
The Dark Corners of the Labor Market

Vincent Sterk�

April 2015

First version: February 2015

Abstract

What can happen to unemployment after a severe disruption of the labor mar-

ket? Standard models predict a reversion to a long-run steady state. By contrast,

this paper shows that a large shock may set the economy on a path towards a dif-

ferent steady state with possibly extreme unemployment. This result follows from

the empirical behavior of the U.S. job �nding rate over the last 25 years. First, I

estimate a reduced-form model for the labor market and show that �once allowing

for nonlinearities�it implies a stable steady state around 5 percent unemployment

and an unstable one around 10 percent unemployment. Second, I consider an ex-

tension of a basic Diamond-Mortensen-Pissarides (DMP) model in which multiple

steady states arise due to skill losses upon unemployment, following Pissarides

(1992). Based on only observed rates of job loss, this model endogenously explains

most of the observed �uctuations in the job �nding rate and the unemployment

rate, thereby dramatically improving over a basic DMP model with a single steady

state.
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The main lesson of the crisis is that we were much closer to those dark

corners than we thought� and the corners were even darker than we had

thought too. �Olivier Blanchard (2014), in �Where Danger Lurks�.

1 Introduction

A large body of literature has developed models of cyclical swings in the labor market,

often within the search and matching paradigm of Diamond, Mortensen and Pissarides

(DMP). Most of these models predict that, following a one-time shock, unemployment

gradually reverts back to a unique steady-state level (see Figure 1, left panel). An

episode of sustained high unemployment is then the result of an unfortunate repetition

of adverse shocks. By contrast, in models with multiple long-run equilibria, a large

shock may set the labor market on a path towards a �dark corner�: an economic state

with high unemployment and without any tendency to revert back (see Figure 1, right

panel).1

This paper shows that models with multiple steady states �while seldom used for

quantitative purposes�can provide a superior account of the dynamics of the U.S. labor

market over the last 25 years. I reach this conclusion based on two complementary sets

of evidence, deriving from (i) a reduced-form model estimated using data over the

period 1990 until 2015 and (ii) a calibrated search and matching model, confronted

with the same data.

In the reduced-form analysis, I estimate steady-state rates of unemployment based

on a forecasting regression for the job �nding rate, combined with a transition identity

for the unemployment rate and an estimate of the long-term rate of job loss. If one

assumes that the job �nding rate forecast is a linear function of current labor market

transition rates, the implied steady state is by construction unique. This, however,

is a special case: including the unemployment rate in the linear regression is already

1For examples of models with multiple steady states, see Diamond (1982), Pissarides (1992), and

Kaplan and Menzio (2014), as well as references mentioned in the conclusion of this paper.
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Figure 1: Illustrated models for the unemployment rate (ut).
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su¢ cient to obtain multiple steady states.2 Further, multiple steady states can arise

when allowing for non-linearities in the forecasting equations. I show that allowing for

both sources of non-linearity can substantially improve the statistical performance of

the model.

The reduced-form estimates imply a stable steady state of around �ve percent un-

employment and an unstable steady state of around ten percent unemployment. From

these numbers it follows that, during the aftermath of the recent Great Recession, the

U.S. economy may have narrowly escaped a transition towards an extreme level of

unemployment: a dark corner. This conclusion is robust to the choice of forecasting

horizon and alternative measurements of labor market �ows.

The second set of evidence is based on a quantitative horse race between two cali-

brated search and matching models of the labor market, both allowing for exogenous

shocks to the rate of job loss. The �rst one is a basic DMP model with a single steady

2A simple way to see this is to consider the transition identity ut+1 = ut (1� uet) + (1� ut) eut,

where ut is the unemployment rate in period t; uet is unemployment out�ow rate, and eut is the

unemployment in�ow rate. If either of the two transition rates depends linearly on ut; the right-hand

side becomes quadratic in ut, giving rise to two solutions for a steady state level u = ut+1 = ut.
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state. The second model is an extension in which unemployment creates a loss of human

capital, following Pissarides (1992). In this model, skill losses associated with higher

unemployment discourage hiring, which further pushes up unemployment and, as a

result, may give rise to multiple steady states. I calibrate the parameters of this model

such that the implied steady states are consistent with the reduced-form evidence.

I simulate both search and matching models, feeding in observed �uctuations in

the rate of job loss as the only source of aggregate uncertainty. I �nd that the ex-

tended model with multiple steady states can closely reproduce the job �nding rate

and unemployment rate observed over the sample. This is not a mechanical �nding,

since �uctuations in the job �nding rate are more persistent than �uctuations in the

rate of job loss. Instead, the result is due to a strong internal propagation mechanism,

governed by the unemployment rate, which describes the data surprisingly well. By

contrast and in line with previous results in the literature, the basic DMP model fails

to explain the data by a wide margin. The �uctuations in the job �nding rate and

the unemployment rate as predicted by this model are much too small and only mildly

correlated with their empirical counterparts.

Considering the aftermath of the Great Recession of 2008, the multiple-steady-state

models (both the structural and reduced-form version) can account particularly well

for the slow recovery of the labor market. The right panel of Figure 1 clari�es this

point. Suppose the economy starts from the stable steady state steady state with low

unemployment (point A in the �gure, about 5 percent in the data). Next, a one-time

wave of job losses brings unemployment just below the second, unstable steady state

(point B in the �gure, about 10 percent in the data). Ultimately, unemployment will

revert back to its initial level, following the step-wise path illustrated by the red line.

Initially, however, the speed of this transition is slow.3 By contrast, in the single-

steady-state model (Figure 1, left panel), the speed of transition back is the fastest in

the initial periods following the shock. The latter property con�icts with the fact that

3The speed of the transition can be inferred from the distance of the points on the step-wise path

back to the initial steady state.
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the increase in unemployment during the Great Recession was not only the largest over

the sample, but also the most persistent.

The reduced-form and structural models are shown to be closely linked, as the

forecasting equations are the reduced-form equivalents of the core Euler equation for

the vacancy posting decision of the �rms in the DMP models. In the basic DMP

model, the unemployment rate is not a state variable and is therefore irrelevant for

the �rm�s vacancy posting decision. However, I �nd that a baseline regression without

unemployment produces autocorrelation in the residuals of non-overlapping forecasts,

invalidating the model. Including the unemployment rate in the forecasting regression

in accordance with the skill loss model, however, absorbs this autocorrelation and im-

proves forecast accuracy. This analysis is reminiscent of an empirical literature that

sheds light on structural models by taking their Euler equations to the data. Since

Hall (1978), researchers have used this approach to scrutinize a large variety of theo-

ries, including models of investment, asset pricing models, and New-Keynesian models.

Somewhat surprisingly, the DMP model has not received the same kind of attention,

even though its core can be conveniently summarized by a single Euler equation.4

The empirical analysis also relates to a literature investigating the time series prop-

erties of labor market transition rates, see e.g. Hall (2005), Shimer (2005), Elsby et

al. (2006), Fujita and Ramey (2009). Barnichon and Nekarda (2012) develop a fore-

casting model for unemployment and emphasize the bene�ts of conditioning separately

on unemployment in- and out�ows. The rationale is that the two �ow rates have dis-

tinctly di¤erent time series properties and therefore each contain valuable information

on the state of the economy, which would be lost when conditioning on only the current

level of unemployment. I follow the ��ow approach�, but focus on estimating steady-

state rates of unemployment rather than constructing near-term forecasts. Finally, the

�nding that there may be multiply steady state connects this paper to an empirical

literature investigating the possibility of �hysteresis�in unemployment, see Ball (2009)

4 Instead, many researchers have focused on whether plausible model calibrations can generate suf-

�cient volatility in unemployment and vacancies (Shimer (2005), Hagedorn and Manovskii (2008)).
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for an overview.

On the theoretical side, I evaluate Pissarides�skill-loss mechanism in a more realistic

environment. An important question is whether moderate skill losses can be consistent

with multiple steady states.5 I �nd that reproducing the steady states estimated from

the data requires a skill loss that is equivalent to less than three weeks of wage income.

This number is small in comparison to empirical evidence on the e¤ect of unemployment

on re-employment wages, as reported in for example Schmieder et al. (2014). This is

reassuring, given that these empirical estimates may not purely re�ect a loss of human

capital, but also the e¤ect of unemployment on a worker�s bargaining position.6

The remainder of this paper is organized as follows. Section 2 presents the reduced-

form empirical evidence. Section 3 describes the search models and presents quantita-

tive simulation results.

2 Empirical evidence

The unemployment rate can be thought of as a stock that is determined by rates of

in- and out�ows of workers, which in turn may be a¤ected by the unemployment rate.

This section uses U.S. data to study the dynamic interactions between these stocks and

�ows and uncover the resulting steady states. This is done without specifying a full

structural model, but rather using a reduced-form framework consisting of forecasting

equations for the �ow rates and a transition identity for the unemployment rate.

5Pissarides (1992) analyzes a model in which agents live for two periods and all lose their after

the �rst period. His main point is to highlight the existence of multiple steady states, under certain

parameter values. However, the stylized nature of his model makes it di¢ cult to assess whether such

parameterizations are realistic.
6Jarosch (2014) uses an estimated job ladder model to distinguish between the various sources of

wage losses upon displacement. He �nds that a loss of general human capital is the most important

contributor to the overall wage loss. In his framework, a substantial part of the costs associated with

the human capital loss is borne by the �rms, in line with a key assumption required for the skill loss

mechanism to operate. However, the possibility of multiple steady states does not arise in his framework

as the vacancy posting decision is exogenous.
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2.1 Reduced-form framework

Consider a labor market in which workers �ow stochastically between employment

and unemployment. Time is discrete and indexed by t. Job losses occur at the very

beginning of each period and the probability that a worker loses her job is denoted

by �x;t: Right after job losses occur, a labor market opens and a search and matching

process between job searchers and �rms takes place. The pool of job searchers consists

of those workers who just lost their jobs and those who were already unemployed in

the previous period.7 The probability that a job searcher �nds a job is denoted by �f;t:

Those who �nd a job during period t become employed within the same period. Hence,

job losers may immediately �nd a new job without becoming unemployed. It follows

that the unemployment rate, ut, evolves according to the following transition identity:

ut =
�
1� �f;t

�
ut�1 + �x;t

�
1� �f;t

�
(1� ut�1) ; (1)

where the �rst term on the right-hand side captures the number of previously unem-

ployed workers and the second term is the number of newly unemployed workers.

The job �nding rate and the job loss rate are determined as policy functions of the

aggregate state of the economy. In a fully structural model, these functions would result

from agents�decisions. Here, I avoid imposing such structure and use a reduced-form

approach instead. Let �f;t = �f (St) and �x;t = �x (St) denote the policy functions for

the two transition rates, where St is the aggregate state. Without loss of generality,

one can partition the aggregate state as St = fs1;t; s2;tg ; where s1;t is a vector of length

n1 containing various lagged values of �f;t, �x;t; and ut, and s2;t is a vector of length

n2 containing additional state variables, such as exogenous shocks.

How can this framework be used to identify steady-state rates of unemployment?

One possibility is to obtain direct estimates of the policy functions �f (St) and �x (St)

using a regression and combine these with the transition identity (1). However, this

approach is fraught with problems. First, estimating the policy functions requires full

knowledge of what variables are contained in the economic state vector, as they are to

7 I abstract from �ows in and out of the labor force and on-the-job search.
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be included in the regression. However, any particular stance on the variables in s2;t

rests on ad hoc assumptions. Further, these state variables may not be observable to the

researcher. In fact, many search and matching models in the literature rely on aggregate

shocks to the productivity of workers, which are di¢ cult to observe directly in the data.

Finally, using estimated policy functions is a rather indirect way of estimating steady

states, since the policy functions describe short-run dynamics, whereas the steady states

summarize the joint long-run behavior of the variables. As such, the approach may be

sensitive to misspeci�cation and estimation error.

I address these problems by estimating forecasting equations for the transition rates,

rather than policy functions. This approach uses direct information on the longer-

run behavior of the transition rates and requires much weaker assumptions on the

state vector. In particular, it neither forces the researcher to decide which particular

variables enter s2;t, nor does it create problems when s2;t is not entirely observable.

These advantages are due to the fact that the economic state can be revealed implicitly

by observed outcomes. To �x ideas, let s2;t contain two variables (n2 = 2) so that

s2;t is uniquely pinned down by the two policy functions �f;t = �f (fs1;t; s2;tg) and

�x;t = �x (fs1;t; s2;tg).8 Further, let q denote the mapping that solves for s2;t from these

two restrictions, given s1;t; �x;t; and �f;t: These three arguments are all observable and

jointly contain the same information content as St = fs1;t; s2;tg. Thus, if one were to

make a forecast of the transition rates, s1;t; �x;t; and �f;t would contain all available

information. Exploiting this, one can express the kth-period ahead forecasts for the two

transition rates as:

Et�r;t+k � E [�r (St+k)j St] ;

= E
�
�r (St+k)j s1;t; q

�
s1;t; �f;t; �x;t

��
;

= E
�
�r (St+k)j s1;t; �f;t; �x;t

�
;

for r = f; x; and where E is the expectations operator. It follows that the forecasts are

functions of observables only, which can be estimated without reference to the nature
8 It is straightforward to allow for n2 > 2. This requires adding an additional observable to the

model, as well as a forecasting equation for this variable.
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of the state variables in s2;t.

Once the forecasting equations have been estimated, it is straightforward to solve

for the steady state(s). Let upper bars denote steady-state values. Necessary conditions

for a steady state are that �r = E
�
�r (St+k)j s1; �f ; �x

�
for r = f; x. Note that these

two conditions are not su¢ cient since s1 needs to be jointly determined. To obtain the

n1 additional conditions required, one can exploit the fact that any of element in s1;t is

given by either �f;t�l; �x;t�l, or ut�l, for some lag l � 1. The steady-state condition for

these variables are, respectively, �f;t�l = �f , �x;t�l = �x and ut�l = u =
�x(1��f)

�x(1��f)+�f
;

where the �nal equality is the steady-state solution of Equation (1). Selecting the

appropriate condition for each variable in s1;t gives exactly enough restrictions to solve

for the steady state.

What can be said on the possibility of multiple steady states? At this point, no

restrictions have been placed on the functional forms of the forecasting equations. How-

ever, when estimating these equations parametrically, such assumptions are unavoid-

able. If one allows the forecasts to be non-linear functions of s1;t; �x;t; and �f;t, multiple

steady states can arise, since non-linear systems of equations can have multiple �xed-

points.9 But even if the forecasts are restricted to be linear in the aforementioned

variables, multiple steady states may arise if the state s1;t some lagged value of the

unemployment rate, ut�l. In that case, the steady-state solutions �x and �f are linear

functions of u and therefore u =
�x(1��f)

�x(1��f)+�f
becomes a non-linear function of itself,

with multiple �xed points.

By contrast, if the two forecasting equations are assumed to be linear and st is

assumed not to include any lagged value of ut, multiple steady states are ruled out by

construction.10 This latter case may strike one as overly restrictive, but it warrants

special attention since it corresponds to a basic DMP model, as will be shown in the

next section. Finally, the stability properties of the steady state(s) can be analyzed

by considering small perturbations of the variables around their steady state levels,

9A simple example is the forecasting equation Et�f;t+k = 
0+ 
1�f;t+ 
2�
2
f;t, where 
0, 
1, and 
2

are coe¢ cients. The corresponding steady-state condition has two solutions.
10 In that case, all steady-state conditions are linear, allowing for only one solution.
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denoted by �0f , �
0
x and s

0. Stability requires that both transition rates are expected

to move closer to the steady state, i.e.
���E h�r (St+k)j s0; �0f ; �0xi� �r��� > j�0r � �rj for

r = f; x.

In practical applications, there are several ways to choose between di¤erent can-

didate speci�cations for the forecasting functions and to diagnose potential problems.

The �rst is to analyze the residuals of the forecast equations over the sample. For

the model to be valid, these residuals should be uncorrelated across non-overlapping

observations. Correlation among the residuals can indicate that a state variable is

missing from the speci�cation. Second, one can check if results are consistent across

di¤erent forecast horizons. A �nal check on the preferred speci�cation is to verify that

the steady-state solution is robust to allowing for stronger non-linearities.11

It should be emphasized that the procedure by no means guarantees that �f , �x

and u are between zero and one for any steady-steady state solution. If any of these

values is outside the unit interval, then the solution is not practically relevant. Such a

�nding, however, could be indicative of a corner solution (i.e. a solution in which one

or more variables has value zero or one). The stability properties of the various steady

states determine whether this is the case. I will come back to this issue in more detail

when discussing the empirical �ndings.

2.2 Data and estimation

2.2.1 Data

I use monthly data for the U.S. labor market, observed over the period from January

1990 until November 2014. There are three variables to be measured: the unemploy-

ment rate, ut, the job �nding rate, �f;t, and the job loss rate, �x;t. I measure ut as

the civilian unemployment rate from the Current Population Survey (CPS). The job

�nding rate is measured as the transition rate from unemployment to employment, as

reported in the gross �ow data from the CPS. The job loss rate is constructed to be

11For example, if polynomials are used to characterize the forecasting functions, additional higher-

order terms may be added.
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consisted with the transition equation (1) and the data on ut and �f;t.
12

[Figure 4 here]

Figure 4 presents a plot of the three time series over the sample period. The job

�nding rate, plotted in the upper panel, is subject to slow-moving �uctuations. The

autocorrelation of the series at a one year horizon is 0.73. Particularly striking is the

slow recovery of the job �nding rate after the sharp decline in during 2008. The job

loss rate, plotted in the middle panel, displays much less persistence.13 The increase in

�x;t around 2008 is also less persistent than the decline in �f;t.

The bottom panel of Figure 4 shows the evolution of the unemployment rate over the

sample. The �gure also plots an approximations for the unemployment rate, de�ned as

u�t �
�x;t(1��f;t)

�x;t(1��f;t)+�f;t
, which is the unemployment rate that would prevail if the current

transition rates, �x;t and �f;t, would remain �xed at their current levels permanently

(see Hall (2005)). The approximation is very close to the actual unemployment rate,

highlighting the direct link between transition rates and the unemployment rate.

2.2.2 Estimation

The forecasting equations are estimated parametrically. For brevity, I report results for

three model speci�cations.14 Model (I) assumes that the forecast Et�f;t+k is a linear

function of �f;t and �x;t: In model (II), the forecast is a linear function of �f;t, �x;t and

12An alternative way to measure transition rates is to use CPS data on the number of unemployed

workers with durations lower than one month to construct �x;t, and to use the transition identity to

back out a time series for �f;t that is consistent with the observed unemployment rate. I consider this

alternative data source in the appendix and show that the results are very similar to those obtained

from the gross �ow data.
13The autocorrelation of the series at a one year horizon is only 0.15. Possibly, there is downward

bias in this estimate, since the series appears to be subject to noisy measurement error. Computing

the same statistic based on 3-month moving averages of both series gives a one-year correlation of 0:78

for �f;t and 0:36 for �x;t; still a large di¤erence.
14 I have considered various alternative speci�cations, including an AR(1). These alternatives either

perform poorly in terms of model diagnostics, or generate results similar to model (III).
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ut: In model (III) the forecast is linear in �f;t, �x;t, ut and u
2
t .
15 All three models also

include a constant.

For the rate of job loss, �x;t, various alternative speci�cations are considered as well.

In contrast to the job �nding rate, I �nd that this data series is well described by a

simple AR(1) process. To save space, results for �x;t are reported in the Appendix.

Figure 4 suggests that measured transition rates are noisy. This is not very sur-

prising since CPS data are based on a survey among about 60,000 respondents, out

of which only a small fraction experiences a change in employment status in a given

month. The presence of noise can induce coe¢ cient bias when estimating the forecast

equations. To avoid such bias, I use an Instrumental Variable estimator, implemented

through a standard Two Stage Least Squares procedure. As instruments, I use lags of

the three variables, �f;t�1, �x;t�1, and ut�1.

2.3 Empirical Findings

2.3.1 Model diagnostics

To assess the three forecasting speci�cations for �f;t, I consider two types of diagnostics

statistics, presented in Figure 5. Each of these statistics is computed for a range of

forecast horizons, between k = 1 and k = 36 months. The left panel plots correlations

of the residuals in month t and month t+k+1.16 Models (I) and (II) produce positively

correlated residuals at a wide range of forecasting horizons, indicating model misspec-

i�cation. The corresponding residuals of model (III), by contrast, are not positively

correlated. Thus, adding a non-linear function of the unemployed rate as a regres-

sor absorbs the residual autocorrelation, which favors model (III) over the other two

15Strictly speaking, the reduced-form model speci�cies allows the forecast to be a function of �f;t,

�x;t and lagged values of �f;t, �x;t, ut�1: The three speci�cations are consistent with this even though

models (II) and (III) include ut. To see why, note that given �f;t and �x;t, ut�1 and ut are directly

linked via the transition identity, so they contain the same information.
16Due to overlapping observations, residuals of closer time periods are generally correlated and hence

not useful to diagnose misspeci�cation.
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models.17

Allowing for non-linearities also improves the forecast accuracy of the model. This

is shown in the right panel of Figure 5, which plots the R2 statistic for the three

speci�cations, again for a range of forecast horizons. Especially at longer horizons,

model (III) produces a much better �t than the other two speci�cations.

[Figure 5 here]

To help understand which particular episodes drives the above results, Figure 6 plots

the job �nding rate, as well as a forecasts made two years in advance. To facilitate

a visual comparison, all series have been smoothed using a one-year moving average

�lter. Considering the period until 2008, the forecast made using model (III) produces

smaller average forecast errors and shows less variability than models (I) and (II). The

latter indicates that model (III) implies stronger mean reversion around the steady

state with low unemployment. Turning to the period between 2008 and 2011, none of

the two models predicts the initial sharp decline in �f;t; although the forecast of model

(III) is somewhat closer to the realization than the forecast of the other two models.

The lack of forecast accuracy over this period is to be expected, given that the �nancial

crisis was a large unexpected shock to the economy. Turning to the aftermath of the

Great recession, the period from 2011 onwards, there is a stark di¤erence between the

two forecasts. Models (I) and (II) predicts a substantial recovery, which con�icts with

the persistently low job �nding rate. By contrast, the two year ahead forecast made

with Model (III) closely tracks the realization. The non-linearity thus helps to account

for the persistence of the job �nding rate in the aftermath of the Great Recession.

[Figure 6 here]

The Appendix explores alternative speci�cations and shows that adding additional

variables to the third speci�cation has little e¤ect on the diagnostics statistics or the

17At a range of longer horizons, all models produce negative correlations. This, however is less

concerning, since omitted variables typically do not produce negative autocorrelation in the residuals.
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implied steady states. I therefore use model (III) as the baseline for further analysis,

combined with an AR(1) model for �x;t.

2.3.2 Implied steady states

Having estimated the forecasting equations for the transition rates, the implied steady

state(s) can be computed following the procedure described in the previous section.

Figure 7 visualizes the steady states by plotting u�t �
�x;t(1��f;t)

�x;t(1��f;t)+�f;t
against u�t+k;

with �x;t and �x;t+k both set to the sample average, and for a range of values for

�f;twith, and with �f;t+k computed using the forecasting equations estimated previ-

ously.18 Intersections with the 45 degree lines satisfy all steady-state requirements,

being �x;t = Et�x;t+k; �f;t = Et�f;t+k and u�t = ut = Etut+k = u�t+k. The four panels in

Figure 7 plot these curves for four di¤erent forecast horizons equal to, respectively 6,

12, 24 and 36 months.

The point estimates of the baseline model, Model (III), deliver one steady state

around 5.5 percent and one around 9.5 percent, which is a robust �nding across the

various forecast horizons.19 The shape of the curve implies that the steady state with

low unemployment is stable, whereas the one with high unemployment is not. It follows

that there must be a third steady state with even higher, possibly extreme unemploy-

ment. However, the data have little to say about the precise location of this third

steady state, given that this region of the economic state is not visited over the sample

period.20

For illustration purposes, Figure 7 also plots the corresponding curve for Model (II),

even though this model was rejected in favour of model (III). This model has a single

steady state, which is located between six and seven percent unemployment. The shape

18Recall that �x;t follows an AR(1) process. Accordingly, its steady state value is estimated as the

sample average.
19The shaded area�s denote 95 percent con�dence bands, computed using Newey-West standard

errors. These bands include a wider range of values in the neighborhood of the point estimates, but

almost without exception imply two distinct steady states.
20Outside the range of values for unemployment observed in the data, con�dence bands become very

wide.
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of the curve implies that this steady state is stable.21

[Figure 7 here]

3 Theoretical model

According to the estimates of the previous section, a model with multiple steady-state

rates of unemployment can provide a better description of the data than a model

with a single steady state. But is it possible to construct a plausible structural model

that generates the steady states estimated from the data? If so, how realistic are the

dynamics of such a model vis-à-vis a more standard model of unemployment with a

single steady state?

To answer these questions, I quantitatively evaluate two theoretical models of the

labor market. The �rst is a basic search and matching model, à la by Diamond,

Mortensen and Pissarides (DMP), with a single steady state. The second is an extension

in which unemployment generates a loss of human capital, following Pissarides (1992).22

The remainder of this section is organized as follows. Subsection 3.1 describes the

two models. Since the model with skill losses nests the basic model, I do not present the

two models separately. Subsection 3.2 explores under what parameter values multiple

steady states can arise, and discusses the relation between the reduced-form and the

DMP models. Finally, Subsection 3.3 conducts a quantitative horse race between the

two DMP models.
21For this model, there is a second intersection with the 45-degree line. However, this is for a negative

unemployment rate. Given that the steady state with positive unemployment is a stable attractor, there

is no corner solution with zero unemployment.
22Esteban-Pretel and Faraglia (2008) and Laureys (2014) also simulate extensions of a DMP model

with skill losses, but do not consider calibrations with multiple steady states.
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3.1 Model

The economy is populated by a unit measure of risk-neutral workers who own the �rms.

Time is discrete.

3.1.1 Workers

The transition structure and timing of the labor market are the same as in the reduced-

form model. Employed workers lose their job with a probability �x;t at the very begin-

ning of a period. This probability is exogenous, but subject to stochastic shocks, which

are revealed when job losses occur. Subsequently, a labor market opens up to �rms

and to workers searching for a job. The pool of job searchers consists of those workers

who just lost their jobs and those who were previously unemployed. The labor market

is subject to search and matching frictions and only a fraction �f;t 2 [0; 1] of the job

searchers meets with a �rm. In the equilibrium, all workers who meet a �rm become

employed, so �f;t is also the job �nding rate. It follows that the aggregate unemploy-

ment rate, ut, evolves as in Equation (1). After the labor market closes, production

and consumption take place. Unemployed workers obtain a �xed amount of resources

b from home production, whereas employed workers receive wage income. Note that

some job losers immediately �nd a new job, whereas others become unemployed.

As in Pissarides (1992), workers who become unemployed lose some skills. In par-

ticular, the productivity of any worker who is hired from unemployment is reduced by

a certain, time-invariant amount in the initial period of re-employment. After being

employed for one period, a worker regains her old productivity level. One can think

of the skill loss as the cost required to re-train a worker to become suitable for em-

ployment. The fraction of job searchers with reduced skills is equal to the ratio of the

number of previously unemployed workers to the total number of job searchers:

pt =
ut�1

ut�1 + �x;t (1� ut�1)
: (2)

Wages are determined by Nash bargaining between workers and �rms. It will be shown

that workers who need to be re-trained are subjected to a wage dectuion upon being
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hired, reducing their net wage relative to the wages of other workers. Aside from this

deduction, wages of all workers are the same, since wages are re-bargained in every

period.

3.1.2 Firms

On the supply side of the economy, there is a unit measure of identical �rms who

maximize the expected present value of net pro�ts, operating a constant returns-to-

scale technology to which labor is the only input. In order to hire new workers, a �rms

post a number of vacancies, denoted vt, which come at a cost � > 0 per unit. Firms�

search for workers is random. When choosing the optimal number of vacancies, �rms

take as given the stochastically �uctuating rate of job separations, �x;t, the fraction of

new hires with reduced skills, pt, and the rate at which vacancies are �lled, denoted

qt. Let the total cost of retraining a worker is denoted by � and let the deduction be

denoted dt. The value of a �rm, V , can be expressed recursively as:

V (nt�1;St) = max
ht;nt;vt

Ant � wtnt � (�� dt) ptht �
�

qt
ht + �EtV (nt;St+1);

subject to

nt =
�
1� �x;t

�
nt�1 + ht;

ht = qtvt;

ht � 0;

where nt denotes the number of workers in the �rm, St is the state of the aggregate

economy, ht is the number of new hires and wt is the wage of a worker, excluding a

possible deductions related to re-training. The output of the �rm is given by Ant, where

A is a productivity parameter. The costs faced by the �rms consist of three components.

First, wtnt is the baseline wage bill (again excluding deductions). Second, (�� dt) ptht
is the amount spent on re-training workers, net of the wage deductions. Third, �

qt
ht

are the costs of posting vacancies.

The �rst constraint in the �rms�decision problem is the transition equation for the

number of workers in the �rm. The second constraint relates the number of vacancies
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to the number of new hires. The third constraints states that the number of new hires

cannot be negative, preventing the �rms from generating revenues by �ring workers.

In line with the empirical results, the rate of job loss follows an AR(1) process:

�x;t = (1� �x) �x + �x�x;t�1 + "x;t;

where bars denote steady-state levels, �x 2 [0; 1) is a persistence parameters and "x;t
is a normally distributed shock innovation with mean zero and standard deviation �x.

3.1.3 Matching technology and wage determination

Let the number of job searchers at the beginning of period t be denoted by st �

ut�1 + �x;t (1� ut�1). Job searchers and vacancies are matched according to a Cobb-

Douglas matching function, mt = s�t v
1��
t , where mt is the number of new matches

and � 2 (0; 1) is the elasticity of the matching function with respect to the number of

searchers. From the matching function it follows that the vacancy yield, qt = mt
vt
, and

the job �nding rate, �f;t =
mt
st
, are related as:

qt = �
�

��1
f;t : (3)

The evolution of the aggregate employment rate is identical to the evolution of �rm-level

employment due to symmetry across �rms.

Wages are set according to Nash bargaining, as mentioned previously. I assume

that if bargaining were to fail, the worker and the �rm have to wait for the next period

in order to search again. This implies that the worker would become a reduced-skill

worker. Let � be the bargaining power of the worker. The Appendix shows that the

wage wt and the deduction dt are given by:

wt = (1� �)
�
b� �Et���f;t+1

�
(4)

+�
�
A+ �Et�f;t+1

�
1� �x;t+1

� �
� (1� �) pt+1 + ��

�
1��
f;t+1 � �t+1

��
;

dt = ��: (5)

Note that the deduction dt is equal to a fraction � of the total training cost. A version

of the model with a fully rigid wage (wt = b) is obtained by setting � equal to zero.23

23Across di¤erent parametrizations for �, the home production parameter b can be adjusted to obtain
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3.1.4 Equilibrium

The Appendix shows that the �rst-order optimality conditions for the �rms� hiring

decision problem can be combined to obtain the following Euler Equation for vacancies:

� (1� �) pt��t+��
�

1��
f;t = A�wt+�Et

�
1� �x;t+1

� �
� (1� �) pt+1 + ��

�
1��
f;t+1 � �t+1

�
;

(6)

where �t is the Lagrange multiplier on the constrained restricting hiring to be non-

negative. The left-hand side of he Euler equation captures the expected marginal

costs of hiring an additional worker. Due to the presence of skill losses, these costs

are increasing in pt; which in turn is nonlinearly increasing in ut�1; see Equation (2).

Thus, higher unemployment discourages vacancy posting, as it introduces additional

costs. The bene�ts of hiring a worker are captured by the right hand side and consist

of a current-period pro�t �ow, A � wt, plus savings on future hiring costs, captured

by the last term on the right-hand side. The Euler equation is useful to compactly

characterize the equilibrium:

De�nition. A recursive equilibrium is characterized by policy functions for the job

�nding rate, �f (St), for the unemployment rate u (St), for the wage of new hires w (St),

and for the fraction of reduced-skill hires, p (St), satisfying the unemployment transition

equation (1), the equation for the fraction or reduced-skill hires (2), the wage equation

(4), the vacancy Euler equation (6), as well as the exogenous laws of motion for �x;t.

The state of the aggregate economy can be summarized as St =
�
�x;t; ut�1

	
:

Note that ut�1 is a state variable only because it enters the the de�nition of pt,

Equation (2), which in turn enters the vacancy posting condition (6). In the absence

of skill losses (� = 0), Equation (2) can be dropped from the model, eliminating pt as

a variable. Then, the equilibrium policy function for �f;t can be solved from a dynamic

system containing only Equation (6) and the wage equation (4). In this system, �x;t

is the only state variable. Given a simulation for �f;t and �x;t; and an initial level of

the same steady-state wage.
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unemployment, the path of the unemployment rate can be computed separately using

Equation (1).

3.2 Steady-state properties and relation to the reduced-form model

3.2.1 Steady state properties

I now investigate under what parameter values multiple steady states can arise, closely

following Pissarides (1992). Consider the Euler equation and the wage setting equation.

In a deterministic steady state with positive hiring, these reduce to:24

��
�

1��
f| {z }

vacancy cost

=
A� w

1� (1� �x)�| {z }
NPV gross pro�t

�
�
1� �f

�
� (1� �)| {z }

re-training cost

; (7)

w = (1� �)
�
b� ����f

�
+ �A+ �� (1� �x) (� (1� �) �f

�
1� �f

�
+ ��

1
1��
f )(8)

where upper bars denote steady-state values. Here, I have used that q = �
�

��1
f and that

p = 1 � �f . Since �f and w are the only endogenous variables that enter these two

equations, the steady-state solution can be found from this system.

It is insightful to distinguish between versions of model with a sticky wage (� = 0)

versus a �exible wage (� > 0), as well as between a model without skill losses (� = 0)

versus a model with skill losses (� > 0). For each of the four cases, Figure 2 illustrates

the left- and right-hand side of Equation (7) as a function of �f , after substituting out

w using Equation (8). The solid blue lines represent the left- side of the equation, which

captures the (expected) vacancy cost of hiring a worker, and does not depend on either

� or �. This cost is illustrated under the assumption that � > 1
2 ; which implies that it

is convexly increasing function in �f . The importance of this assumption is discussed

below. The red dashed lines in Figure 2 illustrates the right-hand side of Equation

(7), which is the expected Net Present Value (NPV) of gross pro�ts generated by a

marginal worker net of expected re-training costs, and depends on both � and �.

The simplest of the four cases is one with a sticky wage and no skill losses (Figure 2,

upper left panel). In this case, the net discounted pro�t does not depend on �f . Given

24Below I will discuss corner solutions with zero hiring.
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that the hiring cost is increasing in �f , there is at most one steady state. The same

is true in a model with �exible wages and no skill losses (upper right panel), since net

pro�ts become strictly decreasing in �f .
25 Thus, multiple steady states do not arise in

the model without skill losses. It is straightforward to verify that this is also true when

� � 1
2 .

Figure 2: Illustration of the steady-sate properties of various model versions.

0 0.2 0.4 0.6 0.8 1


f

rigid wage (=0), without skill losses (=0)

hiring cost

present value net profits

0 0.2 0.4 0.6 0.8 1


f

flexible wage (>0), without skill losses (=0)

0 0.2 0.4 0.6 0.8 1


f

rigid wage (=0), with skill losses (>0)

0 0.2 0.4 0.6 0.8 1


f

flexible wage (>0), with skill losses (>0)

Multiple steady states can arise when unemployment when there are skill losses

(� > 0). Under sticky wages (Figure 2, bottom left panel), the wage w does not

depend on �f . However, net pro�ts are increasing in �f since the expected training

cost,
�
1� �f

�
� (1� �) ; depends negatively on �f . Intuitively, a lower job �nding

25When � = 0, the steady-state wage is increasing in �f and steady-state net pro�ts are decreasing

in �f .

20



rate increases the fraction of job searchers with reduced skills, and hence increases the

total amount of training costs that �rms need to pay. In turn, higher expected costs

discourage �rms to hire, further reducing the job �nding rate. As a result, three steady

states can arise. The steady state with the highest job �nding rate, and thus the lowest

unemployment rate, is stable, whereas the middle steady state is unstable. Further,

there is a corner solution with 100 percent unemployment, which is a stable steady

state.26 Finally, consider a model with skill losses and �exible wages (Figure 2, bottom

right panel). In this case, multiple steady states can arise as well. However, the net

present value of pro�ts depends in a more ambiguous way on the job �nding rate, due

to the term
�
1� �f

�
�f in the wage equation.

Finally, consider the role of the matching function parameter �. As shown above,

a model with skill losses and � > 1
2 can generate the type of steady states observed

in the data. In a model with � < 1
2 ; the hiring cost becomes a concavely increasing

function of �f and it is straightforward to verify that multiple steady states can arise

as well, but their stability properties are unlikely to be in line with the reduced-form

estimates.27 When � is exactly to 1
2 , the hiring cost becomes linear in �f , allowing for

at most one interior steady state under rigid wages.

How plausible is the assumption that the elasticity of the matching function with

respect to unemployment is larger than one half? Petrongolo and Pissarides (2001)

survey the literature, which reports a wide range of estimates. They conclude that the

matching function elasticity with respect to unemployment is likely to be between 0:5

and 0:7:
26 In this corner steady state h = �f = 0 and u = p = 1. The Euler equation implies then becomes

� = � (1� �)� A�b
1��(1��x)

, with � = 0 in the sticky wage case.
27For example, in a model with skill losses and a rigid wage three steady states would again arise.

However, now the corner steady state is one with zero rather than hundred percent unemployment, and

is stable. The steady state with the next lowest unemployment level then becomes unstable, whereas

the interior steady state with the highest unemployment level is stable. This outcome is not in line with

the empirical results of the previous section, in which the interior steady state with low unemployment

was found to be the stable one of the two interior solutions.
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3.2.2 Dynamic properties

Figure 3: Illustrated phase diagrams for the DMP model without skill losses (left panel)

and with skill losses (right panel).���� ����� ��� � ��������� ��� � 	 

The fact that there are multiple steady states does not imply that there are mul-

tiple dynamic equilibria. The dynamic properties of the model can be understood by

constructing a phase diagram for a deterministic version of the model. The appendix

explains how the phase diagrams can be constructed numerically for a speci�c calibrated

model.

The left panel of Figure 3 illustrates the phase diagram for the basic DMP model

without skill losses (� = 0). The blue and red line illustrate the null-curves of the

model. Speci�cally, the blue line depicts combinations of u and �f for which Equation

(1), implies that u remains constant. Similarly, the red line depicts combinations for

which �f remains constant according to Equation (6). The two null-curves divide the

space of possible paths into four segments with di¤erent directions of motion for �f

and u. There is a unique intersection of the two null-lines at point A, representing the

steady state. It can be checked that this steady state is locally saddle-point stable.

The dashed black line with arrows illustrates the saddle path that leads into the steady

state. Without skill losses, the equilibrium job �nding rate does not depend on the

unemployment rate, and hence the equilibrium path lies on top of the null-line for �f .

It can be veri�ed that the saddle path is a unique equilibrium.

22



The phase diagram for the DMP model with skill losses (� > 0) is illustrated in

the right panel of Figure 3. There are three steady states, indicated by points A, B

and C. Steady states A and C are locally saddle-path stable, whereas steady state

B is unstable. The saddle path leads into A from the right and into C; and reverses

direction exactly at steady state B. As in the model without skill losses, the saddle

path is a unique dynamic equilibrium.28 There is thus no scope for equilibria driven

by self-ful�lling changes in expectations. To understand why the skill-loss mechanism

does not invite this type of equilibrium, note that �rms would be encouraged to hire

more today when unemployment is expected to increase, since average re-training costs

per hire would be expected to rise in the future.

3.2.3 Relation to the reduced-form model

There is a close connection between the DMP models and the reduced-form models of

the previous section, due to the fact that the central Euler equation of the DMP model,

Equation (6), is essentially a one-period ahead forecasting equation for a nonlinear

transformation of the job �nding rate, �
1

1��
f;t+1. The unemployment rate enters this

equation non-linearly through pt and pt+1, but drops out when skill losses are removed

from the model and unemployment is no longer a state variable.

3.3 Quantitative horse race

Extending the DMP model with skill losses helps to reproduce the steady states esti-

mated from the data, but does it also improve the model�s ability to explain �uctu-

ations? Further, can the model reproduce the estimated steady states under realistic

28To see why, note that: (i) There cannot be alternative equilibrium paths that lead into steady

states A or C since these steady states are saddle-path stable and we have already considered the

saddle path. Further, there cannot be equilibrium paths that lead into steady state B, since this

steady state is unstable. (ii) There cannot be alternative equilibrium paths that cycle/spiral around

one or more steady states, as such paths would cross the saddle path which is not possible (in the

continuous-time limit). (iii) Any other candidate path not considered would violate the condition that

�f;t � 1 and hence cannot be an equilibrium.
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degrees of skill losses? I address these questions by calibrating a model with and with-

out skill losses and confront both models with the data.

3.3.1 Calibration

The parametrization of the models is based on a period length of one month, corre-

sponding to the frequency at which the data is observed. For both models, I calibrate

real wages to be rigid (� = 0). Table 1 shows the remaining parameter values, which

are set equal for both models, with the exception of � and b.

The subjective discount factor, �, is set to imply an annual real interest rate of 4

percent. The matching function elasticity, �, is set to 0.6, which is just in the middle

of the 0:5-0:7 range recommended by Petrongolo and Pissarides (2001). The vacancy

cost, �, is calibrated to imply that in the (low-unemployment) steady state, the average

cost of hiring is 4.5 percent of a worker�s quarterly output, see Silva and Toledo (2009).

The productivity of a fully skilled worker, A, is normalized to one.

The parameters of the exogenous process for the job loss rate, �x;t, are obtained

by estimating an AR(1) process based on its observed counterpart in the data. As

mentioned above, the series is rather noisy and I therefore smooth it using a 3 month

moving average �lter. To take out any slow moving trend, the series is put through

the HP �lter with a smoothing coe¢ cient equal to 81 � 105. This value corresponds

to one used by Shimer (2005) for quarterly data, but is converted to the appropriate

monthly value using the adjustment factor recommended by Ravn and Uhlig (2002).

The estimated persistence parameter is computed based on the autocorrelation of the

�ltered series at a one-year horizon. Given this parameter value, the shock innovations

are backed out using the AR(1) equation. I set �x equal to the standard deviation of

these shock innovations over the sample.

The remaining parameters, � and b, are set di¤erently for both models. The �ow

value of an unemployed worker, b, is used to target a the steady-state unemployment

rate to 5:5 percent in the basic model, and the low-unemployment steady state to 5:5

percent in the extension with skill losses. The re-training cost, �, is naturally set to
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zero in the model without skill losses. In the model with skill losses, this parameter is

chosen to match the second steady state to 9:5 percent unemployment, in line with the

reduced-form evidence presented in the previous section. The implied training cost is

equal to 0:688, which corresponds to only 2:7 weeks of output.

3.3.2 Quantitative results

The empirical performance of the two models is evaluated by conducting a simulation

based on shocks that exactly reproduce the (�ltered) job loss rate in the data. The job

loss series is plotted in the upper panel of Figure 8. The bottom two panels plot the job

�nding rate and the unemployment rate as predicted by the two models, as well as the

actual realization in the data. The model is solved using a global projection method,

which is explained in the appendix.

The job �nding rate series predicted by the model with skill losses is strikingly

similar to its counterpart in the data. The correlation between the two series is 0.88.

During the late 2000�s, there is a discrepancy in the levels but even during this period

the dynamics are close. For the years after 2010, the model with skill losses matches

almost perfectly the job �nding rate in the data. The low job �nding rate over this

period is ultimately driven by a spike in the job loss rate during 2008 and 2009. By

2011, however, the rate of job loss has returned to its pre-crisis level. The fact that the

job �nding rate remains persistently low highlights the strong endogenous propagation

mechanism of the model. The essence of this propagation mechanism is that skill losses

associated with high unemployment discourage hiring, preventing a swift recovery.

By contrast, the basic DMP model without skill losses produces hardly any �uctu-

ations in the job �nding rate. As a result, this model fails to account for the large and

persistent increase in unemployment following the Great Recession. The mild increase

in unemployment that the model does produce, is largely a direct e¤ect of the job loss

shock. To illustrate this point, Figure 8 also plots a simulation in which �f;t is kept

entirely constant over the sample. The unemployment rate series produced by this sim-

ulation is very similar to the one predicted by the basic DMP model. The simulation
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also highlights that most of the �uctuations in unemployment derive from �uctuations

in the job �nding rate, in particular the persistent increase in unemployment following

the Great Recession.

The success of the model with skill losses is remarkable for several reasons. First,

the shocks to the rate of job loss are relatively minor. Over the sample, these shocks

account for only 23 percent of the �uctuations in unemployment. In the literature,

shocks to the rate of job loss have often been dismissed as a plausible source of overall

�uctuations in unemployment. Nonetheless, the model with skill losses reproduces the

amount of unemployment volatility in the data based on only job loss shocks, which

requires a strong internal ampli�cation mechanism. Such a mechanism is clearly absent

in the basic DMP model. Second, the model produces a mild correlation between the

rate of job loss and the job �nding rate, which requires a strong internal propagation

mechanism.29 Indeed, the basic DMP predicts a perfect correlation of minus one,

since this model lacks any internal propagation mechanism. Finally, the test to which

the DMP models are put in this paper is stringent, compared to many similar model

evaluation exercises in the literature. Often, such exercises compare moments within

the model to their counterparts in the data, rather than confronting a model simulation

directly with observed time series.30

4 Conclusions

The main message of this paper is that models with multiple steady state may provide

a much more satsifactory description of observed labor market dynamics than standard

models with a single steady state. This follows from a reduced-form model estimated

on U.S. data, as well from a simple DMP model in which skill losses give rise to

multiple steady states. An additional point is that the degree of skill losses required to

29 In the data, the correlation between the two series is �0:26, whereas in the model the correlation

is �0:11:
30An exception is Mitman and Rabinovich (2014), who feed observed productivity into a model with

countercyclical unemployment bene�t extensions.
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generate multiple steady states is small, adding credibility to the mechanism proposed

by Pissarides (1992).

In the literature, there are almost no attempts to bring models with multiple steady

states directly to the data. An exception is Kaplan and Menzio (2014) who argue that

a model with shopping externalities and expectations shocks can account for the depth

of the Great Recession. In a more qualitative setting, Saint-Paul (1995) studies the

role of �ring costs in a model with idiosyncratic production risk and on-the-job search.

Blanchard and Summers (1987) consider the endogenous e¤ect of the power of labour

unions. Blanchard and Summers (1986), Rochetau (1999) and Den Haan (2007) study

the role of taxes required to �nance social security payments. Finally, Ellison et al.

(2014) consider a DMP with non-constant returns to scale in the matching function.

Since the models in all of these references can �at least in principle�generate multi-

ple steady states, they provide a starting point for a further quantitative exploration

and evaluation versus the model analyzed in this paper. Distinguishing between vari-

ous candidate models is important, given that government policies can have dramatic

impacts if they can prevent the economy from slipping into a steady state with high

unemployment.
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Appendix

A1. Additional empirical results

Below, I present several robustness checks on the results presented in the main text.

Model Diagnostics. I consider two additional speci�cations. In Model (IV), Et�f;t+k
is a linear function of �f;t, �x;t, ut, u

2
t ,�

2
f;t, �

2
x;t and a constant: In model (V), the forecast

is a linear function of only a constant and �f;t, which corresponds to a simple AR(1)

process. Figure A1 presents the diagnostics statistics for all �ve speci�cations. Results

for model (III) and (IV) are very similar, whereas results for model (V) are close to

those of models (I) and (II).

Figure A1: Additional models for �f;t+k:
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Next, consider forecasting equations for the rate of job loss, i.e. �x;t+k. The speci�-

cations are the same as for the forecasting equations for �f;t+k, with the exception of

model (V) in which the regressor is now �x;t rather than �f;t, so that the speci�cation

corresponds to an AR(1) for �x;t. Figure A2 shows that, In contrast to the results for

the job �nding rate, model diagnostics for all �ve models are similar. I conclude from



this that the rate of job loss is well described by a simple AR(1) process.

Figure A2: Models for �x;t+k:
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Finally, consider again the forecasting equations of the job �nding rate, but now esti-

mated on durations-based data from the CPS rather than the gross �ow data. Figure

A3 shows that the model diagnostics are very similar to those obtained from the gross

�ow data. In particular, model (III) is favored over models (I), (II) and (V).

Figure A3: Models for �f;t+k: duration-based CPS data.
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Implied steady states. While models (III) and (IV) produce very similar diagnostics

statistics, model (III) was chosen as the baseline for the sake of parsimony. Figure A4



shows that the steady states implied by model (IV) are very similar to those of model

(III). Finally, I compute the steady states based on model (III), but estimated using

the duration-based rather than the gross-�ow data. Figure A5 shows that using these

alternative data produces similar steady states.

Figure A4: Steady states based on Model (IV).
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Figure A5: Steady states based on Model (III)

estimated on duration-based CPS data.
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A2. Model derivations

First, we derive explicitly the �rms�Euler equation for vacancies. The �rms�problem

can be written as:

V (nt�1;St) = max
nt;ht

�
A� wt

�
nt � (�� dt) ptht � �

ht
qt
+ �EtV (nt;St+1)

subject to

nt =
�
1� �x;t

�
nt�1 + ht;

ht � 0:

The �rst-order conditions for nt and ht are:

A� wt � �t + �E
�
1� �x;t+1

�
�t+1 = 0

(dt � �) pt �
�

qt
+ �t + �t = 0

�tht = 0

where �t and �t are, respectively, the Lagrange multiplier on the employment transi-

tion equation and the non-negativity constraint on hires. The third condition is the

complementary slackness condition. The �rst two equations can be combined to obtain:

(�� dt) pt +
�

qt
� �t = A� wt + �Et

�
1� �x;t+1

��
(�� dt+1) pt+1 +

�

qt+1
� �t+1

�
:

Next, we derive the wage equation under Nash bargaining. The value of an ad-

ditional fully-skilled worker to a �rm is given by the Lagrange multiplier �t. Let Wt

be the value to a household of being a fully-skilled employed worker and let Ut be the

value of being an unemployed worker. These two variables satisfy:

Wt = wt + �Et
�
1� �x;t+1 + �x;t+1�f;t+1

�
Wt+1 + �Et�x;t+1

�
1� �f;t+1

�
Ut+1;

Ut = b+ �Et�f;t+1 (Wt+1 � dt+1) + �Et
�
1� �f;t+1

�
Ut+1:

If a match were to break up endogenously, the worker would spend at least one period

in unemployment and hence lose skills. De�ne Xt as the surplus of full-skilled employed

worker, relative to being unemployed:

Xt � Wt � Ut

= wt � b+ �Et�f;t+1dt+1 + �Et
�
1� �x;t+1

� �
1� �f;t+1

�
Xt+1



The total surplus of a match between a fully-skilled worker and a �rm, denoted St, is

given by:

St = �t +Xt:

The solution to the Nash solution to the bargaining problem between a fully-skilled

worker and a �rm can be expressed as:

�St = Xt

= wt � b+ �Et�f;t+1dt+1 + �Et
�
1� �x;t+1

� �
1� �f;t+1

�
�St+1;

where � 2 (0; 1) is the bargaining power of the worker. The surplus also satis�es:

St = �t +Xt

= A� wt + �E
�
1� �x;t+1

�
�t+1 + wt � b+ �Et�f;t+1dt+1 + �Et

�
1� �x;t+1

� �
1� �f;t+1

�
Xt+1

= A� b+ �Et�f;t+1dt+1 + �E
�
1� �x;t+1

�
�f;t+1�t+1 + �Et

�
1� �x;t+1

� �
1� �f;t+1

� �
�t+1 +Xt+1

�
= A� b+ �Et�f;t+1

�
dt+1 +

�
1� �x;t+1

�
�t+1

�
+ �Et

�
1� �x;t+1

� �
1� �f;t+1

�
St+1;

It follows from the Nash Bargaining solution that:

wt = b� �Et�f;t+1dt+1 + �St � �Et
�
1� �x;t

� �
1� �f;t+1

�
�St+1

= b� �Et�f;t+1dt+1 + �
�
A� b+ �Et�f;t+1

�
dt+1 +

�
1� �x;t+1

�
�t+1

��
= (1� �)

�
b� �Et�f;t+1dt+1

�
+ �

�
A+ �Et�f;t+1

�
1� �x;t+1

�
�t+1

�
:

Next, consider the bargaining problem between a new hire with reduced skills and

the �rm. Let Xrs
t denote the surplus of a reduced-skill employed worker and let Srst

denote the total surplus of a match between a reduced-skilled worker and a �rm. The

Nash Bargaining solution for a reduced-skill worker and a �rm is �Ssrt = Xrs
t . Note

also that St�Srst = �, since the only way in which a match with a reduced-skill worker

is di¤erent from a match with a fully-skilled worker is that production in the current

period is lowered by an amount �. It follows that

dt = Xt �Xrs
t ;

= � (St � Srst ) ;

= ��:



Thus, the worker pays for a fraction � of the training cost. Given this result, the

�rst-order condition for vacancies becomes:

� (1� �) pt +
�

qt
� �t = A� wt + �Et

�
1� �x;t+1

��
� (1� �) pt+1 +

�

qt+1
� �t+1

�
:

Further, the wage equation becomes:

wt = (1� �)
�
b� �Et���f;t+1

�
+�
�
A+ �Et�f;t+1

�
1� �x;t+1

� �
� (1� �) pt+1 + ��

�
1��
f;t+1 � �t+1

��
;

where I have used that �t+1 = � (1� �) pt+1 + ��
�

1��
f;t+1 � �t+1; which follows from the

�rst-order condition for ht. Note that wt = b when � equals zero.

A3. Constructing phase diagrams

This appendix discusses how to construct the phase diagram for a speci�c calibrated

model, under the assumption that �x;t = �x at all times, so there is perfect foresight.

Construct null-curves of ut�1 versus �f;t is done as follows. The transition identity for

unemployment can be used to construct a relation between ut�1 and �f;t given that

�u � ut � ut�1 = 0:

ut =
�x
�
1� �f;t

�
�x
�
1� �f;t

�
+ �f;t

:

The Euler equation for vacancies can be used to construct a relation between ut�1 and

�f;t given that ��f � �f;t+1 � �f;t = 0:

� (1� �x)
 
�

u�
�
�f;t
�

u�
�
�f;t
�
+ �x

�
1� u�

�
�f;t
�� + �� �

1��
f;t+1 + �t+1

!
= �

ut�1
ut�1 + �x (1� ut�1)

+��
�

1��
f;t +�t�A+b

where u�
�
�f;t
�
�
�
1� �f;t

�
ut�1 + �x

�
1� �f;t

�
(1� ut�1) = ut. Given a value of ut�1

one can solve this equation to �nd the corresponding value of �f;t; setting �t = �t+1 = 0.

If it turns out that �f;t < 0, then set �f;t = 0:

The second step is to inspect the local stability properties of the steady states,

which can be done using a standard �rst-order perturbation method. Next, one can

numerically trace out the saddle path. To do so, use the perturbation solution to �nd

two points arbitrarily close to each of the two stable steady states.31 Next, one can
31For the low-unemployment steady state, �nd one point with higher unemployment, and one with

lower unemployment.



numerically iterate backwards on the Euler equation and the transition identity for

unemployment to trace out the saddle path leading into the stable steady states. From

the directions that the saddle path takes one can infer the o¤-equilibrium directions in

each of the segments divided by the null-lines.

A4. Global solution method

The model is solved numerically using a global projection algorithm on a grid for the

state variables. The exogenous process for the rate of job loss is discretized using the

method of Rouwenhorst (1995) with 31 grid points. For the unemployment rate, I use

151 grid points. The total number of grid points is equal to N = 31 � 151 = 1581. The

algorithm is based on an approximation of the policy function for �f;t on this grid. The

steps are as follows:

1. Create a grid for ut�1 and �x;t�1 as described above. At each grid point, compute

the associated value of pt using Equation (3).

2. Guess an initial value �f;i at each of the grid points, indexed by i = 1; :::; N .

3. At each grid point i, evaluate the left-hand side of the Equation (6) using the

guess from the previous step. Given the left-hand side, solve for the value e�f;i
that sets the right-hand side equal to the left-hand side.

4. Update the guess as �f;i = e�f;i at each grid point i and repeat step 3 until
1
N

NP
i=1

���f;i � e�f;i�� < �, where I set � = 10�11:
To �nd appropriate initial values to be used in step 2, I �rst solve a deterministic

version of the model in which �x;t = �x at all times.



Table and Figures

Table 1. Parameter values.

parameter description no skill losses skill losses

� discount factor 1:04�
1
12 1:04�

1
12

� matching function elast. 0:6 0:6

� vacancy cost 0:989 0:989

A worker productivity 1 1

�x s.s. job loss rate 0:021 0:021

�x persistence job loss rate shocks 0:896 0:896

�x s.t. deviation job loss shocks 7:91e�4 7:91e�4

� re-training cost 0 0:688

b �ow from unemployment 0:997 0:985



Figure 4: Raw data.
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Figure 5: Diagnostic statistics.
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Figure 6: Job �nding rate and forecasts made two years in advance.
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Figure 7: Estimation results of the reduced-form models.
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Notes: The �gure plots u�t �
�x;t(1��f;t)

�x;t(1��f;t)+�f;t
against u�t+k, where intersections with the

45-degree line indicate steady states. Here, a range for u�t , is constructed for a range

of values for �f;t and setting �x;t to its sample average �x. Further, u
�
t+k is computed

given �x;t+k = �x and using the forecasting model to evaluate �f;t+k ; given �x and the

range of values for u�t and �f;t . The shaded area plots a 90 percent con�dence band

for the model (III). These bands are uniform and have been computed based on a

bootstrap method. The forecast horizon, denoted by k, is in months.



Figure 8: Model simulations versus data
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