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ON THE TRANSVERSALITY CONDITION IN INFINITE
HORIZON OPTIMAL PROBLEMS!

By PHILIPPE MICHEL

There are many infinite horizon optimal problems in economic models. In such
problems, the transversality condition may not be verified, as shown by Halkin’s example.
But we prove another property: the maximum of the Hamiltonian converges to zero when
time goes to infinity. And, if along the optimal trajectory, after some time, changes of
speed (by controls) in all directions at a given level are possible, then the transversality
condition is verified. Examples show that the additional property proved here (i) allows
exclusion of nonoptimal trajectories which verify the usual necessary conditions in an
infinite horizon; (ii) is a result directly useful in some economic studies.

1. INTRODUCTION

IN FINITE HORIZON optimal problems without constraint on the final state,
necessary conditions for optimality include the transversality condition: the final
value of the shadow price-vector is zero. This means that one more unit of any
good at final time gives no additional value to the criterion. Halkin’s example [8]
shows that this property is not necessarily true in an infinite horizon. In an
infinite horizon, one more unit of a good, at any time, changes the whole future,
and the zero value of the state becomes a limit property which is not necessarily
verified.

Nevertheless the transversality condition in an infinite horizon is an important
property: it intervenes in sufficient conditions for optimality [1] and in stability
studies [6]. Moreover, it is generally verified in economic models. In the litera-
ture, studies of the infinite horizon transversality property have been made,
which only give results in special cases: cases of linear evolution equations [2, 3],
cases of boundedness conditions involving “fast convergence” of the criterion [9,
10], . . . . The concave case when using variational calculus has been studied in
detail in [4].

We study a general discounted problem (Section 2) and we obtain the property
of zero limit of the maximum of the Hamiltonian without any particular
assumption; this may be obtained with the Hamilton-Jacobi equation but re-
quires differentiability of the value function. In Section 3, we show that this
property implies the transversality condition in the case where enough possibili-
ties of changing the state’s speed exist indefinitely, which means a long-run
condition of tradeoff between the effects of the control on the criterion and on
the state.

In Section 4 examples of application are given. Proofs are in the Appendix.

!'This revised version was written while I was visiting at CORE, Université Catholique de Louvain.
I am grateful to Jerry Green and to an anonymous referee for helpful comments. Any error is my
own responsibility.
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2. NECESSARY CONDITIONS FOR OPTIMALITY IN INFINITE HORIZON
PROBLEMS

A simple optimization problem with an infinite horizon is the following.
Maximize

M [Terg(x (). cua
subject to
) X(t)=f(X(1),C(¢)), and  X(0)=X,.

The state X(¢) belongs to an open subset E of R”, and the control C(¢) is a
piecewise continuous function valued in some topological space B. Functions f
and g defined in E X B are valued in R” and R respectively; we assume that f
and g are continuous and continuously differentiable with respect to the state
variable. The differentials are denoted by fy, and gy.

The study will be limited to this simple problem. But there is no more
difficulty in studying the case with additional constraints such as A(X (), C(¢))
=0 and/or >0. Then the necessary conditions are valid in the subset of
controls which verify the qualification condition (see [13]) and the additional
constraints with the optimal state X (¢).

DEFINITIONS: A trajectory (X (£),C(t)), 0 <t < oo is admissible if X(¢) is a
solution of equation (2) with control C(¢) on 0< ¢ < oo and if integral (1)
converges. A trajectory (X (¢), C(¢)) is an optimal solution of problem (1), (2) if it
is admissible and it is optimal in the set of admissible trajectories, i.e., for any
admissible trajectory (X (2), C(?)), the value of integral (1) is not greater than its
value corresponding to (X(¢), C(¢)).

We now consider an optimal solution (X (¢), C(#)), and a fixed time T > 0. Let
us define

3) h(x)= e"xfTooe_”g(A_’(t),E(t)) dt

= [* eg(X(t—x),C(t - x))at.

T+ x

The following problem (P;) will be considered, with state (Y,z) belonging to
E X R, and control (U, v) belonging to B X (1/2, o). Maximize:

@ [To(ne (¥ (1) U(n)di+ h(z(T) = T)
subject to

) Y(t)=o()f(Y(),U(r)), Y@O0)=X, and Y(T)=X(T),
z(1) = v(2), and z(0)=0.
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LEMMA: State (Y(1),2(2)) = (X(2),t) and control (U(t),5(1)) = (C(¢),1), 0 gt
< T, constitute an optimal solution of problem (Pr).

PrOOF: See the Appendix.

THEOREM: A necessary condition for (X(t), C(1)), 0< t < oo, to be an optimal
solution of problem (1,2) is that there exist a real number a, a vector A of R", and
continuous functions P(t) and q(t) valued in R" and R respectively such that (i)
(a,A) is not zero, and a is nonnegative; (ii) P(t) is the solution of

6 [PO=-a s (X0.C0)= P0) L(X@.E0)
P(0) = 4;
(iii) () is the solution of
@ §(1) = rae”"g(X (1), C (1)),
limit,_, q(t) = 0;
(iv) for each t at which C(t) is continuous, the Hamiltonian
ae_”g()?(t), c) + P(1) -f(/\_’(t), c)

is maximum on the set B at ¢ = C(t); (V) the maximum of the Hamiltonian verifies
for every t

®) M(t)=ae”"g(X (1), C(1)) + P(t) (X (1). C(1)) = —4().
PrOOF: See the Appendix.

ReMARKS: In addition to the usual conclusions, the theorem gives at every
time ¢, the value M(¢,) of the maximum of the Hamiltonian which is equal to:

©) — q(to) = raf e g (X (1),C (1))

o
The value function of problem (1), (2):

(10)  V(Xorto) = supf”e*"g(X(t), C(1))dt

(the upper bound is taken on the set of admissible trajectories such that
X (25 = X,) verifies:

V(X (1), to) =ftwe_”g()?(t),5(t)) dt=e~"V (X (1), 0),

[

(X (1) 10) = - rj:oe_"g(f(t), C(1))dt.
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The Hamilton-Jacobi equation
(11) %lt/()?(t), 1)+ e g (X (1), C (1)) + g—XK (X (1).1) - (X (1).C (1)) =0

together with 3V /9X(X(),f) = (1/a)P(¢), implies relation (8). But, as is well
known, the assumption that ¥ is C' does not hold in the general case studied
here.

One may also remark that conclusion (v) of the theorem is equivalent to the
property that the limit of the maximum M(t) of the Hamiltonian is zero when t
goes to infinity. The existence of the limit of M(¢) results from the equality
between partial and total derivatives of the Hamiltonian with respect to ¢ [13]:

dM (1)
dt

M(t)) = M(tg) — raf e~"g(X (1), C (1)) at,

t
X

= — rae”’g()?(t), 5(t)),

ltlglolotM(t) = M(to) + q(to)-
Our theorem shows that this limit is 0, which extends to the infinite horizon case
the property M(T)=0 valid in a finite horizon optimal problem with free
terminal time.
Note finally that the conclusion: a # 0 (allowing the choice of a = 1), which is
always assumed in applications, cannot be obtained without an additional
assumption, as shown in the following example.

ExXAMPLE: Maximize [{e ™ (2x(¢) + c(¢))dt subject to
X (t)=2x(t)+ c(?), and x(0)=0; c()<L0.

The optimal solution is ¢(¢) = 0,X(¢) = 0. Any other control gives a negative
value of the criterion. The Hamiltonian H = ae ™ '2x + ¢) + p(£)(2x + ¢) 1is
maximum at ¢ = 0; this implies p(#) + ae ' >0. An easy calculation gives:
p(t)= —2ae™' + be >, with b = p(0) + 2a. And the condition

—a+be '=e'(p(t)+ae ') >0

for every ¢, implies a < 0. Then a nonnegative is necessarily equal to zero.

3. APPLICATION TO THE TRANSVERSALITY CONDITION

The usual formulation of the transversality condition refers to the property:
limit P(¢) - X (¢) = 0. More precisely to obtain sufficient conditions for optimality,
one needs the following condition [1]:

(13) limit P(7) - X()—P(1)- X(1)<0
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for any admissible trajectory X(-). In the case where every solution of (2) is
bounded, the following condition is sufficient:

(14 limitP(r) = 0.
=0

This transversality condition is the simplest transcription of the finite horizon
transversality condition: P(T) = 0, which holds for an optimal problem with free
terminal state.

Often in economic models g is nonnegative, and if not, it is generally possible
to modify it in such a way as to obtain a nonnegative g. Then, to obtain the
transversality property, it is sufficient that the set of admissible speeds f(X(t),c), for
all controls ¢ in B, contains enough possibilities. Formally, we obtain the following

property.

COROLLARY: Assume g is nonnegative and there exists a neighborhood V of 0 in
R™ which is contained in the set of the possible speeds f(X(t),c) for ¢ € B, this for
all t large enough. Then, an optimal solution in infinite horizon verifies, in addition
to the conclusions of the theorem, the transversality condition (14).

Proor: See the Appendix.

REMARK: Without the assumption: nonnegative g, the transversality condition
is verified if the set of speeds f(X(#),c) contains a neighborhood of 0 in R", for ¢
belonging to a subset B’ of B such that the infimum limit of e_”g(/\_’ (),¢) is
nonnegative. For example, if » > 0, it is possible to consider a set B’ in which
g()? (2),¢) is bounded from below. The assumption of the corollary implies that
the set of speeds has a nonempty interior in R”, which is an important restriction.
This restriction being made, the significance of the corollary’s assumption is that
the optimal state is such that there always exist controls allowing changes of
the speed in all directions at a given level. This can be interpreted as an
“equilibrium” condition in the sense that tradeoffs between the effects of the
control on the criterion and on the state have to be made indefinitely during the
time.

4. EXAMPLES OF APPLICATIONS
ExXAMPLE |—Halkin’s example [8]: Maximize
15 (1 = x(t))c(t)dt
as) (1= x(@)e()
subject to
(16) x(t) = (1—x())c(r), and x(0) =0,

the control c(¢) belonging to an interval (a, 8), a < 1 < B. The criterion is equal
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to x(o0); and because the solution of equation (16) is

(a7 x@)=1 —exp(—fo'c(u)du),

any control such that [Fc(¢)dt = oo is optimal. Choosing ¢(#) = 1, the maximum
of the Hamiltonian

a(l1—=x(t))c+p()(1 — X(1))c

is reached at ¢ =1 only if p(f)= —a, and then a # 0. In this example, x(?)
converges to 1, and the set of possible speeds {(1 — X(#))c|a < ¢ < 8} contains
a given neighborhood of 0 for ¢ large enough, only if a = —c0 and = +0;
and in this case, the assumption g > 0 of the corollary is not verified.

EXAMPLE 2—The one-sector optimal growth model [5,12,14]: In its reduced
form (variables per unit of labor), the problem is to maximize the discounted sum
of the utility of consumption ¢ = (1 — s)f(k),

a8) [T U1 = s k(1) d,
subject to
(19)  k(t)=s(t)f(k(t))— dk(t), and  k(0)= ko,

where the rate of saving s(¢) belongs to [0, 1]. The utility function U and the
production function f of the capital stock k (per unit of labor) are assumed to
satisfy the usual concavity condition. For r>0, the optimal solution k()
converges to the modified golden rule k* defined by f'(k*) = d + r, and the limit
of the set of possible speeds is the interval [—dk*, f(k*)— dk*] which is a
neighborhood of 0. By continuity, the assumption of the corollary is verified and
the zero limit of the shadow price of the capital is verified as well known. The
trajectory s(t) =0, k(t) = koe = also verifies the usual necessary conditions in an
infinite horizon, but it does not verify the new property obtained. Let us prove this.

The function p(#)k(¢) is decreasing for k(z) = koe ~? because its derivative
koe~“(p —dp) is negative. On the other hand, p(f) becomes negative. This
implies that the limit of the Hamiltonian which is the limit of the positive
increasing function —dp(#)k(?), for t > T, is not zero. Conclusion (v) of the
theorem is not verified.

In the case r = 0, the integral (18) is not converging. To solve the problem, we
consider the difference

@) [TLU( = s@)k) = U] dr

c* being the stationary consumption level f(k*)— dk* corresponding to the
golden rule f'(k*) = d. In this case, the shadow price of capital does not converge
to zero, but it converges to U’(c*). It is the assumption g >0 of the corollary
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which is not verified, but conclusion (V) of the theorem implies then that k(t)
converges to zero.

EXAMPLE 3—Optimal growth with a convex-concave production function [15]: In
his study of optimal growth with a nonconvex production function, A. K. Skiba
uses the following property:

) fo“’e-"g(i(z),é(t)) dt = % [g()?(O),é(O)) + P(0) ~f()?(0),6(0))].
To prove this property, he assumes that
(22) limit P(7) F(X(1),C(1))=0.

Property (21) results from conclusion (v) of the theorem and is verified without
any assumption other than a7 0. And the “transversality condition” (22) is
verified if e ~"g(X(¢), C(f)) converges to 0 when ¢ goes to infinity. With these
assumptions (verified by Skiba’s model), properties (21) and (22) are both
equivalent to conclusion (v) of the theorem.

4. CONCLUSION

It is possible to obtain the transversality condition in infinite horizon optimal
problems with particular assumptions like those of the corollary. But these
assumptions are based on properties of the optimal trajectory to be determined.
As a matter of fact, the transversality condition then simply is a consequence of
the additional property obtained in the theorem. The way to apply the new result
is simple: the application of the theorem selects trajectories. It is then easy to see
if for this selected set, which is smaller than the usual one, the transversality
condition is verified. The transversality condition becomes a “by-product” which
can be used then, for example, for sufficiency conditions. On the other hand, the
new result may be directly used to obtain an additional property of optimal
solutions in economics models.

Universite Paris 1

Manuscript received August, 1980; revision received March, 1981.

APPENDIX

PrOOF OF THE LEMMA: The state (Y (1), 2(1)) = (X (1), ¢) and control (U(1), 5(2)) = (C(2), 1) verify
equations (5) because X (z) and C(z) verify equation (2). The corresponding value of integral (4) is:

LTe—"g(Y(t),é(z))dH h(0) =L°°e"’g()?(t),€(z))dt.
For any admissible trajectory (Y (¢), z(¢); U(#),v(2)), 0 < ¢t < T (i.e., which verifies (5)), the function

z(1) =f0tu(s) ds
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is continuous, strictly increasing, and reversible. Let
Cs)=U(z7'(s), X(s)=7Y(z"s)), and  S=2z(T).

We obtain the following equalities:

JTome (¥ (1), UD) di
= [T (e (X 2(1), C () dr
= [Pemrg(X (), C(s)
X(z() = Y(1) = x0+f0’y'(s) ds
= Xo [Z(Of(X (), C(s)) ds
= X0+fol(’)f(X(u),C(u))du;

X(5) = Xo+ [*f(X (), C(w)) d

The last equality implies that function X () is almost everywhere derivable with derivative f(X(7),
C(?)). The final condition on Y(¢) gives:

X(8S)=X(z(T))=Y(T)=X(T).
For s > S, trajectory (X(s), C(s)) is defined by:
X($)=X(s—S+T), and C(s)=C(s—S+T).

This trajectory is continuous and it verifies equation (2): for s < S, this has been shown; for s > S,
the last definition gives:

X()=X(s— S+ T)=f(X(s—S+T),C(s—S+T)),

X (s) = f(X(s), C(5)).
On the other hand, definition (3) of 4 implies:
h(z(T)—T)=h(S—-T)

=L°°e_"g(/\7(t— S+ T),C(t—S+T))dt

=f°°e"’g(X(z),C(t))dt.
s
Consequently, the value of the criterion (4) of problem (P;) is:

J(;Tv(t)e’"(’)g(Y(t), U(8))dt+ h(z(T) = T)

=J(;°°e”’g(X(t), C(1)) dt.
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The trajectory (X(¢), C(#)), 0 < ¢ < oo, is admissible, and optimality of (X(z), C(¢)) implies:
j(;we"’g(X(t), (1) dzgfowe—“g()?(z),é(z)) dr.

The left term is equal to the value of criterion (4) corresponding to the trajectory (Y (2),z(¢); U(2),
v(?)), 0 <t < T; and the right term is equal to its value corresponding to (Y (¢), Z(¢); U(z), v(¢)). This
shows that the latter is an optimal solution of problem (P;). The proof of the lemma is complete.

PrOOF OF THE THEOREM: Let us apply the usual necessary conditions without constraint qualifica-
tion condition (see [7 or 11]) to problem (P;). For this problem, the Hamiltonian is:

Hp=apve "g(Y,U)+ vPy-f(Y,U) + qrv.

The necessary conditions are: there exist a real number a, >0, a vector D belonging to R", and
continuous functions Pr(t) and g,(¢) such that: (aj, Dy) =0,

Pr(1) = —are g (X (1), C(0)) = Pr(0) - f (X (1), T (1)),

Pr(T) = Dr;
gr(1) = re”"arg(X (1), C(1)),
qr(T) = arh,(0) = —rar Twe"’g(/?(t), C(n))ar.

The Hamiltonian is maximum with respect to (U,v) on the set B X (1/2,00) at (C(?),1). The
maximum with respect to v for U = C(¢) gives:

are”"g(X (1), C(0)) + Pr(1) - f(X (1), C()) + qr(1) = 0;
and the maximum with respect to U for v = | implies that:
aTe*”g()?(t),c) + Pr(1) .f()?(,), c)
is maximum on the set B at ¢ = C(¢).

The vector Ay = P(0) verifies: (ar, A7) = 0. If not, then a; =0 and P,(0) = 0; and P, (¢) being
solution of:

Pr(t) = = Pr(0) - f (X (), T (1),

this would imply P;(T) =0, and (ay, Dy) = 0. There is no change in the conclusions if we multiply
ar, Dy, Py, and g by some positive constant. And we choose such a constant which gives the norm
of (a, A7) equal to 1.

All these properties are true for every T > 0. All the (a;, A7) being of norm 1, there exists some
sequence (ar,, A7,) which admits a limit (a, 4) # 0 (conclusion (i) of the theorem). Let us define P()
and ¢(?) by:

P(1) = —ae gy (X (1), (1)) = P(1) fu (X (1), T (1)),
P(0) = 4,

q(t)=— raj; 00e‘”g()?(s), 6(s)) ds.

These functions verify conclusions (ii) and (iii) of the theorem. For every ¢, ¢(¢) is the limit of g7, (),
because a is the limit of az,. And P(¢) is the limit of Pz, (¢): this follows from the definition of P(z)
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which implies:

P(1)=R(1,0)- 4 — afO’R(z,s)e-"gX(,?(s),6(s))ds
with R(z,s) the fundamental matrix of the linear equation
Z(1)y=—Z(1) fx (X (1),T(1)).

These limit properties imply conclusion (v) of the theorem; and for any fixed ¢ and ¢ the following
inequality holds:

ae_”g()?(t),c) + P(1) ~f()7(t), <)

< ae"’g()?(t), f(t)) + P(?) ~f()?(t), f(t)).
This implies conclusion (iv) of the theorem and its proof is complete.

PrOOF OF THE COROLLARY: g being nonnegative, conclusions (iv) and (v) of the theorem imply,
for all ¢ in B:

P(0)- f(R (1)) < = q(0).
We define:

1

9 = T, PO

P(2),

I = limitsup| Q(?)||.
1—>oc0

If / is zero, the corollary is verified. Assume / > 0 and consider a sequence #, converging to infinity
such that || Q(z,)|| > /2. For n large enough, the set of f(X(2,), ¢), ¢ € B, contains all points in R” of
norm less than € >0, and —¢(t,) is not greater than e//2. Then, there exists ¢, € B such that
f(X(t,), c,) = (2¢/ 1 Q(t,), and we obtain:

P(1,) - f(X (1), ¢) = max{ L, [ P(1,)II} e/ DIl Q(1,)II%,

P(t,) - f(X (1),¢,) > €1/2> = q(1,).

This is the contradiction. The proof of the corollary is complete.
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