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Abstract

This paper analyzes the interaction between optimal environmental regulation and fiscal policy
in a setting in which a benevolent government has to raise revenue through distortionary taxes
on labor and capital income, and is unable to commit to future tax rates. The main question
I aim to answer is how the presence of these non-environmental taxes affects the social cost of
pollution, that is, the price that the government must impose on emissions in order to internalize
the pollution externality. Similar to previous studies focusing on static models with distortionary
labor income taxation, and in contrast to a first-best world with lump-sum taxation, I show that
the optimal Markov-perfect pollution tax is in general not at the Pigouvian level, i.e. does not
equal marginal pollution damage, due to the presence of additional costs and benefits of fossil
fuel use in the second-best setting. In the main quantitative exercise, I analyze the interaction
between distortionary fiscal policy and environmental regulation for the case of climate change,
using a simple climate-economy model where the state of the climate not only affects the production
process, but has also direct utility impacts. I derive the government’s generalized Euler equations
and apply a projection method to compute a stationary Markov-perfect equilibrium. I show that
the carbon tax path chosen under commitment is time-inconsistent, which follows from the fact that
the optimal pollution tax depends on the non-environmental tax structure. Moreover, I compare
the time path for the Markov-perfect carbon tax with both the first-best outcome and the Pigouvian
tax schedule. I find that the optimal tax in 2010 is only about 3.5 percent lower than in first-best.
More interestingly, and in contrast to previous studies, it is very close to its Pigouvian level, hence
the climate damages are fully internalized. This result is sensitive to the persistency of the carbon
stock, which is determined by the rate of decay of carbon in the atmosphere.

1 Introduction

The most fundamental result in environmental economics states that in order to optimally correct a
pollution externality, a benevolent social planner or government must introduce regulation that equates
the marginal (net) private benefit of emitting a pollutant to the marginal social cost. If the planner
chooses to impose a price on the pollutant, rather than directly regulating emissions by a command-
and-control approach, the optimal tax is equal to the social cost evaluated at the efficient pollution
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level (Kolstad, 2000). Hence, when designing environmental policy, it is elementary to “know” (or at
least have a good estimate for) the social cost of pollution1.

In many studies that consider a first-best world, the social cost of pollution is equal to the marginal
damage caused by emitting an additional unit of the pollutant. The optimal tax that internalizes the
pollution damage is called a “Pigouvian” tax. Hence, at the first-best margin, the marginal private
benefit of pollution is equal to the marginal damage.

In a more realistic setting, a government has to raise revenue in order to finance expenditures on
public goods. If it cannot resort to lump-sum taxation, the first-best allocation is not feasible, even if
the government is assumed to be benevolent.

This has an effect on optimal environmental taxation. It is a well-known result that in the presence
of non-environmental, distortionary taxes, for example a linear tax on labor income, a tax implemented
to regulate a pollution externality must be set optimally below its Pigouvian level2. In other words,
the pollution damage is not fully internalized and hence the social cost of polluting is less than the
marginal damage. This was first shown by Bovenberg and de Mooij (1994) and has been analyzed
by in a number of studies following their seminal paper, in particular Bovenberg and Goulder (1996).
The canonical model used in this literature focuses on a static setting with labor taxation, which
distorts the intratemporal consumption-leisure margin. In such a framework, under certain conditions,
a price on pollution exacerbates this distortion by decreasing the labor supply and thus eroding the
tax base. The optimal emission tax must account for this additional welfare cost of pollution reduction
in second-best. This is known as the “tax-interaction effect”.

A generalization of this model considers optimal environmental taxation in an intertemporal frame-
work. This is of interest for several reasons. First, while a static model is useful for the case of an
externality caused by the emission of a pure flow pollutant3, many environmental problems - first and
foremost climate change - have an inherently dynamic nature: they are caused by a stock pollutant,
which accumulates over time. Hence, there is a dynamic relationship between emissions and environ-
mental quality (or pollution damages). Moreover, intertemporal models allow individuals to postpone
or bring forward consumption through saving or borrowing. Hence, these models typically feature one
or more assets, for example in the form of physical or human capital or bonds, and thus a second tax
base. When analyzing dynamic fiscal policy, it is realistic to assume that a government can impose
taxes on income from both labor and asset holdings. In contrast, a static model cannot account for a
tax that distorts the household’s saving decision.

Finally, a dynamic model is necessary if one is interested in whether or not environmental taxation
in second-best is “time-consistent”, in the sense that the optimal tax rate announced today for any
point in the future (contingent on the realization of economic or other shocks) is still optimal once this

1In the case of climate change, an Interagency Working Group of the US government recently published a report
determining the “social cost of carbon” (SCC). They define the SCC as “an estimate of the monetized damages associated
with an incremental increase in carbon emissions in a given year. It is intended to include (but is not limited to) changes
in net agricultural productivity, human health, property damages from increased flood risk, and the value of ecosystem
services.” (IWG, 2010)

2For this result to hold, certain conditions have to be satisfied, most importantly a direct effect of environmental
quality on utility and a positive wage elasticity of labor supply. Compare the discussion in section 3.1.

3Throughout this paper, a flow pollutant means that environmental quality depends only the flow rather than the
stock of a pollutant, for example in the air or atmosphere. Put differently, a unit of emission decays fully within one
period. In contrast, in case of a stock pollutant, there is some persistency over time, that is, a rate of decay less than
unity.
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realization occurs. Hence, no future government will have an incentive to reoptimize, i.e. to set a tax
rate different from the one announced in the current period. This is true for a Pigouvian tax in first
best.

When considering non-environmental taxes on capital and labor income, a “Ramsey equilibrium”
that presumes that the government can commit to a sequence of future tax rates is in general time-
inconsistent, i.e. in absence of such a commitment device, the government would reoptimize in each
period (Klein et al., 2008)4. Hence, the question is how the lack of commitment affects optimal second-
best environmental taxes.

Dispensing with the commitment assumption has the additional benefit of allowing a framework
in which taxes on capital income are endogenously non-zero in the long-run. As the well-known result
by Judd (1985) and Chamley (1986) states, in a Ramsey model with commitment, capital taxes in
steady state - and, under certain conditions, on the transition path - are optimally zero. Hence, when
analyzing optimal pollution taxes in such a model, the focus is once again on the interaction between
environmental and labor taxes and the distorted intratemporal margin (Barrage, 2012). Positive capital
taxes, on the other hand, allow for environmental regulation in the presence of a distorted intertemporal
consumption-savings margin.

In this paper, I compute the social cost of pollution using a dynamic neoclassical growth model
with energy and environmental quality to analyze optimal taxation in a second-best setting without
commitment. The main theoretical question is whether or not this framework gives rise to a tax-
interaction effect, and how this effect differs qualitatively from the characterization in the static setting
by Bovenberg and Goulder (1996) and others. Put differently, I am interested in how fiscal policy affects
environmental taxation in a dynamic setting with capital as an additional (and possibly the only) tax
base, and how the emission tax relates to the marginal damage of pollution.

I then apply the model to analyze the quantitative relevance of distortionary taxation and the
tax-interaction effect in the context of climate change. That is, I compute the time path for the global
optimal carbon tax in a world with a distortionary tax on labor and capital income, which are set
optimally, and where the government is unable to commit to future tax rates. I compare the optimal
tax policy in second best with 1) the first-best outcome, i.e. when the government has access to lump-
sum taxation, in order to quantify the effect of distortionary taxes on the social cost of carbon; 2)
the corresponding Pigouvian tax, which fully internalizes the marginal damage of emitting carbon, to
see how relevant the tax-interaction effect is empirically; and 3) the equilibrium in a setting in which
the government has access to a commitment device. The latter experiment allows me to check for the
time-consistency of carbon taxes in the presence of distortionary taxation.

These comparisons are relevant when trying to determine the social cost of carbon. Many studies
estimate the social cost of carbon in a first-best setting (cp. for example IWG, 2010), often without
taking other government activities into account. However, if the second-best equilibrium under lack
of commitment is very different from the first-best outcome, these estimates may be biased, and one
should account for the effects of distortionary taxation when computing the cost of emitting carbon.
Moreover, if the tax-interaction effect is quantitatively meaningful and the optimal tax is sufficiently
different from the marginal emission damage in equilibrium, disregarding this effect and focusing on

4Under certain assumptions, however, Ramsey equilibria can be time-consistent. Compare, for example, Azzimonti-
Renzo et al. (2006).
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the Pigouvian tax when designing climate policy may not be justified.
The main findings of this paper are the following: first, in a dynamic model with a distortionary

tax on capital income and lack of commitment, the optimal pollution tax rate is in general not at
the Pigouvian level. This is a generalization of the Bovenberg-Goulder result. Already in the simplest
dynamic setting, in a two-period model with exogenous labor supply and no tax on labor income, there
is an additional benefit of fossil fuel use in second best, which decreases the social cost of pollution:
increasing fuel use - and thus reducing public goods provision - leads to an increase in output, and hence
in the households’ income, which in turn allows them to transfer more resources to the next period.
This mitigates the intertemporal distortion present in this economy: households expect a positive tax
on capital in the future, and hence reduce their savings. By letting fuel use and thus pollution rise
beyond the first-best margin, the government can counteract this effect by increasing the household’s
available resources. This has positive first-order effect on welfare.

In other words, as in the static setting, the current government has an incentive to “underprovide”
public goods, i.e. to not fully internalize the pollution damage. Note, however, that the mechanism is
different: in the case of labor taxation, increasing fuel use affects the return to labor, which may have
a positive effect on labor. In the case with capital, underproviding the environmental public good does
not impact the return to current, but rather to past saving, which affects current saving through a rise
in income.

In a finite-horizon setting with more than two periods and in an infinite-horizon, I identify further
additional costs and benefits of fuel use, due to the impact of current emissions on future savings and
labor decisions, through both the future capital stock, and, in the case of a stock pollutant, the future
pollutant stock. None of those are present in the static model.

Second, the quantitative exercise yields an initial carbon tax (in 2010) which is only around 3.5%

below the first-best, i.e. the tax which would be optimal if lump-sum taxation were feasible. By 2105,
this deviation increases to around 15%. More interestingly, the second-best carbon tax is almost at its
Pigouvian level - in fact, it exceeds it slightly - meaning that the climate damages are fully internalized.
This result is in contrast to both the theoretical result for a static setting (Bovenberg and Goulder,
2002), as well as to recent empirical findings in the context of climate change (Barrage, 2012). I show
that the tax-interaction effect is less prevalent for a sufficiently persistent pollutant5, due the different
second-best costs and benefits of carbon emissions canceling out. One conclusion from this is that the
tax-interaction effect may be negligible when designing climate policy, and that the Pigouvian tax is
a good approximation to the true optimal tax rate.

Finally, the time-consistent carbon tax is in general different from the tax path under commitment.
In other words, in contrast to a first-best setting, the optimal tax chosen under commitment is not
time-consistent, in the sense that the government has an incentive to implement a different tax rate
than previously announced. This time-inconsistency is due to the interaction with other taxes: the
level of the Markov-perfect tax depends on the non-environmental tax system. If these taxes are not
time-consistent, for example in case of a zero-capital tax, neither is the corresponding carbon tax.

Methodologically, this paper is closely related to Klein et al. (2008) and Martin (2010), who analyze
the standard neoclassical growth model without environmental quality. As these papers, I focus on

5CO2, once emitted in the atmosphere, stays there for a long time. In the most simple model of the carbon cycle, a
annual rate of depreciation of around 1% is considered appropriate (Gerlagh and Liski, 2012).
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computing stationary Markov-perfect equilibria. Analogous to Klein et al. (2008), I derive the current
government’s generalized Euler equations, which are weighted sums of intertemporal and intratemporal
wedges that the government trades off with each other. In order to solve for the steady state of this
system of equations, Klein et al. (2008) use a local perturbation method. However, in the context of a
long-run problem like climate change, the transition path to the steady state is of much more interest
than the steady state itself. Hence, I use a global projection method which allows me to compute a
more precise approximation of the policy functions6.

An extension of Klein et al. (2008) in this paper is the analysis of a stock of a public good, rather
than a pure flow. Note that while the application here is with respect to an environmental public
good, the analysis would be similar to the case of the stock of a non-environmental public good. For
example, one could think of infrastructure like public roads and buildings as a persistent public good,
i.e. expenditures today matter for the stock tomorrow.

In the context of climate change, numerous studies have used “Integrated Assessment Models”
(IAM) to compute the optimal carbon tax. Prominent examples are the DICE model (Nordhaus, 2008)
or the WITCH model (Bosetti et al., 2006). Golosov et al. (2011) feature a climate-economy model
more along the lines of modern macroeconomics. However, like most other studies, these models focus
on a first-best economy without explicitly modeling government expenditures on non-environmental
public goods.

Gerlagh and Liski (2012) consider a different source of time inconsistency, namely hyperbolic dis-
counting. They compute Markov-perfect optimal carbon prices in a setting without distortionary taxes,
but where the government is again unable to commit to future policies.

Closest related to this paper is Barrage (2012). She also analyzes optimal climate policy in the
presence of distortionary fiscal policy. However, in contrast to the analysis below, she assumes that
the government is able to commit to future tax rates. In other words, she focuses on pollution taxes
as part of a commitment equilibrium, with or without a zero capital tax7. She finds that the baseline
scenario without a capital tax, the optimal carbon tax is initially around 20% below the Pigouvian
tax, which in turn is almost at the first-best level. In other words, under her assumptons, the optimal
carbon tax is lower than in my model without commitment.

The remainder of this paper is structured as follows. Section 2 presents the model. In section 3,
to illustrate the main mechanisms at play, I analyze a simple two-period model. In section 4, I derive
the generalized Euler equations in an infinite-horizon setting for a stock pollutant. Section 5 contains
the main quantitative exercise, the computation of the social cost of carbon. Section 6 concludes.

2 The Model

In this section, I introduce a simple dynamic framework in which I analyze second-best environmental
taxation. Consider the standard neoclassical growth model, extended by “fossil fuel” or “energy” and
“environmental quality”. Fuel is used as a factor of production, in addition to capital and labor.
Using fuel causes emissions of a pollutant. Hence, the amount of fuel used in production determines

6As a robustness check, I verify the results using value function iteration.
7Capital taxes can be temporarily positive, due to an upper bound that binds for a finite number of periods. Alter-

natively, a permanently positive capital tax is exogenously given.
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environmental quality, which affects both the utility function of the representative household - as in
the static second-best literature following Bovenberg and de Mooij (1994) - and the productivity of
the representative firm, as, for example, in Golosov et al. (2011). Producers do not take into account
how their decisions affect environmental quality, hence pollution represents an externality.

More formally, the representative household’s per-period utility is given by u(c, 1−h, g, s), where c
denotes private consumption of a final good, h hours worked, g public consumption and s is an indicator
of environmental quality. The latter two are not chosen by the household, hence they represent public
goods. u is increasing in its first three arguments, and decreasing in s. In other words, a higher s -
which will henceforth be interpreted as the stock of the pollutant associated with fuel use - corresponds
to lower environmental quality.

Note in contrast to many papers in public finance, I have assumed here that the public consumption
good is valued by the household, hence the amount provided is a choice variable of the government or
planner. This assumption is important for the infinite-horizon version of the model in sections 4 and
5 for technical reasons8. For the two-period model in 3, it is not essential, hence I will simplify the
analysis by assuming exogenous government expenditures.

The consumption good is produced with a constant returns to scale technology, represented by
a production function f , which uses as inputs capital, labor and fuel, denoted by m. Moreover, s
does not only affect utility, but has also an impact on the production process. “Net” output - taking
environmental damages into account - is given by y = F (k, h,m, s) = F(f(k, h,m), s).

I will follow Golosov et al. (2011) and assume that s enters the production function multiplicatively:

F(f(k, h,m), s) = [1− d(s)]f(k, h,m), (2.1)

where the “damage function” d decreases in environmental quality, ds < 0, and 0 ≤ d(s) ≤ 1.
To simplify the exposition, I assume that there is no scarcity problem and so m is available at

“infinite” capacity. Hence I abstract from the Hotelling problem of how to optimally extract a finite
resource9. Moreover, let the private marginal cost of fuel use be a constant κ. This could be interpreted,
for example, as a constant per-unit extraction cost. More realistically, one could let the cost be a
function of the resources left in the ground, or model energy production as a separate production
sector that uses labor and possibly capital as in Golosov et al. (2011) or Barrage (2012).

In addition, using fuel has a social cost: it causes pollution, which negatively affects environmental
quality. Very generally, let st = q(mt), where mt = {mt,mt−1, ...,mt−T } denotes the history of past
emissions back to period t − T , and ∂q/∂mj > 0. In other words, the current flow of the pollutant
affects its stock now and in the future, and hence has an impact on future environmental quality.
Throughout the paper, I will refer to such a pollutant as a “stock pollutant”. A prototypical example
are greenhouse gases, first and foremost carbon dioxide (CO2), which stays in the atmosphere for a
very long time horizon.

In contrast, if current emissions affect environmental quality only in the current period, but not
in the future, one deals with a flow pollutant. Formally, this implies that q(mt) = q(mt). Since
environmental quality is a type of public good, this case is similar to the one analyzed in Klein et al.
(2008) for valued government expenditures. In contrast to their model, however, environmental quality

8Compare the discussion in the appendix, section A.3, for details.
9In the context of climate change, fuel should be interpreted as coal rather than (conventional) oil or gas
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interacts with the production side of the economy, both by affecting productivity and through the usage
of fuel.

In the analysis below, I will focus on the general case of a stock pollutant, not only because it is
the relevant assumption when modeling climate change. Simplifying the model to the flow pollutant
case can be useful at times since it allows for closed-form solutions.

The representative household maximizes lifetime utility, subject to its budget constraint, and taking
price and tax sequences as given:

max
{ct,ht,kt+1}Tt=0

T∑
t=0

βtu(ct, 1− ht, gt, st) (2.2)

where T ≤ ∞, subject to its budget constraint:

ct + kt+1 ≤ [1 + (1− τkt )(rt − δ)]kt + (1− τht )wtht. (2.3)

r and w denote the factor prices of capital and labor, respectively, while τk and τh are the corresponding
linear tax rates. δ is the rate of capital depreciation. Solving this problem yields two standard opti-
mality conditions, one intertemporal (consumption-savings), one intratemporal (consumption-leisure).

The government’s budget constraint reads:

g ≤ τk(r − δ)kt + τhwh+ τmm, (2.4)

where τm denotes a per-unit tax on emissions. Note that throughout this paper, I assume that
the government has to balance its budget. In other words, it can neither borrow from nor lend to
households. The latter assumption is crucial, as pointed out by Azzimonti-Renzo et al. (2006). They
show that if the government were allowed to accumulate assets, they would be able to dispense with
distortionary taxation after a finite number of periods. Hence, even in the absence of commitment, a
government would set a zero tax rate on capital income in the long-run. The intuition for this result
is that the government could confiscate all income in the first period, and then lend households every
period and accumulate assets over time. After sufficiently many periods, the government’s wealth
would be large enough to finance the public good without resorting to distortionary taxation.

Azzimonti-Renzo et al. (2006) also argue that this mechanism does not apply in an overlapping
generations (OLG) setting where agents have finite lives, since there exists an endogenous lower bound
to taxing an “old” generation. In this paper, instead of using an OLG model, I make the accumulation
of assets unfeasible by imposing a balanced budget. In a sense, this can be considered a “short-cut”
that allows me to use a simpler setting and facilitates the analysis below.

Finally, the economy’s resource constraint is given by:

c+ g + i+ κm = F(f(k, h,m), s). (2.5)

where i denotes investment.

3 Finite Horizon

In this section, to illustrate the main mechanisms at work, I contrast the well-known result derived
by Bovenberg and de Moij (1994) and others using a static framework with a two-period model with
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capital, and derive the Markov-perfect equilibrium without commitment. Throughout the section,
for simplicity, assume that the public good is not valued by the household, hence its per-period util-
ity u(c, l, s) depends on private consumption, leisure and environmental quality. Thus, government
expenditures are exogenously given.

3.1 The One-Period Model Revisited

Consider the case where T = 0, i.e. a static version of the dynamic model introduced above. Hence,
investment is zero and the capital stock is given. Environmental quality is a flow variable. While this
static model is not appropriate to analyze long-term effects on the climate - greenhouse gases are a
stock rather than a flow pollutant - one can think of other pollution externalities, for example an effect
on air quality.

Start by defining two “wedges”, that is, distortions of the first-best margins. Let ωLL denote the
“labor-leisure wedge” and ωEnv the “environmental wedge”, respectively. They are given by:

ωLL ≡ ucFh − ul (3.1)

ωEnv ≡ uc(Fm − κ) + qm[us + ucFs]. (3.2)

The first-best equilibrium, when lump-sum taxes are available, is characterized by both wedges being
zero. For the environmental wedge, this just implies that the marginal benefit of increasing emissions
net of private cost - the first term in (3.2) - in terms of utility equals the marginal social cost, i.e. the
marginal environmental damage, captured by the second term.

In a decentralized equilibrium where the government has access to a lump-sum tax, the government
can implement the first-best allocation by imposing a per-unit tax τm on emissions. In equilibrium,
producers use fuel such that Fm = τm + κ, hence the Pigouvian tax is given by

τm = −qm
[
us
uc

+ Fs

]
≡ τp. (3.3)

Government expenditures are financed through the revenue from the pollution tax, τmm, and through
a lump-sum tax.

Now consider a second-best setting, in which the government can only use the pollution tax and a
proportinal tax τh on labor income to raise government revenue. Bovenberg and Goulder (1996) have
shown that the optimal pollution price in this case is given by

τm = −qm
[
us
uc

1

η
+ Fs

]
, (3.4)

where η is the marginal cost of public funds, which measures the social cost of public consumption in
terms of private consumption: raising one dollar in public revenue requires a reduction of η dollars in
private consumption10.

10Formally, let γ be the Lagrange multiplier associated with the government’s budget constraint in period 0. Then,
the marginal rate of public funds (MCPF) is defined as

η =
dc

dg
=

γ

uc
.

In words, the MCPF is the ratio of the government’s shadow cost of raising revenue, and the marginal utility of private
consumption (Bovenberg and Goulder, 2002). If g enters the household’s utility function, η = ug/uc.
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If the government has access to a lump-sum tax, the MCPF equals unity. Then, (3.3) and (3.4)
are identical, yielding the first-best outcome with a Pigouvian tax, τm = τp. In contrast, if the
government has to resort to distortionary taxes on production factors, η > 111. This is due to the
fact that providing the public consumption good is more costly than in first-best since it is financed
through linear taxes on labor, which erodes the tax base if εh,w > 0.

In this case, the optimal pollution tax is below the Pigouvian level, τm < τp. τm represents
an implicit tax on labor, since it reduces the real return to labor. Hence, it further decreases labor
supply and thus the tax base, thereby causing a first-order welfare loss. In other words, it enhances the
distortion caused by the labor tax (Bovenberg and Goulder, 1996), and this additional cost of providing
environmental quality (or equivalently of reducing pollution) increases with η. Put differently, in the
second-best case, it is optimal to have higher than first-best pollution, since decreasing pollution is
more costly than in first-best12.

As noted by Bovenberg and Goulder (2002), one can see that this result hinges on the assumption
that the household derives utility from environmental quality. If this was not the case, and thus if
us = 0, the optimal pollution level would be identical in both settings. In other words, the externality
is not fully internalized only if pollution has a negative effect on utility13.

An alternative way of formalizing this result is deriving a “generalized Euler equation”, following
Klein et al. (2008). The government’s problem in this economy is given by

max
m,h

u(F (h,m)− g − κm, 1− h, q(m))

s.t. to the household’s optimality condition, ucFh(1 − τh) − ul = 0 and its budget constraint, c =

(1− τh)Fhh
14. The two constraints can be consolidated to the implementability constraint :

0 = uc
(
F (h,m)− g, 1− h, q(m)

)
[F (h,m)− g]− ul

(
F (h,m)− g, 1− h, q(m)

)
h ≡ η(h,m). (3.5)

Define the function H implicitly by

η(H(m),m) = 0. (3.6)

In words, for a given resource use m, H(m) gives the household’s optimal labor supply, i.e. the labor
choice that satisfies its optimality condition. In a sense, it is the household’s “best response” to the
fossil fuel use announced by the government (assuming within-period commitment). Using H, the

11In particular, if ucl = 0, one can solve for η as

η =

(
1− εh,w

τh

1− τh

)−1

,

where εh,w denotes the (uncompensated) wage elasticity of labor supply. Note from this expression that η exceeds unity
only if both τh > 0 - there are positive labor taxes - and εh,w > 0, that is, labor supply increases with the wage. Compare
also Bovenberg and Goulder (1996, 2002) for a more detailed exposition.

12Note that this is a net effect, accounting for revenue recycling. In other words, the social cost of providing environ-
mental quality is higher than in first-best, even though its provision creates revenue, which can be used to decrease the
distortionary labor tax.

13Intuitively, in the case of contemporaneous productivity damages only, a marginal increase in fuel use from the
first-best level leaves output - and hence the wage - unchanged. This is not the case if there are direct damages to utility.

14If both the household’s budget constraint and resource constraint, c = F (h,m) − g − κm, are satisfied, so is the
government’s budget constraint, g ≤ τhFhh+ (Fm − κ)m = τhFhh+ τmm.
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government’s problem can be more compactly written as:

max
m

u(F (H(m),m)− g − κm, 1−H(m), q(m)). (3.7)

Taking the derivative of (3.7) w.r.t. m gives the following optimality condition:

uc(Fm − κ) + qm[us + ucFs]︸ ︷︷ ︸
ωEnv

+Hm (ucFh − ul)︸ ︷︷ ︸
ωLL

= 0. (3.8)

This shows that in equilibrium, the government trades off wedges. In first-best, since both wedges are
zero, (3.8) holds. In second-best, if τh > 0, ωLL > 0, hence the environmental wedge cannot be zero
unless Hm = 0. More precisely, if Hm > 0 (Hm < 0), ωEnv must be negative (positive) in order for
(3.8) to be satisfied.

Expression (3.8) illustrates that there is in general an interaction between the emission tax and
the non-environmental tax, in the sense that in the presence of a distortionary tax on labor income,
environmental quality is not provided at the first-best margin. Moreover, whether or not the pollution
externality is less than fully internalized, i.e. whether or not ωEnv < 0, depends on the sign of Hm.

For terminology, note that (3.8) contains the derivative of the policy function for labor, hence,
following Klein et al. (2008), I refer to it as a generalized Euler equations.

In the appendix, I show that if the utility function is weakly separable in environmental quality,
and hence if ucs = uls = 0,

Hm = (Fm − κ+ Fsqm)
εh,w

Fh[1− τ(1 + εh,w)]
. (3.9)

This expression gives some necessary conditions for Hm 6= 0. First, a change in the net wage must
affect the labor supply decision. In other words, if the uncompensated wage elasticity of labor, εh,w,
is zero15, so is Hm. Moreover, note that in the special case where environmental quality affects only
productivity, but not utility, the environmental wedge is given by ωEnv = uc(Fm − κ+ qmFs). Hence,
if ωEnv = 0, this implies that Hm = 0, so (3.8) holds with a fully internalized pollution externality.

The sign of Hm is in general ambiguous. One empirically relevant case is summarized in the
following proposition:

Proposition 1 In the static model with a positive tax τh on labor income, if Fm − κ+ Fsqm > 0 and

0 < εh,w <
1− τh

τh
,

labor supply increases in fossil fuel use, and hence the environmental wedge is negative:

Hm > 0 → ωEnv < 0.

In words, the pollution externality is not fully internalized if a higher fuel use has a positive effect -
net of the pollution damage - on output, and if the uncompensated wage elasticity of labor is positive
but sufficiently small compared to the labor tax rate.

15In particular, this is not the case with an additive-separable, logarithmic utility function. In this case, when the
wage increases, the labor supply remains unchanged, since the income and the substitution effect cancel out.

10



In this case, using fuel has an additional benefit in second-best, apart from the usual benefit of
increasing consumption: it raises labor supply, which leads to a first-order welfare gain, as ωLL > 0.
This reduces the marginal social cost of pollution, so that optimal fuel use, relative to consumption,
increases compared to the first-best case in which this additional benefit does not materialize16. Put
differently, a pollution tax below the Pigouvian level can be interpreted as a subsidy to fuel use.

In the next section, in a two-period model with capital, I show that one can derive a generalized
Euler equation equivalent to (3.8) for the case of a setting with a zero labor tax, and hence capital
as the only tax base. However, as I will outline below, the mechanism is slightly different than in
the static case. In particular, current fuel has no effect on the return to current savings, but instead
changes the amount of resources available to the household.

3.2 A Two-Period Model With Capital

Let T = 1, so the representative household lives for two periods and can postpone consumption by
saving into an asset, referred to as capital. Moreover, the government can impose a tax on the returns
to capital. As it is well-known, there is a time-inconsistency problem associated with capital taxation:
since the tax base - the current capital stock - is inelastic, the capital tax is ex-post non-distortionary
and the government treats it as a lump-sum tax. However, tomorrow’s capital tax rate will affect
today’s saving decision and hence tomorrow’s tax base. In other words, it is ex-ante distortionary.

Suppose that in the current period, the government announces a capital tax rate for next period
that accounts for this distortion, for example a zero rate. In the following period, in absence of a
commitment technology, the government has an incentive to reoptimize and to impose a higher tax
rate than previously announced17. In this sense, tax rates set under the assumption of commitment
are not time-consistent.

There are two ways to deal with the time-inconsistency problem inherent in the structure of the
model: one is to assume that the government has access to a commitment device and thus is not able
to reoptimize in the second period. This is the assumption that the seminal work by Judd (1985) and
Chamley (1986) builds upon. Alternatively, one can abstract from any commitment mechanism and
require the government to make time-consistent choices at each point in time.

In doing so, I will focus on Markov-perfect equilibria. The basic idea of this equilibrium concept is
that only current payoff-relevant states, but not the history of states and actions, matter for a player’s
action choice.

Note that in this setting, the current goverment plays a game with its successor18. In a two-period
model, this just implies that the current government (in period 0) will take into account the optimal
behaviour (response) of period 1’s government when solving its problem. While the current government
cannot directly choose next period’s policies, it can affect them indirectly by choosing the economy’s
state variables, here the stocks of capital and the pollutant, in the following period.

16In first-best, where ωLL = 0, a marginal change in hours worked does not affect welfare.
17More precisely, if tax rates are unbounded from above, it would be optimal to impose rates such that the tax revenue

covers all government expenditures
18Since governments in different periods are identical, the current government actually plays a game “against itself”.

That is, even though I have the same government making the decisions in both periods, it must be treated as different
players, due to the lack of commitment. Equivalently, announcements in the current period about how the government
will behave in the following period are not credible.
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In order to facilitate comparison with the static case, assume that the stock of the pollutant s
evolves in the following way:

s0 = q0(m0), s1 = q(s0,m1). (3.10)

That is, st denotes the pollutant stock at the end of period t.
Similarly in the static setting above, the environmental wedge in period 0 is defined as the sum of

the direct marginal benefit and cost of pollution, now taking into account stock effects:

ωEnv ≡ uc(Fm − κ) + qm[us + ucFs] + βqmq
′
s

[
u′s + u′cF

′
s

]
= 0. (3.11)

Moreover, let ωCS denote the “consumption-savings wedge”, i.e. the distortion of the consumption-
savings margin, defined as:

ωCS ≡ −uc + βu′c[F
′
k + 1− δ] = 0. (3.12)

In first best, when the government has access to lump-sum taxation, both ωEnv and ωCS are zero.
To analyze the second best with distortionary taxes, I derive again the government’s generalized

Euler equation19. I solve the model using backwards induction. In the second period, the government’s
problem can be written compactly as

max
h1,m1

u[F (k1, h1,m1, q(s0,m1))− g1, 1− h1, q(s0,m1)]. (3.14)

Note that this is identical to the problem of a social planner that takes the capital stock and the
stock of the pollutant as given. Although the government does raise a tax on capital income, this tax
is not distortionary, but equivalent to imposing a lump-sum tax: in period 1, the investment decision
has been made and the capital stock is sunk. Due to the presence of this lump-sum tax, the labor tax
is optimally zero. Thus, for a given capital stock, the optimal pollution tax in t = 1 is determined as
in first-best such that ωEnv = 0.

LetM(k1, s0) and H(k1, s0) denote the policy rules that solves the government’s problem in period
1. The government in period 0 takes this function as given when solving its problem. In game-theoretic
terms, it is the response functions of the follower (the future government) in this sequential game, which
the leader (the current government) must take into account when optimizing. Note that government
expenditures are financed by the revenue generated from the tax on capital income and from the
pollution tax, hence the tax rate on capital in t = 1 is given by

T (k1, s0) =
g1 − Fm[k1,M(k1, s0), H(k1, s0), q(s0,M(k1, s0))]

Fk[k1,M(k1, s0), H(k1, s0), q(s0,M(k1, s0))]k1
. (3.15)

19Alternatively, as before, one can compute the optimal environmental tax as a function of the MCPF. In case of a
flow pollutant, it is straightforward to solve for the same expression for the optimal tax in period 0 as in the static model
with labor taxation above:

τm0 = −qm
[
Fs +

us
uc

1

η

]
= τp,P0 +

τp,U0

η
, (3.13)

with the MCPF given by η = 1 − ξ ucc
uc

, where ξ denotes the Lagrange multiplier associated with the intertemporal
implementability constraint (3.16). Thus, the MCPF is computed differently than in the static model. Note that η > 1
if ξ > 0, i.e. the MCPF is greater than unity as long as the implementability constraint has a positive shadow value.
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In the following, I assume that this tax is always positive, i.e. government expenditures are large
enough so that they cannot be financed by the revenue from the emission tax alone. To simplify
notation, let M(k1, s0) = M1, H(k1, s0) = H1 and T (k1, s0) = T1.

In the first period, assume that the government can impose a tax only on capital income, but not on
labor income. Hence, there is only an intertemporal distortion in this economy, caused by the positive
capital tax in period 1.

In t = 0, the government solves the following problem:

max
k1,m0,h0

u[F (k0, h0,m0, q0(m0))− κm0 − g0 − k1, 1− h0, q0(m0)]

+ βu [F (k1, H1,M1, q(q0(m0),M1))− κM1 − g1, 1−H1, q(q0(m0),M1)]

subject to an implementability constraint, which now combines the household’s budget constraint with
the household’s intertemporal optimality condition:

0 ≥ βuc
(
Fh(1)H1 + (1− T1)Fk(1)k1, 1−H1, q(q0(m0),M1)

)
·
(
Fk(k1, H1,M1, q(q0(m0),M1))(1− T1

)
− uc

(
Fh(0)h0 + (1− τ0)Fk(0)k0, 1− h0, q0(m0)

)
.

Using the definition of T1 above, and a similar definition for the tax in period 0, one can rewrite this
as:

0 ≥ βuc
(
F (k1, H1,M1, q(q0(m0),M1))− g1 − κM1, 1−H1, q(q0(m0),M1)

)
·
(
Fk(1)(1− T1

)
− uc

(
F (0)− g0 − κm0 − k1, 1− h0, q0(m0)

)
≡ ε(k1,m0),

(3.16)

where I have omitted the arguments of the production function.
Let K(m0) denote the decision rule implicitly defined by the solution to (3.16):

ε(K(m),m) = 0. (3.17)

Similar to the static case, K can be interpreted as the household’s response function to the current
fossil fuel choice. Then, the government’s problem can be rewritten as

max
m0

u[F (k0,m0, h0, q0(m0))− κm0 − g0 −K(m0), 1− h0, q0(m0)]

+ βu [F (K(m0),M1, H1, q(q0(m0),M1)− κM1 − g1, q(q0(m0), 1−H1,M1] .
(3.18)

where M1 = M(K(m0), s0) etc.
Taking the derivative with respect to m0, I get again a linear combination of wedges, analogous to

(3.8) in the static setting with labor taxation:

ωEnv +KmωCS = 0. (3.19)

This equation shows that, as in the one-period model, optimal environmental policy interacts with
fiscal policy. From the household’s optimality condition, it follows that the consumption-savings wedge
ωCS is positive for T1 > 0. This implies that as long as current saving is affected by current fuel use,
Km 6= 0, emissions are not at the Pigouvian level. Moreover, the sign of environmental wedge depends
on the sign of Km: if current savings increase (decrease) in current fuel use, wedge is negative (positive),
i.e. the pollution tax is below (above) its Pigouvian level.
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The intuition for (3.19) is similar to the static case above. First, note that since households
understand that capital will be taxed in the following period and thus their return to savings will be
lower, they consume more and save less than in first-best.

Then, if Km > 0, by increasing fossil fuel use and thus“underproviding” the environmental public
good, i.e. by not fully internalizing the pollution damage, the first-period government can increase
current savings. This has a first-order welfare gain in second-best since ωCS > 0, and hence the
discounted marginal increase in utility due to more consumption in the subsequent period is higher
than the marginal utility loss due to less consumption today.

It follows that using fossil fuel has an additional benefit which is not present in first-best. Hence,
the optimal emission tax - i.e. the social cost of polluting - does not fully internalize the utility
damage caused by the pollution externality, and hence the margin between private consumption and
environmental quality is distorted compared to the first-best. This leads to a higher pollution level,
relative to consumption. In other words, there is an incentive for the government to subsidize fossil
fuel use, i.e. decrease the tax on emissions below the Pigouvian level.

In the case with labor taxation, fossil fuel use affected the labor supply through a change in the
return to labor. Here, the mechanism is slightly different. The return to current savings is determined
by next period’s fuel use, which is not directly connected to current fuel use, at least in case of a flow
pollutant. Instead, more fuel use today affects the amount of resources available to the household by
increasing today’s capital income, i.e. the return to past saving.

Note that this result is analogous to Klein et al. (2008), who consider only not-environmental
public consumption. In general, underproviding a public good today dampens underinvestment and
thus mitigates the intertemporal distortion caused by the positive tax on capital income.

Whether or not the externality is fully internalized depends on the sign on Km, which in turn
depends on the signs of the derivatives of ε. In general, these are ambiguous. However, one can derive
an analytical result for two special cases.

Proposition 2 Consider the case of a flow pollutant, that is, s0 = q(m0) and s1 = q(m1), and assume
that the utility function depends on consumption, but not on environmental quality. Then,

Km = 0 → ωEnv = 0.

Proof K(m0) is implicitly defined by ε(K(m0),m0) = 0. Differentiating w.r.t. m0 gives

Km = −εm
ε′k
. (3.20)

Taking the derivative of ε w.r.t. m0 yields:

εm = −ucc(0)[Fm(0)− κ+ Fs(0)qm].

Assume that the environmental wedge is zero, ωEnv = 0. From (3.11) with us = 0, it follows that
εm = 0 and hence K(m) = 0, which is consistent with the equilibrium condition (3.19).

�

This proposition is an alternative way of showing that in the absence of direct utility damages, the
externality is fully internalized even in the presence of distortionary taxes, as mentioned above.
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Proposition 3 Consider the case of a flow pollutant, that is, s0 = q(m0) and s1 = q(m1). Then, if
Mk = 0, Tk ≥ 0 and ucs ≤ 0,

Km > 0 → ωEnv < 0.

Proof As before, I have that

Km = −εm
ε′k
. (3.21)

Taking derivatives of ε and using Mk = 0 yields:

εm = −ucc(0)[Fm(0) + Fs(0)qm]− ucs(0)qm,

and

εk′ = ucc(0) + β{uc(1)[1− T (1)]Fkk(1) + uc(1)[−Tk(1)]Fk(1) + ucc(1)[1− T (1)]Fk(1)2.

If consumption and environmental quality are weak complements (ucs ≤ 0), εm > 0. Moreover, if
current savings weakly increase the future tax rate (Tk(1) ≥ 0), εk′ < 0. Hence, (3.21) implies Km > 0.

�

This proposition can be illustrated by a simple example that allows for a closed-form solution, which
is done in the appendix.

In general, the assumptions used in Proposition 3 do not hold, and the sign of Km is ambiguous,
even in the simple case of a flow pollutant. In particular, a change in current savings affects in general
future public good provision (Mk 6= 0) as well as future capital taxes (Tk 6= 0), which in turn may
change the household’s expectation of next period’s return to capital and hence affect its current
savings behavior. As discussed by Klein et al. (2008), this may imply that the government has an
incentive to further decrease current public goods provision, thus exacerbating the distortion between
private and public consumption.

When considering a stock pollutant, even with the very restrictive assumptions made in Proposition
3 it is no longer possible to make an unambiguous statement about the sign of Km. In addition to
the assumptions made in Proposition 2, assume that Ms(k1, s0) = 0 and Ts ≥ 0. That is, a change in
the initial pollutant stock does not affect the amount of fossil fuel used in the second period, while a
higher stock weakly increases the tax rate on capital. Then, the derivative of ε w.r.t. current fuel use
m0,

εm = −ucc(0)[Fm(0) + Fs(0)qm]− ucs(0)qm + βqmq
′
su
′
c(1)[(1− T (1))F ′ks + F ′k(−T ′s(1))], (3.22)

The first two terms are strictly positive, while the third is strictly negative.
For illustration, consider the special case where the two terms in (3.22) cancel out, hence Km = 0.

In this case, there is full internalization of the externality even in second-best. The intuition is that
there are two counteracting effects of increasing m. On the one hand, it increases current output and
hence current consumption; consumption smoothing then implies that the household moves some of the
additional resources to the next period, hence current savings increase. On the other hand, more fossil
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fuel use today implies a higher stock tomorrow, which decreases tomorrow’s output (and tomorrow’s
capital tax rate) and hence the return to current savings. Hence, in this case, there is no “second-best
benefit” of raising pollution above the Pigouvian level.

Since the sign of Km, and hence the direction of the tax interaction effect is in general ambiguous,
it is informative to solve the two-period model above numerically. For a range of reasonable parameter
values, I find that Km > 0, which by (3.19) implies that the marginal damage of pollution is not fully
internalized. Put differently, there seems to be an additional second-best benefit of using fossil fuel.

To summarize, this section has illustrated that in two-period setting without commitment, environ-
mental regulation interacts with fiscal policy, in the sense that a distortion of the non-environmental
margins affects the environmental margin. Moreover, under very special conditions, one can show
analytically, under special assumptions, and numerically that the optimal pollution tax is below the
Pigouvian level, hence the externality is not fully internalized. In the following sections, I will turn
to infinite-horizon models. While increasing the number of periods gives rise to additional dynamic
effects, i.e. adds more terms to the equation 3.19, the basic logic of this expression will still apply
throughout the rest of the paper.

4 Infinite Horizon

In this section and the next, I consider infinite-horizon versions of the simple model outlined above. I
derive the government’s generalized Euler equations and show that the result obtained in the previous
section in the two-period economy carries over to the longer horizon: in dynamic models without com-
mitment, environmental policy interacts with distortionary taxation and the Markov-perfect pollution
tax is not at its Pigouvian level. In addition to the second-best effects of emissions present in the
two-period model above, I identify further benefits and cost from current fuel use due to an effect on
future public goods provision.

In the next section, in a simple climate-economy model, I conduct a quantitative analysis with
the goal of computing the social cost of carbon, which is equal to the optimal time-consistent (global)
carbon tax under distortionary taxation, and comparing it to both a first-best time path - i.e. if
lump-sum taxes were available - and the marginal climate damages. I find that in this setting, the
second-best carbon tax is below, but very close to the Pigouvian level.

Moreover, by comparing the Markov-perfect carbon tax to the outcome under commitment, I will
show that in the presence of distortionary taxes, the optimal pollution price is in general not time-
consistent. That is, the tax schedule set by a government which had access to a commitment device
is different than the one chosen under lack of commitment. Note that this time inconsistency is due
to the interaction between environmental and non-environmental taxes: as seen above, the optimal
pollution price depends on the optimal tax structure. If other taxes are time-inconsistent - for example
a positive tax on labor income in a scenario where separate tax rates on labor and capital are feasible
- so is the environmental tax.

To keep the exposition simple, I assume that current emissions affect environmental quality only in
the future, but not today20, and the stock follows a simple recursive law of motion: st+1 = q(st,mt).

20I could have assumed here that current emissions do affect both current and future utility or producitivity. However,
the simpler case of future impacts only seems more relevant for climate change, where damages occur with a considerable
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4.1 First-best

In the presence of lump-sum taxation, the first-best equlibrium is characterized by the following set of
equations:

ωCS ≡ uc − βu′c[F ′k + 1− δ] = 0 (4.1)

ωLL ≡ ul − ucFh = 0 (4.2)

ωPG ≡ ug − uc = 0 (4.3)

ωEnv ≡ uc(Fm − κ) + βqm

[
u′s + u′cF

′
s −

q′s
q′m
u′c(F

′
m − κ)

]
= 0. (4.4)

As before, I define wedges for the consumption-savings margin (ωCS), the labor-leisure margin
(ωLL), and the environmental margin (ωEnv). In addition, since public consumption is endogenous,
there is a wedge the public-private good margin, denoted by ωPG. The first-best equilibrium is char-
acterized by all these wedges being simultaneously zero.

4.2 Second-best with commitment

Turning to the second-best setting without lump-sum taxes, start by assuming that the government
has access to a technology that allows it to commit to all future tax rates. If the government can
impose separate tax rates on income from labor and capital, as opposed to a general income tax, we
know from the seminal work by Chamley (1986) and Judd (1985) that capital taxes are zero in the
long run (steady state). Moreover, if per-period utility is separable in consumption and leisure, and
has a constant intertemporal elasticity of substitution with respect to consumption, capital taxes are
zero as of the second period.

The household takes the sequences of before-tax factor prices and taxes,
{
τkt
}
and

{
τht
}
, as given.

Solving its problem gives rise to the usual optimality conditions:

uc(t)− βuc(t+ 1)[1 + (1− τkt+1)(rt+1 − δ)] = 0 (4.5)

ul(t)− uc(t)(1− τht )wt = 0. (4.6)

The government’s problem can be written as

max
ct,kt+1,st+1,ht,gt,mt,τkt+1,τ

h
t

∞∑
t=0

βtu(ct, 1− ht, gt, st)

s.t.

ct + gt + kt+1 ≤ F (kt, ht,mt, st) + (1− δ)kt (4.7)

gt ≤ Fm(t)mt + τht Fh(t)ht + τkt (Fk(t)− δ)kt, (4.8)

st+1 ≥ q(st,mt) (4.9)

as well as (4.5) and (4.6), with wt = Fh(t) and rt = Fk(t). That is, the government maximizes its
objective function, lifetime utility, subject to the resource constraint, its budget constraint and the
household’s optimality conditions.

time lag.
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In the spirit of the so-called “primal approach” (Ljungqvist and Sargent, 2004) I can substitute
(4.5) and (4.6) in (4.7) to eliminate taxes from the problem:

gt ≤ Fm(t)mt +

(
1− ul(t)

uc(t)

)
Fh(t)ht

+

[
1− (Fk(t)− δ)−1

(
uc(t)

βuc(t+ 1)
− 1

)]
(Fk(t)− δ)kt

for t ≥ 1. Using the resource constraint and the fact that Fmm + Fkk + Fhh = F (k, h,m), this
implementability constraint can be written as

ul(t)ht + β−1uc(t− 1)kt ≤ uc(t)(ct + kt+1). (4.10)

This formulation applies to the case in which the government has access to two separate tax rates
levied on labor and capital income, respectively. Below, I will consider two additional cases. First, I
restrict the labor tax to be non-positive: τht ≤ 0. This gives rise to the additional constraint

uc(t)Fh(t) ≤ ul(t). (4.11)

Second, I consider a total income tax, i.e. the government taxes labor and capital income with the
same rate. In this case, the additional constraint reads:

Fh(t)[uc(t− 1)− βuc(t)]− β[Fk(t)− δ]ul(t) = 0. (4.12)

Taking first-order conditions gives rise to a system of n non-linear equations in n unknown variables
for each period that characterizes the “Ramsey equilibrium”. It is straight forward to solve for the steady
state and for the transition path, by guessing that the steady state will be reached after T periods and
hence that kT = kT−1 etc.

4.3 Second-best without commitment

Next, I relax the assumption of a commitment device, and instead look for the time-consistent sta-
tionary Markov-perfect equilibrium in this economy21. The analysis is a straight forward extension of
Klein et al. (2008), adding a second public good, environmental quality, which in contrast to the other
good affects not only utility, but also the production process. Moreover, in the general case, it is the
stock rather than the flow of this public good that matters. Hence, compared Klein et al. (2008), there
is an second state state variable in addition to capital, namely the current pollutant stock s.

Capital income tax only For ease of exposition, I start by defining the Markov-perfect equilibrium
for the case of capital taxes only, where taxes on labor income are exogenously set to zero. In other
words, the household’s intratemporal consumption-leisure margin is assumed to be undistorted. This
may seem a very restrictive assumption. As Martin (2010) shows, however, this is a short-cut for a
more general setting in which the government has ex-ante access to two separate taxes, one on capital

21An alternative approach would be to look for all sustainable equilibria, along the lines of Phelan and Stacchetti
(2001) or Reis (2011).
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and one on labor income. Assuming that labor taxes are bounded to be non-negative22, the equilibrium
features a zero tax rate on labour income. This is intuitive: recall that taxes on capital are ex post
non-distortionary, and thus can be considered as de facto lump-sum taxes. Hence, in the presence of
such a tax, assuming that it is unbounded, it cannot be optimal to have a positive distortionary tax
on labor income.

A Markov-perfect equlibrium is defined as a value function v, differentiable policy functions ψ and
φ, a savings function nk and a labor-supply function nh such that for all k and s, ψ(k, s), φ(k, s),
nk(k, s) and nh(k, s) solve

max
k′,s′,h,g,m

u(F (k, h,m, s) + (1− δ)k − g − k′, 1− h, g, s) + βv(k′, s′), (4.13)

subject to

uc[C(k, k′, h, g,m, s), 1− h, g, s]

− βu′c[C(k′, nk(k′, s′), p(k′, s′), ψ(k′, s′), φ(k′, s′), s′), 1− nh(k′, s′), ψ(k′, s′), s′]

·
{

1 + [1− T (k′, nh(k′, s′), ψ(k′, s′), φ(k′, s′), s′)][Fk(k
′, nh(k′, s′), φ(k′, s′), s′)− δ]

}
= 0,

(4.14)

and s′ = q(s,m), and where

C(k, k′, h, g,m, s) = F (k, h,m, s) + (1− δ)k − g − k′, (4.15)

and

T (k, h, g,m, s) =
g − Fm(k, h,m, s)m

(Fk(k, h,m, s)− δ)k
. (4.16)

Moreover, for all k,

v(k, s) =u[C(k, h(k, s), nh(k, s), ψ(k, s), φ(k, s), s), 1− nh(k, s), ψ(k, s), s)]

+ βv(nk(k, s), q(s, φ(k, s))).
(4.17)

As outlined above, the current government plays a game against its successor, possibly itself. Fol-
lowing the one-stage deviation principle, the current government’s strategy constitutes an equilibrium
if it maximizes its objective function, subject to all relevant constraints, taking the strategies of the
other player - the future government - as given. In other words, assuming that the future govern-
ment chooses policies according to the equilibrium decision rules, it must be optimal for the current
government to follow the same policy functions.

When solving the model I follow Klein et al. (2008). Denote the left hand side of (4.14) as
η(k, s, k′, h, g,m). Define the function K(k, s, g,m) implicitly as

η(k, s,K(k, s, g,m), h, g,m) = 0. (4.18)

As in the two-period model above, K can be interpreted as the household’s response function to the
current government’s policy choice, assuming that future governments follow the equilibrium policies:

22In other words, the government is not allowed to subsidize labor. Martin (2010) shows that subsidizing labor is
actually optimal in a setting with unrestricted separate tax rates on labor and capital. However, this seems to be less
relevant empirically than zero labor taxes.
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it gives the household’s optimal savings level if the current governments set expenditures g and a
pollution tax that results in emission level m. In equilibrium, K(k, s, ψ(k), φ(k)) = nk(k, s).

Solving the government’s problem, taking K as given, results in the following system of optimality
conditions that characterize the stationary Markov-perfect equilibrium23:

uc − βu′c[1 + (1− T (k′, s′, h′, g′,m′))(F ′k − δ)] = 0 (4.19)

ul − ucFh = 0 (4.20)

ug − uc +Kg[−uc + βu′c(F
′
k + 1− δ)]− βKg

K′k
K′g

(u′g − u′c) = 0 (4.21)

ucFm + βqm

[
u′s + u′cF

′
s −

q′s
q′m
u′cF

′
m

]
+Km[−uc + βu′c(F

′
k + 1− δ)]

−β(u′g − u′c)
[
Km
K′k
K′g

+ qm
K′s
K′g
− qm

q′s
q′m

K′m
K′g

]
= 0

(4.22)

where the latter two equations are again generalized Euler equations. Using the wedges defined in
(4.1)-(4.4) above, I can write (4.21) and (4.22) as a linear combination of wedges:

ωPG +KgωCS − βKg
K′k
K′g

ω′PG = 0 (4.23)

ωEnv +KmωCS − βω′PGKm
K′k
K′g
− βω′PG

qm
K′g

[
K′s −

q′s
q′m
K′m
]

= 0. (4.24)

As before, the government trades off wedges in equilibrium. In first-best, as ωCS = ωPG = ωenv = 0,
(4.23) and (4.24) are satisfied. If the government has to resort to distortionary taxation, the household’s
optimality condition (4.19) implies that if T (k′, s′, h′, g′,m′) > 0, the consumption-savings wedge is
positive. Then, unless Km = 0, (4.23) and (4.24) imply that ωPG and ωenv cannot be zero at the
same time: in optimum, neither public good is provided at the first-best margin. Recall that for the
environmental public good, the result that ωenv 6= 0 just says that the social cost of pollution is not
equal to the marginal damage.

Before further interpreting (4.23) and (4.24), note that all elements in these expressions are endoge-
nous and solved for simultaneously when computing the equilibrium. Moreover, for most of them it is
not possible to determine the sign analytically. Hence, the question if and how the interaction with
distortionary fiscal policy affects the optimal pollution tax and whether the social cost of pollution is
below or above the pollution damage is a quantitative one, and requires to numerically solve for the
equilibrium. This is done in the next section, in a simple model of climate change.

Here, for the sake of the argument, I make assumptions regarding the signs of the derivatives of
Km. In particular, assume that K increases in k and m, and decreases in g and in s, and that the
non-environmental good is underprovided, ωPG > 0. These assumptions are consistent with (4.23),
the GEE for the non-environmental public good. Moreover, as I will show in the next section, these
signs are what I find when numerically solving the calibrated model.

Closer inspection of (4.24) then shows that there are additional second-best effects which were not
present in the two-period model above. Consider the effect of a marginal increase in current fuel use.

23In the appendix, section A.3, I derive the generalized Euler equations for the more general case with a total income
tax, as discussed below. For the case of a capital income tax only, the derivation is completely analogous, but with
ωLL = ω′LL = 0.
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As in first best, it has the usual marginal benefit - increase in current consumption - and marginal
damage, captured by ωEnv. In addition, it increases current savings by Km. As in the finite-horizon
model above, the second term in 4.24 captures the effect that more fuel use today allows the household
to move more resources to the next period, which increases utility in second best. Call this the “direct
second-best flow effect” of pollution.

Moreover, a higher capital stock tomorrow due to more fuel use today leads to more savings
tomorrow, assuming that K′k > 0. This, in turn, dampens the intertemporal distortion in the future
and hence allows the future government to increase provision of current public goods. Recall that the
reason why public goods are underprovided is that the government wants to give the household more
resources to move to the future. But doing so in the current period increases savings in the future,
thereby reducing the need to provide additional resources in the subsequent period. In other words,
underproviding public goods today mitigates the desire of the successive government to underprovide
public goods tomorrow. This is an additional benefit of current fuel use.

In (4.24), this effect is captured by the third term. Note that it was also present in the model by
Klein et al. (2008), hence does not depend on the public good being persistent. Hence, I will refer to
this as the “indirect second-best flow effect”. Under the assumptions made above, this term is positive,
and hence reinforces the direct second-best flow effect. Hence, in absence of any other effects of current
fuel use - and in particular when considering a flow pollutant - (4.24) implies that ωEnv < 0, i.e. the
pollution damage is not fully internalized.

The fourth term in (4.24) captures the effect of a change in current fuel use on the future pollutant
stock, and thus on future savings and future public good provision. This happens via two channels:
first, a higher stock tomorrow may directly affect future output and household income, and hence
future savings. This is reflected in the first term inside the brackets. Moreover, a higher stock also
changes tomorrow’s optimal fuel use, which in turn affects output and hence the savings decision as
well.

To see what this “second-best stock effect” implies for the sign of ωEnv, recall that I assumed that
in equilibrium, Km > 0, Kk > 0, Kg < 0 and Ks < 0. With only a flow pollutant, these assumptions
imply that the social cost of pollution is not at the Pigouvian level. With a stock pollutant, this is
no longer true in general: while the second and the third term of (4.24) are positive, the fourth term,
however, is negative, given that qs > 0 and qm > 0 by definition of the function q. This implies
that the sign of the first term is now ambiguous, and possibly positive. In other words, there can be
an equilibrium that features an undistorted environmental margin (i.e. ωEnv = 0), despite all other
margins being distorted, or even an overprovision of environmental quality.

Put differently, if future savings decrease as a consequence of a higher pollutant stock, then using
more fuel in the current period has an additional cost, since it exacerbates the distortion in the future,
which induces the subsequent government to reduce public good provision. This cost may partly or
even fully offset the second-best benefits of fuel use, and hence move the social cost of pollution closer
to or even above the marginal pollution damage.

Total income tax Next, I want to consider a setting in which both the intertemporal consumption-
savings margin and the intratemporal labor-leisure margin are distorted simultaneously, i.e. where I
have positive tax rates on both labor and capital income. Empirically, such a setting appears much
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more realistic than assuming that the government finances its expenditures using only a tax on capital
income. As discussed above, however, this outcome cannot occur if the government can set different
tax rates on labor and capital, given that the capital income tax is not bounded from above.

There are several ways to modify the model such that one would get positive tax rates on both
production factors in equilibrium24. The simplest approach, following Klein et al. (2008), is to assume
a “total income tax”, that is, restricting the government to impose the same tax rate on both labor
and capital income.

Define the best-response function H(k, g,m, s) for the household’s labor choice. The generalized
Euler equation with respect to fuel use then reads25:

ωEnv +KmωCS − βω′PGKm
K′k
K′g
− βω′PG

[
qm
K′s
K′g
− qm

q′s
q′m

K′m
K′g

]
+HmωLL + βω′LLKm

[
H′k −

K′k
K′g
H′g
]

+ βω′LLqm

[
H′s −

K′s
K′g
H′g −

q′s
q′m
H′m +

q′s
q′m

K′m
K′g
H′g
]

= 0

(4.25)

The first four terms are the same as before. In addition, a change in current fossil fuel affects both
current and future labor supply, which has non-zero impacts on utility in second-best. The first of the
additional terms, HmωLL, captures the same effect of current fuel use on labor supply as in the static
model with labor taxation, described in section 3.1 above.

The second additional term reflects the second-best effect of an increase in current fuel use on
tomorrow’s labor-leisure wedge through a change in the future capital stock, which in turn affects
tomorrow’s labor and savings decision. The former, direct effect is captured by the term H′k. The
latter effect, in turn, impacts the level of public goods provision and taxation, which also affects labor
supply, as is illustrated by the term K′k

K′g
H′g.

Similarly, the last term in (4.25) captures the impact of current fuel use on the future distortion via
tomorrow’s pollutant stock. Again, this affects the tomorrow’s labor supply both directly and through
its effect on future savings and hence public goods provision and taxation, as before (H′s −

K′s
K′g
H′g). In

addition, a higher pollutant stock induces the future government to put a stricter limit on emissions,
all else equal. A change in fuel use then affects future labor supply and hence tomorrow’s labor-leisure
wedge in an analogous way as changes in the capital and pollutant stock (− q′s

q′m
H′m + q′s

q′m

K′m
K′g
H′g).

Taking stock To summarize, in this section I have shown that the result from the simple two-period
model, namely that there is a tax-interaction effect in a dynamic model without commitment, carries
over to the infinite-horizon case. In this setting, I have identified the second-best benefits and costs of
emissions that affect the social cost of pollution.

Note that this section has given no indication about how important the tax-interaction effect is. As
argued above, this is a quantitative question. As an application, I will therefore compute the optimal
Markov-perfect carbon tax in a calibrated climate-economy model, and compare it to the outcome in
first best, under commitment, and when internalizing only the pollution damage.

24Martin (2010) considers an exogenous upper bound on the capital tax, as well as making the utilization rate of
capital endogenous. The former is somewhat unsatisfying since it leaves the origin of the bound unmodeled. The latter
changes slightly the logic of the mechanism.

25Compare section A.3 in the appendix for the derivation.
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5 Application: Climate Change

In this section, I use the framework outlined above to compute the social cost of carbon in a global
Markov-perfect equilibrium. When modeling climate change, I resort to a number of simplifying
assumptions. First, to keep the number of states low, in the baseline model I restrict the number
of state variables to two26, namely the economy’s capital stock and the atmospheric concentration of
CO2. Note that state-of-the-art Integrated Assessment Models (IAM) typically feature more variables
summarizing the state of the climate (Nordhaus, 2008; Cai et al., 2013). Increasing the number of
state variables is be an important extension of the analysis below.

Second, I look for stationary Markov-perfect equilibria. That is, I assume that the economy con-
verges to a balanced growth path (BGP) in the long-run. This in turn requires three features: first,
there is no substitute for fossil fuel, hence it is used forever, but is constant along the BGP. Moreover,
labor- and of energy-augmenting technical change occur at the same rate. Third, I assume that all
carbon in the atmosphere depreciates with a positive rate, i.e. no share of carbon remains in the
atmosphere in infinity.

Finally, the model is deterministic, hence I abstract from all uncertainty related to the climate or
economic development. These assumptions restrict the empirical validity of the quantitative predictions
made about optimal carbon taxes. Nevertheless, the model can be used to illustrate climate policy
under different assumptions regarding the tax regime. In this sense, while the absolute levels of the
carbon tax given below should be not be taken as precise estimates or policy recommendations, they
are informative as to whether and how tax policy matters for environmental regulation.

5.1 Carbon Cycle

When analyzing climate change, one has to model how emissions translate into changes in atmospheric
carbon concentration and temperature (the carbon cycle) and how temperature changes map into
damages to utility and productivity. The carbon cycle is commonly modeled as a function that maps
current and past global CO2 emissions, plus a vector of initial carbon concentrations, into average
global temperature change in period t, relative to the pre-industrial level (Barrage, 2012):

Tt = F(s0,m0,m1, ...,mt). (5.1)

The dimension of s0 depends on the number of carbon “reservoirs”. For example, the DICE model
(Nordhaus, 2008) features three reservoirs, the atmosphere, the upper oceans and biosphere, and the
deep oceans with mixing between them. Other studies use a carbon cycle model with only atmospheric
concentration (Golosov et al., 2011; Gerlagh and Liski, 2012).

A second important modeling choice is what share of carbon emitted into the atmosphere is -
eventually - absorbed by other reservoirs, and what share remains there forever. Golosov et al. (2011)
assume that 20% of emitted carbon stays in the atmosphere for infinity, while around 48% leave within
one model period. The remainder depreciates at a rate of 2.3% per ten-year period.

26In an extension, to check the robustness of the result obtained in the baseline model, I consider the model with a
“temperature lag”, i.e. I assume that the impact of a higher forcing, resulting from a higher carbon stock, on global mean
temperature does not occur instantaneously, but instead that the temperature adapts gradually to higher forcing. In
this setting, there is a third state variable, namely the current global mean temperature.
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Gerlagh and Liski (2012) model the the atmosphere as a number of “boxes”, each representing a
share of the atmospheric CO2 concentration, where box i is characterized by the carbon depreciation
rate ηi. The total carbon in the atmosphere is the sum over all boxes:

si,t = (1− ηi)si,t−1 + aimt−1 (5.2)

st =
∑
i

si,t, (5.3)

where
∑

i ai = (1 + µ)−1 and µ is the share of emissions that leave the atmosphere within a short
time. Gerlagh and Liski (2012) note that three boxes appear to be sufficiently precise to capture the
important dynamics of the carbon cycle.

As a benchmark model, in order to hold the number of state variables small, I use (5.2) with one
box to model the carbon accumulation process. This allows me to limit the model to only two variable,
capital and the atmospheric carbon stock. The latter evolves recursively, according to the simple law
of motion:

st+1 = (1− η)st + ζmt, (5.4)

where η denotes the rate depreciation of carbon in the atmosphere.
To model the relationship between atmospheric carbon concentration and global temperature

change, consider the following simple mapping, used by Gerlagh and Liski (2012):

Tt = Tt−1 + ε(ϕ(st)− Tt−1), (5.5)

where the function ϕ(st) gives the long-run increase in global mean surface temperature for a given
atmospheric carbon stock st. A commonly used functional form is27:

ϕ(st) = φ
log
(
st
s̄

)
log 2

, (5.6)

where s̄ = 581GtC is the preindustrial CO2 concentration in the atmosphere. The parameter φ denotes
the climate sensitivity, defined as the increase in global mean temperature if the atmospheric carbon
concentration doubles and usually set around 3.

The parameter ε gives the adjustment speed, that is, how much of the overall gap between current
and long-run temperature change will be closed between the current and the next period. Golosov
et al. (2011) use a special case of (5.5), with ε = 1. This implies that the full impact of a higher
atmospheric carbon stock on the temperature occurs “instantaneously” (i.e. within the same model
period). Instead, the more general mapping by Gerlagh and Liski (2012) allows for an adjustment lag
with respect to the temperature change.

Below, in the baseline model, I use the specification with ε = 1, and hence the change in mean
global temperature is given by Tt = ϕ(st). To check for robustness, in section 5.5.3, I then relax the
assumption of instantaneous adjustment (ε < 1).

27This specification of the law of motion for temperature change is a special case of the more general approach in the
DICE model. In particular, I abstract from an impact of the temperature in the lower oceans on the surface temperature.
The function ϕ(st) comes from the commonly used expression for radiative forcing, multiplied with a parameter capturing
the temperature change for a unit of forcing (Nordhaus, 2008; Barrage, 2012).
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5.2 Utility

Following Klein et al. (2008), I assume a per-period utility function with constant elasticities of
substitution, both between consumption and leisure, and between the consumption-leisure composite
and the non-environmental public good. As it is standard in the environmental economics literature,
I let preferences between private consumption and environmental quality be additively separable:

u(c, l, g, s) =
[(1− αg)(αccρ + (1− αc)lρ)

ψ
ρ + αgg

ψ]
1−ν
ψ − 1

1− ν
+ ς(T ), (5.7)

where ς is a convex function and T denotes the increase in global mean temperature. In words, the
function ς denotes the direct impact on utility due to negative In the baseline calibration, I let ν → 1,
ρ → 0 and ψ → 0, hence the per-period utility function is separable in all arguments28. Moreover, I
assume a quadratic utility damage due to the externality:

u(c, l, g, s) = [(1− αg)αc ln c+ (1− αg)(1− αc) ln l + αg ln g]− αs
2
T 2. (5.8)

Note that this specification is convenient since it allows for the existence of a balanced growth path
(King et al., 2002) if fossil fuel is used forever.

5.3 Production

Following Nordhaus (2008) and Golosov et al. (2011), damages to productivity enter the production
function multplicatively:

F (k, h,m, T ) = (1− d(T ))f(k, h,m),

where d(T ) denotes the “damage function”. A commonly used specification is:

d(T ) = (1 + γT 2)−1γT 2. (5.9)

For the gross production function, I assume a nested CES:

f(k, h,m) =

[
(1− ξ)

(
kθ(Ahh)1−θ

)σ−1
σ

+ ξ(Amm)
σ−1
σ

] σ
σ−1

. (5.10)

As mentioned above, along a BGP, labor- and energy-augmenting productivity, represented by Ah and
Am, respectively, grow at the same rate.

Of course, this is not the only possible specification when using a CES structure. It is used, for
example, in the WITCH integrated assessment model (Bosetti et al., 2006) and by Hassler et al. (2011).
Note the specific structure assumed here: the elasticity of substitution between capital and labor is
unity, hence they enter in a Cobb-Douglas production function. This assumption is made mainly for
simplicity: a more general model would allow for elasticities of substitution greater or smaller than
one. The elasticity of substitution between this capital-labor composite and energy is denoted by σ.
This is commonly assumed to be between zero and one; in the baseline, I will set σ = 0.5 as in the
WITCH model.
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Parameter Value Source
Preferences

β .985 Nordhaus (2010)
αc .29 Calibration
αg .12 Calibration
αs .018 Calibration, sensitivity

Production
δ .08 Standard
θ .36 Standard
ξ .03 Hassler et al. (2012)
σ .5 WITCH
κ .6 Calibration, Golosov et al. (2012)
γ .017 Barrage (2012)

Climate
φ 3 Standard
η .01 Gerlagh and Liski (2012), sensitivity
ζ .8 Gerlagh and Liski (2012)
s̄ 581 GtC Golosov et al. (2012)

Table 1: Baseline Calibration

5.4 Calibration and Solution

The following table lists the parameter settings for the baseline calibration.
Regarding the calibration of the parameters γ and αs, Barrage (2012) finds that production damages

account for about 74% of total output damages if T = 2.5◦C. From this, she calibrates γ = 0.00172. I
fix this value, and then choose αs to target an first-best temperature increase of 3◦C, as in Golosov et al.
(2011). I conduct some sensitivity analysis by varying the value for αs and check for the robustness of
the results.

The parameters αc and αg are calibrated such that the share of time worked and the ratio of
government expenditures to output take realistic value, with g/y ≈ 0.2 and h ≈ 0.27.

I solve for the Markov-perfect equilibrium by approximating the policy functions nk, nh, ψ and φ
with Chebyshev polynomials and applying the collocation method29. Compared to Klein et al. (2008),
who use a perturbation method to solve for the steady state, this global method allows me to compute
the transition path to the steady state. Given the long-run nature of climate change, the steady state
is only of little interest.

28Note that (5.8) violates the axioms suggested by Weitzman (2010) for a utility function with climate damages, since
the consumption risk aversion (or the inverse of the intertemporal elasticity of substitution) is unity.

29A detailed description of the algorithm can be found in the appendix. I check the validity of the results using value
function iteration (VFI).
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Figure 1: Optimal carbon tax - baseline

5.5 Results

5.5.1 Baseline Model

Figure 1 shows the time path of the optimal carbon price under a total income tax for the first best,
the equilibrium with commitment and the Markov-perfect equilibrium, as well the marginal climate
damage in the latter case. Table 2 contains the numerical resilts. In first best, the tax schedule starts
at $60.5/tC in 2010 and rises to $475.5/tC in 2105. In the presence of distortionary taxation, in
contrast, the carbon tax increases from about $58.5/tC (2010) to $405.8/tC (2105). Hence, comparing
the different settings for fiscal policy, the optimal carbon tax is initially only about 3.5% lower in
second-best. This gap is increasing over time, to about 16% in 2105. Moreover, the optimal carbon
tax in a Markov-perfect equilibrium is very close to the corresponding Pigouvian level, i.e. the marginal
damage caused by emissions. In fact, it slightly exceeds it by 0.9% in the baseline setting.

Comparing these results with similar studies, the initial carbon tax rates are close to Barrage
(2012), who finds $67/tC in 2015 for the first-best scenario (compared to $70/tC here) and $55/tC for
the second-best case ($64/tC here). In 2105, however, the differences are more pronounced: for the
second-best case, Barrage (2012) finds an optimal tax rates of $541/tC.

Figure 2 displays the analogous graph for the case of a tax only on capital income. Note that first,
the absolute level of the social cost of carbon is lower than in the previous scenario, amounting to
$46.8/tC in 2010 and $271.1/tC in 2105. Moreover, the relative deviation between the optimal tax
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Figure 2: Optimal carbon tax - capital tax only

and the marginal damage is around 5% throughout the whole time span.
What is the intuition for these results? First note that due to the distortions to both the consumption-

savings and the consumption-labor margin, the second-best equilibria both with and without commit-
ment feature lower output and lower consumption than the first-best outcome. This, in turn, reduces
the damages from climate change, and hence the absolute level of both the Pigouvian and the optimal
carbon tax under distortionary taxation. In the capital-tax-only setting, due to the smaller tax base,
the capital tax rate and hence the size of the intertemporal distortion is considerably higher than in
the baseline model, which further decreases output and consumption, and hence the monetary value
of climate damages.

Second, the equilibrium with commitment features very high carbon taxes in the initial periods,
while in the long run tax rates are lower than in both the first-best and the Markov-perfect equilibrium.
Note that in the long run, the commitment outcome features a higher total income tax and hence
lower output and consumption than the other settings (Klein et al., 2008), which implies lower climate
damages and hence reduced carbon taxes.

Third, the Markov-perfect carbon tax is very close to the marginal emission damage. To understand
this result, recall the generalized Euler equation derived above. For ease of exposition, consider the
setting with only a capital income tax:

ωEnv +KmωCS − βω′PGKm
K′k
K′g
− βω′PG

qm
K′g

[
K′s −

q′s
q′m
K′m
]

= 0. (5.11)
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$/GtC τm/τp τk

Year 2010 2105 2010 2105 2010 2105
Baseline 58.4 405.7 1.009 1.003 0.191 0.181
CIT 46.8 257.1 0.946 0.952 0.964 0.704
αg = 0.17 56.1 388.3 1.008 1.001 0.270 0.262
αg = 0.07 60.6 423.1 1.005 1.002 0.085 0.075
η = 0.005 74.5 517.0 1.006 1.001 0.176 0.164
η = 0.025 35.3 227.3 1.024 1.017 0.215 0.212
η = 0.05 22.7 130.5 1.066 1.071 0.230 0.231

Table 2: Results

Note that from the definition of ωEnv, we have

ωEnv
τpuc

=
(Fm − κ) + u−1

c βqm

[
u′s + u′cF

′
s −

q′s
q′m
u′cF

′
m

]
τp

=
τm − τp
τp

,

where τp denotes the Pigouvian level, i.e. the marginal emission damage. Then, dividing (5.11) by
τpuc and rearranging gives an expression for the relative deviation of the second-best carbon tax from
the Pigouvian level, ∆τ

30:

∆τ ≡
τp − τm
τp

=
KmωCS
τpuc︸ ︷︷ ︸
X1

+
(−βω′PGKm

K′k
K′g

)

τpuc︸ ︷︷ ︸
X2

+
−βω′PG

qm
K′g

[
K′s −

q′s
q′m
K′m
]

τpuc︸ ︷︷ ︸
X3

. (5.12)

That is, ∆τ can be broken down into three terms. X1 captures the direct second-best flow effect:
if Km > 0, current fuel use increases current savings, which mitigates the intertemporal distortion. X2

represents the indirect second-best flow effect: if it is positive, the increase in current savings due to
current fuel use leads to higher savings in the future, mitigating the future underprovision of public
goods. X3 finally captures the second-best stock effect: current fuel use increases the pollutant stock
in the subsequent period, which affects future savings, thus possibly exacerbating the distortion in the
future.

Table 3 quantifies these effects. First note that in the baseline setting, X1 and X2 are positive,
implying that there are additional second-best benefits of fuel use, which decrease the social cost of
carbon. That is, if disregarding other effects, the government would have an incentive to increase
current emissions and hence to subsidize fuel use beyond the first-best margin. In this case, the social
cost of carbon would be around 5.4% below the marginal damage, due to the mechanisms described
above.

30In case of a general income tax, one can derive an analogous expression using (4.25):

∆τ ≡
τp − τm
τp

=
KmωCS
τpuc︸ ︷︷ ︸
X1

+
(−βω′PGKm

K′
k
K′

g
)

τpuc︸ ︷︷ ︸
X2

+
−βω′PG qm

K′
g

[
K′s −

q′s
q′m
K′m
]

τpuc︸ ︷︷ ︸
X3

+
HmωLL
τpuc︸ ︷︷ ︸
X4

+
βω′LLKm

[
H′k −

K′
k
K′

g
H′g
]

τpuc︸ ︷︷ ︸
X5

+
βω′LLqm

[
H′s −

K′
s
K′

g
H′g −

q′s
q′m
H′m +

q′s
q′m

K′
m
K′

g
L′g
]

τpuc︸ ︷︷ ︸
X6

= 0.
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τm/τp 2010
Year 2010 X1 X2 X3 X4 X5 X6
Baseline 1.009 0.015 0.039 -0.062 -0.040 -0.045 0.085
CIT 0.946 0.145 0.266 -0.357 - - -
αg = 0.17 1.008 0.027 0.072 -0.112 -0.031 -0.083 0.119
αg = 0.07 1.005 0.005 0.012 -0.020 -0.026 -0.014 0.039
η = 0.005 1.006 0.014 0.039 -0.064 -0.022 -0.045 0.072
η = 0.025 1.024 0.012 0.029 -0.044 -0.107 -0.034 0.121
η = 0.05 1.066 0.002 0.006 -0.009 -0.219 -0.006 0.160

Table 3: Tax interaction effect

However, X3 is negative. That implies that the second-best stock effect results in an additional
cost of fuel use that decreases the welfare gain from higher emissions. Hence, the stock effect goes in
the opposite direction than the flow effects. Note this is qualitatively true for both the baseline setting
with a total income tax and the capital-tax-only scenario. Intuitively, there is a quantitative difference:
due to the higher capital tax in the latter case, the consumption-savings and the public-consumption
wedge increase. As a consequence, X1, X2 and X3 increase in absolute value, while keeping their signs.
However, the increase in the former two is less than cancelled out by the decrease in X3.

In the baseline model, there are additional effects due to the distortion of the labor margin, repre-
sented by X4 - X6. Note that X4, capturing the effect of fossil fuel use on the labor supply discussed
above in the static model, is negative. This implies that in equilibrium a marginal increase in fuel use
decreases the labor supply, i.e. Hm < 0. Intuitively, in the model with both capital and labor, more
fuel use increases the return to either production factor. If the increase in capital income is sufficiently
high, the household reduces labor supply, despite a higher wage. In other words, the income effect will
dominate the substitution effect. In this case, since this exacerbates the intratemporal distortion, it is
a second-best cost of fuel use, raising the social cost of carbon and hence mitigating the government’s
incentive to increase emissions.

Next, X5 captures the effect of an increase in current fuel use and hence a higher capital stock
tomorrow (given that Km > 0) on tomorrow’s labor supply, both directly and through the effect of
more public spending and hence a higher tax rate. Formally, these two channels are captures by the
term H′k−

K′k
K′g
H′g, where, in the baseline setting, I find that H′k > 0 and H′g < 0. Overall, this term and

hence X5 is negative, implying that a higher capital stock tomorrow leads a decrease in labor supply.
Again, this exacerbates the intratemporal distortion in the future, and hence is a second-best cost of
current emissions.

Finally, X6, capturing the effect of higher pollutant stock on the future labor supply through the
different channels described above, gets his sign from the term

H′s −
K′s
K′g
H′g −

q′s
q′m
H′m +

q′s
q′m

K′m
K′g
L′g > 0,

which is positive in the baseline equilibrium. Here, increasing current fossil fuel and hence tomorrow’s
pollutant stock has a positive effect on tomorrow’s labor supply, and hence mitigates the intratemporal
distortion in the future. This is a second-best benefit of resource use, which decreases the social cost of
carbon. Note that quantitatively, the latter two terms, reflecting the effect of tomorrow’s fuel use on
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the labor supply, dominate the direct effects of a higher pollutant stock. In other words, what drives
the sign here is the fact that more pollution today causes tomorrow’s government to use less energy
and hence pollute less. This reduces the household’s income, which has two effects: first, it induces
the household to increase its labor supply (since again the income effect dominates the substitution
effect). Second, it reduces savings, and hence enhances the government’s desire to underprovide the
public goods. The resulting decrease in the tax rate further increases labor supply.

Overall, in the baseline setting, the second-best benefits and costs cancel out almost exactly, leading
to an environmental margin very close to the first best. In other words, the social cost of carbon is
almost equal to the marginal climate damage. Note that this result is different from what Barrage
(2012) finds in a similar framework without commitment. In her model, the optimal second-best is
initially about 20% below the Pigouvian tax.

5.5.2 Sensitivity Analysis

To check the robustness of this result, the remainder of tables 2 and 3 contains the findings for changes
to the baseline calibration. First, I increase (reduce) the preference weight of the public consumption
good. Intuitively, when the taste for public goods rises (falls), so does the revenue requirement and
hence the capital tax rate. For a higher (lower) distortion, output and consumption, and hence climate
damage fall (rise), which is reflected in a slightly lower (higher) social cost of carbon. However, ∆τ

remains almost unchanged, since the increase (decrease) in X1, X2 and X6 is again almost completely
canceled out by an increase (decrease) in the absolute values of X3, X4 and X5.

In lines 4-6, I change the annual rate of CO2 depreciation in the atmosphere, η, which is 0.01 in the
baseline calibration. In absolute terms, the carbon tax decreases (rises) when this rate increases (falls).
The climate damage caused by a unit of fuel emitted today is less severe for a higher depreciation rate,
hence the optimal carbon tax is lower. This also affects the capital tax rate: for a higher rate of decay,
the government generates less green revenue and hence must impose a higher tax on income, which
exacerbates the distortions in the economy.

With regard to the tax-interaction effect, note that only X4 and X6 increase in absolute value
as η rises, although with different signs. For example, when η = 0.05, the size and direction of the
tax-interaction effect is almost completely determined by the sum of these two terms. At the same
time, X1 is almost zero, which reflects a very small effect of fossil fuel use on savings, i.e Km ≈ 0.

To understand these results, first note that as η decreases, the effect of an increase in current fossil
fuel use on the net wage is less pronounced, for two reasons. First, the increase in the gross wage
becomes smaller, since more fuel is used for a higher η, which reduces the marginal product. Second,
due to the higher income tax, a larger share of the gross wage is taxed away. Below a certain threshold
for η, a marginal increase in fuel use reduces the net wage, which in turn leads to a fall in the labor
supply. This dampens the rise in total income, so Km is smaller. If it total income decreases following
an increase in fuel use, the effect on current savings may even be negative.

This describes the outcome for η = 0.05. Here, Km is very small, due to an almost zero increase in
total income. As a consequence, X1, X2 and X3, all of which depend Km tend towards zero. On the
other hand, Hm is negative and different from zero, due to a negative effect of increased fuel use on the
net wage. The same is true for H′m in the subsequent period, which mainly drives the increase in X6.
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Note, however, that X6 decreases in η, hence there are two counteracting effects on X6. This explains
why X4 increases (in absolute value) more strongly than X6. Overall, for η = 0.05, the second-best
costs of fuel use outweigh the benefits, and hence the social cost of carbon exceeds the marginal climate
damages in equilibrium.

5.5.3 Temperature Lag

So far I have assumed that a change in radiative forcing translate into a higher temperature instan-
taneously, i.e. one period. More realistically, temperature adjusts to a higher forcing with a lag
(Nordhaus, 2008; Gerlagh and Liski, 2012). That is, let the global mean temperature change evolve
according to the following law of motion:

Tt = Tt−1 + ε(φ
log
(
st
s̄

)
log 2

− Tt−1), (5.13)

where the adjustment speed ε is less than unity. I follow Gerlagh and Liski (2012) who set ε = 0.186

for ten-year periods31.
Note that in this case, since there is no longer a one-to-one mapping between atmospheric carbon

concentration and temperature change, there is one additional state variable, namely temperature
change in the previous period.

Figure 3 shows the time path for social cost of carbon in first and second best, as well as the
second-best marginal emission damage. First note that in all scenarios, the optimal tax is lower than
in the baseline setting: the second-best (first-best) tax starts at $34.1 ($33.6) in 2010 and increases to
$254.3 ($294.9) in 2105. Due to the adjustment lag, a large share of climate damages occur at later
periods than in the baseline, which implies that the cost of carbon decreases, due to discounting.

Moreover, the result found in the baseline model that the tax-interaction effect is quantitatively
irrelevant, is robust to the lower adjustment speed: as before, the social cost of carbon is almost equal
to the marginal emission damage, and hence second-best benefits and costs of resource use cancel out.

6 Conclusion

In this paper, I have analyzed optimal environmental regulation in a dynamic framework in the presence
of distortionary non-environmental taxes and under lack of commitment. Most importantly, I have
characterize the tax-interaction effect in this setting: by deriving the generalized Euler equation of the
current government, I have identified a number of additional costs and benefits that arise due to the
interaction between environmental policy and distortionary taxation and that are not present in first
best. Hence, in general, the social cost of pollution is not at the Pigouvian level, i.e. does not equal
marginal pollution damage.

Moreover, by computing the Markov-perfect emission tax in a model of climate change, I have
quantified the impact of distortionary taxation and the tax-interaction effect on the social cost of
carbon. My main findings are that the second-best carbon tax path is different from the optimal
policies both in the presence of lump-sum taxes, and under commitment. Moreover, it is very close to

31Since I calibrate my model to five-year periods, I set ε = 0.1, which corresponds approximately to an annual
adjustment rate of 0.02, used by Gerlagh and Liski (2012): 1− 0.020410 = 0.186.
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Figure 3: Optimal carbon tax with a temperature lag

the Pigouvian level, hence for my calibration, the climate damages to utility and productivity are fully
internalized.

It should be noted, however, that the results from this quantitative exercise likely suffer from the
simplicity of the climate-economy model used here. In particular, there are two dimensions in which
the model should be improved and which are currently work in progress. First, as discussed above, the
climate model is considerably simple, in the sense that it is stationary, features only two states and
does not address uncertainty. A more realistic climate model would increase the number of carbon
“boxes” in the atmosphere, each with a different rate of carbon depreciation, to at least up to three
(Gerlagh and Liski, 2012). Moreover, one should divide the model period into two phases: a finite
number of periods in which fossil fuel is used, and an infinite-horizon phase without fossil fuel use,
during which the climate approaches a stready state. This is the modeling strategy for example in Cai
et al. (2013).

Second, throughout this paper I have considered a one-country model of fiscal and climate policy.
In reality, there is no global government, and taxes are set on the national level. Since emissions in one
country affect each other country, there is scope for strategic interaction. Hence, it may be interesting
to extend the analysis above to a multi-country setting, in which a country, when choosing its policies,
takes the behavior of all other countries as given. In other words, this would result in a model with
both lack of commitment within a country, as well as lack of coordination across countries.

Finally, fiscal policy usually features different tax rates on labor and capital income, hence the
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assumption of a total income tax seems too restrictive. Recall that this assumption allowed me to get
a positive tax rate for both types of income. There are other ways to obtain this outcome in equilibrium,
as discussed above. In particular, one could get an endogenous upper bound on the capital tax by
assuming a two-country setting, with or without strategic interaction, but with capital mobility. That
is, if one allows capital to be reallocated between countries after the tax rates have been announced,
this would put an upper bound on the capital tax and hence may require a positive labor tax. This
extension is currently work in progress.
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A Appendix

A.1 Static Model: Hm

To get to an expression for Hm, write the government’s problem as

max
m,h

u(F (h,m)− g, 1− h, q(m)) (A.1)

s.t. to the implementability constraint

η(h,m) ≡ uc
(
F (h,m)− g, 1− h, q(m)

)
[F (h,m)− g]− ul

(
F (h,m)− g, 1− h, q(m)

)
h = 0. (A.2)

Define H(m) implicitly by η(H(m),m). Taking the derivative w.r.t. m gives

ηhHm + ηm = 0 → Hm = −ηm
ηh
. (A.3)

Taking derivatives of η gives

Hm = −ηm
ηh

= − ucccFm + ucFm − uclFmh
ucccFh − uclc+ ucFh − uclFhh+ ullh− ul

= −Fm
uccc+ uc − uclh

uccw̃h(w̃ + τFh)− ucl(c+ Fhh) + (ucFh − ul) + ullh

= −Fm
uccc+ uc − uclh

τFhuccc+ uccw̃2h− ucl(c+ τFhh+ c) + τucFh + ullh

= −Fm
uccc+ uc − uclh

τFh(uccc− uclh+ uc) + h(uccw̃2 − 2uclw̃ + ull)

= −Fm
uccc+uc−uclh

uccw̃2−2uclw̃+ull(
Fh − c

h

)
uccc+uc−uclh

uccw̃2−2uclw̃+ull
+ h

,

(A.4)

where I have repeatedly used c = (1−τ)Fhh = w̃h. Note a special case following from (A.4): if ucl = 0

and the utility is given by u(c, l, s) = log(c) + v1(l) + v2(s), we get

uccc+ c− uclh = 0 → Hm = 0. (A.5)
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Next, note that from the household’s intratemporal optimality condition, taking the net wage w̃ as
given, I can derive the partial-equilibrium response in the labor supply to an increase in the wageby
totally differentiating:

uc
(
w̃h, 1− h, q(m)

)
w̃h− ul

(
w̃h, 1− h, q(m)

)
= 0. (A.6)

dw̃[w̃ucch+ uc − uclh] + dh[w̃2ucc − w̃ucl − uclw̃ + ull] = 0

dh

dw̃
= − uccc+ uc − uclh

uccw̃2 − 2uclw̃ + ull

(A.7)

Hence, the (uncompensated) wage elasticity of labor supply is given by:

εh,w = − dh
dw̃

w̃

h
= − uccc+ uc − uclh

uccw̃2 − 2uclw̃ + ull

w̃

h
. (A.8)

Substituting in (A.4), we get

Hm = (Fm + Fsqm)
εh,w

h
w̃

−
(
Fh − c

h

)
εh,w

h
w̃ + h

= (Fm + Fsqm)
εh,w

(1− τ)Fh − τFhεh,w
,

and hence

Hm = (Fm + Fsqm)
εh,w

Fh[1− τ(1 + εh,w)]
. (A.9)

A.2 Analytical Example

This section follows the example given by Martin (2010) in a model without fuel and environmental
quality. Let

u(c, g, s) = αc ln c+ αg ln g − αm
2
m2.

This functional form accounts for an increasing marginal damage of the pollution stock. Note that
in order to get a closed-form solution, I now assume that public good consumption is endogenous,
as it enters the utility function. This does not change the results of the model above qualitatively.
Moreover, assume a Cobb-Douglas production function:

f(k,m, h) = kθmγh1−θ−γ , (A.10)

where h = 1 is given.
In a first-best setting with lump-sum taxes, optimal fuel use can be computed as:

m0 =

√
γ

αm
(αc + αg)(1 + βθ) (A.11)

m1 =

√
γ

αm
(αc + αg), (A.12)

Note that for the particular functional forms used here, equilibrium fuel depends only on parameters
and not on the economy’s capital stock. The same is true for the capital tax rate in period 1, hence
the assumptions in Proposition 3 are satisfied.
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The government’s problem in period 0 reads:

max
c0,k1,g0,m0

u(c0, g0,m0) + βu(c1, g1,m1) (A.13)

subject to

k1 = υ0(kθ0m
γ
0 − g0) (A.14)

c0 = (1− υ0)(kθ0m
γ
0 − g0) (A.15)

c1 = ρ1k
θ
1m

γ
1 (A.16)

g1 = (1− ρ1)kθ1m
γ
1 (A.17)

m1 =

√
α−1
m γ(αc + αg). (A.18)

where ρ1 and υ0 are functions only of parameters. The first two equations follow from the household’s
Euler equation and the resource constraint in period 0. The remaining four equations are the solutions
to the government’s problem in period 1.

When solving this problem (see appendix), I find that the margin between consumption of the
private good and both of the public goods is distorted. That is, ug = ucΩ0, and

um + Ω0ucfm = 0, (A.19)

where

Ω0 =
βθ(αc + αg) + αc

β(θ + γ)(αc + αg) + αc − βαg
. (A.20)

Note that under the particular functional forms chosen here, fuel use is at its first-best level, as given by
(A.11). Hence, there is no underprovision of the environmental public good in absolute terms. However,
with Ω0 > 1, private consumption exceeds its first-best level, implying that savings must be lower.
This confirms that the fuel price is below its Pigouvian level: in first-best, a higher consumption would
optimally require a higher environmental quality (or equivalently less pollution). Hence, the fact that
fuel consumption remains constant while consumption increases, compared to the first-best outcome,
implies that pollution exceeds its Pigouvian level. In other words, the public good environmental
quality is underprovisioned relative to private consumption (as is public consumption).

A.3 Derivation of the GEE in the Infinite-horizon Model

A.3.1 Markov Equilibrium - GIT

Let the equilibrium policy functions for saving, hours worked, fuel use and government expenditures
be denoted by nk(k, s), nh(k, s), ψ(k, s) and φ(k, s), respectively.

Define the residual functions that capture the household’s optimality conditions when set to zero:

η(k, s, g,m, k′, h) = uc[C(k, k′, h, g,m, s), 1− h, g, s]

− βu′c[C(k′, nk(k′, s′), p(k′, s′), ψ(k′, s′), φ(k′, s′), s′), 1− nh(k′, s′), ψ(k′, s′), s′]

·
{

1 + [1− T (k′, nh(k′, s′), ψ(k′, s′), φ(k′, s′), s′)][Fk(k
′, nh(k′, s′), φ(k′, s′), s′)− δ]

}
,

(A.21)
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and

ε(k, s, g,m, k′, h) =
ul[C(k, k′, h, g,m, s), 1− h, g, s]
uc[C(k, k′, h, g,m, s), 1− h, g, s]

− Fh(k, h)[1− T (k, h, g,m, s)]. (A.22)

That is, η(k, s, g,m, k′, h) = 0 gives the household’s Euler equation and ε(k, s, g,m, k′, h) = 0 the
household’s labor-leisure condition.

Define functions K(k, s, g,m) and H(k, s, g,m) implicitly by

η(k, s, g,m,K(k, s, g,m),H(k, s, g,m)) = 0 (A.23)

ε(k, s, g,m,K(k, s, g,m),H(k, s, g,m)) = 0. (A.24)

Using those functions and

C(k, s, k′, h, g,m) = F (k, h,m, s) + (1− δ)k − g − k′,

write the government’s problem in t compactly as:

max
k′,s′,h,g,m

u(C(k, s, k′, h, g,m), 1− h, g, s) + βv(k′, s′),

s.t.

s′ = q(s,m)

k′ = K(k, s, g,m)

h = H(k, s, g,m).

or

max
g,m

u[C(k, s,K(k, s, g,m),H(k, s, g,m), g,m), 1−H(k, s, g,m), g, s]+βv[K(k, s, g,m), q(s,m)], (A.25)

where

v(k, s) =u[C(k, h(k, s), nh(k, s), ψ(k, s), φ(k, s), s), 1− nh(k, s), ψ(k, s), s)]

+ βv(nk(k, s), q(s, φ(k, s))).
(A.26)

Taking f.o.c. yields:

−uc(Kg − FhHg + 1)− ulHg + ug + βv′kKg = 0 (A.27)

−uc[Km − FhHm − (Fm − κ)]− ulHm + um + [βv′kKm + v′sqm] = 0. (A.28)

.
The derivatives of the value function v(k, s) with respect to k and s read:

vk = uc[Fk + 1− δ −Kk + FhHk]− ulHk + βv′kKk, (A.29)

and

vs = uc[Fs −Ks + FhHs]− ulHs + us + β[v′kKs + v′sqs]. (A.30)
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Note that at this point, one can see why I need a second endogenous public good in addition to
environmental quality. If government expenditures were exogenous, I would have only one first-order
condition above, namely (A.28). However, in order to substitute for v′k and v′s in (A.29) and (A.30), I
need two equations; (A.28) alone would not be sufficient. From (A.27) and (A.28):

βv′k =
1

Kg
[uc(Kg − FhHg + 1) + ulHg − ug] (A.31)

βv′s =
1

qm

[
uc(Km − FhHm − (Fm − κ)) + ulHm −

Km
Kg

[uc(Kg − FhHg + 1) + ulHg − ug]
]

= − 1

qm

[
uc(FhHm + (Fm − κ))− ulHm +

Km
Kg

[uc(1− FhHg) + ulHg − ug]
]

(A.32)

Inserting (A.31) in (A.29) and updating gives:

v′k = u′c(F
′
k + 1− δ) +H′k(u′cF ′h − u′l)−

K′k
K′g

[
u′g − u′c +H′g(u′cF ′h − u′l)

]
(A.33)

Similarly, (A.32) in (A.30) yields:

v′s =u′s + u′cF
′
s −

q′s
q′m
u′c(F

′
m − κ) + (u′g − u′c)

[
−H

′
s

H′g
+
q′s
q′m

H′m
H′g

]
+ (u′cF

′
h − u′l)

[
H′s −

K′s
K′g
H′g −

q′s
q′m
H′m +

q′s
q′m

K′m
K′g
H′g
] (A.34)

Finally, substituting (A.33) for v′k in (A.27) gives:

ug − uc +Hg(ucFh − ul) +Kg[−uc + βu′c(F
′
k + 1− δ)]

+ βKg
{
H′k(F ′hu′c − u′l)−

K′k
K′g

[
H′g(F ′hu′c − u′l) + u′g − u′c

]}
= 0.

Moreover, substituting (A.34) for v′s in (A.28) yields:

uc(Fm − κ) + βqm

[
u′s + u′cF

′
s −

q′s
q′m
u′c(F

′
m − κ)

]
+Hm(ucFh − ul)

+Km[−uc + βu′c(F
′
k + 1− δ)] + β(u′g − u′c)

[
−Km

K′k
K′g
− qm

K′s
K′g

+ qm
q′s
q′m

K′m
K′g

]
+ βKm(u′cF

′
h − u′l)

[
H′k −

K′k
K′g
H′g
]

+ β(u′cF
′
h − u′l)qm

[
H′s −

K′s
K′g
H′g −

q′s
q′m
H′m +

q′s
q′m

K′m
K′g
H′g
]

= 0

Using the wedges defined above, these two equation can be written as

ωPG +KgωCS − βKg
K′k
K′g

ω′PG +HgωLL + βω′LLKg
[
H′k −

K′k
K′g
H′g
]

= 0,

and

ωEnv +KmωCS − βω′PGKm
K′k
K′g
− βω′PG

[
qm
K′s
K′g
− qm

q′s
q′m

K′m
K′g

]
+HmωLL + βω′LLKm

[
H′k −

K′k
K′g
H′g
]

+ βω′LLqm

[
H′s −

K′s
K′g
H′g −

q′s
q′m
H′m +

q′s
q′m

K′m
K′g
H′g
]

= 0.
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