probability

7.1 Introduction

This chapter provides the basic definitions in probability theory without contain-
ing much in the way of applications or concrete results. In particular, we won’t
talk about concrete probability distributions such as the normal or Poisson dis-
tribution; nor do I prove or even state any laws of large numbers or central limit
theorems. For all of that, see the books in the bibliography (and many of the
other courses on the graduate program).

Nevertheless, the material in this chapter does provide a very powerful toolbox
which, once grasped, can be applied with a very small effort /payoff ratio. See, for
example, sections 9.2.8 and 10.3.9. In any case, it gives the necessary conceptual

foundations for any further study of probability theory.

7.2 Probability spaces and random variables

Probability theory begins with a measure space (2, F, P) where Q is a set of

points called outcomes (denoted generically by w), F is a o—algebra of subsets

93
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of Q called events, and P is a (positive) measure which assigns probabilities to

the events in F. We will say that an event A € F occurs if w € A.

Definition 7.2.1 A probability space is a measure space (2, F, P) with P () =
1. A measure P with this property is called a probability measure. If something

is true a.e. (P), we often say that it holds a.s. (almost surely).

Scientists are fond of thinking of a probability space as describing an experi-
mental situation, but we can think of it more broadly as capturing a situation of

uncertainty:.

Definition 7.2.2 A stochastic variable (random variable) on a probability space

(Q, F, P) is an F-measurable mapping X : 2 — R.

We may interpret this (informally) as the (unknown) outcome w giving rise

to the (observed) value X (w).

Definition 7.2.3 The (unconditional) expectation of a random variable X is de-

fined via

E[X] = / X (w)dP (w). (7.1)

Definition 7.2.4 A random variable is said to be integrable if E[|X|] < oo
and square integrable if E UX\Q] < oo. We write X € L*(Q,F,P) and X €

L*(Q, F, P), respectively.

Definition 7.2.5 Let X be square integrable. Then its variance is defined via
VIX] = E[(X - B[X])]. (7.2)

Remark 7.2.1 If X is complex-valued, the formula is

VIX]=E[X - EX][]. (7.3)
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Definition 7.2.6 Let X and Y be square integrable. Then their covariance is

defined via

Cov[X,Y]=E[(XY - E[XY))?]. (7.4)

Definition 7.2.7 Let X be a vector of stochastic variables. Then its covariance

matriz is defined via
VIX|=E|(X-E[X])(X-E[X])"]|. (7.5)

Remark 7.2.2 If the elements of X are complex valued, the ordinary transpose

T is replaced by the Hermitian transpose H .

Definition 7.2.8 The distribution measure of the random variable X is the mea-

sure py defined on B (R) via py (B) = P (X! (B)).

Remark 7.2.3 Instead of X~ (B) we often write {X € B}. In both cases we
mean the set {w € Q: X (w) € B}.

Proposition 7.2.1 The function Fx : R — R, defined via

Fx (z) = px (=00, 2]) (7.6)

is a distribution function and is called the distribution function of the random

variable X.
Proof. See [31]. 1

Remark 7.2.4 While there is a one-one relation between distribution measures
and distribution functions, there is a many-one relation between random variables

and distribution functions.
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Happily, what you thought you knew about the unconditional expectation
(and how to calculate it in concrete instances) remains correct. More precisely,

we have

E[X] = / wdjiy = / vdFx () (7.7)

where the second equality is simply the definition of the Lebesgue-Stieltjes inte-

gral.

If uy < m where m is the Lebesgue measure, then the Radon-Nikodym
theorem guarantees the existence of an a.e. (m) unique density function fx :

R — R, such that

B[X] = / ofx (2) de. (7.8)

A necessary and sufficient condition for uy < m is that Fx is absolutely
continuous (for a definition of absolute continuity for functions, see [18]). Then
fx = F% (which is defined almost everywhere since F'y is monotone). A sufficient

condition is that F'y is differentiable everywhere.

A nice example, taken from [24] which shows that this abstract apparatus is

really capable of delivering concrete results, is the following.

Proposition 7.2.2 Let X be a non-negative stochastic variable. Define{X >t} =
{weQ: X (w)>t}. Then

B[X] = / PUX > t})dt. (7.9)
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Proof. By using Fubini’s theorem, we get

X(w)
E[X]:S{X(w)dP(w):S{ L!lwlt dP (w) =
= [ [ o] aP ) = T tixsnap )] a - (710)

— {Fubini!} = [ P({X > t}) dt.

|
Another example is a general version of Chebyshev’s inequality, which has an

extremely simple proof in this abstract setting.

Proposition 7.2.3 Let X be a non-negative stochastic variable and letp : R — R,
be a non-decreasing with function (with ¢ (x) > 0 whenever x > 0) such that

¢ (X) is integrable. Then, for each e > 0,

PUX @) 2 ) < —=Flp(X)]. (7.11)
Proof.
Blo(l=[¢(X@)dP> [ p(X ()P
(7.12)
> I e@dP=p@ PX () 2 e
|

Corollary 7.2.1 Let X be a square integrable random variable with expected

value p. Then

1
=]

PUX @ —pl 2D < 5EIX Pl =5VIX.  (113)
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7.3 Information and o-algebras

When considering o-algebras G C F one may interpret G as the amount of avail-
able information. Intuitively, if our information is given by G, we can distinguish
between the events in G in the sense that for any event G € G we know with
perfect certainty whether or not it has occurred. Given this, it makes sense to
say that if G C H, then H contains no less information than G. Also, it is
tempting to say that G = o {singletons} corresponds to full information since it
should enable us to tell exactly what w has been drawn. But this turns out to
be an awkward way of defining full information in general (see Exercise 7.5.6)
although admittedly it makes perfect sense when €2 is a finite set. Instead, we
will define full information as G = F, since then our information enables us to
forecast perfectly the realized value of every random variable. Finally, we will
say that G ={Q, @} (the trivial o-algebra) corresponds to no information.

Alternatively, we might follow [24] in telling the following story. Suppose our
o-algebra G is generated by a finite partition PP.

(i) Someone (Tyche, the norns, Gustaf Lindencrona, or whoever it is) chooses
an outcome w € ) without telling us which. (On a computer, you can ‘play norn’
by setting the seed for the random number generator.)

(ii) While we don’t know which w € € has been chosen, we are, however, told
(by an oracle, Hugin & Munin, or Doktorandmeddelandet or whatever) in which
component P, € P w lies. In practice, this could be arranged by allowing us to

observe a stochastic variable defined via

X (w) =) klp, (w). (7.14)

To flesh this out a little bit more, you may want to think that getting ‘more

information’ in this context would correspond to having a ‘finer’ partition, where
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a partition Q finer than P arises from chopping up the components of P. It
follows, of course, that o (P) C o (Q), which was our original (and more general)
definition of ‘more information’.

In any case, notice that the axioms that characterize a o —algebra accord well
with our intuitions about information. Obviously, we should know whether 2,
since it always occurs by definition. Also, if we know whether A, we should
know whether not-A too. Similarly, if we know whether A and whether B, we
should know whether A U B. Countable unions are perhaps a little trickier to
motivate intuitively; they are there essentially for technical reasons. In particular,
they allow us to prove various limit theorems which are part of the point of the
Lebesgue theory.

In economic modelling, it is plausible to allow decisions to depend only upon
the available information. Mathematically, this means that if the agent’s infor-
mation is given by G, then her decision must be a G-measurable random variable.
The interpretation of this is that the information in G suffices to give us perfect
knowledge of the decision. Thus when it is time for the agent to act, she knows
precisely what to do.

At this stage it is worth thinking about what it means for a stochastic variable
X to be G-measurable. Intuitively, it means that the information in G suffices in
order to know the value X (w). To make this more concrete, suppose that G is
generated by a partition P. Then for X to be G-measurable, X has to be constant
on each element P, € P. It follows that knowing which element Py has occurred
is enough to be able to tell what the value of X (w) must be.

As a further illustration of the fact that o-algebras do a good job in modelling

information, we have the following result.

Definition 7.3.1 Let {X,,a € I} be a family of random variables. Then the
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o-algebra generated by { X,,a € I}, denoted by o {X,,a € I} is the smallest o-

algebra G such that all the random variables in { X, € I} are G-measurable.

Remark 7.3.1 Such a o-algebra exists by Proposition 6.2.3. (Recall the proof:
consider the intersection of all o-algebras on Q such that {X,,« € I} are mea-

surable.)

Proposition 7.3.1 Let X ={X; Xs,..., X,,} be a finite set of random variables.
Let Z be a random variable. Then Z is o {X}-measurable iff there exists a Borel

measurable function f : R™ — R such that, for all w € €,

Proof. The case when o {X} is generated by a finite partition (i.e. when the
mapping 7" : Q@ — R” defined via T' (w) = (X1 Xy, ..., X,,) is F-simple) is not too

hard and is left as an exercise. For the general case, see [31]. W

7.3.1 Filtrations

It is often useful to let the available information change as time goes by. This is

done formally by introducing a filtration.

Definition 7.3.2 A filtration in discrete time is a nondecreasing sequence of o-
algebras, i.e. a sequence of o-algebras (F;) such that s <t = Fs C F;. Note that

this rules out forgetting by definition.

Definition 7.3.3 Let F be a o-algebra and let (F;) be a filtration such that F; C
F for each t. Then (F;) is called a filtration of F.

Definition 7.3.4 The o-algebra Foo = \/ Fy is called the tail o-algebra of (F;) .
t=0
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7.4 The conditional expectation

We now want to define the conditional expectation. The idea will be to capture
formally the intuitive idea that the conditional expectation of the random variable
X is our best guess of the realized value X (w) given the information we have

available.

Definition 7.4.1 Let G C F be a o-algebra and let X € L? (0, F, P). Then the

conditional expectation Y = E[X|G] is the projection of X onto L* (Q,G, P).

Remark 7.4.1 By the Hilbert space projection theorem, the conditional expecta-
tion solves

Y= min FE[X-2). (7.16)

ZeL?(Q,G6,P)
Remark 7.4.2 The conditional expectation is itself a random variable. Its value
s uncertain because it depends on precisely which events G € G actually occur.
In other words, it is a (contingent) forecasting rule whose output (the forecast)
depends on the content of the information revealed. For example, suppose our
information set is such that we know whether the president has been shot. Then

our actions may depend on whether he is or is not shot.!

The projection-based definition is intuitively the most appealing one, but
unfortunately it only applies to square integrable stochastic variables. One way
to extend the definition to merely integrable stochastic variables is to note that
L? is dense in £! and define E [X|G] as the limit of the sequence (E [X,,|G]) where

X, € L% and X,, — X (in £'). Another way is the following.

1A real-life example of a forecasting rule is ‘A red morning is a sailor’s warning - a red night
is a sailors delight’. Note that the output of this rule, the forecast, is random since it depends
on whether the morning is red or not and whether the night is red or not. Nevertheless, this
example is problematic since if both the morning and the evening are red, then we have both
a warning and a delight, so that the conditional expectation is strictly speaking not a function
on the set of colors of the sky at various times into the set {warning, delight}.
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Proposition 7.4.1 Let G C F be a o-algebra and let X € L' (Q, F,P). Then

there is an a.s. (P) unique integrable random variable Z such that

1. Z 1s G-measurable and

2. [XdP = [ZdP  for each G € G.
G G

Using this result, we define E [ X|G] = Z.
Proof. The Radon-Nikodym theorem. B

Remark 7.4.3 Since the conditional expectation is only a.s. (P) unique, most of
the equations below strictly speaking need a qualifying ‘a.s. (P)’ appended to them
to be true. But since this is a bit tedious, we adopt instead the convention that
the statement X =Y means P({w € Q: X (w) =Y (w)}) = 1. If two random
variables W and Z both qualify as the conditional expectation E [X|G], then we

will sometimes call them versions of E [X|G].

This £!-based definition can be intuitively motivated independently of the
projection-based definition in the following way. On events such that we know
whether they have occurred, our best guess of X should track X perfectly.

In any case, it had better be true that our two definitions of the conditional
expectation coincide when they both apply, i.e. on £! N £? = £2. They do. You
will be asked in an exercise to prove this.

Having defined the conditional expectation with respect to a o-algebra, we
now define the conditional expectation with respect to a family of stochastic

variables.

Definition 7.4.2 Let Y € L' (Q, F, P) and let {X,,a € I} be a family of ran-
dom wvariables. Then the conditional expectation E Y| {X,,« € I}] is defined as

E[Y|o{Xs a €I}
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Since E [Y|X] is a 0 (X) —measurable random variable, there is a Borel func-
tion f such that E[Y|X] = f(X). Sometimes we use the notation f(z) =
E[Y|X = z] where the expression on the right hand side is defined by the left
hand side.

Definition 7.4.3 Let Y € L' (Q, F, P) and let X be a stochastic variable. Then
the function E[Y|X = z| is defined as any Borel function f : R — R with the
property that f (X) is a version of E'[Y|X]. Note that E [Y|X = x] is not always

uniquely defined, but that this does not matter in practice.

Having defined the conditional expectation, we now note some of its proper-

ties. Let the given probability space be (2, F,P).
Proposition 7.4.2 Let G = {Q,@}. Then E[X|G] = E[X].
Proof. Exercise. B

Proposition 7.4.3 Let X and Y be integrable random variables, let G C F be a

o-algebra and let o, B be scalars. Then
ElaX + 8Y|G] = aFE [X|G] + BE Y]] (7.17)
Proof. Exercise. B

Proposition 7.4.4 (Law of iterated expectations) Let X € L' (Q, F,P) and
let G C'H C F be o-algebras. Then
E[E[XH]|G] = E[X|]] (7.18)

Proof We check that the left hand side satisfies the conditions for being the
conditional expectation of X with respect to G. Clearly it is G-measurable.
Now let G € G and we have, since G C H and consequently G € 'H,

/E[E X|H] 5] dP:/E[XyH] dP:/XdP. (7.19)
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O

Corollary 7.4.1 Let X € LY(Q,F,P) and let G C F be a o-algebra. Then
E[E[X|G] = E[X].

Proposition 7.4.5 Let X andY be random variables such that XY is integrable.

Let G C F be a o-algebra and suppose X is G-measurable. Then

1. E[X|G] =X and

2. E[XY|G) = XE[Y|G].

Proof. (1) is trivial. To prove (2), note first that, by Theorem 6.2.1, the right
hand side is G-measurable. To show that the right hand side integrates to the

right thing, suppose X = I where G € G. Let F € G. Then

/XE[ng]dP _ /IGE[ng]dP _ /E[Y\g]dP _

F GNF

= {(GNF)eg} = /YdP = /IGYdP = (7.20)

GNF F

= /XYdP
F

To show the more general case, show it for simple functions and then use the
MCT. m

We end the discussion of the conditional expectation by defining the condi-
tional probability of an event. We then note with satisfaction that our formal
definition substantiates our claim above that if our information is given by G,

then we know, for all events G € G whether or not they have occurred.
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Definition 7.4.4 Let (2, F, P) be a probability space and letG C F be a c—algebra.

Let A € F. Then the conditional P (A|G) probability of A given G is defined via
P(AIG) = E 1,/ (7.21)

It follows from this definition (why?) that if G € G then P (A|G) = 1 when

G occurs and P (A|G) = 0 when it does not.

7.5 Stochastic independence
Definition 7.5.1 Two events A, B € F are said to be independent if
P(AnB)=P(A)P(B) (7.22)

Remark 7.5.1 Note that the concept of independence is strongly tied to the par-
ticular probability measure that we are considering. Strictly speaking, we should

say P-independent etc. rather than just independent.

The intuitive idea behind this definition of independence is that A is as likely
to happen when we know that B happens as when we don’t. This may be

formalized as (draw a picture of this!)

P(ANB) P(A)
P(B)  P(Q) (7.23)

of which (7.22) is a generalization to cover the possibility that P (B) = 0.
Definition 7.5.2 Two o-algebras G,’H C F are said to be independent if
P(GNH)=P(G)P(H) (7.24)

forallG € G and H € 'H.
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Remark 7.5.2 Note that the property of independence is not transitive. Hence
one must take care when defining independence for families of sets or o—algebras

with more than two members. See [30] for the conventional definition.

Definition 7.5.3 Two random variables X and Y are said to be independent if

c{X} and o {Y'} are independent.

Proposition 7.5.1 Let X and Y be independent square integrable random vari-
ables. Then
EXY|=FE[X]E]Y]. (7.25)

Proof. The first part of the proof is to show the result for indicator functions.

Solet Ac o{X}and B=o0c{Y}. Then

Blidy] = Bllng = / LingdP = P(ANB) =

! (7.26)

= P(A)P(B) = E[l]E[ls]

The next step is, as usual, to use the linearity of the integral to show the result
for simple functions. The proof is then finished by invoking the MCT to show
the general result. B

We end this chapter with a result that states that if a o-algebra G is inde-
pendent of the o-algebra generated by a random variable X, then G is useless in

forecasting X.

Proposition 7.5.2 Let X be an integrable random variable and let G C F be a

o-algebra which is independent of o (X). Then

E[X|G] = E[X]. (7.27)
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Proof. Exercise. R

Just as for the expected value, there is a Jensen’s inequality.

Proposition 7.5.3 Suppose f : R — R is convex, and suppose X, f (X) € L} (Q, F, P).

Let G C F be a o-algebra. Then, for P—almost all w,
FEX|G](W) < Elf (X)]G](w). (7.28)
Proof. See [34]. 1

Exercise 7.5.1 What class of random wvariables are measurable with respect to

the trivial o-algebra {Q, @} ¢

Exercise 7.5.2 Show that the Radon-Nikodym theorem guarantees the existence

of the conditional expectation of an integrable random variable.

Exercise 7.5.3 Show that the two definitions of the conditional expectation agree
on L2. Hints: There are (at least) two ways of doing this. The first way shows that
the expectation error arising from the L*-based definition is orthogonal to what it’s
supposed to be orthogonal to. The second way shows that the L'-based conditional
expectation really solves the projection problem. This is done by ‘completing the

square’.

Exercise 7.5.4 Show that, on a finite measure space, L* C L. Hint: On finite

measure spaces, the constants are integrable.

Exercise 7.5.5 Show that, on a finite measure space, L is dense in L', i.e. for
each X € L' there is a sequence of stochastic variables (X,,) such that X,, € L*
and || X,, — X||; — 0. Hints: Note that bounded functions on finite measure spaces

are square integrable. Then use the MCT.
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Exercise 7.5.6 Consider the probability space ([0,1],8([0,1]), m). Let X be an

arbitrary integrable random variable. Show that
E [X|o {singletons}]| = E[X]. (7.29)

so that, far from giving full information, G = o {singletons} in a sense is as bad

as no information at all.

Exercise 7.5.7 (This exercise confirms that our definition of the conditional ex-
pectation agrees with the one given in elementary treatments whenever the latter
applies.) Let (2, F, P) be a probability space and let G C F be generated by the
finite partition S ={S1, Sa, ..., Sp} . Suppose P (Sg) >0 for all k =1,2,...,n. Let
B € F. Show that

Z Ig ——2 2 S’“ i B) (7.30)

qualifies as the conditional probability E [I B\Q].

Exercise 7.5.8 Prove all the propositions in this section where no reference to

a proof is given.

7.6 Stochastic processes in discrete time

A stochastic process in discrete time is a sequence of random variables. More

formally, we have the following definition.

Definition 7.6.1 Let (2, F, P) be a probability space. Let 7. be the set of non-
negative integers. A stochastic process in discrete time is a mapping X : Z, x2 —
R such that for each t € Z,, the mapping X (t,-) — R is a random variable (and

hence F—measurable). Instead of X (t,w) we sometimes write X; (w) or just X;.
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Definition 7.6.2 Let X be a stochastic process. Holding w € ) fixed, the map-

ping X (,w) : Zy — R is called a trajectory or sample path of X.

It is of course easy to extend this definition to the vector case; a vector sto-

chastic process is just a vector of scalar stochastic processes.

7.6.1 Adapted processes

Definition 7.6.3 Let (2, F, P) be a probability space and let F = (F;),-, be a
filtration of F. Let X be a stochastic process on (2, F, P). Then X is said to be

adapted to F (or F-adapted) if, for each t, X; is F;—measurable.

Since adapted processes are so useful, it is nice to know that we can always
construct a filtration such that any given stochastic process X is adapted to
it. The idea is to let the filtration contain all the information revealed by the

stochastic process so far.

Proposition 7.6.1 Let (Q, F, P) be a probability space and let X be a stochastic

process. Define a sequence of o-algebras via
Fe=0({Xs:5<t}). (7.31)
Then (F;) is a filtration of F and X is adapted to it.

Proof. Obvious except to show that F, C F. [Look into this in more detail.]
The extension to the vector case is trivial: just require each element to be

adapted.

7.6.2 Markov processes

The idea of a Markov process is to capture the idea of a short-memory stochastic

process: once its current state is known, past history is irrelevant from the point
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of view of predicting its future.

Definition 7.6.4 Let (2, F) be a measurable space and let (P, F) be, respectively,
a probability measure on and a filtration of this space. Let X be a stochastic

process in discrete time on (2, F). Then X is called a (P, F)-Markov process if
1. X is F—adapted, and
2. For eacht € Z, and each Borel set B C B (R)
P (X1 € B|F;) = P(X41 € Blo (Xy)). (7.32)

Sometimes when the probability measure and filtration are understood, we

will talk simply of a Markov process.

Remark 7.6.1 Often (see, for example, [30]) the filtration F is taken to be that

generated by the process X itself.

Proposition 7.6.2 Let (0, F, P, F) be a filtered probability space and let X be
a (P, F)-Markov process. Lett,k € Z. Let f : R — R be a Borel function such

that f (X¢ix) is integrable. Then,
Ef (Xeww) |7 = Ef (Xer) o (X0)] (7.33)
and hence there is a Borel function g : Z. X Z, x R — R such that, for each t,
E[f (Xewn) | F] =gtk X0). (7.34)

Proof. To show it for & = 1, use that f(X;11) is a 0 (X;;+1) —measurable
random variable and hence is the limit of a monotone increasing sequence of
0 (Xt41) —simple random variables. But such random variables are linear combi-

nations of indicator functions of sets thrll (B) with B a Borel set. This completes
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the proof for k = 1. To prove it for arbitrary positive k, use induction. To prove
it for k 4+ 1 assuming it true for k, use the law of iterated expectations. B

The vector case is a simple extension of the scalar case. However, it is impor-
tant that the definition of a vector Markov process is not that each component
is Markov. Instead, we require that all the relevant (for the future of X) bits of
information in F; are in the c—algebra generated by all the stochastic variables
in Xy, i.e. 0(X}) is defined as the single c—algebra o ({ X1, Xa¢, ..., Xpns}). This

means that, for each Borel function f : R* — R™,

Ef (Xeyr) [F] = E[f (Xeyr) lo (X)) (7.35)

and hence that there is a Borel function g : Z, x R”— R™ such that, for each t,
Ef (Xe) | Fe] =g (t, X2). (7.36)

(The case k = 1 is so important that we stress it here by ignoring greater values

of k.)

7.6.2.1 Transition probability function and time homogeneity

Definition 7.6.5 Let (0, F, P, F) be a filtered probability space and let X be
a (P, F)-Markov process. Then, for each t = 0,1,2... its transition probability
function @y : RxB (R) — [0, 1] is defined via

Qi (z,B) = P (X, € B|X;-1 =1). (7.37)

Note that any Markov process has a sequence of probability transition functions.
Note also that for each fized t and x, Qi1 (x,-) is a probability measure on
B (R). Meanwhile, if we fix B, Qi1 (X:(+),B) is a random variable. Indeed,
it is the conditional probability of X;11 € B given Xy, i.e. Qu1(Xy, B) =

E [IX;11(B)‘ o (Xt)] . Moreover, the conditional expectation of any o (X;y1)-measurable
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random variable (given X;) is an integral with respect to the measure Q41 in the

following sense.

Proposition 7.6.3 Let (0, F, P, F) be a filtered probability space and let X be
a (P, F)-Markov process. Let (Q;) be its transition probability functions and let
Z € LY(Q,0(Xi41),P). Then, for eacht =0,1,...

EZ)X:] = /f (y) Quy1 (X3, dy) (7.38)
R
or, put differently, we have for eacht = 0,1, ... and each ,
B(21X =)= [ £(5) Qe (a.). (7.39)
R

Proof. We will show it first for an indicator variable Z = I XL (A) where A €
B(R). Then f(y) = I4(y). We now need to show that the random variable

/ f(y) Qi1 (X3, dy) qualifies as the conditional expectation F [Z]X;]. Clearly
R

it is o (X;) —measurable. But does it integrate to the right thing? Well, let
G € o (X;) and recall that, by definition, Q41 (X¢, A) = F (Ithll(A)|a(Xt)> :

Hence

[ [ 1@ Qe (Xudy) Pdo) = [ [ 1) Quon (Xed) P o) =

— [ Qe () Pldo) = [ B (Typnlo (X0) Pldo) = [ Iy P(d).
G G G
(7.40)
Meanwhile, since Z = I X7k (a) We obviously have

/ 2P (dw) = / Ly P (). (7.41)

G G
To show the theorem for an arbitrary Z € L' (Q,0 (X¢,1), P), use the MCT. R

We now use the transition probability function to define a time homogeneous

Markov process.
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Definition 7.6.6 Let (2, F, P, F) be a filtered probability space and let X be a
(P, F)-Markov process. Let (Qq),, be its transition probability functions. If there
1s a Q such that Q; = @Q for allt = 1,2, ... then X is called a time homogeneous

Markov process.

Proposition 7.6.4 Let (0, F, P, F) be a filtered probability space and let X be a
time homogeneous (P, F)-Markov process. For any nonnegative integers k,t, let
Yiow € LY(Q,0 (Xyyx), P). Then for each k = 0,1, ... there is a Borel function

gr : R — R such that, for eacht =0,1, ...
E Ykl Fi] = g (Xe) - (7.42)
In particular, there is a Borel function h such that, for eacht = 0,1, ...

EYi|F] =h(X). (7.43)

7.6.2.2 Markov chains

7.6.3 Processes bounded in £2

Sometimes we want to consider abstract spaces of stochastic processes, and then
it is useful to have a norm for them. Let’s begin with a piece of notation. Let
x :Zy x 0 — R" be a vector-valued stochastic process. We write x (¢,w) = z;.

One attractive norm for a vector-valued stochastic process x is

|x|| = limsup E [||x]|] (7.44)

t—oo

and the corresponding metric is of course

pxy)=Ilx-yl- (7.45)

For this norm and metric to be well-defined, two conditions suffice. First, all

the components of z; are square integrable random variables for each ¢. (If this
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condition alone is satisfied, we call x a square integrable process.) Second, there
is an M such that E [||z;||] < M for all t = 0,1, ... If both these conditions are

satisfied, limsup F [||z;]|] < oo and we call x a process bounded in L.

t—o0

Theorem 7.6.1 The space of processes bounded in L? is a Banach space.

7.6.4 Martingales

Definition 7.6.7 Let (2, F, P,F) be a filtered probability space and let X be a

stochastic process. Then X is called a (P, F )-martingale if

1. X 1is adapted to F,
2. E[|Xy]] < oo for eacht =0,1, ...

3. E[Xi1|F) = X for eacht =0,1, ...

When the probability measure P and filtration F are understood, we will

talk simply of a martingale.

Remark 7.6.2 You should think carefully about how the notion of a martingale
is dependent on the particular choice of probability measure and filtration. In par-
ticular, note that the expectations operator E represents integration with respect

to the probability measure P.

7.6.4.1 Martingale differences

Definition 7.6.8 Let (2, F, P, F) be a filtered probability space and let X be a

martingale. Define the stochastic process € via
Et = Xt — thl' (746)

Then € is called a (P, F)-martingale difference or white noise process.
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Proposition 7.6.5 Let (2, F, P, F) be a filtered probability space and let € be a

(P, F)-martingale difference. Then, for allt =0,1...
E [5t+1|ft] =0. (747)
Corollary 2 For all Z € L' (Q, F;, P), we have

E[Zeip1] = 0. (7.48)

7.6.5 Stochastic integration in discrete time

Definition 7.6.9 A process is said to be predictable if

Predictable processes. Semimartingales. Super- and submartingales.

7.6.5.1 The martingale convergence theorem



Chapter 8

Some linear algebra

8.1 Introduction

The purpose of this chapter is to present those parts of linear algebra that are
essential for the analysis of dynamic systems. It will take many basic concepts
in linear algebra for granted. If you paid attention during Mathematics 1, you
have little to worry about, but to refresh your memory you may occasionally
want to refer to an introductory text on linear algebra. An excellent choice is
[20]. (Actually, if you remember every word of [20], including the Schur form of
a matrix, you can skip to section 8.5 right away.)

Since this chapter is full of eigenvalues which may easily be complex, all matri-
ces here will be matrices of complex numbers (unless I explicitly state otherwise).
Moreover, all matrices in this chapter will be n X n and consequently square.

Sometimes we will write A € C"*" and the meaning of that is obvious.

8.2 Four important theorems

Proposition 8.2.1 Let A € C™*" be a square matrix. Then its determinant is

121
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the product of the eigenvalues and its trace (the sum of the diagonal elements) is

the sum of the eigenvalues.

Remark 8.2.1 It is not claimed that the diagonal elements actually are the

ergenvalues.

Proof. By definition, the eigenvalues are the zeros of a polynomial. By the fun-
damental theorem of algebra, this polynomial can be factorized. By the definition
of the set of eigenvalues {)\; : k = 1,2,...,n} as the zeros of this polynomial, we

have, for all complex A,
det (A — ) H (A=)

In particular, it is true for A = 0 and the first part of the proposition follows. For

the second part, see [20]. B

Corollary 8.2.1 A square matrix A is invertible iff all of its eigenvalues are

non-zero.

Proposition 8.2.2 Let A be a square matrix with real entries. Let A\ be an
eigenvalue of A. Then so is its complex conjugate X. Moreover, the correspond-
g eigenvectors are also each others’ complex conjugates. Hence the complex
eigenvalues and eigenvectors (those with a non-zero imaginary part) appear in

complex conjugate pairs.

Proof. By definition,
AN = Az, (8.1)

Now take the complex conjugate of both sides. Since A is real, it is unchanged
by this operation, so
AN =)T.

Hence ) is an eigenvector and T an associated eigenvector. B
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Proposition 8.2.3 A square symmetric matriz A with real entries is positive

(negative) definite iff all its eigenvalues are positive (negative).

Remark 8.2.2 The eigenvalues are guaranteed to be real since A is symmetric.

Proof. (=) Suppose A is positive definite, let A be an eigenvalue and let = be
the corresponding eigenvector. Then x7 Az = AzTx so ) is the ratio between two

positive numbers. (<) See [20]. H

Corollary 8.2.2 The eigenvalues of a real positive definite symmetric matriz are

all real and strictly positive.

Proposition 8.2.4 Let A be a square invertible matriz and let \ be an eigenvalue

of A. Then 1/ is an eigenvalue of A7

Proof. Exercise. R

8.3 Similarity transforms

8.3.1 Motivation

When analyzing dynamic systems (systems of differential or difference equations),
we often want to uncouple the equations so that we can solve them row by row
(scalar by scalar) rather than the whole system at once. You will see in chapter
9 exactly how this is done. In this chapter, we offer the toolbox needed to
perform this uncoupling. Algebraically, what this is all about is the factorization

(‘decomposition’) of matrices.
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8.3.2 Definitions and basic results

We have already said that we are interested in factorizing matrices. One impor-

tant class of factorizations arises from the concept of similarity.

Definition 8.3.1 Let A and B be two n x n matrices of complex numbers. If

there exists an tnvertible matriz C such that
A=CBC™, (8.2)
then A and B are said to be similar.

Remark 8.3.1 Note that, as we promised in the previous section, CBC™! is a

factorization of A.

Remark 8.3.2 The (invertible!) function that takes us from A to B is sometimes

called a similarity transform.
Proposition 8.3.1 If A and B are similar, then they have the same eigenvalues.

Proof. Let A be an eigenvalue of A. Then, for some x € C” such that = # 0,
we have Ar = Ax. Hence CBC 'z = Az and consequently BC 'z = \C 'z.
Hence y = C~ 'z is such that By = \y, and y # 6 since C~! is non-singular and
x#£0.1

Definition 8.3.2 A matriz is called lower (upper) triangular if all the elements

above (below) the main diagonal are equal to zero.

Proposition 8.3.2 The eigenvalues of a lower or upper triangular matriz are its

diagonal elements.

Proof. The formula for the determinant. See [25]. B
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Definition 8.3.3 Let A be a matriz of complex numbers. Then the Hermitian (or
conjugate) transpose of A, denoted by A, is the (elementwise) complex conjugate
of the transpose AT. In other words, to find A", first take the complex conjugate

of each element and then transpose (or vice versa).
Definition 8.3.4 A square matriz A is called unitary if AHA = AAH = 1.

Remark 8.3.3 A unitary matriz is a matriz with orthogonal columns of norm

one.

Remark 8.3.4 The inverse of a unitary matrix A is just the Hermitian transpose

A

Remark 8.3.5 A unitary matriz is the polar opposite of a singular matrix. While
attempts to invert singular and close-to-singular matrices wreak havoc with nu-
merical calculations, unitary matrices can be inverted quickly and precisely on a

computer.

To show how much fun we can have with the Hermitian transpose, we now
throw in a definition and a result which is otherwise quite unimportant for our

purposes (but hugely important in other contexts).

Definition 8.3.5 A square matriz A such that A = A" is called a Hermitian

matrix.
Proposition 8.3.3 The eigenvalues of a Hermitian matriz are real.

Proof. Let A be a Hermitian matrix, let A € C be one of its eigenvalues, and let

x € C™ an associated eigenvector. Then

Az = \x (8.3)



126 CHAPTER 8. SOME LINEAR ALGEBRA

and hence

o Ax = Mz (8.4)

Now the left hand side is a scalar, and since it is equal to its conjugate transpose
(why?), it is equal to its complex conjugate; hence it is real. Meanwhile, z/x is
real and strictly positive since x # 6. Hence ) is the ratio of a real number and
a positive real number. H

Getting back on track, we now define unitary similarity, which s important

for our purposes.

Definition 8.3.6 Two matrices A and B are said to be unitarily similar to each

other if there is a unitary matriz Q) such that
A=QBQ". (8.5)

We now come to the most important concrete examples of similarity trans-

forms.

8.3.3 The eigenvalue/eigenvector decomposition

Definition 8.3.7 A matrix A is said to be diagonalizable if it is similar to a

diagonal matriz.

Proposition 8.3.4 Ann xn matriz is diagonalizable iff it has a set of n linearly

independent eigenvectors.

Remark 8.3.6 Note that the proof is constructive, so you had better read it or

you’ll miss the main point of this subsection.

Remark 8.3.7 Figenvectors of distinct eigenvalues are linearly independent, so

A having distinct eigenvalues is sufficient to ensure that A is diagonalizable. It
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is mot however mecessary; consider for example A = I. But when eigenvalues
are repeated, care must be taken to select linearly independent eigenvalues, and

unfortunately that it is not always possible.

Proof. Let A be the diagonal matrix that results from putting the eigenvalues
of A on the main diagonal and zeros elsewhere. Now create a matrix {2 by letting
its columns be a set of eigenvectors of A, ordered by the associated eigenvalues in
the order that they appear in A. By hypothesis, these eigenvectors can be chosen

to be linearly independent, and hence (2 is invertible. Now consider the equation
AQ = QA. (8.6)

Column by column, it says
Ax; = Naxg; i=1,2,...,n (8.7)

where ); is an eigenvalue, and z; an associated eigenvector. Hence the equation

must be true, by definition! Inverting 2, we find that
A=QAQ. (8.8)

So A is similar to the diagonal matrix A, and the similarity transform is given by

Q-0 L.

Corollary 8.3.1 A and 2 can be constructed so that the eigenvalues appear in

any order along the diagonal of A.

Example 8.3.1 Sadly, however, not all matrices are diagonalizable. An example

1s the following.

A= (8.9)
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8.3.4 Schur form

So the bad news is that there exist non-diagonalizable (‘defective’) matrices. But
the good news, and this is what really matters when we want to solve dynamic
systems, is that every square matrix is (unitarily!) similar to an upper triangular
matrix. This result is known as Schur’s lemma, and the resulting factorization is

called the Schur form.

Theorem 8.3.1 (Schur’s lemma) FEvery square matriz A is unitarily similar
to an upper triangular matriz T', i.e. there exists an upper triangular matrix T

and a unitary matriz Q) such that
A=QTQ". (8.10)

Moreover, the QQ and T matrices can be constructed so that the eigenvalues of A

appear in any order along the diagonal of T
Proof. See [20] or [23]. W

Theorem 8.3.2 Fvery square matriz is unitarily similar to a lower triangular

matriz.

Remark 8.3.8 The fact that the similarity guaranteed here is unitary is im-
portant, since the inversion of a unitary matrix is a fast and precise numerical

calculation.

8.4 Symplectic matrices
Definition 8.4.1 A 2n x 2n real matriz M is said to be symplectic if

MYJM =J (8.11)
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where

J = . (8.12)

Proposition 8.4.1 If M is symplectic, then M* is similar to M~ and hence
the eigenvalues of M appear in reciprocal pairs, i.e. if X is an eigenvalue of M,

1
then so is —.

A
Proof. Exercise. i

Proposition 8.4.2 Let o be an invertible n x n real matrix and let 3 and v be

n X n real symmetric matrices. Then the 2n x 2n matriz M defined via

= | * (8.13)

ya a T +~yaf

T

T is the inverse of o

s symplectic. Note that o~

Proof. Exercise. &

8.5 Matrix pencils

8.5.1 Motivation

Singular difference equations. Consider
AZL’H_l = B%t + 2 (814)

where A is possibly singular. For details, consider [29)].
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8.5.2 Basic definitions

Definition 9 Let A and B be n x n matrices of complex numbers. Then the

function P (z) = B — zA is called a matrix pencil.

Definition 10 Let B — zA be a matriz pencil. This pencil is called regular if
there is a z € C such that |B — zA| # 0.

Definition 11 Let B — zA be a matrixz pencil. Then the set of generalized eigen-
values A (B, A) is defined via

A(B,A)={z€C:|B—z4| =0} (8.15)

8.5.3 Generalized Schur form

Theorem 12 (the complex generalized Schur form) Let B — zA be a reg-
ular matriz pencil. Then there exist unitary n X n matrices of complex numbers

Q and Z such that

1. QAZ = S is lower triangular,
2. QBZ =T 1is lower triangular,

3. For each i, s; and t; are not both zero,

/. \(B,A) = {ﬁ:sm&o},

Sii

5. The pairs (si,ti), i = 1,...,n can be arranged in any order.

Proof. See Golub & van Loan (1996). B



Chapter 9

Dynamic systems

9.1 Ordinary differential equations (ODEs)

9.1.1 The problem and existence of a solution
9.1.1.1 General case

Let f: RxR™ — R” be a function and consider the first—order system of ordinary

differential equations
i (t) = f(t,x(t))
z(ty) =a

(9.1)

where an overdot denotes a derivative with respect to ¢t. This system is said to
be of first-order, since there are first derivatives but no higher-order derivatives.
It is a system of ordinary (as opposed to partial) differential equations since only
derivatives with respect to one variable (¢) appear.

Equivalently, we might have written
t

z(t)=a+ / f(s,xz(s))ds. (9.2)
to

Proposition 9.1.1 The function x : R — R" satisfies (9.1) iff it satisfies (9.2).

131
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Proof. Fundamental theorem of calculus. B

You may want to ponder a while about the sort of equation we are considering.
It is a functional equation in the sense that a solution is an entire function rather
than just a number or even a vector.

We now ask ourselves when our system might have a unique solution. Very
loosely speaking, there seems to be hope: we have an initial position and we have
the direction we’re heading in. So if nothing strange is going on, we should be
able to figure out where we’ll be.

To show this formally, we might draw upon what we learned in chapter 5
and define a suitable space of functions in which to search for a solution, then
define an operator on that space into itself under which the solution is a fixed
point. The final step would be to take an arbitrary initial function, and apply
the operator repeatedly to construct a sequence of functions and then show that
(given certain assumptions) this sequence converges to the unique solution. We
won’t go through this program here (see, for example, [27] if you are interested).

Instead we will just give the final result.

Definition 9.1.1 A function f : RxR"™ — R" is said to be Lipschitz continuous

if there is a function M : R — R, such that, for all x,y € R,

If (tz) = F &yl < M (1) [lz =y (9.3)
Remark 9.1.1 Ifn=1 and % 18 bounded, then f is Lipschitz.

Theorem 9.1.1 (Cauchy-Picard) Suppose
1. f is Lipschitz and that

2. The M function in the Lipschitz condition can be chosen so that / M (u) du <

I
oo where I is a closed interval such that ty € 1.
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Then (9.1) has a unique solution on I.

Remark 9.1.2 A natural case to consider is I = [tg,t1]. But in fact the point tg

1s allowed to be in the interior of I or even to be the upper limit.

Corollary 9.1.1 If /M(u) du < oo for every bounded interval I, then (9.1)

I
has a unique solution defined on the whole of R.

Corollary 9.1.2 If I is a closed interval and f is Lipschitz on I x R™ with

M (t) = M (constant), then (9.1) has a unique solution on I.

Remark 9.1.3 The integrability condition is there to prevent the solution from

exploding off into infinity in finite time.

Example 9.1.1 Consider the scalar ODFE

i (t) =2 (t) (9.4)
z(ty) =a

A solution, if it exists, is either identically zero (in which case we must have

a = 0) or has the form
B 1
 —t+totat

z (t) (9.5)

so that any solution is not defined on I if to +a~! € I. However, all hope is not

1
lost for this equation. If to = 1, a = 1 then the solution x (t) = P is defined

for allt € (—o0,2).

Example 9.1.2 (taken from [27]). Consider the scalar ODE

@ (t) = 32?3 (t)

z (0) =0.
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where, to avoid complex numbers, we define z*/* as ¥/x2. Then, for any a > 0,

(t+a)® whent < —a
To(t) =14 0 when —a<t<a (9.7)

(t—a)® whent >«

is a solution. Hence our ODFE has infinitely many solutions.

9.1.1.2 Linear systems

Consider the system

(9.8)
x (to) = a.
To apply Cauchy-Picard to this, we need another definition.
Definition 9.1.2 Let A be square matriz. Then its norm is defined via
A
4 = sup 1220, (9.9
a0 ]

Remark 9.1.4 [t may of course be confirmed that this really is a norm. See [17].
We can now derive the following result from Cauchy-Picard’s theorem.

Proposition 9.1.2 If/ |A(t)]| dt < oo for each bounded interval I, then (9.8)

I

has a unique solution defined on the whole of R.

Proof. By the definition of the matrix norm, we have, for all x,y € R",
[A@)z =A@yl <A@ |z -yl (9.10)

Hence the Lipschitz condition is satisfied, and the other (integrability) condition

is satisfied by assumption. B
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Remark 9.1.5 If A(t) = A, then (9.8) has a unique solution defined on the
whole of R.

Notice that the uniqueness of the solution requires that we fix the value
x (tg) = a. One useful perspective on this is that, for a linear system, the set of
solutions (ignoring the condition z (fy) = a) is an n—dimensional vector space.
The condition z () = a then imposes n independent linear restrictions on the
space of solutions, and hence picks out a unique solution. There are of course
other ways of imposing n linear restrictions than putting x (tg) = a; we will see

other examples below.

Exercise 9.1.1 Show that the set of solutions x (t) to the system & (t) = A (t) x (t)
is a vector space, i.e. that if « is a scalar and x (t) and y (t) are solutions, then

alz(t) +y(t)] is also a solution.

9.1.2 Solving scalar equations in special cases

Very few differential equations have explicit solutions (whatever that means ex-
actly), so very often one has to resort to numerical methods (see [37] or [36]) or
settle for a qualitative characterization of the solution (see section 9.1.3). But
mere qualitative characterization is often not good enough (although it is occa-
sionally interesting), and numerical techniques may be slow and/or tedious to
implement. So before you decide to use one of them, you should be aware of at

least the following basic pencil-and-paper techniques.
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9.1.2.1 Separable

The simplest ODEs are the separable ones. The general format is the following.

(9.11)
z (ty) = a.

We will motivate the solution using a rather wild argument, and then clean up
our act by confirming that our conclusion is in fact correct in a special case. Using

Leibniz’s notation, the ODE can be written as

X ). 0.12)

Now suppose for the sake of argument that dxr and dt are numbers (which of

course they are not). Ignoring the points = = a; at which ¢ (z) = 0, we write

= f(t)dt. (9.13)

Now integrate both sides from t; to t. We get

x(t)

/ % _ ]f (s) ds. (9.14)
) to

a(to
Calculating these integrals, one can sometimes solve for z (), or at least find an
equation that implicitly defines x (¢). In addition, since we divided by g (z (t)),
we might have one of the (constant) solutions x (¢) = a; where the a; are the zeros
of g (why?). But for one of these constants to be a solution, we must of course
require that a = a; for some j. Alternatively, we might not fix the value of = at

any particular point t3. Then all these constant functions would be solutions.

Example 9.1.3 Consider

(9.15)
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Using our method, we get
dr _ /esds, (9.16)

which implies

Inz(t) =€ —e. (9.17)

Hence the solution is
z(t)=exp (e —¢),

and it is not hard to confirm (do that!) that this really is a solution to (9.15).

9.1.2.2 Linear

Consider the scalar differential equation

i(t)=a(t)z(t)+b(t) (9.18)

x (tg) given
To solve this, we use a rather ingenious trick. First reshuffle the equation so that

we have
T(t)—a(t)xz(t)=0(t) (9.19)

Then multiply each side by exp{ — / a(s)ds p . This leads to an equivalent

to
expression, since exp (z) # 0 for any (real or complex) z. The result is

(9.20)

t

d
Now we note that the left hand side is 7Py~ / a(s)ds px(t)|. Now we

to
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want to integrate both sides of the equation from ¢y to ¢t with respect to t. This
doesn’t quite make sense, but if you replace t by v and integrate from t, to t with

respect to v, we get

t t s

exp { — / a(s)ds px(t) -z (tg) = / exp{ — / a(u)duSb(s)ds  (9.21)

to to to

Consequently

t

z(t) = exp /a(s)ds z (to) +

O (9.22)

t s

+exp /a(s)ds [ exp —/a(u)du b(s)ds

to
to to

or, tidying up a bit,

t t t
x (t) = exp /a (s)ds p x(ty) + /exp /a (u)du p b(s)ds. (9.23)
to to s
Given that we won’t discuss the case where x (t) is a vector and a (t) = A (t)
is a matrix-valued function of ¢ (except when A (t) = A; see below), it may be of
some interest to know that this solution is valid in that case as well, provided we

interpret exp as the matrix exponential function (see section 9.1.4.1).

Advice. If you find the solution (9.23) hard to remember, memorize the deriva-

tion instead!

Example 9.1.4 Consider

AP SR
B(t) = Ju(t)+t t#0 924



9.1. ORDINARY DIFFERENTIAL EQUATIONS (ODES) 139

t

1
The first step is to figure out / —ds =Int. The rest is easy. We get
S

1

¢
x(t) = t~1+/exp(lnt—lns)sds:
1

(9.25)

t
- t+t/fds:t+t(t—1).
S
1

Exercise 9.1.2 Check that (9.23) really solves (9.18)! Hint: Fither use Leibniz’
t

rule or recall the penultimate version of the solution, i.e. note that [a(s)ds =

t s

t
[a(s)ds — [a(s)ds and factor out exp] [a(s)ds p from the second integral.

to to to
Then use the product rule and the fundamental theorem of calculus.

Exercise 9.1.3 Consider (9.19) and suppose we are interested in a solution de-
fined on the closed interval [to,t1] . Suppose the initial value x (ty) is unknown but

that the endpoint value x (t1) is known. Derive the solution in terms of x (t1).

9.1.2.3 Bernoulli

Consider

& () = a(t)z(t) +b(t)z*(t) 9.26)

where « is an arbitrary real number. If @ = 1, then we have a separable differential
equation. So let’s assume that a # 1 (then we can divide by (1 — «) later on).
Also, let’s consider only solution paths such that z (¢) > 0 (otherwise we get into
trouble with the z“ (¢) term). Now divide by x“ (¢) (which is non-zero by our

assumption). We get

() (t) =a(t) x> (t) +b(t) (9.27)
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and define
z(t) =27 (). (9.28)
It follows that
ft)=(1-a)z 1) (). (9.29)
Hence
st)=(1-a)alt)z () +(1—a)b(t). (9.30)

But this is a linear ODE and we know how to solve that!

Example 9.1.5 (from Macro 1). Consider a continuous-time version of Solow’s

growth model.

ki (t) = sk* () — 6k (t) (9.31)
k(0) = ko.

This is a Bernoulli differential equation. So define z (t) = k'=* (t). Then z solves

)+ (1—a)bz(t)=s(l—a)

(9.32)
2(0) = kg™
Now multiply by e~ and we get
% [e(l_a)&z )] =s1—-a) et (9.33)
Integrating from O to t, we get
t
el (1) —ky™ = s(1—a) / ell=2)8s s =
‘ (9.34)

Hence

2(t) = g 4 (oot (k:é_a - f) . (9.35)
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Consequently
k(t) = |2 4 e ot (ké"’ - f)] = (9.36)
o o
1
Notice that if we set the initial value to ko = <§> T then k (t) remains at this

level for allt > 0. Also, if 0 < a < 1 then k (t) — <§> ™ 4s t — 400 whatever

the nitial value kg.

Qualitative properties of the solution (like the above convergence property)
can sometimes be determined without solving the ODE explicitly. When we can’t

solve the ODE explicitly this qualitative analysis becomes important.

9.1.3 Introduction to qualitative analysis

In this section, we will always have in the background the following time-independent

system of differential equations without initial or endpoint conditions.

E(t) = f(z(t). (9.37)
We now define a steady state and also what we mean by stability.
Definition 9.1.3 A steady state of (9.37) is a point x* at which f (z*) = 0.

Proposition 9.1.3 Let x* be a steady state of (9.37) and let (9.37) have a unique
solution. Then the unique solution to (9.37) with the condition x (ty) = z* is the

constant function x (t) = z*.

Proof. Obvious. B

Definition 9.1.4 A steady state x* of (9.87) is said to be stable if for each e > 0
there is a 6. such that every solution path x (t) with |z (0) — x*|| < 6. satisfies

|z (t) —a*|| < e forallt > 0.
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Definition 9.1.5 A steady state x* of (9.37) is said to be asymptotically sta-
ble if it is stable and there is a 6 > 0 such that every solution path x (t) with

|z (0) — x*|| < 6 converges to x* as t — +oo.

In words, if you start at a steady state, you stay there forever. If the steady
state is stable, then if you start close to it, you stay close to it. If it is asymptot-
ically stable, then if you start close to it, you converge to it.

Notice that our definitions of stability are local in the sense that they only have
something to say about the behavior of the system when you begin close to the
steady state in question. In the linear (with constant coefficients) case, but not in
general, if there is a unique steady state, then local asymptotic stability implies
global asymptotic stability in the sense that we will converge to the unique steady
state wherever we start out. (This claim will be justified in the next section.)

We now want to characterize a (locally) stable steady state, and the idea is to
linearize the system around a steady state and hope that the local dynamics of the
actual system are well approximated in some sense by the linearized system. (This
hope turns out to be substantiated by Lyapunov’s theorem.) We then analyze
the stability of the linear system. So here it seems appropriate to pause for a
rather long digression on linear systems, which are in any case very important in

themselves.

9.1.4 First-order linear systems with constant coefficients

In this section we consider systems of the form

z(t)=Ax(t)+b (9.38)
z(0) = g



9.1. ORDINARY DIFFERENTIAL EQUATIONS (ODES) 143

We will not treat linear systems with variable coefficients here. See [14] in-
stead. We will also (initially at least) assume A to be invertible; this is equivalent
to there being a unique steady state. Then we can consider the dynamics of the
deviation from the steady state z* = —A~'b. Defining y (t) = = (t) — x*, y (¢)
solves

y(t) = Ay (t)

?J(O):?JO

(9.39)

where, of course, yop = xo — x*. Such a system is called homogeneous, and to the
analysis of such systems we now turn. Inspired by the scalar case, it is tempting

to say that the solution is
y (t) = exp (At) - yo (9.40)

But what does it mean to take the exponential of a matrix? That question is

answered in the following section.

N.B. In the following sections, we will be talking about homogeneous systems,
and definitions and results will be stated that apply formally only to them.
But of course we can easily extend (by looking at deviations from the steady
state) all the results to non-homogeneous systems with a unique steady

state. Keep that in mind as you read on.

9.1.4.1 The matrix exponential function

Again inspired by the scalar case, we offer the following definition.

Definition 9.1.6 Let A be a square matrixz. Then

e

k=0

exp (A) (9.41)

where the convention is that A° = I for every square matriz A.
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Remark 9.1.6 It may of course be confirmed that this series converges (uni-

formly) for every square matriz A.
Warning. It may happen that
exp (A)exp (B) # exp (A+ B). (9.42)
However, we do have the following proposition.
Proposition 9.1.4 If AB = BA then exp (A)exp (B) =exp(A+ B).
Proof. Exercise. B
Corollary 9.1.3 For all square matrices A and all scalars s,t, we have
exp (As) exp (At) = exp (A (s + 1))

Corollary 9.1.4 For any square matriz A, the matriz exp (A) is non-singular

with inverse exp (—A) .

Proposition 9.1.5 For any square matrixz A,

% exp (At) = Aexp (At). (9.43)

Proof. Copy the proof of the scalar case. B
Remark 9.1.7 This shows that (9.40) really solves (9.39)!

Remark 9.1.8 Note that when we differentiate a matriz with respect to a scalar,

we don’t bother to vectorize it.
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Proposition 9.1.6 If A = diag (A1, Ag, ..., \) is a diagonal matriz, then

_ i -
e)\gt
exp (At) = (9.44)
L eAnt .
where the blank spaces represent zeros.
Proposition 9.1.7 If A= CBC~! then
exp (A) = Cexp (B) C™* (9.45)
Proof. Exercise. R
Example 9.1.6 Consider
1 (t) 0 1 x1 (t)
Ty (1) 00 xo (t)
(9.46)
T (0) _ aq
L T2 (0) a9

Apparently A is nilpotent, i.e. A" = 0 for all n > 2. So we can calculate the

matrix exponential explicitly! We get

> Aktk 1t
X =1+At+0+..= (9.47)
k=0 01

exp (At) =

and hence the unique solution is

T (t) - ay + CLQt (9 48)

i) (t) a9
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9.1.4.2 Uncoupling by diagonalization

We have just solved our system (9.40). We found that
y (t) = exp (At) yo (9.49)
and consequently the solution to the corresponding non-homogeneous system is
x(t) = 2" +exp (At) (zg — x7). (9.50)

But when A isn’t nilpotent, this usually isn’t explicit enough. We know we could
be more explicit if A were diagonal. But it is just as good if A is diagonalizable!
So suppose A is diagonalizable, and let A = QAQ ! be an eigenvalue/eigenvector

decomposition. Then, of course

z(t) =% + Qexp (At) Q7 (g — 2¥) (9.51)
i.e. ) )
e)qt
eAgt
z(t)=12"+Q Qt(mg — %) (9.52)
oAt
Calling Q! (g — 2*) = ¢ and writing = [ S Sy -+ 8, ] where the s; are

the columns of Q (and hence the eigenvectors of A!) we find that
z(t)=a"+ Z crelsy. (9.53)
k=1

This equation illustrates an important fact about the solutions to ODEs: they

Aet g,

are the steady state plus arbitrary linear combinations of basis solutions e
to the corresponding homogeneous system, which are linearly independent and

hence span the whole space of solutions. (Recall that the set of solutions to
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the homogeneous system is a vector space!) Note that the columns of exp (At)
always form a set of linearly independent solutions, since exp (At) is a non-singular

A

matrix. To see that the basis solutions e*'s;, are linearly independent, recall our

assumption that 2 = l S| S9 - S, ] is non-singular.

9.1.4.3 Initial values and endpoints

As we have seen, each initial value y;( imposes one linear restriction on the
n—dimensional space of solutions. (Here yy, is the value of the kth element of
the vector y;.) In the case of linear systems with constant coefficients, fixing the
entire vector yo pins down the solution exactly. But, alternatively, we could fix
endpoint values y; 1 instead. Or we can combine initial and endpoint values.
There is little to say theoretically about this except that it works as soon as you

fix as many points as there are variables in the system.

Exercise 9.1.4 Let
x (t 0 1
(® =cie + et (9.54)
y(t) 1 0

be a representation of the full set of solutions to a two-dimensional linear system

of ODEs. Determine ¢, and cy to ensure that x (0) = a and y (1) = b.

Exercise 9.1.5 Consider the dynamic system

%(t) _a| "W (9.55)
At) A1)

where x (t) and A (t) are vectors of the same dimension. Let

En (t) &Enp(t
exp (At) = () &) (9.56)
Ear () Eaa (1)
be a partition into equal parts. Suppose x (0) = o and x (T) = xzp. Find X (0).

Do you need to make any invertibility assumptions?
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9.1.4.4 Complex eigenvalues and real oscillatory solutions

Some or all of the eigenvalues may be complex, so that the representation (9.53)
of the set of solutions may easily produce complex solutions even if you restrict
the ¢ vector to have real entries. Thus if you want to look only at the real
solutions, the representation (9.53) is not convenient. What we would like is a
representation so that any real-valued solution is a real-linear combination of a
set of real-valued basis functions. (By a real-linear combination I mean a linear
combination with real scalars.)

Before we go on to the solution of this problem, we note that there is actually
a very easy way forward here: take a real initial value yy; the solution then stays
real. But such an approach misses the important conceptual point that complex
eigenvalues, even if we focus only on the real solutions, give rise to oscillatory
behavior. The essential reason for this is Euler’s formula. Putting \; = «a; + i03,;,
Euler’s formula says that e*! = e*! (cos 3,t + isin 34t). So as soon as 3, # 0
we get oscillatory behavior, either in the form of damped (a; < 0) or explosive
(o > 0) cycles.

In any case, here comes the general solution and an explanation (but not
quite a proof). Suppose A has real entries so that the complex eigenvalues and
eigenvectors come in complex conjugate pairs. Let Ay be an eigenvalue with
a non-zero imaginary part and consider the pair of eigenvalues Ay, \; and the
associated eigenvectors s, and S5;. We now pause to state a useful lemma which
says that if a complex-valued function solves a system of ODEs, then their real

and imaginary parts do, too.

Theorem 9.1.2 Let y (t) = u (t) + v (t) satisfy y (t) = Ay (t), where u(t) and

v (t) are real-valued functions. Then so do u (t) and v ().
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Proof. We are told that y (¢) satisfies ¢ (t) = Ay (t). But then « (t) + v (t) =
Au (t) +iAv (t) . But this can only be true if @ (t) = Au (t) and 0 (t) = Av (t). B
Getting back on track, apparently two linearly independent solutions to our

homogeneous system of ODEs are

At

Yk () = e sy, (9.57)

and
i1 (1) = 13, (9.58)
(Here the vector y (t) is the value at t of the kth basis solution.) Now take the
real and imaginary parts of, say, the first solution yy (¢). Writing the eigenvalue
Ar and eigenvector si in Cartesian form with Ay = ax + i, and s, = ay + by,
and using Euler’s formula, we get
yr (t) = e (ag cos (Bit) — by sin (B,t)) +
(9.59)
+ie® ! (ay sin (B,t) + by cos (B,t))
Writing yx (t) = wuy (t) + v (t) and invoking Theorem 9.1.2, we have the

following candidate basis solutions.
ug (t) = e (ag cos (B4t) — by sin (B,t)) (9.60)

vk (t) = e (ag sin (B,t) + by, cos (Bt)) (9.61)
and these can be shown to be linearly independent.

This motivates the following general representation of the full set of real so-
lutions to (9.40). Arrange the eigenvalues in an order so that complex conjugate
pairs are juxtaposed. Go through the eigenvalues in order from k£ = 1 to n. For
each real eigenvalue )\, and eigenvector si, the corresponding basis solution is
just

o (1) = eMisy. (9.62)
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For each complex eigenvalue \; and eigenvector s, construct uy (t) and vy (¢) as

above and set
op(t) = w ()

Pre1 () = v (1)

For every complex eigenvalue \; you encounter, ignore the conjugate eigenvalue

(9.63)

A1 = Me. Now the full set of solutions may be represented as

n

y(t) = crpy () (9.64)

k=1

Note that it is essential for this result that A have real entries and hence that
the eigenvalues and eigenvectors come in reciprocal pairs. Otherwise we could
not afford to ignore one out of every two complex eigenvalues. You may want
to check that, in our case, looking at A, and )\, yields exactly the same space of

solutions.

Exercise 9.1.6 Solve the following system of ODFEs.

0 -1
z(t) = x (t)
1 0
(9.65)
1
z(0) =
0

Ezxpress you answer in terms of sines and cosines only (no complex exponentials).
Hllustrate the solution path in a picture. Hint: The solution x (t) goes round and

round the unit circle.

9.1.4.5 Stability

You may already have guessed that the stability of a system of ODEs is intimately

connected with the eigenvalues of the coefficient matrix A. The notion of the norm
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of a matrix turns out also to be important, and, what is more, the eigenvalues
turn out to be closely related to the matrix norm. More precisely, we have the

following definitions and propositions.

Definition 9.1.7 Let B be a square matriz. Then its spectrum X (B) is defined
via
A(B)={AeC:det(B—A)=0} (9.66)

i.e. A(B) is the set of eigenvalues of B.
Proposition 9.1.8 Let A be a square matriz. Then

|A] = max |\ (9.67)
AEN(AT A)

Corollary 9.1.5 Let A be a square symmetric matrix. Then

|A| = max |A]. (9.68)
AeX(A)

Proof. See [20]. W
Proposition 9.1.9 Let A and B be square matrices. Then
IAB| < [[A[l]|B]| (9.69)

Proof. See [17]. 1

Definition 9.1.8 Let A be a square invertible matriz. Then its condition number
1s defined via

c(A) = [lAIH[A~-

Now let’s take a look at the solution y (t) of our homogeneous system and see

under what circumstances it is stable and/or converges to zero. Recall that

y (t) = Qexp (At) Q Ly (9.70)
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By the definition of the matrix norm,
ly @) < [|2exp (A) Q7| [lyoll (9.71)

By Propositions 9.1.9 and 9.1.8, and the fact that the exponential function is

non-decreasing,

[2exp (A5) Q7| < [[2exp (AD)] Q7] <

<[l flexp (A Q7] = ¢(Q) |lexp (At)]| = (9.72)
_ At
—C(Q))\Iél)\ai}j)‘e |.
Hence
M
I (@)1 < e() mass €] o] 0.73

Now represent the maximizing eigenvalue A,y in Cartesian form. Then A.x =

x + yi where x = Re (Apax) and y = Im (Ayax) are real numbers and
ly @)1 < e () [e”] [e| lyoll = || ¢ (2) [l9oll
All this suggests (and proves for diagonalizable matrices!) the following theorem.

Theorem 9.1.3 Suppose the square matriz A is such that all the eigenvalues of
A have strictly negative real parts. Then, and only then, the system (9.40) is

globally asymptotically stable.

Proof. If y is a real number, then |e%'| = 1 for all ¢, and if x is a negative real
number, then |¢**| — 0 monotonically as ¢ — oo. Note that the assumption of
the theorem implies (why?) that A is invertible, and hence that there is a unique
steady state. The only gap in the proof is that we assume A to be diagonalizable.

The generalization to any square matrix is left to the reader. B
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Corollary 9.1.6 For a linear system with constant coefficients, local asymptotic

stability of the steady state is equivalent to global asymptotic stability.

9.1.4.6 Saddle paths

Even if a homogeneous linear system is not globally stable, there may be initial
values from which the solution does converge, or, to include a borderline case
which we count as stable, at least remains bounded, i.e. there is an M such that
|z (t)|| < M for all t. Consider the set of such initial values S C R”. We call S
the saddle path for the system.

To characterize the set S we arrange A in a stable and an unstable part. Just
rearrange the eigenvalues and eigenvectors so that the n, unstable eigenvalues
(the ones with positive real parts) come first, and the remaining ny stable ones
last. (We assume that there are no zero eigenvalues, i.e. that there is a unique

steady state.) Partitioning, we have

A= | mexn . (9.74)
Ay

Ng XM

We now want to characterize the set of initial vectors y such that

Qexp (At) Q2 yo — 0. (9.75)

This is of course the same set (why?) as the set of yy such that

exp (At) Q 'yo — 0. (9.76)
Defining
Ql
Q= | e (9.77)
Q2
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and writing the expression out in partitioned form, the requirement is

eAlt Ql
Yo — 0. (9.78)
eAQt QQ

For this to be true, we need the coefficients multiplying the explosive factor et

to be zero. This means that

Qlyo = 0. (9.79)

So the saddle path S is just the set of vectors y, € R" such that Q'yy = 0.
Apparently this equation contains n, (independent!) linear restrictions. The
polar cases are the following. If there are n, = n unstable eigenvalues, then there

are n independent linear restrictions; thus the only choice is yp = 0 and hence

S = {0}. Conversely if n, = 0, then S = R".

Remark 9.1.9 You may wonder whether saddle paths have anything to do with
the sort of thing that John Wayne used to sit on. Well, they do. Consider a
saddle, and consider dropping a ball on it and see what happens. Typically it will
roll off, but there is a line that points in the same direction as where the horse
18 going such that the ball rolls down to roughly where Wayne’s groin used to be
and stays there. This line is the saddle path.

More mathematically, consider the graph of a function f : R* — R and
think of the set of points S ={(z,y,2) € R®: f (z,y) = 2} as a surface in three-
dimensional space. Now think of R as physical space and S as, say, a mountain
range, covered with ice to remove the friction. Now make a snowball and let go of
it at (z,y, f (x)). Then (why?) the ball will roll away in the direction —V f (z,y)
(the minus sign says that it rolls down rather than climbs up). So, if we ignore the

velocity and focus only on the direction, it is as if the ball’s position (x (t),y (t))
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were governed by the dynamic system

T(t)=—-Vf(z,y). (9.80)

Now let f(x) = 2T (—A)x and consequently © (t) = —V f (z (t),y(t)) = Az (1).
We now have linear system of ODFEs.

From elementary calculus, we know that if A is a symmetric matrix with real
entries, then if A is negative definite (all the eigenvalues are real and negative),
the origin is a global minimum of f, and if A is positive definite (all the eigen-
values are real and positive), then the origin is a global mazimum of f. Otherwise
it 1s a saddle point, which in three-dimensional space is like a mountain pass.
Extending this to non-symmetric matrices with real eigenvalues, we conclude that
if all the of the eigenvalues of A are real and negative, f has a single global
minimum at the origin, and our ball always rolls down into the valley and stays
there. On the other hand, if the two eigenvalues are real and have opposite signs,
the origin is a saddle point and the ball only settles down there if it starts from

somewhere on a certain line (visualize this!).

In any case, S is always an ns—dimensional subspace of R”. Actually, we can
characterize this set in a very convenient way. It turns out that S is the subspace
of R™ spanned by the stable eigenvectors (i.e. the eigenvectors associated with

the stable eigenvalues). To see why, define

so that {25 is an n X ng matrix of linearly independent eigenvectors associated

with stable eigenvalues. Now, by the definition of an inverse,

Qla=1 (9.82)
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and consequently
Ot I0
{ QO QO } = : (9.83)
0? 0 I

It follows that Q'Q = (0 and hence that any stable eigenvector is on the

Mg X1
saddle path S. Indeed, let yo = Quh for any vector h € R™. Then Q'y, = 0 and
hence any linear combination of the column vectors of {25 is on the saddle path.
Moreover, since Q' has full rank (it consists of linearly independent rows), if a
vector is not a linear combination of the columns of €25, then it is not on the
saddle path. Consequently, S just is the column space of the matrix €2;. The

result is the following.

Proposition 9.1.10 Let S be the saddle path of (9.40). Let A be invertible
and diagonalizable. Let )y be the matrixz whose columns are linearly independent
eigenvectors associated with the ng stable eigenvalues of A. Then S is the column

space of €y, i.e.
S ={yo € R" : yo = Qh for some h € R™}. (9.84)

Proof. See above. R

We now wrap up with a couple of definitions.

Definition 9.1.9 Let S be the saddle path of (9.40). Let A be invertible so that
the unique steady state is y* = 0. If S = {0} then (9.40) is unstable (not stable)
and the steady state y* is sometimes called an unstable node when the eigenvalues
are real and an unstable spiral if at least one eigenvalue s complex. Conversely,
if S = R™ then (9.40) is stable and the steady state y* is sometimes called a stable
node when the eigenvalues are real and a stable spiral if at least one eigenvalue

18 complex.
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In the intermediate case, the terminology is the following.

Definition 9.1.10 Let S be the saddle path of (9.40). Let A be invertible so that
the unique steady state is y* = 0. Suppose {0} # S # R™. Then S will be called a
proper saddle path of (9.40) and the steady state y* will be called a saddle point.
Sometimes we will be sloppy and refer to a proper saddle path as merely a saddle

path.

Remark 9.1.10 According to our definition of stability, a saddle point is unsta-
ble. But, as we have seen, it is nevertheless possible to force the solution to be
bounded or, if the real parts of the eigenvalues are all non-zero, convergent, by

choosing the initial value in a suitable way.

9.1.4.7 Two-dimensional case

The two-dimensional case is instructive since it is easy to draw, so we will spend
a lot of time practicing on it.

In the two-dimensional case, it so happens that we can characterize the unsta-
ble case, the stable case and the (proper) saddle path case in terms of the trace and
determinant of the matrix A. Let A (A) = {\1, \2}. Recall that tr (4) = A\ + Ao
and det (A) = A\ Ao. Note that if A has real entries, both the trace and the de-

terminant are real numbers. We now have the following conditions for stability.

Proposition 9.1.11 Let A be a 2x 2 matrix with real entries. Suppose tr (A) < 0
and det (A) > 0. Then both eigenvalues of A have negative real parts, correspond-

ing to a stable node.

Proof. Let A(A) = {\1, \2}. Since tr (A) is real, the imaginary parts of A\; and

Ay sum to zero. So either they are both real or they are each others’ complex
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conjugates. Hence tr (A) is just the sum of the real parts of A; and Ao, and it is
negative, so at least one of the eigenvalues has a negative real part. Now if both
eigenvalues are real, then det (A) is just the product of the real parts, and since
it is positive, the eigenvalues must have the same sign. Alternatively, if at least
one of the eigenvalues is complex, then they are each others’ complex conjugates.
But then the real parts are the same, and hence, a fortiori, they have the same
sign. So the real parts have the same sign, and at least one of them is negative.

Hence they are both negative. B

Proposition 9.1.12 Let A be a 2% 2 matriz with real entries. Suppose det (A) <
0. Then the eigenvalues of A are real and have opposite signs, corresponding to a

proper saddle path.

Proof. Exercise. &

Proposition 9.1.13 Let A be a 2x2 matriz with real entries. Suppose tr (A) >0
and det (A) > 0. Then both eigenvalues of A have positive real parts, correspond-

g to an unstable node.

Proof. Exercise. B
Applying our general result, we note that, in the 2 x 2 proper saddle path
case, the saddle path is just a line through the origin in the direction of a stable

eigenvector.

Exercise 9.1.7 Show that the saddle path S of a homogeneous linear system of
ODFs really is a subspace, i.e. that for any x,y € S and any scalar o, we have

alz+y)es.
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9.1.4.8 When A is not diagonalizable

When the A matrix is not diagonalizable, we can still use the Schur form. The
details of this approach can be found in the section on linear systems of difference

equations.

9.1.4.9 When A is singular

When A is singular, it has a non-trivial nullspace and hence there are inifinitely

many steady states. But we can still solve the system. The solution is

x (t) = exp (At) xo + /Ot exp (As) bds. (9.85)

9.1.5 Reducing a pth order system to a first-order one

Occasionally we want to solve homogeneous linear systems of higher than first

order, i.e. systems of the form
p—1
2@ () =) Aa® (1) (9.86)
k=0

where (*) is the kth derivative of  (¢) with respect to t. This n—dimensional
pth order system can be reduced to an np—dimensional first-order system in the

following way. Define
= (t)

2(P=2)
z(t) = (t) . (9.87)

| 2(®)
We now write down an np x np first-order linear system for the np—dimensional

vector function Z (t) The first row will state our original system; the others will

state the relationships between the elements in  (t) and Z (t) given our definition



160 CHAPTER 9. DYNAMIC SYSTEMS

of T (t). We have

[ ) (t) ] [ Ay A,y oo A 11 =1 (t) ]
iy || 1 G I
()] i 1 1L z@® ]
Defining A in the obvious way, we have
i (t) = Az (t). (9.89)

Note that the space of solutions has dimension np.

9.1.5.1 A quick trick

In order to arrive faster at the solution, we may proceed as follows. Suppose z (t)

is scalar. It can then be shown that the solution has the form

z(t) =) cpe™. (9.90)

At

Indeed, any function z (t) = e is a solution provided A is chosen among the

relevant eigenvalues. In order to characterize these eigenvalues, we plug z (t) = e

this into (9.86) with Ay = a; and get
p—1
NPeA = Z ap\eM. (9.91)
k=0
Dividing by e*, we find that \ must satisfy the polynomial equation

p—1
N =Y\ =0. (9.92)
k=0

Example 9.1.7 Consider

() —x(t) = 0. (9.93)
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At

Plugging in the candidate solution x (t) = e, we get
M —1=0. (9.94)
The two solutions are Ay = 1 and Ay = —1. Hence the entire set of solutions can
be written as
z(t) = cre’ + cpe™. (9.95)

9.1.6 Lyapunov’s theorem

Having dealt with linear systems at some length, we can now state and motivate

a theorem that characterizes the local dynamics of the non-linear system (9.37).

Theorem 9.1.4 (Lyapunov) Consider the dynamic system (9.37). Let f be

differentiable at the steady state x* and define
A= f'(x*). (9.96)

Then z* is asymptotically stable if the eigenvalues of A are all stable (have neg-

ative real parts).

Similarly, if f’ (z*) has both stable and unstable eigenvalues, there is a sense
in which the dynamics of the non-linear system is locally well approximated by a
linear system with a proper saddle path. We won’t be precise about this, but the
idea is that there will be a neighborhood O of x* in which the set of initial points
xo € O such that the system converges to x* is an ns;—dimensional surface whose
tangent at * is the hyperplane spanned by the stable eigenvectors of f (z*).

In the two-dimensional case, this ns—dimensional surface is of course just a

curve in R2.
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9.1.7 Phase diagrams

The point of phase diagrams is to use pictures to enable us to visualize the
dynamics of solution paths (called trajectories) to systems of ODEs. Note that

there is one trajectory z (t) for each initial value x.

9.1.7.1 Omne-dimensional case

Example 9.1.8 Consider the scalar ODFE

T (t) =2 (t) — 4. (9.97)

Apparently, there are two steady states, x7 = —2 and zi = 2. Are any of them

stable or asymptotically stable? This is most easily investigated not by using
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Lyapunov’s theorem but by looking at a phase diagram. See Figure 9.1.7.1.

Figure 9.1.7.1

-3 -2 -1

9.1.7.2 Two-dimensional case

Step 1. Characterize the steady state. Typically, there will be two equations
which together determine the steady state, and the steady state will be the point
of intersection between two curves. The first curve is the locus of points in the
x — y plane such that © = 0 and the second is the locus of points in the x — y
plane such that § = 0. Draw these loci.

Step 2. Check what happens to the rate of change of the two variables when
you are not on either of these loci. Check the four different areas separated by the

two loci. If the rates of change are determinate in sign, draw arrows indicating
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the sign of the rate of change in each area (the options are northeast, northwest,
southeast and southwest).

Step 3. If your system was not linear to begin with, linearize around the steady
state. Use the trace and determinant conditions to check if you are dealing with
a stable node, an unstable node, a proper saddle path, an unstable spiral or a
stable spiral. See if this agrees with the arrows you’'ve drawn.

Step 4. Draw asymptotes/saddle paths, i.e. the paths spanned by the eigen-
vectors. [Explain in more detail.]

Step 4. Draw trajectories, i.e. solution paths for different initial values. Note
that the trajectories cross the £ = 0 locus vertically and the ¢y = 0 locus hori-
zontally. In the proper saddle path case, draw a saddle path. Draw trajectories
on and off the saddle path with arrows to indicate in what direction the rate of
change is as t increases. Note that (why?) if we begin on the saddle path or an

asymptote, we never leave it.

Example 9.1.9 (stable spiral). Consider the 2—dimensional homogeneous linear

system )
(i | |-01 1 | |20
_y(t) -1 -0.1 y (%)
(9.98)
x (0) |0
L [ v(0) 1

Apparently the unique steady state is the origin. Looking at the eigenvalues,
we see that they are stable and complex. So the solution trajectory is a convergent
spiral. Figure 9.1.7.2.a depicts a single trajectory starting at (1,0). In this case,
it 1s as if we are going round an ever shrinking circle. For many other values of

the coefficients in A, we go around a shrinking or growing ellipse.
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Figure 9.1.7.2.a.
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Example 9.1.10 (proper saddle path). Consider the 2-dimensional homogeneous

linear system

\

i | |2 3|
g0 | -1 2| | v
(9.99)
x| |0
y (0) e

We find that the eigenvalues are real and of opposite signs, so we have a proper

saddle path. Figure 9.1.7.2.b contains a phase diagram for the system. It contains

everything that you are required to do when asked to draw a phase diagram.
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Figure 9.1.7.2.b
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9.2 Difference equations

9.2.1 Definition of problem and existence of solution

In this section time is discrete, i.e. t =0, 1, ... Generally speaking, we would like
to be able to solve systems of the form f (¢, z;,2¢1) = 0; ¢t = 0,1, ... Ultimately
it would be very nice indeed to be able to deal with such systems in general. But
as an introduction, we will be considering time-invariant dynamic systems of the

form

Ty = f (21, 21) (9.100)

Ty glven.

where (z;);-, is an exogenously given sequence.. Existence and uniqueness of the
solution is clearly no problem. Just fix 2o and the given sequence (2;),-, and keep
on applying the function f. Indeed, this is a constructive proof so there seems
little else to say about difference equations. Well, actually, there is more. Just
as in the continuous time case, we can talk about and characterize stability. And
in the linear case we will be able to solve for z; in terms of ¢ and the exogenous
sequence (z;). Nevertheless, for numerical purposes, it is often convenient to stick
to the iterative technique of just applying f repeatedly so we will recommend it
whenever appropriate.

We will not be exploring the non-linear case in any detail. So if you have a
non-linear system and want to apply the methods of this section, linearize around
a steady state and investigate the dynamics of the resulting linear system. Note
that with an exogenous sequence (z),, the notion of a steady state is typically

not well-defined. However, if z; = Z, then the steady state z* solves

x=f(x,2). (9.101)
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9.2.2 Scalar linear difference equations with an exogenous
driving sequence

Consider

Tppr=ary+ 2z t=0,1,2) .. (9.102)

where (z;),-, is a given sequence.

However, let’s suppose xg is not given so that we have a whole 1-dimensional
space of solutions. Suppose also for the sake of argument that a # 0 (we need
this assumption during the derivations but can drop it at the end). To find a
representation of the entire class of solutions, we use the following ingenious trick.

Introduce a new sequence (w;) defined via
T = a'w. (9.103)

(This defines w; uniquely since a # 0.) It follows that

a M we = a g + 2. (9.104)

Hence
Wepr —wy = a "z (9.105)

Now sum both sides from 0 to ¢t — 1. We get

t—

H
T
L

(W1 —wi) = Y a "1z, (9.106)
0 k=0

B
Il

Now notice that

1
(Wpy1 — W) = Wy — W1 + Wp_1 — Wi + -+ — Wy = Wy — Wy. (9.107)
0

t

£
I

Hence

t—1
wy=wo+ Y aFz (9.108)
k=0
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and it follows that (think about the last step!)
—1 —1
2 = a'zy + a’ Z aF 1z = adlrg + Z a2 w1 (9.109)
k=0 k=0

and note that this represents the whole class of solutions as x( ranges over all the
real numbers. For this to make sense when ¢ = 0, introduce the convention
0
> h=> h=0, (9.110)
k=0 k=1
and for it to make sense (and give the right answer!) when a = 0, put 0° = 1.
We call (9.109) the finite sum representation of the class of all solutions.

We now investigate stability. First we define it.

Definition 9.2.1 A sequence of complex numbers (x;);-, is said to be stable if

it is bounded, i.e. if there is an M > 0 such that |xy| < M for eacht = 0,1, ...

When |a| < 1 the prospects for the existence of a stable solution seem par-
ticularly good. So suppose |a] < 1 and let (z),-, be bounded. Is this enough
to guarantee that (x;), , is stable? Let’s see if we prove that by constructing an

upper bound for |z;|. Let M be an upper bound for |z|. Then

t—1

< la|" [ao| + Z lal* [z—k—1] <
k=0

t—1

alzg + E bz k4
k=0

|z =

(9.111)

t—1 0
1
< frol Y lal" M < faol 3 Jal* M = o] + =M
k=0 k=0

Thus if |a| < 1, any solution to (9.102) is bounded. So there is a one-dimensional
set of stable solutions.

On the other hand, suppose |a| > 1 but maintain the assumption that (z;)
is bounded. Then (x;) will fail to explode geometrically only for a very special

value of zy (the saddle space is zero-dimensional and hence contains a single point



9.2. DIFFERENCE EQUATIONS 171

only). The easiest way to see what that value is is to represent the entire class
of solutions in a new way - the forward representation. The idea is to go back to

the stage when we noted that
wy=wo+ Y _aF % (9.112)

where wy was an arbitrary number. Since it is arbitrary, we can add any constant
to the representation and still represent the same class of solutions. So let’s add
— Z ~12, which we have just assumed is a convergent sum and hence a real

number We get

o0

wy =c¢— Z a "1z, (9.113)

k=t

where ¢ is a new arbitrary constant. We can now derive the so-called forward

representation of the class of solutions as

[e.°]

z =a'c—a Z a ¥tz =a'c— Z a "z (9.114)
k=t

Now if |a| > 1 it is easy to see that to avoid (x;) being unstable, we must set

¢ = 0 in which case

ro=—> a7y (9.115)
k=0
and, more generally,
m=—> a "z (9.116)
k=0

We may confirm that this defines a stable solution if (z;) is stable. The confirma-
tion that (9.116) defines a solution is left to the reader. That it is stable follows
from the following argument.

Let M be an upper bound for (z),~,. Then

1
—k—1 —k— 1
< Z |a| ™" |zen] < Z |al H——lM

[e.°]

E Zt+l~c

k=0

24| =
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Notice that there is a unique stable solution when |a| > 1; in this case the
stability requirement replaces fixing the initial value in pinning down the solution.
Notice also that in this case z; depends only on the ‘future’ of (z;). It is because
economists (1) require non-explosiveness and (2) consider equations with |a| > 1
(we will see later why we so often do!) that we think that (expectations of) the

future are important!

Exercise 9.2.1 Consider

Ty = 210 + tp (9.117)

where |p| < 1. Find the entire one-dimensional space of solutions. What is the

unique stable solution? Hint: When |p| < 1, tht = ﬁ
t=0 —P

9.2.3 Sargent’s metric space approach to scalar linear dif-

ference equations

[Omitted in this version.]

9.2.4 First-order linear systems with constant coefficients

Consider the first-order homogeneous linear system

Yer1 = Ay
A (9.118)

Yo given.

In this section, we study the solutions to homogeneous systems. To a very large
extent, we will be able to copy the results form the corresponding section on
homogeneous linear systems of ODEs, and, just as for ODEs, the extension to
systems x;.1 = Az + b with a unique steady state is trivial. Note that in this

case the steady state is z* = (I — A)" ' b.
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The main difference as compared with the continuous time case will be the
definition of a stable eigenvalue. In discrete time, an eigenvalue \ is called stable
if |A\| < 1, borderline stable if |A\| < 1 and unstable if it is not stable or border-
line stable. We will see (if you have not already guessed) why this definition is
appropriate.

Not surprisingly, the unique solution (9.118) is given by
ye = A'yo (9.119)

and as before we uncouple the dynamics by factorizing A. So suppose A is
diagonalizable, and let A = QAQ ! be an eigenvalue/eigenvector decomposition

of A. Note that A* = QA!Q~! and that

Al
)\t
A= ? (9.120)
)\t
Hence our solution can be written as
Y=Y ceisy (9.121)
k=1
where ¢ = Q7 1y, € C" is arbitrary and Q = l S| 8o -+ Sy 1 )

To see why the stability of the solution is governed by whether the eigenvalues
A are inside or outside the unit circle (i.e. whether |A\;] < 1 or not), we note
that (why?) |A| = IAel". We can now conclude that the solution converges to
the origin for any initial value y if all the eigenvalues are strictly inside the unit
circle in the complex plane. Even if not, there will be a set of initial values from
which the solutions do converge, and again we will call this the saddle path. And
again it turns out to be the case that the saddle path is spanned by the stable

eigenvectors.
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Sometimes we will want to use the requirement of (borderline) stability of
the solution in conjunction with initial values to pin down a unique (borderline)
stable solution. The idea is that stability and initial values together will impose
n linear restrictions on the solution so that a single one is picked out. This idea

is carried out in section 9.2.5.

9.2.4.1 Complex eigenvalues and real oscillatory solutions

For some purposes, we want to represent the whole class of solutions as an arbi-
trary real-linear combination of real-valued functions. Note that this is of little
practical importance, since if the coefficient matrix A and the initial vector yq
has real entries, then (why?) the solution remains real as time goes on. But
the project still has relevance in that it enhances the conceptual understanding
of the oscillatory (non-monotone) behavior introduced by negative and complex
eigenvalues.

Again we note that, if A has real entries, the complex eigenvalues (those with
a non-zero imaginary part) and eigenvectors appear in complex conjugate pairs.
(For convenience, arrange the complex eigenvalues so that A\gy; = \.) Actually,
the real but negative eigenvalues also give rise to oscillatory behavior, so we will
need a treatment of them as well. In what follows it will be important to be
able to rewrite a complex number z from Cartesian form x + ¢y to polar form
re?. If you are unsure of how to do this, read section 3.2.5 carefully. Note that
oscillatory behavior arises as soon as the argument 6 is non-zero, which includes
the case of z being real but negative.

Let’s begin with the real negative eigenvalues. Let the eigenvalue \x be real
and negative and let s; be the corresponding eigenvector, which (why?) is also

real since A is. Then (why?) )\, = rze'™ = rpcosmt and consequently \; =



9.2. DIFFERENCE EQUATIONS 175

rt cosmt = 1t (—1)". Note that it is crucial here that t = 0,1,2, ... is an integer.
So if Ay is real and negative, one of the real-valued basis functions spanning the

space of real-valued solutions will evidently be
POt = i cos Tt = T} (—1)t Sk

Now consider the complex eigenvalues. Let A\, = 7.e'% be complex. Then the

corresponding complex-valued basis function is, as we know,
Uyt = NSk (9.122)

Writing s, = wug + ivx and using Euler’s formula, we find that the real and

imaginary parts of this basis solution are
Pre = Tk [cOS (Oxt) uy, — sin (Oxt) v] (9.123)

and

Prr1,e = g [0 (Okt) ug 4 cos (Oxt) vi] . (9.124)

and these functions are also (why?) solutions of our linear system, and in fact
they are linearly independent so we can use them as basis functions for our set
of real-valued solutions. We can ignore (why?) the basis solutions X;Ek.

Now construct n basis functions in this way. When )\, is real and positive,

just set ¢, ; = Ajsp. When it is negative, set ¢, , = 74 (—1)" s. Finally, when )y, is

complex, set @, , = 7}, [cos (Oxt) up — sin (Oxt) vi] and oy, [sin (Oxt) up + cos (Oxt) vg).

Ignore A1 = A\x. We can now write any solution as

n

Yo=Y Chppy (9.125)

k=1
where the real-valued functions ¢, span the set of real-valued solutions to y;1; =

Ayt .
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Exercise 9.2.2 Consider the 2 x 2 system

1
T1t+1 0 — L1t

)

= 4 : (9.126)
T2,t41 Lo Ta

)

Find a basis {@1,t,@27t} of real-valued functions for the real-valued solutions of

this system.

9.2.5 Linear systems with constant coefficients and an ex-

ogenous driving sequence

Consider the n—dimensional system
Tir1 = A.Tt + 2. (9127)

It is not hard to believe that the class of all solutions can be represented as

t—1
o= Alwg+ ) Az (9.128)

k=0
We now have several options if we want a unique solution. Either fix all elements
of z(y or fix some elements of zy and some elements of, say, xr, making sure that
you have a total of n fixed values. Another alternative, which it will take the
remainder of this section to sort out in detail, is when we impose some initial
values zjo and the requirement that the solution not explode as t — oo (we
will define what this means exactly below). In auspicious circumstances, this
restriction on the behavior of x at infinity can play the same role as the fixing of
endpoint values zj 7.

Just as before, we now factorize A to uncouple the dynamics and analyze sta-
bility. Suppose for simplicity that A is diagonalizable with eigenvalue/eigenvector

factorization A = QAQ~!. Then Q~'A = AQ~!. To avoid cluttering the notation,
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we now introduce the auxiliary sequence
g = Q" (9.129)

and notice that if we solve for 1y, we have solved for z; since Q! is invertible.
So as to facilitate the analysis of stability, arrange A and €2 so that the unstable
eigenvalues and associated eigenvectors come first. Now premultiply our system

by ! which creates an equivalent system since {2 is invertible. We get
Qo = A o + QO (9.130)

and hence

Yer1 = Ay + Q72 (9.131)

Notice that this is a diagonal system! In principle, we can solve this row by row
as a scalar equation! But we won’t do that here. Instead we will proceed block
by block, trying to pick out the stable (bounded) solution(s) as we go along,.
Assuming that (z) is stable, it is not hard to believe that the solution z; = Qu;
is stable for any x( provided all the eigenvalues of A are stable or borderline stable,
ie. |Ag| < 1forall k =1,2,..,n. More generally, we have eigenvalues on both
sides of the unit circle in the complex plane, i.e. we have a saddle path. To
see what restrictions we need to impose to ensure a stable solution, we partition
the system according to the absolute magnitude of the eigenvalues, putting the
unstable (not borderline stable) ones first. (Notice that this requires that Q to

be arranged so that the unstable eigenvectors appear first also.)

Ay
Y,
= | ety (9.132)

Y2,14+1 Ay Yot

NgXMNg

Yit+1

Consider the first row and solve forward for y; ;. To ensure stability, we must set

[e.°]

yre=—» A0z (9.133)

k=0
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As in the continuous time case, the stability condition imposes n, linear re-
strictions on the solution, where n, is the number of unstable eigenvalues. Let
n —n, = ns be the number of stable (or borderline stable) eigenvalues. We are
now left with an n,—dimensional space of stable solutions - the saddle space.

To reduce the solution to a singleton set, we need to impose another n, inde-
pendent restrictions. Ideally, we would like this to be done by fixing initial values
of a certain predefined subset of the variables in x;. So let’s suppose that z; is
arranged in such a way that the initial values of the last n; variables have given
initial values xo( € R™. A necessary condition for these initial values together
with the stability condition to pin down exactly one solution is that n, = ns,
i.e. that the number of variables with given initial values equal the number of
stable eigenvalues. If ny > ng there is no stable solution, and if n; < n, there are
infinitely many:.

Now if we were assigning initial values to variables in ¥;, or could assign
initial values to any elements of z; (not necessarily in the predefined subset),
ny = ns would be sufficient for there to be a unique stable solution. But it is
more reasonable to suppose that what we have fixed is initial values for certain
specific elements of x;. For these initial values of x; to translate into the required
initial values of 3; we need another condition. To see what we need we will just
go boldly ahead and try to solve for x;. We will need the definitional equation for

y; which in partitioned form says

Q11 QIQ
Ny, XMy My XMNeg

= . (9.134)
Tot Qa1 Qo Y2t

Mg XNy Mg XMNg

L1t

The aim now will be to express z ¢ in terms of y; , (which we have just solved for)
and x5 (which we will be able to solve for recursively; see below). Assume that

(g9 is invertible (this assumption cannot be dropped, see exercise 9.2.3). Then
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manipulation of the definition of x; and y; yields

xl,t = [Qll — 9129521921] ’th + 9129521$2t. (9135)
Recall our original system and partition it. We have

T1,t+1 _ A A L1t n 21t . (9.136)
T2 t+1 As Ay Tot 22t
We will now construct the solution recursively. We won’t get a nice formula for
the solution, but we will have a useful algorithm for simulating the solution on a
computer.
Recall that we are given x5 and <zt>fi o and have calculated y;; in terms of

(z1),20- So take xs o and use (9.135) to calculate z; . Then use the second row of

(9.136) to calculate x5 ;. Then use (9.135) again to calculate ;. And so on.

Exercise 9.2.3 Consider the two-dimensional system

;

1
Tt41 _ 5 0 Tt
Y 0 2 Y
o : (9.137)
Yo given.

1. There is no stable solution to this system. Why not?

2. Suppose instead that xg is given but that yy is free. Write down the unique

stable solution.

Exercise 9.2.4 (difficult) Show that the solution presented in this section really

is stable provided that (z;) is.

9.2.6 What to do when A is not diagonalizable

[Omitted in this version. The idea is to use the Schur form.]
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9.2.7 Reducing a pth order system to a first order system

Occasionally we want to solve linear systems of higher than first order, i.e. systems

of the form
p—1

Trpp = AkTih + 21 (9.138)

k=0
This n—dimensional pth order system can be reduced to an np-dimensional first-

order system in the following way. Define

Lt+p—1
s _
o= T (9.139)

Tt

We now write down an np—dimensional first-order linear system for the np—dimensional
sequence x; The first row will state our original system; the others will state the

relationships between the elements in x; and z;,; given our definition of x;. We

have
Lt+p Ap—l Ap—2 e A Ttt+p-1 2t
Lps I Tty 0
A AR (9.140)
c. . 0
Li+1 | i 1 1L %t L 0 d

Defining A and % in the obvious way, we have
To1 = AT+ 2. (9.141)

Note that the space of solutions has dimension np.

9.2.7.1 A quick trick

In order to arrive faster at the solution, we may proceed as follows. Suppose x;

is scalar and that z; = 0. (If z; is a constant this does not involve much loss of
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generality since one can usually analyze the deviations from the steady state.) It

can then be shown that the solution has the form
T= ) o (9.142)
k=1

Indeed, any function z; = \' is a solution provided ) is chosen among the relevant
eigenvalues. In order to characterize these eigenvalues, we plug z; = A’ this into

(9.138) with Ay = ax and get
p—1
AP = " X (9.143)
k=0
Dividing by A, we find that A\ must satisfy the polynomial equation
p—1
N =Y X =0. (9.144)
k=0

Example 9.2.1 Consider

T4 — Ty = 0. (9145)

Plugging in the candidate solution x; = X', we get

M —1=0. (9.146)

The two solutions are A\ = 1 and Ao = —1. Hence the entire set of solutions can
be written as

z(t)=c +c(—1)". (9.147)

9.2.8 Expectational difference equations.

Let (£2, F, P) be a probability space, let & be a white noise process relative to its
natural filtration F; = o {&,; s <t}. Now consider the expectational difference
equation

FE ['Tt+1‘ f-t] = A.Tt. (9148)
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If zy were given exogenously and the expectations error x;. 1 — E [z:41] F] were
also given exogenously, then we would immediately have a recursive represen-
tation of the unique solution. This solution would be stable if A were a stable
matrix.

More generally, partition z; via

At
7 = (9.149)
Ky

ngx1
where kq is given exogenously and the expectations error kyy 1 — F [kio1| Fi| = &, 4
is also given exogenously. Corresponding to these assumptions, we need A to have
at least ny, stable eigenvalues for there to be a stable solution. If A has precisely
ny stable eigenvalues, there is usually a unique stable solution (the exception is
the pathological case in Exercise 9.2.3). So suppose that A has precisely ny, stable
eigenvalues.

To find the unique solution, we use the Schur form of the matrix A. What
we need is a unitary matrix ) and a lower triangular matrix 7" with diagonal
entries of descending modulus such that QA = T'Q). Having found these matrices,
partition @ and T conformably with the partition of ;. Do the same with Q¥
the Hermitian transpose of (). Suppose the bottom right-hand block of Q¥ is
invertible. Call that bottom right-hand block QZ,. Define Q!% similarly. (Note
the abuse of notation; QI is not the Hermitian transpose of the bottom right-

hand block of @)). Then the unique stable solution is given recursively by
A= Q1 (Qﬁé)_l Ky (9.150)
~1
ke = Q35 Too (Q5) ke + &4y, (9.151)

Exercise 9.2.5 Derive the result in this section.



9.2. DIFFERENCE EQUATIONS 183

9.2.8.1 Singular difference equations

[Omitted in this version. See [29].]
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Chapter 10

Dynamic optimization

10.1 Introductory remarks

The word ‘dynamic’ indicates that we are concerned with time, and the variable
t below will indeed be thought of as time, reflecting the macro bias of the author.
But the apparatus we will be looking at can be used more generally, e.g. in
contract theory where we optimize over an outcome space rather than over time.

For examples of this, see [43].

10.2 Continuous time

10.2.1 Introduction and statement of problem

You will recall from MatFU I that when we have a problem of the following type

(where f: R" — R and g : R® — R¥)

e f () (10.1)
st. g(z)=0

then we have something like the following theorem.

185



186 CHAPTER 10. DYNAMIC OPTIMIZATION

Theorem 10.2.1 Define
L(z,A) = f(x) + g (2) (10.2)

and let x* solve (10.1). (Also, assume some regularity conditions.) Then there

exists a A\* € R™ such that
OL (x*, \*)

=0 (10.3)

Remark 10.2.1 If f and each g; are concave and the \! are positive, then, x*

maximizes L. This will be interesting to us later.

Now consider a more difficult problem.

i (1) = g(tx (1), u (b)) (10.4)
S.t. () =a
z(T)=10
(

\
Remark 10.2.2 The initial and final instants 0 and T' are fized. In engineering
applications, these are sometimes free variables. E.g. take me to the moon using

a muinimal amount of fuel, arrival time up to you. Rare in economics.

Again it is worth pondering a while over what we have just written down. We
want to maximize a function with respect to a whole trajectoryu : [0,7] — R, i.e.
with respect to another function. So a solution to the problem will be an entire
function rather than just a number or even a vector. In an abstract sense, though,
u may be thought of as a vector with components w (t). But there are clearly

infinitely many such components, and that is why what we are dealing with right
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now is called infinite-dimensional optimization. (It is also called control theory;
see below.)

Of course, infinite-dimensional optimization is conceptually a bit trickier than
finite-dimensional optimization. But the good new is that our problem is signifi-
cantly simplified by the assumption that the objective function is a (kind of) sum
and that the time periods are tied together in a special way, viz. by a (system
of) differential equation(s). One nice way to think about our problem is to say
that we are dealing with a ‘controlled’ differential equation. The dynamics of the
‘state’  can be affected by the ‘control’ u via the ‘state equation’ & = g (¢, x, u).
Notice that the function f and the state equation together express the trade-off
that has to be resolved when changing u (¢): there is one immediate effect on the
payoff via f and an effect on the future value of x via g.

Getting back to our problem, we now want to know whether there is an
OL (z*, \")
ox

Just as in finite-dimensional optimization, the two ideas at work are

infinite-dimensional counterpart of = 0. The answer: there sure is!

T
1. If the control variable u is optimal, then the objective function / fdt

0
should be stationary with respect to small changes in u.

2. Instead of choosing v and letting x be determined by the constraint & = g,
we choose both x and u treating £ = g as a constraint associated with the shadow
price A\. The hope is that this shadow price will take care of the ‘planning ahead’
(worrying about the future) aspect of our problem.

The next section uses these ideas in an exceedingly sloppy way (we will clean
up our act later). Before we go on, though, we should know what to expect. The
infinite-dimensional counterpart of the condition V,L (z*,\*) = 0 will turn out
to be a system of ODE:s, which we have just learned something about how to

solvel
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10.2.2 Pontryagin’s maximum principle (PMP)

In this section, we will denote the Fuclidean inner product in R by z - y rather
than 2'y since the letter T will have another meaning. This notation also has
the advantage that when you read this section the first time, you can easily think
of the scalar case and ignore the vector calculus so as to focus on the new ideas
involved. In any case, the function f below is always real scalar-valued since it
makes no sense to maximize a vector-valued function (or indeed a complex-valued
function).

By analogy with the finite-dimensional case, we introduce a ‘Lagrangian’ as
follows (assuming for the moment that U = R* so that we can ignore the condition

u(t) e U).

L(x,u,)\):/f(t,x(t),u(t))dt+/)\(t)-[g(t,x(t),u(t))—:k(t)]dt (10.5)

Now integrate by parts, and we get

r =(T) z(0)
: |
L:/[f+)\'g+/\'x}dt+/\(T)' b AT a . (10.6)
0

Keeping in mind that our choice variables are z (t) for each t € [0,7] and u (¢)
for each t € [0,77], it does not seem unreasonable that a solution should satisfy

OL

5200 =0’ for each t € [0, 7] (10.7)
and
4 aL b
) 0’ for each t € [0,T]. (10.8)

Now introduce the following meaningless but intuitive rule of differentiating an

integral with respect to a single value of the integrand.

@ /g(f(t))dt:%(i‘j))ds’ (10.9)
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If this seems puzzling, cf. what we would do with a discrete sum. Then

d < _ dg (zi)
dxiZg(xk)A:ck— i Az;. (10.10)

k=1

In any case, using this ‘rule’, and ‘dividing’ by ds, we get

(%[HA-QHX:U (10.11)

and

0

S f+ Al =0 (10.12)
Now suppose f is concave, the elements of A are positive and the g; are concave
in u (or f is concave and the g; are linear). Then our solution u* will deliver
the maximum of [f + - g]. If the constraint set U # R*, then it is not hard to
believe that our derivative condition (10.12) generalizes to the requirement that,
for each t, u (t) is that element of U which delivers the greatest value of f+ - g.

All this (useful) nonsense motivates the following theorem.

Theorem 10.2.2 (Pontryagin’s maximum principle) Define the Hamiltonian

function H : RxR"xRFxR" — R wia
H(t,x,u,\) = f(t,z,u) + X-g(t,z,u). (10.13)

Let x*,u* solve (10.4). Then, given some reqularity conditions and a reasonable
definition of what control functions u are admissible, there is a continuous and
piecewise differentiable (i.e. differentiable except possibly at a finite number of
points) function A : [0,T] — R such that

OH (t,2* (), u* (), A (1))

e +A(t)=0 (10.14)

for all t € [0,T] at which u is continuous as a function of t and

H(t,z" (t) ,u* (t) ,\(t)) =sup H (t,z" () ,u, A (1)) (10.15)

ucU

for allt €]0,T7].



190 CHAPTER 10. DYNAMIC OPTIMIZATION

Proof. See [14]. B

Remark 10.2.3 The point of PMP is that it gives us an ordinary finite-dimensional
maximization problem to solve for each t, and we know from Mathematics 1 how

to do that!

Remark 10.2.4 Amazingly, our rather wild derivations have led us to (a slightly

vague version of ) the right answer!

Remark 10.2.5 In this version of Pontryagin’s maximum principle, we have as-
sumed that the constraint set U (for the controlu) is independent of the state, and
that there are no restrictions on the state variables x. There are other versions of

PMP that drop these assumptions. See section 10.2.4.2 and [10] for more details.

Remark 10.2.6 PMP was invented in the 1950s to deal with problems where
the solution is such that u is sometimes on the boundary of U, a phenomenon
that the 18th century calculus-of-variations approach could not deal with. This
1s particularly important in so-called bang-bang problems, where it is optimal to
have u occasionally jump discontinuously from one boundary point of U to another
(something that the calculus of variations approach explicitly forbids). Note that if
u has a discontinuity at t then x (t) fails to be differentiable att. So the condition
T = g 1s only required to hold ‘almost everywhere’; for example, it suffices that it
holds everywhere except at countably many points. More precisely, the constraint

is, for 0 <t < T,

t

z(t)=x(0)+ /g (s, (s),u(s))ds. (10.16)

0
You will have noticed that our statement of PMP is not quite precise, and I

refer those of you who yearn for precision either to [14] or to section 10.2.4, where



10.2. CONTINUOUS TIME 191

we will state and rigorously prove a theorem to the effect that a certain set of
conditions are sufficient for a solution under suitable assumptions. (Given the

existence problems; see below, sufficient conditions are in any case more useful.)

10.2.3 Some remarks about existence

Compact sets, closed balls in infinite-dimensional sets, Weierstrass not applicable.

Example.

(10.17)

Compactification by extending the notion of a function?

10.2.4 Mangasarian’s sufficient conditions

Doing it the economic way; individual optimization and market equilibrium.
Arrow-Debreu: trade in dated goods takes place in meta-time. Representative
agent (everyone the same) and no distortions/externalities (the competitive equi-
librium is then a Pareto optimal allocation) but these assumptions can be easily
generalized. We will drop the assumption of Pareto optimality in section 10.3.2
(on dynamic optimization in discrete time). (Heterogeneous agents are beyond
the scope of this course, but you mustn’t think that this is an impossible topic,
although it does face a few numerical problems. Just make sure every agent opti-
mizes.) Constraint set possibly dependent on time (but not the state). Interpret
the differential equation as an integral equation and allow finitely many points

at which z is not differentiable.
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To make the problem economic, write
T

mélx/f (b2 (), u (b)) dt

(

i) =g(t,z(t),ut) (10.18)

z(0)==x
s.t. () ‘

Some suitable NPG condition

| u(t) e U CR" foralltel0,7T].

Note that the endpoint condition z (T") = b has been replaced by the somewhat
vague phrase ‘some suitable NPG condition’. We will make this precise, but
first let’s motivate the precise definition. ‘NPG condition’ stands for ‘no Ponzi-
game condition’. A Ponzi game in our context means going into debt without
ever paying back, or, in an infinite horizon setting, borrowing money to finance
the interest payments on the previous loan and so on ad infinitum. So an NPG
condition means that, at the endpoint 7" the agent should leave behind a portfolio
of assets with a nonnegative value. Notice that for the value of a portfolio to be
defined, we need asset prices. But these are determined in equilibrium, so the
NPG condition cannot be stated when looking merely at one agent’s problem and
ignoring the market interaction. It can only be stated if we know the prices A.

Given these prices, the NPG condition is
AT) -z (T) > 0. (10.19)

Note that this must hold not for any prices, only for the equilibrium prices A. Yet
it must hold for any feasible (‘admissible’) x. If 7" = 400 then the appropriate
requirement is that A (t) - z (¢) eventually stop ever dipping below zero. The

mathematical statement of this is

liminf A (¢) -z (t) > 0. (10.20)

t—o0
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Now let every agent in the economy solve (10.18), and, to motivate why a com-
petitive equilibrium is the appropriate solution concept, suppose each agent is so
small that her behavior cannot influence prices. We now consider sufficient con-
ditions for the profile (x*, u*) to be a competitive equilibrium allocation enforced
by the equilibrium prices A. The sense in which X is a set of prices is that A (¢)
will turn out to be the marginal value from the point of view of an individual of
increasing « (¢). This idea will be stated more precisely in section 10.2.4.1. We

are now ready to state (an economic version of) Mangasarian’s theorem formally.

Nota bene As above, we will denote a function using bold type. Other symbols

denote numbers or vectors.

Definition 10.2.1 An admissible allocation (x,u) at market prices X for the
problem (10.18) is a pair of functions x : [0,T] — R™ and u : [0,T] — R™ such

that

1. u(t) € U for each t € [0,T],

2. x(t) :m0+/g(s,m(s),u(s))ds for each t € [0,T], and
0

3MNT) - xz(T)>0ifT < o0 andli{ninf)\(t)-x(t)EOifT:oo.

Definition 10.2.2 The profile (x*,u*, A) is said to be a competitive equilibrium
of the economy where all agents’ preferences and constraints are given by (10.18)
if u* solves (10.18) and the prices X clear the market for the ‘assets’x clears in
every period, i.e. if agents could trade assets freely at prices A, then each agent
would demand the quantities x*. The profile (x*,u*) is then called a competitive

equiltbrium allocation enforced by the equilibrium prices A.
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Remark 10.2.7 This definition perhaps sounds a bit loose and non-mathematical.
For example, we have not defined what it means to ‘trade freely’. But we know

that this can be done rigorously; see [50].

Theorem 10.2.3 (Mangasarian) Let (x*,u*) be an admissible allocation of
(10.18) at market prices X. Let X : [0,T7] — R be a continuous and (except
possibly at countably many points) differentiable function. Moreover, suppose the

set U € R™ is conver. Now define the function H : [0,T] x R" x U x R" — R via
H(t,z,u,\) = f(t,x,u) +X-g(t,z,u). (10.21)

Suppose now that H is continuously differentiable with respect to x on its entire
domain. Suppose also that H (t,x,u, X (t)) is concave in (x,u) for each t € [0,T].

Finally, suppose that
OH (t,2" () " () A (1)

ox
finitely many points,

1. +A(t) = 0 for all t € [0,T] except possibly at

2. u* (t) € argmax H (t,z* (t),u, A (t)), for allt € [0,T] and

ucU

3NT)-2*(T)=01if T < 0 andtlim)\(t)-a:* (t) =0 if T = 0.
Then (x*,u*, A) is a competitive equilibrium.

Remark 10.2.8 If all the prices X are strictly positive, A (T) -z (T') = 0 implies

z(T) = 0.

Remark 10.2.9 The NPG condition A\ (T) -z (T) > 0 or li{n inf A(t)-z(t) >0
is a constraint. The condition A (T)-z* (T) =0 or tlim A(t)-x*(t) =0 is called a
transversality condition, and is not a constraint but an optimality condition. The

intuitive meaning of the NPG condition is ‘You mustn’t leave any debt behind’
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and the intuitive meaning of the transversality condition is ‘Since you can’t leave
any debt behind, and there is no point in leaving assets behind, set the net worth

of your bequest to zero’.

Before the proof starts, we need some preliminaries. Eventually the strategy
will be to show that u* solves 10.18 by showing that it delivers a higher value of
the objective than any admissible alternative. Then we will invoke an envelope
theorem to show that X clears the asset market. But for now, we introduce some

definitions and results that we’ll need in the proof.

Definition 10.2.3 Let A C R” be a convex set. A function f : A — R is said to

be concave if for all 2°,z* € A and all X € [0, 1] we have
F?+ (1 =X z") > Af(zo) + (1= A) f(z1). (10.22)

1
Example 10.2.1 Let z,2' € A. Define Az = 2! —x and set A = 1 — i where

A
M >0. Then \x + (1 -\ z' =z + ﬁm and if f is concave, then
Ax 1
— | > — Az) — . 10.2
F(o+57) = 37l o Aoy = (o) (1023
Lemma 10.2.1 (Mean value theorem) Let z,y € R" and let

Az,y) £{z €R": 2= Az + (1 — \)y for some A € (0,1)}. (10.24)

Then A(x,y) is the (open) line segment between x and y. Let f : A(xz,y) — R

be continuously differentiable. Then there is a w € A (x,y) such that
f@)=fy) =Vf(w)- (x—y). (10.25)

Proof. Sec [7].1
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Lemma 10.2.2 Let H and U be as in Theorem (10.2.3). Let x* and X\ be arbi-
trary fixed vectors in R™ (and hence not functions), let t € [0,T] be fixed and let

u* be such that

u* € argmax H (t, ", u, \) . (10.26)
uclU

Then for any w € U and x € R™ we have

OH (t,z*,u*,\)

pe St =zl (10.27)

H (t,z*,u*,\) — H (t,x,u, \) >

Proof. Let x € R" and u € U be fixed vectors and define Az = x — x*,

Au = u — u*. For each M > 0 we have

A A
H (t, x* + ﬁx, u* + ﬁu) )\) > {concavity!} >

1
> H (t,z*, u*, \*) + U [H (t,z,u, \) — H (t,x*,u*, \)] >

A
> {u* € argmax H (t,z*,u,\) and (u* + %) € U since U is convex} >

ucU

>H (t,x*,u* + %,)\> + % [H (t,z,u, \) — H (t,x*,u*,\)].

M
(10.28)
Hence
H (t,z*,u*;\) — H (t,x,u, \) >
Au Ax Au

> * * I _ * i * I —

_M{H(t,x Ut + M,A) H(t,x + T + M,A)]
(10.29)

= {Mean value theorem!}

0 ., Au
= —%H (t,xM,u +ﬁ7/\) WAV
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R A Az . .
for somez,; € A (m*, T* + ﬁx) where A (m*, x* + ﬁx) is the open line segment

x
between x* and x* + ST Now let M — oo and invoke the continuity of H,. ®

The proof can now begin in earnest. Note first that

/f(t,x(t),u(t))dt:/[H(t,x(t),u(t))—A(t)a':(t)] dt (10.30)

Now consider the candidate optimal allocation (x*,u*) which by assumption sat-
isfies u* (t) € argmax H (¢, z* (t),u, A (t)) for each ¢t € [0,7] and let (z,u) be
uelU

an admissible allocation. We will now show that (x*,u*) delivers a value of the

objective function no smaller than does (x,u).
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> {Lemma 10.2.2!} >

> / (HL (. (8) o (), A () - [ (£) — 2 (£)]} d — / N (8) - [ () — & ()] dt =

= {Integration by parts!} =
_ / L (107 (1) (1) M (1) + A )] - o (6) — (1)) di—

—A(T) [z (T) = = (T)] + A (0) [z~ (0) — = (0)].
(10.31)
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What we want to show, of course, is that the last expression is > 0 under
the assumption of our Theorem. The first term vanishes by the H, + A = 0
condition. The final term vanishes since z* (0) — z (0) = ¢ (recall that x and x*

are admissible!). This leaves us with the middle term

AT)z (T) — A(T) 2" (T).

Consider the case T' < oo first. Then the admissibility of x guarantees that
A(T)z (T) > 0. Meanwhile, the transversality condition says that A (T') z* (T') =
0. This finishes the proof that u* is optimal for a finite 7. On the other hand, if

T = oo, we consider the difference

A (t) — N () 2 (1) (10.32)

and let t — oco. By the NPG condition, \ (t) x (t) eventually stops ever dipping
below zero as ¢ — oo, and by the transversality condition, A (¢)z* () — 0 as
t — o00. The final part of the proof shows that the prices A really clear the
market. This will be true if each agent’s marginal values (in terms of her objective
function) of the assets x are equal to the market prices A. This is the Envelope

Theorem; see section 10.2.4.1. ®

10.2.4.1 The Envelope Theorem

Theorem 10.2.4 Let (x*,u*, \) satisfy the sufficient conditions for being a com-
petitive equilibrium of an economy described by (10.18). Suppose the sufficient
conditions define u* uniquely. [Add another technical condition here; u* (t) is

locally bounded as a function of x.] Define the value function (indirect utility
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function) via

T

V(tz) = max/f(s,x (s),u(s))ds

u
t

z(s)=g(s,z(s),u(s)) (10.33)

z(t) ==
s.t. )
NPG (relative to market clearing prices)

u(s) e U CRY forallseltT).

\

Then, for allt =10,T), we have

oV (t,x* (t))

= (). (10.34)

OV (T.a* (1)) OV (t.a" (1)

then the statement folds for
T t—T oz

and if we define

t="1T as well.
Proof. See [3]. 1
Remark 10.2.10 The equation (10.84) is only valid aloong the optimal path x*.

Example 10.2.2 Consider the optimal consumption problem

1

mélx/lnc(t) dt
, 10.35
k(t) = —c(t) ( )
s.t. k (0) =1
NPG

The Hamiltonian s

H(tx(t), A1) =1lnc(t) — A(t)c(t) (10.36)



10.2. CONTINUOUS TIME 201

Our optimality conditions become

At)=0 (10.37)
and
1w (10.38)
ct) '

1
Hence AN(t) =X and c(t) =c= Y According to the law of motion for the capital

stock,
t

k(t)=1- /cds =1—tec (10.39)

The NPG condition now becomes

— 0. (10.40)

This implies that ¢ = 1 and we have solved the problem. Note that A = 1 and

k*(t) =1—t. To find the value function, we now solve

1

max/lnc(s) ds
t
. (10.41)
k(s)=—c(s)
S.t. k(t) =k
NPG
In this case, the solution is ¢ (t) = ¢ = T—% Hence the value function is
1 k
t
and
1—
V(LK) 1=t (10.43)

ok k
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Consequently

vV (tk* () 1—t
ok 1=t

1. (10.44)

and we have confirmed the envelope theorem in a special case.

10.2.4.2 Constraints involving the state variables

Sometimes we have constraints of the form h (¢,z (t),u(¢)) <O0.

Avoiding these constraints. Dealing with them if you can’t.

10.2.4.3 Integral constraints

Sometimes we have constraints of the form
T
/ k(to (), u(t)dt = K (10.45)
0
See [3].

10.2.4.4 Endpoint evaluation

Occasionally one comes across problems where the maximand has the form

/f (t,x(t),u(t))dt+h(x(T)). (10.46)

where z (T) is free. It is possible to transform this to a problem without endpoint
evaluation, but it is often easier not to. The optimum conditions are then the

same as before except that the appropriate transversality condition is

—~A(T) =0. (10.47)
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10.2.5 Using the sufficient conditions to calculate the so-

lution

Do our sufficient conditions ‘usually’ deliver a unique solution? [Subtlety: even if
they do, there may be more than one solution to the optimization problem.] Well,
suppose u* (t) is in the interior of U for each ¢. Then our sufficient conditions can

be written (in shorthand notation) as

1. H, + A=0 (n differential equations)
2. & =g (n differential equations)
3. H, =0 (m algebraic equations for each t)

4. z(0) =2 (n initial conditions).

Now in well-behaved cases, we can use H, = 0 to solve for the m elements of
w in terms of A and z. That leaves us with a 2n-dimensional system of differential
equations with n initial conditions. We need n more linear restrictions to pin down
the solution. If T' < oo and all the prices are strictly positive, the transversality
condition implies = (7') = 0 which gives us another n linear restrictions, which
is just what we need. If T" = oo, the condition tlHIolo A(t)x (t) = 0 will typically
imply that z (¢) is stable (or at least, which is what matters, be implied by x being
stable). If there are precisely n unstable eigenvalues, this stability requirement
imposes exactly n linear restrictions, and we have pinned down the solution.

It may seem unlikely that we should have exactly n unstable eigenvalues,
but, in fact, it is a mathematical theorem that linear-quadratic control problems

generically have this property! See section 10.3.8.1 for a discussion of the discrete

time case. Economics of explosive roots: bootstrap property of asset pricing; the
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higher the price of an asset tomorrow, the more valuable it is today. This positive

feedback leads to an explosive eigenvalue for each of the n ‘assets’ in x.

So the problem of solving a dynamic optimization problem boils down to
solving a system of ODEs with boundary values. Sometimes we’ll be able to
solve this system exactly, but often we won’t. Then there are many numerical
methods of finding an approximate solution. One particularly simple one is to
linearize the system around its steady state, and then solve the resulting linear

system. The solution will then be accurate close to the steady state.

If our only objective is to find a qualitative characterization of the solution
(steady state, stability) it also makes sense to linearize and invoke Lyapunov’s
theorem. Having derived the approximate dynamics around a steady state, we
can draw a rough phase diagram indicating the approximate behavior of the

trajectories.

In many cases, however, it won’t be obvious how to deal with the sufficient con-
ditions. Ingenuity is often required, and ingenuity can only be acquired through

practice.

Example 10.2.3 Suppose we have a beehive which is Darwinianly selected to
maximize the number of queens and drones at the end of the season. Let x (t)
be the number of sterile workers and y (t) the number of queens and drones at
time t. Thus the mazimand is y (T). [We can rewrite this problem without end-

point evaluation but it’s easier not to.] Meanwhile, suppose the bechive faces the
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following constraints

G (t) =bu(t)z (t) — vz (1)

y)=c(l—u(t))z(t)

z(0)=1 (10.48)
y(0) =0,

u(t) €10,1] for allt € [0,T]

\
where b > ~. We now proceed to solve this problem. We will take the objective to

We will discover that the solution has a bang-bang nature. The Hamiltonian is

H=1+Xt)[bu(t)z(t) — vz )]+ u () [c(1—u )z ()] (10.49)

where X\ (t) and p(t) are the shadow prices of the constraints. Notice that H is
linear in u (t) with slope coefficient X (t) bz (t) — cu (t) x (t) . Since x (t) is always
greater than zero (this follows from the constraints), the sign of this slope is the

same as that of the “switch function”

o (t) = bA(t) — cu(t). (10.50)

When o (t) > 0, the Hamiltonian is mazimized whenu (t) = 1, and when o (t) < 0
it is mazximized when u (t) = 0. When o (t) = 0, it is optimal to switch from 0 to
1 or vice versa. Note that PMP guarantees the continuity of A (t) and p(t), so
that the only switch times are those such that o (t) = 0.

Now we look at the optimum conditions. Recall that we have endpoint evalu-

ation with

h(a (T),y(T)) = y(T) (10.51)

so that



206 CHAPTER 10. DYNAMIC OPTIMIZATION

which implies that
p(T) =1

Summarizing, the sufficient conditions for an optimum are as follows.

A(E) B (8) = 2] + () e (1= (1)) = —A
=i

0
1.

(
H,
Hy

I
o

(10.52)

~—

AT
L w(T)
We may immediately conclude that i (t) = 1 and hence that the switch function

can be written as

o (t) =bA(t) —c. (10.53)
Also, we can now rewrite the differential equation for \ as

At) = [y = bu (@] A () —c(1—u(t)
A(T) = 0.

(10.54)

We now ask how many switches there will be between 0 and T'. To answer that,

we check the sign of o at 0 = 0. We get
& = byA — b*ul —be (1 —u) = yc —beu — be +beu = c(y—b) <0 (10.55)

so that there is at most one switch. If o ever reaches zero, it forever stays below

zero after that. The structure of the solution, then is

1 whent € |0,s)
w(t) = (10.56)
0 whent € (s,T]

(the value of u at t = s doesn’t matter). Notice that we have not excluded the
possibility s = 0 (the possibility s > T is an awkward on which we’ll ignore for

now). But what is the value of s? To find out, we consider the differential equation
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for X from s to T, where we know that w = 0. We get

MO =) e (10.57)
MT) = 0.

Using the formula for solving a linear ODE (keeping in mind that switching

around the limits of an integral switches the sign), we get

T ¢
At) = /exp /ydu cdu = < [1- 67(t_T)] : (10.58)
Y
t u

Now recall that the time s is defined via o (s) = 0 and hence \(s)b = c. This

means that

Sh—ee N p=c (10.59)
g
and consequently
— T4l (1—7> (10.60)
5= > n 5 ) .

Since b > v, we have s < T. Thus it is never optimal to spend the whole season
just rearing sterile workers. However, there is no guarantee that s > 0. If s <0
according to our formula, then of course it is optimal never to switch and set
u(t) =0 for all t € [0,T] and hence devote the entire season to rearing queens

and drones.

Apparently, field biologists have been able to confirm that this is indeed how
many beehives behave. Indeed, there has even been some quantitative predictive

success with calibrated models of the kind presented here.
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10.2.6 Current value costate

Sometimes the time-dependence of a dynamic optimization problem takes the

form of geometric discounting only, i.e. we have a problem of the form

T

max / e F (2 (8) ,u (1)) dt

0

(& (t) = g(x(t),u(t) (10.61)
s.t. = (0) =0
NPG
| u(t) e U CR" forallte[0,7T].

In this case it is often useful to redefine the costate A (¢) as the current rather
than the present value of x (t) (we’ll see in a moment precisely what this means).
The definition is

A (t) = e” NP (t) (10.62)

where the ‘present value’ costate A (t) is just the costate that we have been
working with so far. The sense in which this is the current value is that it is the

derivative of the following ‘current’ value function

T

V(t,z) = mgmx/ P f (x(s),u(s))ds

(s) = g(x(s),u(s))

z(t)=zx

;

(10.63)

s.t.
NPG

| u(s) € U CR" forallsel[t,T].
This means that \°(t) can be interpreted as the prices at which the assets z

are traded at the instant ¢ in actual time rather than the prices of x (¢) in the

Arrow-Debreu market in meta-time (or, if you like, at the instant ¢t = 0).
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Apart from the nice interpretation, the current value approach has benefits in
terms of calculation. One thing is that it makes the first order conditions time-
independent, which is crucial if we are looking for a time-independent feedback
rule (see section 10.3.4). Another is that is simplifies the calculations regardless
of how we want to represent the solution.

Given our new definition of the costate, we can define new optimality con-
ditions in terms of a current value Hamiltonian in the following way. The old-
fashioned (present-value) Hamiltonian as applied to our discounted case is of

HY (t,2 (), u(t),A(t) =e " f(z (), u(t) + X (t) g (z(t),u(t). (10.64)
Rewriting in terms of the current value, we get
HP (2 (t),u(t),A(t) =e "f(z(t),ut)) +e "X (t) - g(x(t),u(t) (10.65)

and maximizing this with respect to u (¢) is of course the same as maximizing the

current value Hamiltonian

HE (z(t),u(t), A@t) = f(x(t),u(t) + X (@) g(z(),ud). (10.66)

The condition H, 4+ A = 0 is a little bit trickier. The correct condition is of course
H? + ) = 0. Since H? = e HS and X' = —pe #\° + ¢ #' X", this condition
becomes HS + A — pA° in terms of the current value Hamiltonian and costate

(which is independent of time!). In summary, our optimality conditions become

( aHC(l.* (t)é;ﬁ (t)’)‘(t)) +)’\C(t)_p/\c(t):0
u*(t) € ar%glljax He(z* (t) ,u, A (1)) (10.67)
XA(T) -z (T)=0if T < oo and tli)rgloe_pt)\c(t)-x(t) =0if 7T =00
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where the current value Hamiltonian is defined via

He (z(8),u(t),A(@t) = f(z (), u(t) +A°(t) - g (z(t),u(t). (10.68)

Provided one knows what one is doing, the notation A (t) = A (¢) is perfectly
permissible. In any case, the usefulness of the current value approach can best be

demonstrated in examples, and to such an example we now turn. [To be written.|
Example 10.2.4 Installation costs. From last year’s problem sets.

Example 10.2.5 Qualitative reasoning; example from BEF, pp. 122-123.

10.2.7 Linear-quadratic control problems
The sufficient conditions are linear. This case will be discussed in detail in the

discrete time case. Here we will just give an example.

Example 10.2.6 Consider a firm which mazximizes the discounted value of prof-

its. It marimizes
/ et [k (t) — %kQ (1)~ i ()~ 5 (1) k(@[ dr (10.69)
subject to
k(t) = =6k (t) +1(t) (10.70)

1 a
where we think of k (t) — 5[@'2 (t) as output and i(t) + 5 (i (t) — 6k (t))* as the
costs of investment. Notice that there is a convex cost of changing the capital
stock whose significance increases in a. We assume that a > 0 and r > 0.

The current value Hamiltonian is

H=k(t) - %k? (t) —i(t) - g (i (t) — 8k (£))% + pu () [=6k () +3 (£)]  (10.71)
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and the optimum conditions are

Hi+p—rp=1—k(t)+ad(i(t) —0k(t)) —op(t)+p(t) —ru(t)=0

Hy=—1—a(i(t)—6k(t)+ult)=0

(10.72)
Using the H; = 0 condition to solve for the controli(t), we get
1
i(t) =0k(t) + - (u(t)—1) (10.73)

Substituting into the Hy + 1 — ru = 0 condition and the law of motion k (t) =
—0k (t) +1i(t), we get

‘ 1 (10.74)
F) = (u(t) - 1)
or, in matrix format,
[t r 1 w(t —(1-=19)
. ) 1 ) + 1 . (10.75)
~ 0 _Z
B || 2o | ke -
First we find the steady state, which is
-1
* r 1 1-96 1
: ! ( , ) (10.76)
k* - 0 - 1-6—r
a a

Notice that the marginal product of capital in the steady state isr + 6. To an-

alyze the dynamics around the steady state, we investigate the eigenvalues and

eigenvectors of the coefficient matriz. We find that

r 1 1

1 =——<0 (10.77)
a

-0

a

so that the solution is a saddle path. Denote the stable (negative) eigenvalue by

1
A1. The corresponding eigenvector x satisfies —x1 = Ao so that, along the saddle
a

path, we have

p(t) — p* = ak (k(t) — k). (10.78)
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It follows that

i(t) = 6k () + M\ (k (£) — &) (10.79)

and consequently

k(1) = M (k (1) — k) (10.80)

so that the rate of convergence towards the steady state is given by the stable

ergenvalue.

On intuitive grounds, it seems reasonable to suppose that as a — 0, we have
immediate convergence so that Ay — —oo. Conversely, when a — oo, capital
should be constant since it is infinitely costly to change it and hence Ay — O.
Using the formula for the roots of a quadratic equation, it is not hard to confirm

these conjectures. We have

2 1
n=s-1(5) +2 (10.81)
and the conjectures follow almost immediately. In between these extremes, it

would be nice to verify that

oM

— > 0. 10.82
o (10.82)
To show this, note that
)\1 + )\2 =r
1 (10.83)
A = ——
a
from which it follows that
o\ 1
= >0 10.84
da a ()\2 — )\1) ( )

since, by definition, Ay < 0 < Xs.
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10.3 Discrete time

10.3.1 Definition of problem

Straight to distorted market equilibrium in a representative agent economy.

Finite horizon: we did this in MatFU 1, implicitly! But special form, let’s
exploit that.

Infinite horizon: we need to learn more. Rather than going through a Pontryagin-
style argument, we go straight to the sufficient conditions. What to expect: a

system of difference equations.

10.3.2 Mangasarian-style sufficient conditions

Here we will consider a competitive economy with identical agents but (possibly)
with externalities. Formally, we let the economy consist of uncountably many
small agents, each of measure zero but of total measure one. Let the set of agents
be a measure space (I, F, u) where p (i) = 0 for each i € I but p (i) = 1. Now
let, say, the asset holdings of an agent i at time ¢ be z* (£) . We then define the
aggregate asset holdings by

r(t) = / o' (t) du (i) . (10.85)

I

and similarly for other variables.

Since all agents are small and alike in all respectss (a philosopher would say
‘qualitatively identical but not numerically identical’ when we say ‘alike in all
respects’), prices depend only on aggregate variables. We model the externality
by saying that prices are determined by a market clearing condition involving

only aggregate variables as follows.

m (¢, ug, pr) = 0 (10.86)
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where p; € R* is a vector of prices (other than the prices of the assets x), 2z
is an exogenous sequence and m : R® x R™ x RF — R* is a vector of market
clearing conditions and aggregate resource constraints. An example of a market
clearing condition is that the wage is equal to the marginal product of labor. An
example of an aggregate resource constraint is the GDP is equal to the sum of

consumption, investment and net exports. Now suppose each agent i solves

T
max S F (8 24 )
ha—

.’Eé+1 - g (t7 fL’é, Ui,pt) (1087)
u; € U CR™
s.t.
rh=a
\ NPG
(10.88)

where possibly T' = co. Look carefully at what we have allowed to be individual-
specific and what not! In addition to the constraints, the agent is also aware of the
aggregate constraints m (zy, ug, p;) = 0 and 411 = g (¢, x4, us, p;) and has rational
expectations about the present and future behavior of all the other agents in the

economy (which in this case means perfect foresight).

Hint. When writing down market clearing conditions, you always get one more
than you need. By Walras’ law, you can drop one of them without losing

any information.

We now state sufficient conditions for (x*,u*) to be a competitive equilib-
rium allocation enforced by the prices (A, p). Given the close analogy with the

continuous case and the finite-dimensional case, they are not hard to believe.
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To understand the optimum conditions intuitively, it is useful to think of there

being a single Lagrangian of the form
T

£ = [ft -+ /\t . (gt — It+1)] (1089)

t=0

Note that, in period ¢, we choose u; and 1, x; being given by history. Now fix
a particular ¢t and consider the terms involving the choice variables u; and x;.
We have

Je+ A (g0 — Toga] + ferr + A1 - (o1 — Tego] (10.90)

where the term g;,; involves x;,;. Now maximize this for each ¢! This yields

precisely the optimum conditions below.

Nota bene. Asabove, we will denote a sequence using bold type. Other symbols

denote numbers or vectors.

Definition 10.3.1 An admissible allocation (x,u) at market prices A and p for
the economy described by (10.87) is a pair of sequences (x:); ", and (u;);_, such

that

1. uy € U for eacht=0,1

g Ly eeey

T

2. xp=a

3. xy = g (t,x,us, pp) for eacht =0,1,...,T,

4. m(z¢,up,pr) =0 for each t =0,1,....T, and

5. Arxry1 =04f T < oo and tllglo A1 =0 if T'= 00

Theorem 10.3.1 Let (x*,u*) be an admissible allocation of the economy de-
scribed by (10.87). Let X = (\),—, be an n—dimensional sequence. Moreover,

suppose the set U € R™ is convex. Now define the function H via

H(t,z,u,p,\) = f (t,x,u,p) + X- g (t,x,u,p) (10.91)
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fort=0,1,....,T —1 and, if T < oo,
H(T,z,u,p,\) = f(T,z,u,p). (10.92)

Suppose now that H is continuously differentiable with respect to x on its entire
domain. Suppose also that H (t,xz,u,ps, At) is concave in (x,u) for each t =
0,1,...,T. (Note that the concavity property only has to hold for our particular

choice of p, and X\, not generally.) Finally, suppose that

1 OH (t + 1,271, uf\1, Pest, Aes1)
. Ox

—XM=0forallt=0,1,...,T —1,

2. uj € argmax H (t,x},u,p;, N), for allt =0,1,....,T and'
uclU

3 Ar-xri1=04f T < o0 andtlim At -1 =0 4f T'= o0.
Then (x*,u*, A\, p) is a competitive equilibrium.

Remark 10.3.1 If all the prices Ay are strictly positive, Ay - xp 1 = 0 implies

Tyl = 0.

Proof. See [3]. 1

Remark 10.3.2 Note that Harald and Chow (and nearly everybody else) have
a different timing convention for A\ than I do. They associate A\yy1 with the
constraint xy 1 = gy, whereas I associate \; with that constraint. Both conventions
have their pros and cons but of course yield the same solution for x and u. The
advantage of my convention is that u; becomes a function of \¢ rather than A,
or, in the stochastic case, E[\11|F:]. You will see advantages of Harald’s and

Chow’s convention below.

! In contrast to the continuous time case, this condition is not necessary. If H is convex in
(z,u), there may well be a solution that does not maximize the Hamiltonian. See Sydsaeter et
al: ”Further mathematics for economic analysis.”
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Hint. It is much easier to remember maximizing

Je+ X (g0 — o] + ferr + A1 - (o1 — Tego] (10.93)

than to memorize the above Theorem. The initial and boundary values
(transversality conditions) are most easily remembered as x, given and
zpy1 = 0 if T < oo and (x,A) stable if 7' = co. Notice also that the
sign convention (writing f; + A¢ - [g¢r — Teya] or fi + A - [er1 — ¢¢]) is only

important if you care about the sign of \;; usually you don’t.

Example 10.3.1 Equilibrium prices. wy = frs; 7 = frt

10.3.3 The envelope theorem

Theorem 10.3.2 Let (x*,u*, A\,p)be a competitive equilibrium of an economy
described by (10.87). [Add technical conditions here as in continuous case.] Define

the value function (indirect utility function) via

T
V(t,z) = maXZf (s, 2%, ul, ps)
s=t

fEi+1 =g (87 mia ui7p5) (1094)

ule U CR™
s.t.
Ty =2

NPG (relative to X)

\

Then, for allt =0,1,...,T we have
—) = N_1. (10.95)

Proof. Sec [3].1
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Remark 10.3.3 Note that with Harald’s or Chow’s timing convention, the En-

velope Theorem says
oV (t,zy)

5o = (10.96)

10.3.4 Feedback representation of the solution

Often it is practical to represent the solution as u; = d(t,x;). This is called
a feedback, recursive or Markov representation (or decision rule) and has great
practical value, especially in stochastic problems. In stochastic problems, the so-
lution is a whole stochastic process, and a recursive representation of the solution
is the only manageable alternative. In particularly auspicious circumstances, the

dependence on ¢ vanishes, and we can write u; = d (z¢).

Exercise 10.3.1 Let o, 3 € (0,1) and consider the consumption/saving problem

T
max Z B'ne
¢ =0
10.97
kt—i—l = k?? — Ct ( )
s.1. ko given
NPG.
Verify that the feedback rule
1 —
o b e (10.98)

solves our problem when T < oo. Verify that the (time-independent!) feedback
rule

¢ = (1—ap)ky (10.99)
solves the problem when T = oo. What is the intuitive reason for the time inde-

pendence of the solution when T = oco?
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10.3.5 Constraints of the form h (¢, z,u;) <0

Avoiding these constraints. Dealing with them if you can’t. Not too hard: asso-
ciate the constraint with a Lagrange multiplier and use Kuhn-Tucker to maximize

the Hamiltonian.

10.3.6 Current value costate

Consider the discounted control problem.

max ) G (@1, )
t=0

Teer = g (Te, ) (10.100)
s.t. xo given

NPG

In problems like these, it makes sense to redefine the costate A in an analogous
way to what we did in section 10.2.6. The reasons for this are the same as we

discussed there. Specifically, the redefinition is
& BT (10.101)
In practice, this means that, for each ¢, we maximize

fe+ Mgt — mepa] + Bfirr + BAst - [ge41 — Tega) (10.102)

with respect to u; and x;, keeping in mind that the transversality condition be-
comes tlim B*A\ixi:1 = 0 when T = oco. Notice that the first-order conditions are

time-independent, so that, if linearized, it becomes a linear system of equations

with constant coefficients.
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10.3.7 Using the sufficient conditions to find the solution

In principle, we proceed as in section 10.2.5, and the essential task is of course to
solve a system of difference equations. Usually, of course, this is difficult; more
specifically, the difficulty lies in picking out the stable solution(s). In the linear
case this problem is not too hard, and sometimes not much precision is lost by
linearizing he first order conditions. We can then proceed as in chapter 9. In an
interesting class of cases the sufficient conditions actually are linear, and to that

class of cases we now turn.

10.3.8 The deterministic LQ control problem

In this section, we will denote the transpose of A by A’.

Consider a Pareto optimal economy where the representative agent solves

T
1 :
max {5 tgo z,Qry + ugRut}

(10.103)

Tir1 = Al't + But
s.t.

xo given.

This is a linear-quadratic problem in the sense that the objective function is
a quadratic form and the constraint is a system of linear equations. Without loss
of generality Q and R are symmetric.> Notice also that there is no discounting
and no cross-products between states and controls. This in fact involves no loss
of generality; we can transform a problem with discounting and cross-products
to one without any of these; see [5]. Nevertheless, this transformation is not

practical in concrete cases; here we exploit it only to make a theoretical point.

. 1
2 If, say, @ should not be symmetric, just replace @ by 3 (Q + Q') and we would have the

same quadratic form with the symmetric matrix B (Q+ Q).
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If you want to solve a particular problem, use the methods described in section
10.3.9.1 instead.

Checking concavity of Hamiltonian. (), R negative semidefinite.

Now to find the optimality conditions, we maximize, for eacht =0,1,...,T—1,
1, 1
ixtth + Eu;Rut + )\; [.’Et+1 - AZEt — But] +
(10.104)

1 1
+§.’E;+1Ql‘t+1 + §u;+1Rut+1 + /\;_,'_1 [ZEH_Q - AZL‘t_H — But+1]
with respect to u; and x,,;. Differentiating with respect to u; (rather than u})

and x;,1 (rather than z}, ), we find that the first order conditions are

Rut—B')\t =0

(10.105)
M+ Qrir — ANy = 0
Assuming that R is invertible, the first block of equations says that
uy = R™'B' ). (10.106)

Now substitute this into the second block and into the constraint. We get

—A'N1 +Qriy = -\ (10.107)
T4l = BRilB//\t + A.’Et.
Combining these conditions, we have
-A"Q A -1 0 A
S ' (10.108)
0 I Ti41 BRilB/ A Tt.
A A
A R (10.109)
Tit+1 Tt

Now if M is invertible (<= A is invertible), this can be solved as described in
section 9.2.4. Just use the given value of xy, and, if T" < oo, the transversality

condition x7 1 = 0. If A is not invertible, use the methods described in section

8.5.
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10.3.8.1 Uniqueness of the solution when 7' =

Proposition 10.3.1 Let A be invertible, let B be arbitrary, let QQ, R be symmet-

ric. Then the matriz M—'N defined via
-1
-A Q —1 0
M™'N = (10.110)
0 I BR'B" A
has the same eigenvalues as a symplectic matrixz. Note that with Harald’s or

Chow’s timing convention, M~ N would have been symplectic.

Proof. Use the formula for the inverse of a partitioned matrix in [25] and then

invoke the relevant result in section 8.4.

Corollary 10.3.1 The eigenvalues of M~*N appear in reciprocal pairs, i.e. if
1

A 1S an eitgenvalue, so is SV It follows that there are just as many eigenvalues
k

inside the unit circle as there are outside. Generically, half are strictly inside

and half are strictly outside the unit circle (the only exception is if there are unit

eigenvalues).

So, generically, the system of difference equations that comes out of an LQ
control problem has a unique stable solution! Indeed, we can solve for the feedback
solution in a remarkably simple way. The idea will be to use the fact that we are
always on the saddle path to determine a relationship between z; and );. That
will then define the feedback rule!

Let M~'N be diagonalizable, and let Q be a matrix of linearly independent
eigenvectors of €2, ordered so that the eigenvectors associated with unstable eigen-
values comes first. Now partition the 2n x 2n matrix Q=1 into n x n blocks as
follows.

Ol 12

O = A E (10.111)
Q1 Q
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A

We know (see section 9.1.4.6) that any point " | on the saddle path satisfies
Tt
QM + 02, =0, (10.112)
Hence if Q! is invertible, we have
A= — ()7 Q% (10.113)

and hence the (time independent!) feedback representation of the solution to our

dynamic optimization problem is
u = —R B ()7 Q% (10.114)

Note that this solution can be extended to the stochastic case as well. In that
case, we will use slightly different methods (see section 10.3.9.1), but the intuition
remains the same: the feedback solution comes from the requirement of always
being on the saddle path, even when that path jumps around as it does in the

stochastic case.

Example 10.3.2 This example shows how far it is possible to get without solving
a problem explicitly. Consider a firm that faces a given fized interest rate r and
maximizes the discounted sum of present and future profits. Suppose initial capital
ko 1s given and that the problem of the firm is to maximize
d () m (10.115)
=0

where
Ty = f (kt) — g (kt, Zt) (10116)
and
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The production function f is defined via

1
f(k)=Fk— 5/& (10.118)
This means that production peaks at k = 1, so it is pointless to accumulate any

more capital than that. Meanwhile, the investment cost function g is given by
. . a . 2
g (k,1) :z+§(z—6k) : (10.119)

The second term of the right hand side expresses the assumption that it is costly
to change the capital stock, and that this cost is convex in the size of the change.
Note that the extent to which it is costly to change the capital stock is determined
by the parameter a. Obwiously, we assume that a > 0 and r > 0.

We will now investigate the properties of the solution to this problem. We

begin by maximizing

Lo=mtp, (1= 8) ke + i — kepa]+(1 +7) e+ +7) o1 (1= 06) ksr + i1 — Kega) -

(10.120)
The first order conditions are
—pt+ (L+7)" [1 = kerr + ad (i1 — Skpn) + (1= 6 =0
e+ ( ) [ t+1 (Gg41 t11) + ( )Mt+1] (10.121)
—1—a(iy — k) + p, = 0.
The second row allows us to solve for the control i;. We get
. 1
iy = Oky + — (u, — 1) (10.122)
a

which means that investment is equal to replacement plus (1/a) times the deviation
of the shadow price of capital from 1. So the magnitude of the change in the
capital stock depends negatively on a, which expresses the cost of changing the

capital stock. Moreover, investment is increasing in the shadow price of capital.
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Substituting the expression for i, into the first row and into the law of motion

ki1 = (1 — 0) ky +4¢, we get, in matriz format,

Q4+ =@+ ||

1
0 1 k e !
t+1 a

“(10.123)
Our first goal is to find the steady state. The logic is to drop the time subscripts,
notice that our equation then has the form Axr = Bx + b and calculate =* =
(A—B) 'b. We get

-1

s (14+r)" =1 =1 +r)"" (47 (1-06) 1
k* —= 0 —= 1—7r—§
a a
(10.124)

It follows that

i = ok (10.125)

so that investment in the steady state is just enough to maintain the capital stock
constant. Also, the steady state capital stock k* is such that f' (k*) = r+6, which
is a natural result. The rewards of saving are then just equal to the costs, r being
the opportunity cost of omitting to lend abroad, and 6 being the depreciation rate.

The next step is to analyze the dynamics around the steady state, and those

dynamics are determined by the matrix

-1

1
(14+r)" —1+nr)" 10 I+r+- 1
M = 1 =1, a . (10.126)
0 1 -1 - 1
a a

We now want to establish two facts: (1) the solution is a saddle path, and (2),
the speed of convergence is decreasing in a (or, equivalently, the stable eigenvalue
is increasing in a).

The first step is to show that both eigenvalues are real and positive. To see
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this, note that they solve the characteristic equation
A —tr (M) - A+ det (M) = 0. (10.127)

Hence the solutions are both real if

tr? (M) — 4det (M) > 0. (10.128)
In our case,
1
tr(M)=24+r+— (10.129)
a
and
det (M) =1+4r. (10.130)
Consequently
1 4 2
tr? (M) — 4det (M) = r* + — + -+ — > 0. (10.131)
a? a a

Hence our eigenvalues are both real. To see that they are positive, note that
1
a

and

Ade=1+47>0 (10.133)

so both their sum and their product are positive. Hence they are both positive.
Now to see that one is stable and one unstable, note that if they are both positive,
the stability of an eigenvalue (whether |A| < 1) is determined by whether it is
greater or less than +1. To show that the eigenvalues are on opposite sides of +1,

note that

(1= M) (1= Xg) = 1 — tr (M) + det (M) = _% <0 (10.134)

So far, then, we have shown that the solution is a saddle path. The final step is to

wnwestigate the speed of convergence, and this is of course governed by the stable
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eigenvalue, which we know to be between 0 and +1. Denote the stable eigenvalue

by A1 and the unstable eigenvalue by \o. We know that

1
AM+Xd=2+r+-
a (10.135)

)\1)\2 =1 + .

It follows that
O\ A1 1

— - 10.1
il v wie 2l (10.136)

so that convergence is slower the greater the cost of changing the capital stock is.

Also, it is tempting to conjecture that as a — 0, convergence is immediate, so
that ki1 = 0 - ky + k*. Similarly, as a — oo, we should have ki y = ki +0 - k*
so that the capital stock is constant when it is infinitely costly to change it. It is

actually not hard to confirm these conjectures. To do it, we note that

1 1\ 2
24714 - 247+ =
a

M=—at— || =52 —(1+7) (10.137)

1
Letting a — oo, the — terms disappear, and we get
a

2 2 2
lim A\, = ;T—\/< ;r> —(1+7r) =1 (10.138)

1
Conversely, when a — 0, the — terms become dominant (and under the root sign,
a

1
the — terms become dominant). Hence
a

. 1/a 1/a\?
lim A, = % - (%) = 0. (10.139)

Finally, let’s write down the solution in terms of the stable eigenvalue. A stable
1

eigenvector x satisfies —xy + xo = A\xo. Thus, along a stable eigenvector x, we
a

have z1 = —a (1 — A1) xo. Hence p,—p* = —a (1 — \y) (ke — k*) for allt = 0,1, ...

Recalling that u* =1, it follows that

e =1—a(l— ) (k — k") (10.140)
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and consequently
which expresses the fact that investment is equal to depreciation plus a change in

the capital stock in the direction of the steady state and at the rate determined by

the stable eigenvalue. The equilibrium dynamics of the capital stock now becomes
so that the rate of convergence is given by the stable eigenvalue.

Exercise 10.3.2 Confirm that if Q and R are negative semidefinite, then the

Hamiltonian associated with (10.103) is concave.

Exercise 10.3.3 Verify that, with Harald’s or Chow’s timing convention for the
costate, the first-order conditions of a discrete-time linear-quadratic dynamic op-
timization problem without discounting and without cross-products between states

and controls yield a dynamic system with a symplectic coefficient matrix.

Exercise 10.3.4 Consider

ml?x; l—ix? - %u?] (10.143)
(10.144)
Tip1 = Ty + Uy
s.t. To given (10.145)
NPG.
Write down the first order conditions as a dynamic system either in A\ and x; or
in uy and x;. Find the saddle path of this system (spanned by the stable eigenvec-
tor!). Hence verify that the unique stable solution to the first-order conditions is
characterized by

Ut = —=Tt. (10146)
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Verify that this feedback rule really solves the problem by checking that it satisfies

the transversality condition.

10.3.9 Stochastic case

The remarkable thing about the stochastic case is how simple it is: all you do
is stick in a conditional expectation; otherwise the optimality conditions are the
same.

Let (Q,]—' ,P, (]—}>?:0> be a filtered probability space, and let (z),, be an

adapted stochastic process on this space. Now consider

max F
u

T
Z f (tﬂ Ty, Ut, zt)]
t=0

Ter1 = g (b, Ty, ur, ) (10.147)

U € ft
s.t.

To given

| NPG
There are a couple of things that are new here.

In the first place, the maximand is an unconditionally expected value. Note
that taking the expectation means that we are maximizing a real-valued function.
Without the expectations operator, the maximand would take values in the set

of stochastic variables, and the optimization problem would make no sense. Note

that it is conventional to maximize not the unconditionally expected value but the

T T
Z ftagu, 2)| = E Zf (t, e, ug, 2¢) |~7:0]
t=0

=0
This convention is slightly strange, since unless Fy = {(), 2}, we would then be

conditionally expected value Ej

trying to maximize a function that does not take values in R.

There is a very important sense in which it does make sense to maximize a
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conditionally expected value, however! Suppose for example that our information
set G is generated by a finite partition P ={P;, P, ..., P,} . Let Z be a random

variable. Then solving the maximization problem
m)z(xxE If (X, 2)|G] (10.148)
should be interpreted as solving, for each P, the problem
nﬁxf (g, 2k) (10.149)

where zj, is chosen such that Z (w) = zj, for each w € P;. Note that the solution is
a random variable X which is measurable with respect to G. In fact, this random

variable solves the problem

max B [f (X, Z2)]. (10.150)

We are now in a position to define what it means to maximize a conditionally

expected value even when our information set is not generated by a partition.

Definition 10.3.2 Let G C F be a o—algebra and consider the mazimization
problem

max B [f (X, Z)|G]. (10.151)

The solution to this problem is defined as the random variable X which solves

max F [f (X, Z)]. (10.152)

Xeg

To illustrate the usefulness of the language of maximizing a conditionally
expected value, we note that this is a good description of what we do in practice
when we solve problems like (10.152) and G is generated not by a partition but

a random variable Y.
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Proposition 10.3.2 Let Y be a random variable and let G = o (Y'). Now con-

sider the maximization problem

max E [f (X, Z)] (10.153)

Xeg

Now consider the random variable
E[f(X.2)|G] (10.154)

For each fixed random variable X, this random variable is a function of Y alone.
Hence it is a function of X and Y alone, and we may write E [f (X, Z)|G] =
g(X,Y). Similarly X is a function of Y alone since it is G—measurable, and
we write X = d(Y). Now let the function d be such that, for each real number
y, the real number x = d(y) mazimizes the real-valued function g (x,y). Then

X =d(Y) solves (10.153).

Proof. That X is G-measurable is guaranteed by definition. The remainder of
the proof is easy if Y is simple (and hence G is generated by a partition) and is
left as an exercise. The case when Y is not simple is not so easy and is omitted
here. H

Another piece of news is the informational restriction u; € F;. The notation
here is of course abusive; formally, we mean that, for each ¢, u; is measurable with
respect to F;, i.e. that the stochastic process (ut>tT:0 is adapted to the filtration
<Ft>f:0. Substantively, this is a restriction that prevents the agent from basing
her decisions on things she doesn’t yet know, e.g. the obviously (?) infeasible
stock trading strategy ‘buy low, sell high’. Note that this restriction is usually
omitted, but that such an omission is a serious mistake that does not become less
serious by being common practice among economists.

Also, we need to state what we mean by the NPG condition. Clearly it

is not enough that it should hold in unconditional expectation; there shouldn’t
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be states of the world where we leave behind debt. Instead we require that it
hold either almost surely or in £2. Note that Harald instead requires it to hold
in conditional expectation with respect to F, for each 7. Requiring it to hold
almost surely implies this.

Finally, note that the problem is set up in such a way that x; is predetermined
(why?), i.e. xo is given and its one-period-ahead prediction error z;1— E [z;11|F]
is zero.

It is now time to write down the sufficient conditions for an equilibrium.

Definition 10.3.3 Let <Q,f ,P, (E)tT:(J) be the filtered probability space associ-
ated with (10.87). An admissible allocation (x,u) at market prices A for the
economy described by (10.87) is a pair of vector-valued stochastic processes se-

quences (z;)1 " and (u;);_, such that

1. uy € U for eacht =0,1,....,T and all w € €.
2.z =g (t,x, up, 2¢) for eacht =0,1,...,T and all w € Q.

3. Almost surely (P) we have Arxpyy = 0 if T < oo and tlim Mxip1 = 0 if

T = 0.

Theorem 10.3.3 Let (Q,]—' P, <ft>z1:0> be the filtered probability space associ-
ated with (10.87). Let (x*,u*) be an admissible allocation of the economy de-
scribed by (10.87). Let X = (\),— be an n—dimensional adapted stochastic
process. Moreover, suppose the set U € R™ is convex. Now define the function
H via

H(t,z,u,z,\) = f(t,x,u,2) + X- g (t,z,u,2) (10.155)

fort=0,1,....,T —1 and, if T < oo,

H(T,z,u,z,\) = f(T,z,u,z). (10.156)



10.3. DISCRETE TIME 233

Suppose now that H is continuously differentiable with respect to x on its entire
domain. Suppose also that H (t,z,u, z, \) is concave in (z,u) for each t =
0,1,...,T. (Note that the concavity property only has to hold for our particular

choice of z, and X\, not generally.) Finally, suppose that

OH (t + ]-, IZJA; u;fk+1’pt+1’ /\H-l)
Ox

1. E Fel +M=0foralt=0,1,....,T — 1,

2. uy € argmax H (t,z},u, 2, \¢), for allt =0,1,...;T and allw € Q and

uelU

3. Almost surely (P), My -xpy1 =0 4if T < 0o and tlim At X1 =0 if T = 0.
Then (x*,u*,z, ) is a competitive equilibrium.

Remark 10.3.4 Note that our notion of competitive equilibrium is that of Arrow
and Debreu: trade in goods distinguished by physical properties, date and contin-

gency takes place in meta-time.

Hint. It is much easier to remember maximizing

E [ft + A [gt - 93t+1] + ferr + Mg [9t+1 - 93t+2” }—t] (10-157)

than to remember the above theorem.

Remark 10.3.5 In concrete cases, we always let the filtration be generated by
the driving process (zt>tT:0. This means that we can calculate the conditional ez-
pectation with respect to F; by just treating all variables with a subscript t or

smaller (and x,11!) as deterministic.

When calculating the solution to a stochastic dynamic optimization problem,
the only sensible way of representing the solution is as a feedback rule. Otherwise

we would have to write down not just a function of ¢ but of w as well. However,
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such a recursive representation does not always exist. Why might such a rep-

resentation fail to exist? Well, let’s take a silly example. Let Q = {1,2}, let
1

F=Fo=F=2%let P({1}) = 3 let zo =0 and let z; (1) =1 2, (2) = 0. Now

suppose we want to solve

maxE [— (231 — 21)2]

Ti1 =
e (10.158)
s.t. Ty given
To = 0

Clearly the solution is ug (1) = 1, ug (2) = 0 and u; = 0. This yields a maximand
of zero. But u; is not a function of (¢, x¢, z;). In particular, ug uses the information
in Fo which is not contained in o (zg, 29) . Clearly this kind of problem would
disappear if we set (F;),_, to be the filtration generated by the (possibly random)
zo and (z;) so that F, = o ({0, 20, 21, ..., 2t }) . But it may still be the case that
there is no feedback representation, since we may need information about the

whole history of z; to calculate the conditional expectation of future values of z;.

A feedback representation of the solution does, however, exist when (F;) is
generated by (z) and (z;) is a Markov process with respect to this natural fil-
tration. Then the solution has a representation u; = d (¢, x, z;) . In particularly
auspicious cases, we can drop the dependence on ¢, and if we amalgamate z; and
z; into a single state vector s;, the solution can be written as u; = d (s;). This
will happen in infinite-horizon problems driven by time-homogeneous Markov
processes where the time dependence in f (if any) takes the form of geomet-
ric discounting and ¢ is time-independent. A famous example is given by the

infinite-horizon stochastic L(Q control problem.
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10.3.9.1 The stochastic LQ control problem

Let (2, F, P, F) be a filtered probability space. Let z be a stochastic process and
let F be the filtration generated by z. For simplicity, let zy be deterministic so

that Fo = {0, Q2}. We write u €F to mean that u is adapted to F. Now consider

o Qu Q2 Qi3 Tt
Il?eafE %Z;ﬁt [ Ty U % ] 12 @ Qo Uy
N 113 Q/23 (33 <t
241 = Azy + Buy + Cz (10.159)
zi41 = Pz + 641

s.t.
To, 2o glven

NPG

where ® is a stable matrix, € is a vector-valued martingale difference (white
noise) process with respect to (P, F) and x, is an exogenous deterministic vector.
Note that the unconditional expected value of z; is 0; this is without loss of
generality since we can always consider its deviation from the mean. Note that

E [%H’ft] = ®z.

Defining \; as the current value, the optimality conditions are

Qo + Qoxt + Qo232 + B'Ay =0

(10.160)
E =X + BQuuz i1 + BQrousy1 + BQi3zi41 + BA M| Fi] =0
Now suppose Q99 is invertible. Then the first row says
-1 / !
Up = — Qo [T + Qazze + BN (10.161)

Substituting this into the second row and the constraint, we get the system of
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linear expectational difference equations

BA — Q12Q3 B Q11 — BQ12Q5 Q' B At41

f‘t p—
0 I Tt+1
=1 0 At N —ﬁQfng%‘I) + Q3P
= Zt.
BQ5 B' BQ5Q,— A Tt BQy Qa3 — C
(10.162)
or
Ats1 At
MFE F | =N + Lz (10.163)
Li41 Tt

and provided M is invertible, this can be solved for the unique stable solution
using the (recursive!) methods in section 9.2.8. When checking the transversality

condition, note that \; is the current value so that the transversality condition

A
becomes tlim BNzii1 = 0as. (P). Now if the vector process is stable (i.e.

X
is bounded in £?), then it is not hard to believe that this holds. The proof looks

at E [|8'Naia|] = B'E[[N@e41]], notes that this tends to zero since E [| Xz 1]
is bounded.

Note the certainty equivalence result: the decision rule is the same regardless
of the variance of z;. This means that LQ approximation/linearization of opti-
mality conditions is unsuitable for the analysis of problems where the point is to
analyze how risk aversion affects decision-making and asset-pricing.

Alternative to the approach here: Drop z; and let x; = Ax; + Buy + Ceryq
where (g;) is exogenous (P, F) —white noise. Then the initial value z is given
and the prediction error of z; is not zero but exogenous, which is what matters
for there to be a unique solution (see [29]).

If you should run into invertibility or diagonalizability problems, see [29].
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Indeed, the methods described there always work, so you can actually ignore

section 9.2.8 if you want.

10.3.10 Bellman’s approach

10.3.10.1 Introduction and motivation

The only relevance of Bellman’s approach to dynamic optimization is to under-
stand what other people are doing; I don’t recommend ever using it in practice?
Possibly (but even this is dubious), it might also enhance conceptual understand-
ing.

It is widely believed that there is a conceptual link between a Markov (feed-
back, recursive) representation of the solution to a dynamic optimization problem
and Bellman’s equation (see below). However, as we have seen, it is possible to
discuss and prove the existence of optimal Markov decision rules with no reference

to Bellman.

Apparently the Lagrange approach can be used even in a class of cases that the
Bellman approach seems to be tailor-made for: calculating the subgame-perfect
equilibrium of a dynamic game. Nevertheless, it should be conceded that in this
case the Bellman equation ¢s important conceptually in that it is the natural
language to use when defining the notion of a subgame perfect equilibrium. Dy-
namic games are discussed in [12], [4] and [11] but won’t be discussed further
here. We will confine ourselves to competitive economies, i.e. economies where

each optimizing agent is small.

3 Bellmans metod paminner en hel del om Bellmans upptag i Bellman-historier: den &r
originell och infallsrik, men i praktiken mindre bra. Min bestéimda rekommendation #r alltsa
att halla sig till franskens (Lagranges) metod.
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10.3.10.2 The principle of optimality

10.3.10.2.1 General case Let (Q2,F,P,F) be a filtered probability space.

Consider first the stochastic dynamic optimization problem

max F if (t,a:t,ut,zt)]
=0
Ter = g (b, Te, e, 2t) (10.164)
s.t. T glven
NPG

As in the Lagrange multiplier approach, the idea behind Bellman’s approach
is to solve a separate low-dimensional problem for each ¢ rather than a single
high-dimensional (or, if 7" = oo, infinite-dimensional) problem. The final step, as

before, is to tie these problems together by a kind of difference equation.

Definition 10.3.4 Define a sequence of value functions (V;) via

T
D F (5w, us, 25)

s=t

Vi(z) = max E Fi

10.165
xs—l—l - g (87 Lsg, us) ( )
s.t
Tt =T
Remark 1 With this definition of the value function, we have that, for each fixed
x, (Vi (z)) is an F-adapted stochastic process. If (x;) is an F-adapted stochastic

0

process, then (V; (x;)) is another F-adapted stochastic process, and <8—V2 (xt)>
x

15 yet another F-adapted stochastic process.

Theorem 10.3.4 (Bellman’s principle of optimality) Note that, in this the-

orem, =’ is not the transpose of x, but just another variable. Consider the problem

10.164 and its associated value functions (V;). We have, for eacht =0,1,...,T,

Vi (z) = sup{f (t,z,u, ) + E[Vira (') | 7]}
u (10.166)

s.t. ' =g(t,z,u,z).
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Remark 10.3.6 Bellman’s equation is a functional equation. The equality holds

for each x.

Remark 10.3.7 Think about what Bellman’s equation means intuitively until

you believe 1it.

We now notice that Bellman’s equation says no more than what we already
know. To see this, consider the right-hand-side maximization problem. The FOC
is

0
fu (b2, 2) + E [@vm (201) - 9o (1220001, 2) m] —0. (10167)

Inspired by a stochastic version of the envelope theorem, we write

0
E l%vﬂl (T441) ’ft] =\ (10.168)
and this FOC becomes
fu (t, T, U, Zt) + At * Jz (t, T,y Ut Zt) (10169)

which is just what we established before (for an interior solution). Moreover,
since Bellman’s equation is an identity, we can differentiate it with respect to z,
and it then remains true. Evaluating at the optimum, we drop the sup operator.

We get, using our A notation and stepping forward one step,

M= Efe(t+ 1,201, Urgr, 2e11) + Aeg1 - o ((E+ 1, T, Ur g, 2641)) | F
(10.170)
which again is a result we have seen before. Lagrange takes the essential element
of Bellman! All we need is the derivative of the value function, not the value

function itself!
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10.3.10.2.2 Markov processes Let z be a Markov process and let F be the
filtration generated by z. We can now make the value-function deterministic by
baking all the dependence on chance into dependence on z; = z.

Zt:Z]

T

Zf(s,ms,us,zs)

Vi(x,z) =max F

s=t

10.171
xs—l—l 29(575733’“3’23) ( 0 7 )
s.t
Ty =X
In this case, Bellman’s principle of optimality becomes
Vi(z,2) = sup{f (£, z,u,2) + E Vi1 (¢, 2141) |20 = 2]}
u (10.172)

st. o' =g (t, z,u,2)

The solution will now be representable by a Markov decision rule. The equilibrium

allocation (uj, z}, 2;) becomes a Markov process as well.

10.3.10.2.3 Time homogeneous Markov processes Infinite horizon; time-
independence except for geometric discounting. Stationarizing value function by

defining it as the current value.

V(z,z) =sup{f(xz,u,2)+ BE[V (2, 2)|z]}
u (10.173)

st. @' =g (z,u,2)
where the slightly cryptic notation E'[V (2, 2') |z] is the conditional expectation
of V' (x441, 2e41) given z; = z; the reason for the z and 2’ notation is to stress the
fact that this is the same function of z for each t.
Time independent Markov decision rules. u; = d(z¢,2;). The equilibrium
allocation (uf, z}, z;) becomes a time homogeneous Markov process as well.

Existence of unique value function. Banach’s theorem at work.



Chapter 11

Some numerical methods

11.1 Solving linear systems

The purpose of this section is to say something about how to solve a system of

equations of the form

Az =b. (11.1)

In primary school, we learned how to solve systems of linear equations by
using Gaussian elimination. Later in life, we learned how to do it by inverting a
matrix. Numerically, it is worth going back to primary school because Gaussian
elimination is the quickest and most precise method. The command in Matlab is
x = A\b, and in Gauss it is z = b/A. Avoid z = inv (A) *b. Even when you really
do want to calculate the inverse of a matrix, Gaussian elimination is preferable.
Write A\eye(n) in Matlab and similarly in Gauss.

If A is close to being singular, trying to solve (11.1) is not a good idea. Nor
is it a good idea to check whether A is close to being singular by checking if
its determinant is close to zero. For example, the matrix A = 0.1[gy has the

ridiculously small determinant 107%°. Yet it can (obviously) be reliably inverted,
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since A=! = 10Igy. Instead, you might check the rank of the matrix by using
the function rank in Gauss or Matlab. This function calculates the numerical
rank of a matrix by calculating the number of so-called singular values of A
whose modulus is greater than the computer’s precision (roughly 107'%), and the
numerical rank of a matrix in this sense really does tell you whether solving (11.1)
is something that can be reliably done. Getting even more directly to the point,
you might check the condition number of the matrix as defined in section 9.1.4.5.
It can be calculated by using the function cond in Matlab and if it is large (say
greater than 10'), then the matrix is close to being singular (it is then said to

be ill-conditioned).

11.1.1 Solving sparse linear systems

Often we want to solve a high-dimensional linear system where the A matrix
has lots of zeros in it. We then say that A is sparse, and it is important to
exploit this sparseness, or you’ll waste a lot of time and memory capacity. (The
theory of this is discussed in [21].) The way forward in Matlab is to use the
command sparse. Suppose your matrix A has n non-zero components at posi-
tions ((i1,41), (42,72) ,- -, (in, Jn)) and that the values of those components are

(€1,¢9, -+, Cp). Then create A by writing
A = sparse (i, j, ¢) (11.2)

and solve for z by writing z = A\b.
As far as I know, Gauss has no general way to deal with sparse matrices, but

you will find a method that works in a special case in the exercises.

Exercise 11.1.1 (The Hodrick-Prescott (HP) filter) Suppose you have the

empirical time series (xy),_; and let’s say you want to decompose this series into
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a trend and cyclical component in the manner of Hodrick and Prescott. Call the
HP trend (itﬁ:l. By definition, the HP trend solves

min {Z (2 — 3)° + A i (Zy1 — &) — (T — gzt_l))Q} . (11.3)

(&t)y—1 t=1 t=2

The HP filter formalizes the trade-off between (1) the trend &, tracking x; closely
(it should be the trend of (x);_,, not of some other series) and (2) &; being smooth
in the sense of having a near-constant rate of change (it should be a trend, after
all). The parameter \ measures the relative weight attached to smoothness as

against close tracking.

1. Show, by writing down the first order conditions for solving the above min-
imization problem, that these conditions constitute a pentadiagonal linear
system. (A pentadiagonal system has non-zero coefficients in five adjacent

diagonal bands, the middle one being the main diagonal.)

2. (Gauss or Matlab exercise) Take an arbitrary time series (x;)_, (you can
draw random numbers if you want) with T = 500. Set A = 1600. Compare

the amount of time it takes to solve for the HP trend when

(a) you exploit the sparseness of the matriz and

(b) you don't.

Report your results and your code.

Hint for Matlab users: You can download sparseness-exploiting code from
Ellen McGrattan’s ftp site ([47]). Or just download the file hptrend2.m from
my homepage.

Hint for Gauss users: You can download sparseness-exploiting code (written
by Simon van Norden) from an ftp site at the Université du Québec a Montréal. A

link can be found on [45]. Or just download the file hpfilter.prg from my homepage.
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Hint for everyone: One way of getting code that does not exploit sparseness is

to modify the code that does.

11.2 Solving non-linear systems and optimizing

Being able to solve f () = 0 where f : R” — R” is a non-linear function is often
useful in itself. For example, the steady state conditions of a typical dynamic
optimization problem turn out to be a finite-dimensional non-linear system of
equations.It also has instrumental value when we want to solve an optimization
problem, since the first-order conditions of a non-quadratic finite-dimensional
optimization problem becomes a finite-dimensional non-linear system of the form
f(z)=0.

In any case, the most popular approach to this type of problem (but far from
the only one) is the Newton-Rhapson method. It is used by Matlab’s fsolve and
Gauss’s nlsys. The idea is the following. Call the solution z*. Use Taylor’s

formula and write
f (@) = f (zo) + f' (z0) - (2" — o) (11.4)
where, by definition, f’(x¢) is an n X n matrix and - is the Euclidean inner

product in R™. Note that this formula holds exactly when z¢y = z*. By definition,

f (z*) = 0 so we may write
0= f(xg) + [ (x0) - (" — o) . (11.5)
Fiddling a bit with the formula, we find that
" =z~ —[f (Io)]_l [ (o) (11.6)

or

ot~z — [ (20)] " f (20) - (11.7)
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Inspired by this formula, define the mapping H : R* — R” via

H(z) =z~ [f ()] " f () (11.8)

and note that our solution x* is a fixed point of H. If we are in luck, H is a
contraction, and we can use the constructive proof of Banach’s fixed point theorem
to suggest a good algorithm for approximating x*. Simply take an arbitrary z

and keep on applying the function H.

Warning. Things can easily go wrong. For example, consider the scalar case and
suppose there is a point  between xy and z* at which f’ () = 0. Then the
Newton-Rhapson method carries you off in the wrong direction. (Illustrate
geometrically!) A related problem is that we may hit a point  such that

x) 1s singular along the way, so that the calculation o x crashes.
f'(z) is singular along the way, so that the calculation of [f' (z)] " crash

However, when you are close to a solution, Newton-Rhapson delivers quadratic

convergence, i.e. there is a ¢ > 0 such that
|zps1 = 27| < el — 27" (11.9)

Moral. 1. Choose an initial guess as close as possible to the solution!

2. If one z( leads to disaster, try another one!

You will have noticed that Newton-Rhapson requires you to calculate the
derivatives in the matrix f’ (z). Indeed, suppose you are optimizing, say mini-
mizing the scalar valued function g () with respect to z. Then the gradient [’ (z)
is the Hessian ¢" (x).

Maximum speed and precision is achieved if you calculate the derivatives in
f' (z) analytically. If that is hard, however, you may want to approximate f’ (z)

by finite difference quotients. That is the topic of the next section. But before
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going on, it is worth issuing another warning. A natural way to proceed is to

iterate on Newton-Rhapson until the difference
|.’Et+1 — ZEt| (1110)

falls below some specified tolerance level and conclude that when it has, we are

close in some sense to the solution. However, consider the counterexample

Vrexp (—2*) = 0. (11.11)

The unique solution is z* = 0, and to find it, Newton-Rhapson suggests iterating

on

T
Tyt = T+ ———. (11.12)

20?7 — =
3
However, this generates a divergent sequence for any xy # 0. Yet the increment

Ti41 — Xy converges to zero.

Exercise 11.2.1 (Solving for a steady state) Consider the dynamic optimiza-

tion problem

max “lalne + (1 —a)ln(1 —h 11.13
s > ol (1= )l (1= ) (11.13)

subject to
e+ ki =1 =8k + kPn 0 (11.14)

and a suitable no-Ponzi-scheme condition. Let kg be given.

1. Derive the necessary/sufficient conditions for an optimum. Drop thet sub-

seripts to find a system of equations characterizing a steady state.

2. (Gauss or Matlab ezercise) Set a = 0.3, = 0.99, 6 = 0.025 and 0 = 0.36.

Use Gauss or Matlab to find the steady state values of ¢;, ki and hy.

Report your results and your code.
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11.3 Numerical derivatives

Often we want to differentiate functions which are so messy that pencil-and-paper
differentiation of them is a nightmare. So instead we do it numerically.

The idea is to take a small A > 0 and calculate ratios of the form

0fi(x) _ fi(z+hej) - fi (@)
an h

(11.15)

where e; is the jth unit vector, i.e. a vector with zeros everywhere except at the
jth position, where there is a one. These are forward differences. If you are really
scrupulous, you might want to consider trying A < 0 (backward differences) or

the central difference

0f;(z) _ filw+hey) = fi(w— hey)
an h

(11.16)
and see if it makes any difference (no pun intended).

In Gauss, use the function gradp. In Matlab, download the file grad.m from
my homepage at [46]. You may also want to consider the gradient functions on
Ellen McGrattan’s ftp site at [47].

As for numerical Hessians, you are strongly recommended to avoid them if
you can. Their precision is not always reliable. However, if you can’t avoid them,
use hessp in Gauss. Or if you are in the business of optimizing, go straight for
the Gauss function optmum which minimizes a function by calculating numerical
Hessians. In Matlab, check out Ellen McGrattan’s ftp site and look for the file
numder.m which calculates both numerical gradients and numerical Hessians. Or
use Ellen’s minimization function uncmin.m or something like it in the Optimiza-
tion Toolbox.

Actually, since optimization functions are often more robust to silly initial

guesses and ill-behaved functions than just doing Newton-Rhapson on the first-

order conditions, you might want to use a minimization routine for solving systems
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of non-linear equations, even if they are not the first-order conditions of any
optimization problem. Or at least you might if speed is not your number one
priority but getting a reasonable solution at all is. Just minimize the scalar-

valued function || f (z)].

Exercise 11.3.1 (Gauss or Matlab exercise) Consider the dynamic optimization

problem

max Zﬁt Inc (11.17)

()20 =0
subject to

ci+ ki1 = (1 —08) by + K (11.18)

and a suitable no-Ponzi-scheme condition. Let ky be given. Set 3 = 0.99, 6 =
0.025 and 6 = 0.36.

(a) Use numerical derivatives to linearize the first order conditions around the
steady state. To improve precision, linearize around the natural logarithms of the
variables, i.e. let the linearized system be linear in the deviations of the natural
logs from their steady states.

(b) Find the eigenvalues and eigenvectors of the relevant matriz numerically.
Solve for an approximate decision rule by looking at the saddle path of the lin-
earized dynamic system.

(c) When & = 1 there is an exact solution given bylnc;—Inc* = 6 (Ink, — Ink*) .

Verify that your algorithm comes close to this solution when you set 6 = 1.
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