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1 Introduction

What is the optimal amount of capital and government debt? Should capital be taxed and

if yes how much? What is the optimal amount of redistribution? We study these classic

questions in a heterogenous agents incomplete markets Aiyagari (1995) economy. In this

economy households are exposed to idiosyncratic income shocks but no aggregate risk. They

face exogenous credit constraints and the only assets are physical capital and government

debt. The Ramsey planner commits itself ex-ante to a path of linear labor and capital taxes

and government debt to maximize agents' discounted present value of lifetime utility.

We prove two main theoretical �ndings on optimal policies. First, we show that it is

optimal to equalize the pre-tax return on capital and the rate of time preference in the

long-run, i.e. the capital stock satis�es the modi�ed golden-rule. Our second theoretical

result shows that the long run steady state allocations and policies are independent of initial

conditions. In particular, the long-run level of government debt is uniquely determined and

does not depend on the initial value of debt or capital. Similarly steady-state tax rates on

capital and labor are unique and independent of initial conditions.

A comparison with the optimal Ramsey taxation results in representative agents complete

markets economies without aggregate risk as in Lucas (1990) and Chari and Kehoe (1999)

helps to understand our �ndings. As is well known the steady state Ramsey planner solution

depends on initial conditions such as the initial government debt level in this complete

markets environment. The intuition for this result is straightforward. As in Barro (1979) the

planner aims to smooth distortions over time using government debt. In the absence of any

exogenous �uctuations it is optimal (after perhaps some initial periods) to keep government

debt and labor taxes constant over time. This policy provides higher welfare than a deviating

policy where for example labor taxes and distortions are lowered initially, additional debt is

issued to �nance this tax cut, and then eventually labor taxes and distortions are increased

to cover the higher interest rate burden on government debt. This alternative policy would

reduce welfare since the gain of lower distortions in the beginning is outweighed by the loss

of higher distortions later on, since distortions are �convex� as in Barro (1979).

If markets are incomplete this reasoning is only one part of the story. Lowering taxes

today still means higher debt (as in the complete markets case) but now more debt has a

welfare-enhancing element as it enables households to better smooth consumption in response

to income shocks. The costs of having higher debt - higher future taxes - is still present if

markets are incomplete instead of complete. But with incomplete markets there is now
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an additional bene�t, better consumption smoothing. As a result the planner lowers taxes

initially as there are two bene�ts - lower distortions today and higher debt (more liquidity) -

and still just one cost (higher distortions tomorrow). Of course there are limits to how high

debt can become as eventually future distortions become too big and outweigh the initial

lower distortions and the bene�ts of higher liquidity. The optimal level of government debt

is determined as equalizing the bene�ts and costs at the margin.

A conclusion common to both complete and incomplete markets is that the long-run cap-

ital stock satis�es the modi�ed golden rule (see also Aiyagari (1995) and Acikgoz (2014)).

In a representative agent economy distributional concerns are absent and investment e�-

ciently transfers resources across time. If markets are incomplete distributional concerns are

present but we show that they do not interfere with e�ciency in investment, reminiscent of

the production e�ciency result in Diamond and Mirrlees (1971). A higher than the e�cient

capital stock could be used to achieve better consumption smoothing but we show that the

planner issues more debt instead. A higher capital stock also increases wages which would

bene�t those depending primarily on labor income but we show that the planner uses labor

taxes to increase the after-tax wage instead. On the other hand, if either of the instruments,

issuing debt or taxing labor, is not available to the planner, then the capital stock will not

satisfy the modi�ed golden rule.

The result that the steady state is independent of initial conditions is not only of the-

oretical interest but also renders a quantitative analysis of the optimal taxation problem

tractable. Whereas the literature has mainly focused on characterizing the steady state

which maximizes welfare, we have to characterize the optimal policy along the full transition

path. In particular our characterization has to take into account that the optimal policy at

each point in time during transition depends on the full transition path of capital, debt and

tax rates.

Computing the path of tax rates, government debt and transfers which maximizes welfare

at date 0 is a huge computational challenge: Several hundred or thousands of variables have

to be chosen in a highly nonlinear optimization problem. However, our result that the optimal

long-run policy is independent of initial conditions turns this non-manageable optimization

problem into a manageable one. From a computational point of view this independence of

initial conditions means that we know the optimal long-run policies and allocations without

having to compute the transition. Instead we know the initial conditions (economy calibrated

to the US economy) and we know the terminal condition, the optimal long-run steady state
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characterized before. The (still huge) computational problem is then to �nd the policy path

which satis�es all necessary �rst-order conditions along the transition and at the same time

satis�es the initial and terminal conditions. This problem is still a challenge as it involves

solving hundred or thousands of nonlinear equations but is signi�cantly easier (and therefore

tractable) than the original problem, which has to �nd the optimal transition and the optimal

terminal point at the same time. Given the large number of variables involved there is no

way to check whether a candidate solution is a global maximum in the original problem, a

check which is not necessary in our approach.

In the optimal steady-state we �nd that capital taxes are always signi�cantly positive in

contrast to complete markets (see the seminal contributions of Chamley (1986) and Judd

(1985)), although for all calibrations relatively low compared to most developed economies.

In our benchmark calibration, aimed at resembling the high income inequality in the U.S.

and with a Frisch elasticity of labor supply equal to one, the long-run taxes on capital and

labor are around 11 and 77 percent. The optimal long run level of government debt equals

4 times GDP.

Our �nding that government debt is high, capital is taxed at a low rate and labor income

is taxed at a high rate when compared to current U.S. values is robust across various di�erent

alternative calibrations, although the precise numbers of course depend on the details of the

calibration. Indeed, we reach the same conclusion for a low and a high Frisch elasticity of

labor supply, for a low or high income elasticity of labor supply, for low and high income

inequality and in a model with permanent income di�erences.

The high debt levels we �nd are a consequence of our assumption that the government

always honors its debt so that elements such as a default premium are not present in our

model and therefore do not restrict how much debt can be issued. Instead distortionary taxes

is the only element which restricts debt from becoming in�nitely large and thus maximizing

the liquidity services. One conclusion from our result is that tax distortions by themselves

restrict government debt to levels much larger than observed in developed countries.

Knowing the optimal path of policies allows us to compute the welfare gains of switching

to the optimal policy and helps to better understand the properties of the optimal steady

states policies as those are tightly linked to the policies chosen during the transition. The

optimal transition is characterized by an initial period of high capital income taxation and

low labor taxation. While the high initial capital tax rates are well known from complete

markets and are a result of initially inelastically supplied capital, the low initial taxation
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(subsidization) of labor income is new to the incomplete markets environment. As a result

labor market distortions are low initially and government debt is accumulated. Eventually

labor taxes are increased to pay the interest rates on debt which converges to its high steady-

state level.

Although most of the literature either maximizes steady-state welfare or when considering

transitions assumes �xed tax rates throughout the transition, there are a few papers which

deviate from these restrictive assumptions. The paper most closely related to ours is Acikgoz

(2014). He was the �rst to develop a methodology to compute the long-run optimal policy

and we built on his work and extend it to di�erent utility functions and income processes. In

addition we prove independence of the steady-state Ramsey policies from initial conditions

and compute the full transition path of optimal policy, including labor and capital income tax

rates, debt, and capital. Dyrda and Pedroni (2015) also compute the optimal transition path

in an incomplete markets economy, using however a quite di�erent approach. In particular

they do not characterize the optimal steady policies �rst before computing the transition but

instead compute both jointly. Their �ndings for the optimal steady state policy di�er from

ours. In Dyrda and Pedroni (2015) capital income in the long-run is taxed at a high rate

whereas labor income is taxed at a low rate only and government debt is negative. Aiyagari

and McGrattan (1998) study the optimal level of debt in an incomplete markets model but

under the alternative assumption that the planner maximizes the utility at the steady state

instead of ex-ante welfare. They �nd that the optimal level of debt is two thirds of GDP in

line with the current US level. Many of the follow-up works in this literature also maximizes

the steady state welfare. For example, Röhrs and Winter (2014) �nd that if inequality is

large, the optimal level of debt that maximizes the steady-state welfare is even lower and it

should be negative, −0.8. One reason why the optimal level of debt is low or even negative

when steady-state welfare is maximized is that this optimality criterion ignores the welfare

loss of reducing debt along the transition path to a low debt steady state.

In a series of papers Bhandari et al. (2015, 2016a,b, 2017) also consider optimal taxation

in incomplete market models building on the work of Aiyagari et al. (2002) who where the

�rst to investigate the Ramsey policy in a Lucas and Stokey (1983) economy with incomplete

markets (and aggregate risk). A key di�erence is that we follow Aiyagari (1995) and impose

tight exogenous credit constraints which is necessary to match the joint distribution of earn-

ings, consumption and wealth observed in the data and to generate a realistic distribution

of MPCs. These credit constraints make the computational problem signi�cantly more com-
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plicated as a fraction of households is not operating on their consumption Euler-equation,

preventing us from using an easy backward shooting approach where we iterate backwards

on the Euler equation.

Tight credit constraints also seem to render a characterization of optimal policy through

su�cient statistics impossible (Piketty and Saez (2013)) since they induce di�erent policies

and di�erent distributions of assets, labor income and consumption in the short-run, during

the transition and in the long-run to be optimal. Indeed we show that tight credit constraints

and precautionary savings demand imply that it is optimal to increase the level of government

debt and lower labor taxes initially and increase them in the long-run, which induces a

very di�erent distribution of consumption, income and wealth in the long-run from what

is currently observed in the U.S. A su�cient statistics approach, however, is necessarily

based on the observable inequality measures for the U.S. while optimal policy in the long-

run depends on the corresponding long-run statistics and their optimal evolution during the

transition. Policy conclusions based on two very di�erent statistics are likely to be very

di�erent. Furthermore it seems infeasible to solve the �xpoint problem - di�erent policies

lead to di�erent wealth and income distribution which render di�erent policies optimal and so

on ... - within the su�cient statistic framework. Our results show that these considerations

are not just a theoretical possibility but are key in determining the full transition path of

optimal policies.1

It is also the presence of credit constraints which generates a large demand for precau-

tionary savings and thus potentially a positive capital income tax rate. The reason why we

nevertheless do not �nd high capital income tax rates is the large amount of debt which

allows households to smooth consumption quite well but at the same time requires an after

tax interest rate close to the rate of time preference. For a higher capital income tax rate

and thus a lower pre-tax interest rate the private sector would just not be willing to absorb

the capital stock and the large stock of debt. The planner �nds it welfare-maximizing to

reduce inequality through more debt and low capital income tax rates instead of low debt

and high capital income taxes. Both a high level of debt and high capital tax rates are not

possible since the asset market would not clear.

1One of the di�culties that arises if for example one is interested in �nding the optimal capital income
tax rate is that this requires to specify how the revenue from this tax is used: to lower the tax on labor,
to pay higher transfers or to reduce government debt. This choice is not arbitrary but has to be optimal
requiring to take into account its e�ects on the full transition path, which will in turn a�ect the optimal
capital income tax rate, which ...
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The paper is organized as follows. Section 2 presents our incomplete markets model and

the Ramsey taxation problem. We provide our theoretical results in Section 3 before we

move to the quantitative analysis. Section 4 shows optimal policy in the steady-state and

the optimal transition path is presented in Section 5. Section 6 concludes.

2 The Model

In this section, we present the incomplete markets model with heterogenous agents and

uninsurable idiosyncratic labor productivity shocks. The setup is similar to Aiyagari (1995),

except that our utility function is more general, which allows for income e�ect of labor supply

and government spending is exogenous.

2.1 The Environment

Time is discrete and in�nite, denoted by t ∈ {0, 1, 2, ...}. There is a continuum of ex ante

identical households, a representative �rm and a government.

Endowment and Technology A household supplies labor nt ∈ [0, 1] in period t. She

faces an idiosyncratic labor productivity shock et ∈ E, which follows a Markov process and

is i.i.d. across households. She has access to an incomplete market and can only hold a

non-state contingent one-period bond at ∈ A, subject to a constraint at ≥ −a.
A representative competitive �rm produces �nal goods using capital Kt and labor Nt

using the neoclassical constant-returns-to scale production function F (K,N) which satis�es

the standard conditions.2 Capital depreciates at rate δ.

The government is a Ramsey planner with full commitment. It collects linear capital

income tax at the rate τkt and linear labor income tax at the rate τnt. It issues government

debt Bt to �nance lump-sum transfer Tt and government expenditure Gt.

Preferences The instantaneous utility of a household is u (ct, nt) = c1−σ

1−σ − χ
n
1+ 1

φ

1+ 1
φ

. Her

lifetime utility is the expected discounted sum of utilities E
∑∞

t=0 β
tu (ct, nt). This utility

function allows for income e�ect of labor supply, namely, the labor supply decision of a

household reacts not only to labor productivity and wage, but also the asset level. In the

2The production function is assumed to be twice contiunuously di�erentiable, strictly increasing and
concave in each argument and satis�es the standard Inada conditions: limK→0 FK = ∞, limK→∞ FK = 0
and limN→0 FN =∞.
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literature, to simplify the analysis, income e�ects of labor supply are usually shut down

either by using for example GHH preferences or by allowing for home production. In the

benchmark we make a more standard choice and allow for income e�ects but also report how

our results depend on the strength of the income e�ect, including a speci�cation without

any income e�ects.

Markets There are competitive markets for labor, capital, �nal goods, and bonds.

2.2 Competitive Equilibrium

Firm The optimality conditions for the �rm imply that in each period, the interest rate

and the wage are equal to the marginal return of capital and the marginal return of labor

respectively, as follows:

rt = FK (Kt, Nt)− δ,

wt = FN (Kt, Nt) .

Government The government collects linear taxes on capital income and labor income.

Denote the after-tax capital return and wage as r̄t and w̄t, so that r̄t = (1− τkt) rt and
w̄t = (1− τnt)wt. The government's inter-temporal budget constraint is

Gt + (1 + r̄t)Bt + Tt ≤ τktrtAt + τntwtNt +Bt+1, (1)

where At = Kt + Bt is the total amount of assets, the sum of physical capital and govern-

ment debt. Standard arguments using the constant-return-to-scale assumption lead to the

following equivalent resource constraint:

Gt + (1 + r̄t)Bt + r̄tKt + w̄tNt + Tt ≤ F (Kt, Nt)− δKt +Bt+1. (2)

Households Starting from period 0 with asset a0 and productivity e0, a household solves

the following problem

V0 (a0, e0) = max
{at+1,ct}

E0

∞∑
t=0

βt

 c1−σ
t

1− σ
− χ n

1+ 1
φ

t

1 + 1
φ

 ,
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subject to

ct + at+1 ≤ at (1 + r̄t) + w̄tetnt + Tt, (3)

at+1 ≥ −a, (4)

where V0 (a0, e0) represents the lifetime utility of a household with initial state (a0, e0). The

optimality condition of nt is

uc (ct, nt) etw̄t + un (ct, nt) = 0,

which implies that labor supply

nt =
(
χ−1etw̄tc

−σ
t

)φ
, (5)

and after tax labor income yt

yt = etntw̄t = (etw̄t)
1+φ
(
χ−1c−σt

)φ
. (6)

In the rest of the paper, we can treat nt and yt as known functions of w̄t and ct, reduc-

ing the number of choice variables. The optimality condition for at+1 and the borrowing

constraint imply the necessary conditions:

uc (ct, nt) ≥ β (1 + r̄t+1)Etuc (ct+1, nt+1) , (7)

0 = (at+1 + a) (uc (ct, nt)− β (1 + r̄t+1)Etuc (ct+1, nt+1)) . (8)

Equation (7) is the standard Euler equation, and equation (8) is the Kuhn-Tucker condition

for the borrowing constraint.

Equilibrium The distribution of households with productivity et and asset at in period

t is denoted by µt, a measure on S = E×A. The asset market clearing conditions for assets,
labor and capital are,

At =

ˆ
S

atdµt, (9)
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Nt =

ˆ
S

etntdµt, (10)

Kt = At −Bt. (11)

A sequence of prices and allocations and policies {r̄t, w̄t, Tt, Bt+1, Kt+1, at+1, ct}∞t=0 is a com-

petitive equilibrium given initial conditions (B0, K0, µ0) if

1. Households maximize utility (taking prices and policies as given).

2. Firms maximize pro�ts (taking prices and policies as given).

3. Market clearing conditions (9), (10) and (11) hold.

2.3 The Optimal Taxation Problem

The Ramsey planner maximizes the sum of lifetime utilities of all households, by choosing

time paths for r̄t, w̄t and Bt consistent with equilibrium conditions described above. Later we

allow the planner to also choose a path for transfers Tt. As explained choosing the full time

path distinguishes this paper from many other studies on optimal taxation in the literature,

which e.g. maximize steady-state welfare. The Ramsey problem is

max
{r̄t,w̄t,Bt+1,Tt,at+1,ct}

ˆ
V0(a0, e0)dµ0

subject to the resource constraint (2), households budget constraints (3), households con-

sumption Euler equation (7), and the credit constraint (8). The other unknowns, including

nt, rt, wt, Kt, At, Nt can be all expressed as functions of the choice variables in the Ramsey

problem, using the equations described in subsection 2.2.

Following the notation of Acikgoz (2014), we assign present value Lagrangian multipliers

γt, θt+1 and ηt+1 to constraints (2), (7) and (8), respectively. The Lagrangian can be written

as

L =

ˆ
E0

∞∑
t=0

βt

{
(u (ct, nt) + uc (ct, nt) ((ηt (at − a)− θt) (1 + r̄t)− (ηt+1 (at+1 − a)− θt+1)))
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+γt

(
F (Kt, Nt)− δKt +Bt+1 −Gt − Tt − (1 + r̄t)Bt − r̄tKt − w̄tNt

)}
dµ0. (12)

To simplify the notation, we de�ne λt+1 := ηt+1 (at+1 + a) − θt+1. We derive FOCs from

the Lagrangian in the appendix and show that the interior solution of the Ramsey problem

satis�es the following conditions:

λt+1 : uc,t ≥ β (1 + r̄t+1)Et [uc,t+1]

with equality if at+1 > −a, (13)

at+1 : uc,t + ∂ct
∂at+1

ucc,t (λt (1 + r̄t)− λt+1)

= βEt
[
(1 + r̄t+1)uc,t+1 + ∂ct+1

∂at+1
ucc,t+1 (λt+1 (1 + r̄t+1)− λt+2)

]
+βγt+1 (FK (Kt+1, Nt+1)− δ − r̄t+1)

if at+1 > −a, otherwise λt+1 = 0, (14)

Bt+1 : γt = β (1 + FK (Kt+1, Nt+1)− δ) γt+1, (15)

r̄t : γtAt = γt (FN (Kt, Nt)− w̄t) ∂Nt
∂r̄t

+Et [uc (ct)λt + at (uc (ct) + ucc (ct) (λt (1 + r̄t)− λt+1))] , (16)

w̄t : γtNt = γt (FN (Kt, Nt)− w̄t) ∂Nt
∂w̄t

+Et [etnt (uc (ct) + ucc (ct) (λt (1 + r̄t)− λt+1))] . (17)

∂ct
∂at+1

, ∂ct+1

∂at+1
, etc. are known functions of control variables. The explicit expressions of these

functions are shown in the appendix. If transfers Tt are a choice variable for the planner we

obtain an additional FOC,

Tt : γt = Et
[
uc (ct) + ∂ct

∂Tt
ucc (ct) (λt (1 + r̄t)− λt+1)

]
+ γt (FN (Kt, Nt)− w̄t) ∂Nt

∂Tt
,

(18)

3 Analytical Results

A key �rst step in the quantitative analysis is to compute the optimal policy in the long-run.

The second step is then to use the optimal long-run policy as a terminal condition when

computing the optimal policy during the transition path. We therefore make the standard
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assumption that the optimal long-run policy is stationary, which we maintain throughout

the paper:

Assumption 1. For each set of initial conditions (B0, K0, µ0), the economy (including policy

and all other variables) converges to a unique steady state.

Note that this does not assume our main result on the independence of initial conditions.

Instead we assume that for each set of initial conditions (B0, K0, µ0), there is a unique

solution to the maximization problem of the Ramsey planner. Note that this assumption

holds in representative agent economies, where given the initial level of debt B0 and capital

K0 the steady state is unique, but at the same time the steady state depends on the initial

debt level, that is di�erent steady states can be reached for di�erent initial conditions. In

contrast, we show independence of initial conditions in our incomplete markets economy.

The same steady state is reached independent from where the economy started.

Whereas uniqueness is a generic property of maximization problems (it just rules out more

than one global maximimum),3 the second assumption that the optimal solution converges

to a steady state is standard and essential for tractability in incomplete market models but

little is known whether this is indeed the optimal outcome in incomplete market models.

Straub and Werning (2015) show that in a di�erent model, the capitalist-worker model

of Judd (1985), that this is not the case if the intertemporal elasticity of substitution is

below one (and the weight on capitalists is zero). For these parameter values Proposition

2 in Straub and Werning (2015) shows that no interior steady states exists, implying that

the assumption of convergence to an interior steady state is invalid. Such non-existence of

steady-states issues do not arise in our numerical applications as we are always able to �nd

a solution to the FOCs which characterize the steady state.4

3See Aiyagari (1994b) for a proof that a solution to the optimal taxation problem exists.
4Straub and Werning (2015) also consider the representative agent Ramsey taxation problem in Chamley

(1986) and �nd that an exogenous upper bound on capital taxes can be binding forever if the initial level
of government debt is close enough to the peak of a �La�er curve�. Again these issues seem not to arise
in our incomplete markets model. We also impose an upper bound on capital taxation but �nd it to be
binding only for the �rst period. Instead the planner �nds it optimal to lower labor taxes and issue more
bonds which requires a su�ciently high after-tax return on assets for households to be willing to absorb the
additional debt.
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3.1 Steady State

This assumption on the stationarity of the optimal long-run policy means that we can replace

all variables in the above FOC with their steady state values. Then the optimal stationary

policy is a solution to:

uc (c) ≥ β (1 + r̄′)E [uc (c′) |e] with equality if a′ > −a, (19)

uc (c) +
∂c

∂a′
ucc (c) [λ (1 + r̄)− λ′] = βE

[
(1 + r̄)uc (c′) +

∂c′

∂a′
ucc (c′) (λ′ (1 + r̄)− λ′′)

]
+βγ (FK (K,N)− δ − r̄) if a′ > −a, otherwise λ′ = 0, (20)

1 = β (1 + FK (K,N)− δ) , (21)

γA = γ (FN (K,N)− w̄)
∂N

∂r̄
+ E

[
uc (c)λµ (ds, e) + auc (c) +

∂c

∂r̄
ucc (c) (λ (1 + r̄)− λ′)

]
,

(22)

γN = γ (FN (K,N)− w̄)
∂N

∂w̄
+ E

[
enuc (c) +

∂c

∂w̄
ucc (c) (λ (1 + r̄)− λ′)

]
. (23)

again with the additional condition

γ = E
[
uc (c) +

∂c

∂T
ucc (c) (λ (1 + r̄)− λ′)

]
+ γ (FN (K,N)− w̄)

∂N

∂T
, (24)

if transfers Tt are a choice variable of the planner.

3.2 Optimal Long-run Level of Capital

Whereas most of our results are naturally based on numerical simulations, we can still

analytically derive the optimal level of capital in the long-run. A key property of the steady

state is that the capital level satis�es the modi�ed golden rule (see also Aiyagari (1995) and

Acikgoz (2014)). Equation (21) implies:

Theorem 1. The capital satis�es the modi�ed golden rule: β(1 + FK (K,N)− δ) = 1.

The modi�ed golden rule states that it is optimal to equalize the return on capital and

the rate of time preference, that is resources are e�ciently allocated across time. This

result is well known from representative agent economies where distributional concerns are

by assumption absent. Theorem 1 shows that we obtain the same e�ciency result in our
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incomplete market economy where redistribution might induce a deviation from production

e�ciency, reminiscent of the production e�ciency result in Diamond and Mirrlees (1971).

As is well known agents engage in precautionary savings to smooth consumption in

response to idiosyncratic income �uctuations and this smoothing is the better the more

assets are available. The planner does not issue more capital to increase the availability

of assets though but instead issues more government debt which has the advantage that

debt can be used as well as capital for consumption smoothing but does not interfere with

e�ciency. This reasoning is re�ected in the absence of a �precautionary savings� term in the

FOC determining the optimal level of capital.

A higher than e�cient capital stock could also be used to increase wages which would

bene�t those whose consumption is primarily �nanced from labor and not asset income as it

is the case in Dávila et al. (2012). In our Ramsey taxation problem the planner can increase

the capital stock as well but only by lowering capital income taxes but can use labor taxes

to change the after-tax labor income.5 We show that the planner uses labor taxes to modify

the after-tax wage and not a higher capital stock, which is again re�ected in the absence of

a �wage� term in the FOC determining the optimal level of capital.6

These arguments also establish that the availability of government debt and labor taxes

are necessary for theorem 1 to be valid. Without these instruments the modi�ed golden rule

does not hold. If labor taxes are not available, the planner needs to take into account that a

higher capital stock leads to higher wages and if government debt is not available the planner

needs to take into account that a higher capital stock improves consumption smoothing.

3.3 Optimal Long-run Level of Debt

As is well known, the steady state Ramsey planner solution depends on initial conditions,

i.e. the initial government debt level, when markets are complete (see e.g. Lucas (1990) and

Chari and Kehoe (1999)). The next theorem shows that this result is overturned if markets

5Dávila et al. (2012) study a di�erent problem, the constrained e�cient allocation in a model with
exogenous labor, where the planner also maximizes the discounted present value of lifetime utility but
decides how much each individual has to save without the need to implement those decisions through a
properly designed tax scheme. They �nd, using a calibration similar to ours, that the optimal level of capital
is much higher than the current U.S. level as the rich have to save more such that aggregate capital and thus
wages increase.

6Lowering debt while keeping the total amount of households' assets constant increases capital but lowers
the marginal product of capital (MPK). For a �xed after-tax interest rate r̄ (which is necessary to keep total
assets K +B constant), a lower MPK is equivalent to lower capital income taxes.
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are incomplete.

Theorem 2. The long-run values of government debt, of the labor income tax rate and of the

capital income tax rate are generically independent of the initial level of government bonds

(and the initial capital stock).

To better understand this result, it is important to recognize the key di�erence between

complete and incomplete market models is that households face credit constraints in the

incomplete markets world and do not in the complete markets world. If markets are complete

and thus in the absence of credit constraints the optimal steady state is linked to the initial

steady state through the optimality conditions along the transition path. The optimality

conditions allow to compute the solution backwards starting at the optimal steady state. One

can infer all period t variables from knowing all variables at period t+ 1. For example from

the capital stock in period t + 1 one infers the interest rate which using the consumption

Euler equation yields consumption in period t which in turn allows to infer the level of

investment and capital in period t. Credit constraints break this link. Knowing the interest

rate and period t+ 1 consumption of households who are credit constraint in period t is not

su�cient to infer their period t consumption level. A binding credit constraint prevents us

from using the consumption Euler equation as in the complete markets case. As a result there

is no deterministic link between the optimal and the initial steady state. Note that, from a

computational perspective, this missing link also prevents us from using a simple �backward

shooting� algorithm. But, as we explain in Section 5, it is Theorem 2 which renders the

computational algorithm tractable as we can �rst compute the steady state independent

from the transition path and in a second step solve for the transition path knowing both the

initial and terminal conditions.7

The intuition for why there is a unique optimal level of government debt is straightfor-

ward. As in Barro (1979) and as the case in complete markets models the planner aims to

smooth distortions over time using government debt. But with incomplete markets there is

an additional bene�t of providing more bonds, better consumption smoothing. The planner

7The credit constraints also explain why the optimal steady state wealth distribution is independent from
initial conditions. One property of the Aiyagari model is that the credit constraint will be eventually binding
for everyone. At the point in time when the credit constraint is binding a household's life is reset and the
individual history until this point is wiped out. Eventually everyone's history was eliminated at some point
such that the current situation is independent from the initial one, implying that each individual's initial
income level will be irrelevant for the long-run income position.
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therefore deviates from full distortion smoothing and instead faces a trade-o� between con-

sumption and distortion smoothing. As a result the planner lowers labor taxes initially as

there are two bene�ts - lower distortions today and higher debt and thus better consumption

smoothing - but just one cost (higher distortions tomorrow). Of course there are limits to

how high debt can become as eventually future distortions become too big and outweigh the

initial lower distortions and the bene�ts of higher liquidity. The optimal level of government

debt is determined as equalizing the bene�ts and costs at the margin. As a result in the

long-run both labor taxes and government bonds are high what has the additional advantage

that risky labor income is replaced with safe capital income.

A more formal intuition, and that is moving us closer to how the proof actually works,

is to note that there are not enough independent optimality conditions to determine the

long-run steady-state if markets are complete. Government bonds are not net worth since

Ricardian equivalence holds in complete market models and therefore agents are willing to

hold any amount of bonds in steady state. As a result bonds B appear only in the government

budget constraint (the household budget constraint is dropped by Walras' Law) but this is

not su�cient to pin down its long-run level. The steady-state government budget constraint

just determines pairs of B and labor taxes τn which satisfy this constraint but does not

determine each separately. In other words, an equation is missing and thus the long-run

level of government debt (and also labor taxes) is not determined just from the steady state

FOCs but only when initial conditions are taken into account.

We now argue that incomplete market models provide an additional equation - the asset

demand equation - which serves to determine the long-run debt level since bonds are net

worth in this class of models.8

8Some intuition can also be gained from a simple reduced-form model where bonds by assumption have
a value is one where the representative agent's utility equals

∞∑
t=0

βt(u(ct) + χ(Bt+1))

and the household budget constraint is (inelastic labor n = 1)

Bt+1 = (1 + r̄t+1)Bt − ct + wt.

In steady state the planner has to respect households demand for bonds function,

1− χ′(B)

u′(c)
= β(1 + r̄),

which is the additional equation that determines the long-run level of bonds in the Ramsey planner problem.
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Figure 1: Asset Markets in (In)complete Markets

As is well known, aggregate households asset demand in the Aiyagari economy is described

through a mapping between the after-tax interest rate r̄ and assets A as illustrated in Figure

1a. Since the capital stock is at its modi�ed golden rule level K∗ where the marginal

product of capital equals 1/β (Theorem 1), total assets A = K∗ + B are one-to-one related

to the number of bonds. Figure 2a shows that picking a speci�c capital income tax rate

and therefore an after-tax interest rate r̄, automatically also chooses a speci�c amount of

bonds B and vice versa. The planner therefore faces a trade-o�, illustrated in Figure 2b,

between supplying more bonds/liquidity and lower capital income tax rates. Choosing a

low level of bonds, Blow, allows for a low after tax interest rate r̄low, that is a high tax on

capital income. Choosing higher levels of bonds, Bmed or Bhigh, provides more liquidity and

thus enhances consumption smoothing but the capital income tax rates has to be lowered as

households require higher after-tax interest rates, r̄med or r̄high, to be willing to absorb the

higher amount of assets K∗+B. This B− r̄ trade-o� provides the additional equation which

allows us to determine the long-run level of debt using just the steady state FOCs. This

trade-o� is absent in complete markets models and therefore the long-run level of bonds is

not determined as illustrated in Figure 1b. In a steady state 1 + r̄ = 1/β and Ricardian

equivalence implies that the representative agents is willing to hold any amounts of bonds,

Alow, Amed, Ahigh.

The formal proof uses ideas and concepts developed by Debreu (1970) to show the generic

local uniqueness of competitive equilibria. The same approach can be used here since both

in Debreu (1970) and here one has to show that a set of equations is locally invertible and

The intuition in out incomplete markets model is the same with the important di�erence that bonds have a
real value not by assumption but endogenously.
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Figure 2: Additional Equation: B-r̄ trade-o�

thus has a unique local solution. In Debreu (1970) this set of equations is given by the

excess demand function and here it is the set of equations characterizing the optimal steady

state. Local uniqueness is guaranteed generically, that means it holds for a set of parameters

of measure one (here the distribution of idiosyncratic prodcutivity; initial endowments in

Debreu (1970)).9 As in Debreu (1970) local uniqueness implies that there are at most a

�nite number of solutions to the necessary FOCs of the optimal steady state. Figures 1 and

3 illustrate this reasoning. Figures 1 show the simple case where the asset demand curve

is monotonically increasing and therefore each level of assets is associated with a di�erent

after tax capital income tax rate r̄, that is we obtain only one solution. Figure 3 illustrates

that a �nite number of solutions is possible, that is multiple levels of assets, A1, A2, A3, are

associated with the same r̄. What both �gures have in common is that all solutions are

locally unique, that is can be separated by open sets.10 Adopting the arguments in Debreu

(1970) shows that this is the generic case. Figure 3b shows a non-generic case where a

continuum of assets levels A is associated with the same r̄ and thus an in�nite number of

solution would be possible. Following the arguments in Debreu (1970) we show that this is

a pathological case and not robust to small perturbations of fundamentals (distribution of

productivity shocks).

Since the steady state depends continuously on initial conditions - such as the initial debt

level - the �niteness of the number of steady states implies that the steady state does not

9The same proof to show local uniqueness can be used to show that the constraint quali�cation is gener-
ically satis�ed such that the Karush-Kuhn-Tucker optimality conditions are necessary.

10For each solution e there is an open set Ue such that e ∈ Ue and no other solution is in Ue.
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Figure 3: Generic Local Uniqueness

depend on initial conditions.

4 Quantitative Analysis: Steady State

The quantitative analysis has two main parts. First, we compute the optimal policy in the

long-run in this Section. Second, we use the optimal long-run policy as a terminal condition

to compute the optimal policy during the transition path in Section 5.

We start by calibrating the model to the U.S. economy and then compute the optimal

values for the capital and labor tax rates, the capital stock and the level of debt in the

steady state.11 We also compute the optimal policy for a di�erent Frisch elasticity, a di�erent

elasticity of intertemporal substitution, for the income process used in Aiyagari (1995) with

much smaller income inequality than in our benchmark and we also allow for permanent

productivity di�erences. We use the same calibrations and solve for the optimal policies

when lump-sum transfers are an available instrument, obviously a very e�ective tool for

redistribution

4.1 Calibration

To calibrate the initial state of the benchmark economy to the U.S., we �rst set the initial

values of the following variables according to the literature. Following Trabandt and Uhlig

11These are the same policy instruments as used in Acikgoz (2014).
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Parameters Value Description Source/Target
Exogenous Parameters

σ 2 Coe�cient of Risk Aversion
φ 1 Frisch Elasticity
α 0.36 Capital Share
δ 0.08 Depreciation Rate
τl 28% Labor Income Tax Rate

Trabandt and Uhlig (2011)
τk 36% Capital Income Tax Rate
B
Y

62% Debt to GDP Ratio Holter et al. (2015)
G
Y

7.3% Gov. Expenditure to GDP Ratio Prescott (2004)
Calibrated Parameters

ρ 0.93 Persistence of Labor Productivity a90/a50 = 7.55
σu 0.3 Std. Dev. of Labor Productivity var (log y) = 1.3
β 0.94 Discount Rate K/Y = 3
χ 13.5 Disutility from Labor mean(n) = 0.33

Table 1: Benchmark Calibration

(2011), initial labor income tax rate is set to 28% and capital income tax rate to 36%, as

shown in table 1. The Debt-to-GDP ratio is 62% as in Holter et al. (2015), and government

expenditure is 7.3% of GDP, same as in Prescott (2004). Then, some parameters in the

utility function and production function are set as follows: σ = 2, φ = 1, α = 0.36 and

δ = 0.08. The values for σ, α and δ are those used in most of the literature. The value of

the Frisch elasticity φ is set higher than what are considered typical choices in the empirical

labor literature but lower than the choice of many macroeconomists. As this parameter is

important for the size of labor taxes in standard models, we provides several robustness

checks. Anticipating our results of high labor income taxation, this high choice shows that

this �nding is not due to an inelastic household labor supply.

The rest of parameters are set to match related targets in the U.S. economy. The income

process is the following AR(1) process: log et = ρ log et−1 +ut, ut ∼ N (0, σu) where ρ = 0.93

and σu = 0.3, which are calibrated to two targets in the U.S. economy: �rst, the variance of

log labor income - 1.3, and second, the ratio of earning at the 90 percentile over earning at

the 50 percentile - 7.55. The time preference is set as β = 0.94 to match a capital-output

ratio of 3. Disutility from labor is χ = 13.5 such that the labor supply on average is 0.33.
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4.2 Results

We numerically solve the set of equations that characterize the steady state of the optimal

policy problem - equation (19) to (23) - based on the algorithm in Acikgoz (2014). We

conduct this experiment for various calibrations: The benchmark calibration shown in section

4.1 and several other parametrizations where we change one parameter at a time. We

consider a low Frisch labor supply elasticity of φ = 0.5 instead of 1, a small income e�ect

of σ = 1 instead of 2 and a low inequality calibration as in Aiyagari (1995) where we set

ρ = 0.6 and σu = 0.2 instead of 0.93 and 0.3 (We also have to change β and χ to match

the benchmark capital output ratio and labor supply). Finally we allow for permanent

productivity di�erences in addition to an stochastic element implying that not all income

states can be reached from any other state, e.g. the most productive worker today can never

fall below average productivity. While we discuss the results in detail in the next sections

Figure 4 provides an overview.

Several robust conclusions emerge across these parametrizations although the precise

numbers of course di�er as we show in the next sections. In the long-run, the level of

government debt is very high relative to the current U.S. level. Tax distortions apparently do

not put a tight bound on the welfare maximizing debt level. One reason is that higher labor

taxes tax the risky income stream and replace it with riskfree capital income from holding

bonds. The high level of debt together with the modi�ed golden rule for capital imply that

households require a higher after-tax interest rate and thus the tax on capital income is

low across parametrizations. The high level of debt also implies large interest rate payments

requiring a quite high tax on labor income, again robustly across all calibrations. The results

therefore show that the planner does not use high capital income taxes for redistribution but

instead decides to tax the risky labor income at a high rate and provides safe interest rate

income from holding a large amount of debt which serves to smooth consumption very well.

The detailed results for the benchmark calibration are considered in section 4.2.1, for a

low Frisch elasticity in section 4.2.3, a low income elasticity in section 4.2.4, a low inequality

economy in section 4.2.2 and permanent di�erences in section 4.2.5. We not only consider

the case where transfers are exogenous but we also report results when we include transfers

as an instrument (the details of the numerical approach are delegated to the appendix).
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Figure 4: Results Overview

4.2.1 Results: Benchmark Calibration

The �ndings for the optimal Ramsey policies for using three instruments (labor tax τn,

capital tax τk and transfers T ) in a steady state are summarized in column (1) of Table 2

while the corresponding numbers - calibrated to the U.S. economy - are in column (4), as a

comparison. In the long-run, optimal labor tax rate is as high as 76.7%, while the capital tax

rate is 10.9% - higher than the optimal tax rate of 0 in a complete markets model, though

lower than the current capital tax rate in the U.S. The quite sizable tax income is spent

on redistribution through lump-sum transfer - 9.16% of GDP - and more importantly, on

interest payment of the government debt - the debt level is as high as 5.5 times GDP. The

capital satis�es the modi�ed golden rule, so the capital output ratio is 2.48, slightly lower

than the current ratio in the U.S. The high labor tax and the large transfer reduce labor

supply from 0.33 to 0.21. This policy leads to a larger inequality of labor income but reduces

the inequality of wealth.

One important feature of this steady state is a high tax rate on labor and a large amount

of redistribution. First, the social planner largely reduces income inequality by setting a

high labor tax rate, even though given the high Frisch elasticity, the distortion on the labor
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Table 2: Ramsey Solutions of the Benchmark Economy

Ramsey (τk, τn, T ) Ramsey (τk, τn) Ramsey (τk, τn, T = 0) U.S.
(1) (2) (3) (4)

τl 76.7% 77.1% 75% 28%
τk 10.9% 11.4% 11.5% 36%
T
Y

9.16% 18.4% 0 13.4%
B
Y

5.5 3.96 6.98 0.62
K
Y

2.48 2.48 2.48 3.00´
n 0.21 0.20 0.23 0.33

N =
´
en 0.269 0.265 0.275 0.325

coe�. var. a 0.69 0.82 0.61 1.5
coe�. var. y 1.69 1.70 1.65 1.25
var (log y) 3.09 3.03 3.06 1.3

var (log(y + T )) 0.43 0.23 3.06 0.49
var (log(y + T + r̄a)) 0.35 0.29 0.41 0.47

Note - The table contains the optimal Ramsey steady-state policies. (1): Labor tax τn, capital tax τk and
transfers T are available instruments. (2): Labor tax τn and capital tax τk are available instruments. Transfers
T are �xed. (3): Labor tax τn and capital tax τk are available instruments. Transfers T are set to zero. (4):
U.S. economy (calibration target)

supply is quite sizable, a 36% lower labor supply compared to the level in the calibrated U.S.

economy. E�ective labor N drops by less (17%) as it is low productivity households who

reduce their labor supply most such that the inequality of after tax labor income log(y) =

log(w̄en) is higher in the optimal solution. However, the planner spends a large fraction

of the tax income as lump-sum transfer, which reduces inequality of after tax and transfer

income log(y+T ) from 0.484 to 0.431 leading to an improvement of low-income households'

welfare. The results show that the planner also reduces inequality through reducing wealth

inequality as the coe�cient of variation drops from 1.5 to 0.69, a drop which materializes in

lower inequality of income log(y + T + r̄a) of 0.346 relative to the benchmark level of 0.465.

To better understand the importance of lump-sum transfers in redistribution we now

consider the same optimal policy problem with one modi�cation: either we we �x the size of

transfers at their current level or do not allow the planner to use lump-sum transfers and set

T = 0. The �ndings are reported in columns (2) and (3) of table 2. When T = 0 is enforced

(column (3)), the optimal labor tax rate is slightly lower, 75% and the capital tax rate is

11.5%. Now that the government pays no transfer, the still high revenue from taxing labor
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income is spent on the interest payment of huge government debt, which increases to 6.98

times GDP, even larger than the debt level of 5.5 for the case with transfers. Households

on average hold high levels of assets and their returns are an important source of income.

The asset returns help to insure against the negative labor productivity shocks, especially

in this case where asset inequality is low - the coe�cient of variance of household assets is

only 0.61, compared to 1.5 in the original calibration. This means that even some labor

income poor households hold sizeable assets, and receive substantial interest payments on

government bonds. Although they do not receive direct transfers from the government

anymore, the indirect transfers through a more equal distribution of wealth substitutes for

the absence of the (more e�ective) redistribution through transfers. As a result the inequality

of log(y+T + r̄a) = 0.407 is larger than when transfers payments are allowed for but smaller

than in the benchmark although the variance of log(y) = log(y + T ) = 3.06 is much higher

than in the benchmark since labor supply is again more unequal. If we �x transfers at the

current U.S. level of 13.4% of current U.S. GDP, which is higher than the optimal value

reported in column (1), labor supply decreases even further but now the optimal level of

debt drops to about 4 times GDP (column (2) of 2). Now that transfers already ansure a

large amount of redistribution less redistribution and insurance though government debt is

needed.

4.2.2 Results: A Low Inequality Economy

The income process in our benchmark calibration implies quite large inequality. If the

income inequality is smaller, as in Aiyagari (1995), the motive for redistribution is smaller

and the optimal policies are very di�erent. Based on the benchmark economy, we change the

parameters of the income process to ρ = 0.6 and σu = 0.2. Then we recalibrate the model

by changing β to 0.973 and χ to 12.76 to match a capital output ratio of 3 and a average

labor supply of 0.33.

The optimal long-run tax rates in this low inequality economy are smaller, compared to

the benchmark economy. As shown in table 3, the labor income tax rate is now down to

59% though it is still quite high. The capital income tax rate is close to 0 - only 0.7%. The

transfer is set to its lowest possible value, that is, 0. The government debt is even larger

than in the benchmark, 11 times GDP.

In this low inequality economy, the planner has, compared to the high inequality bench-

mark economy, less incentives to reduce the income risks and to redistribute to low-income
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Ramsey (τk, τn, T ) Ramsey (τk, τn) U.S.
(1) (2) (3)

τl 59.0% 61.4% 28%
τk 0.7% 0.9% 36%
T
Y

0 15.0% 13.4%
B
Y

11.0 5.99 0.62
K
Y

3.35 3.35 3.00´
n 0.29 0.28 0.33

N =
´
en 0.305 0.296 0.352

coe�. var. a 0.49 0.58 0.71
coe�. var. y 0.65 0.60 0.51
var (log y) 0.38 0.33 0.24

var (log(y + T )) 0.38 0.11 0.13
var (log(y + T + r̄a)) 0.09 0.06 0.1

Table 3: Ramsey Solutions of Low Inequality Economy

households, resulting in a lower labor tax rate and zero transfers. Meanwhile, the plan-

ner still makes large payments to households, through the interest payments of government

debt, and this helps to insure against the labor productivity shocks, as we discussed in the

benchmark case without transfers.

Our �ndings show how a welfare-maximizing planner should redistribute and make use

of two instruments. One instrument is to pay lump-sum transfers, the classic way to re-

distribute. In an incomplete markets setting, the government has a second option, as the

capital-income of households can be increased. This way of redistribution involves issuing

government debt but at the same time keeping the steady state capital �xed at the level

that satis�es the modi�ed golden rule.

Which instrument should the planner use, transfers or government debt? It turns out

that the answer to this question depends on the labor supply elasticity and the amount of

inequality. Using transfers is more e�ective in redistributing from high to low-income house-

holds but it comes with a disadvantage as it also reduces labor supply through income e�ects.

As a result transfers are used when inequality is high (and thus the need to redistribute is

high). Debt is more e�ective than transfer when inequality is low as labor supply is reduced

much less than when transfer are paid. The use of transfer or debt for redistribution also

depends on the labor supply elasticity, where a higher one implies lower transfer and more

debt ceteris paribus. We will discuss this in more detail below.
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Table 4: Low Labor Supply Elasticity

Ramsey (τk, τn, T ) Ramsey (τk, τn) U.S.
(1) (2) (3)

τl 80.0% 81.1% 28%
τk 8.1% 7.9% 36%
T
Y

4.6% 18.0% 13.4%
B
Y

6.11 4.05 0.62
K
Y

2.43 2.43 3.00´
n 0.23 0.22 0.33

N =
´
en 0.28 0.28 0.33

coe�. var. a 0.63 0.79 1.53
coe�. var. y 1.64 1.66 1.31
var (log y) 2.20 2.20 1.30

var (log(y + T )) 0.59 0.18 0.51
var (log(y + T + r̄a)) 0.37 0.29 0.51

4.2.3 Results: Low Labor Supply Elasticity

Now we consider a lower labor supply elasticity and set the Frisch elasticity to = 1/φ = 0.5.

As a result of a recalibration we use now β = 0.936, ρ = 0.927, σu = 0.335 and χ = 37.7, so

that the modi�ed golden rule capital stock is close to the one in the benchmark. Results are

reported in Table 4.

A lower elasticity of labor supply implies that labor supply is less sensitive to an increase

in labor taxes, rendering a labor tax of 80% optimal. At the same time although the labor

tax rate is higher than in the benchmark economy, now in the optimal steady state, the

labor supply is in fact slightly higher: 0.23, compared to 0.19 in the benchmark, as one

would expect if the labor supply elasticity is reduced.

4.2.4 Results: Small Income E�ect

How labor supply reacts to the labor tax, depends not only on the Frisch elasticity which

governs the substitution e�ect, but also on the coe�cient of relative risk aversion, which

determines the income e�ect. Next, we consider the case with a smaller income e�ect by

setting the coe�cient of relative risk aversion σ = 1. As a result of a recalibration we use

now β = 0.958, ρ = 0.900, σu = 0.287 and χ = 45.6, so that the modi�ed golden rule capital

stock is now larger than in the benchmark. Results are reported in Table 5.
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Table 5: Small Income E�ect

Ramsey (τk, τn, T ) Ramsey (τk, τn) U.S.
(1) (2) (3)

τl 68.5% 69.1% 28%
τk 6.38% 7.9% 36%
T
Y

0 18.5% 13.4%
B
Y

8.61 4.20 0.62
K
Y

2.92 2.92 3.00´
n 0.23 0.22 0.33

N =
´
en 0.32 0.31 0.42

coe�. var. a 0.69 0.95 1.52
coe�. var. y 1.61 1.62 1.38
var (log y) 2.01 1.94 1.30

var (log(y + T )) 2.01 0.27 0.51
var (log(y + T + r̄a)) 0.53 0.31 0.49

A larger income e�ect increases labor supply, because a higher labor tax makes the

households poorer and as a result increases their labor supply, holding other things constant.

The smaller income e�ect in this experiment implies that labor supply is more responsive to

labor taxes, rendering a lower labor tax rate of 68.5% optimal. The smaller income e�ect

also decreases the negative income e�ects on labor supply of paying higher transfers, which

suggest that a higher level of transfers than in the benchmark might be optimal. However

such an argument overlooks that a smaller income e�ect also reduces the welfare gains from

redistribution since households are less averse to consumption �uctuations in this case, which

suggest a smaller level of transfers than in the benchmark. Our results show that the latter

e�ect dominates the �rst one and transfers are now zero in the optimal steady state. But we

can conclude that our �nding of a high tax on labor income is robust with respect to what

we assume for the elasticity of labor supply and the income e�ect.

4.2.5 Results: Permanent Income Di�erences

4.2.6 Understanding High Labor Taxes

The optimal high redistribution policy involves high labor tax rates and transfer payments

both with adverse consequences for aggregate employment. To understand why this policy
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is optimal we now discuss how the policy changes a�ect aggregate steady state labor supply,

N =

ˆ
E×A

en(a, e, s(a, e; τn, T ); τn, T )dµ(a, e), (25)

where n(a, e, s(a, e; τn, T ); τn, T ) is individual labor supply of a household with asset level

a and labor productivity e, who saves s(a, e; τn, T ) and faces the labor tax rate τn and the

transfer T . The change in aggregate supply between the optimal steady state and the initial

calibrated steady state can then be decomposed into the contribution due to the changes

in labor taxes, in transfers, in prices, in savings and in the joint distribution of assets and

shocks:

N∗ −N (26)

=

ˆ
E×A

en∗(a, e, s∗(·); τ ∗n, T ∗)dµ∗(a, e)−
ˆ
E×A

en(a, e, s(·); τn, T )dµ(a, e)

=

ˆ
E×A

en(a, e, s(a, e; τn, T ); τ ∗
n, T )dµ(a, e)−

ˆ
E×A

en(a, e, s(a, e; τn, T ); τn, T )dµ(a, e)︸ ︷︷ ︸
Labor tax change = −0.0097

+

ˆ
E×A

en(a, e, s(a, e; τn, T ); τ ∗n,T
∗)dµ(a, e)−

ˆ
E×A

en(a, e, s(a, e; τn,T ); τ ∗n, T )dµ(a, e)︸ ︷︷ ︸
Change in Transfer = 0.0379

+

ˆ
E×A

en∗(a, e, s(a, e; τn, T ); τ ∗n, T
∗)dµ(a, e)−

ˆ
E×A

en(a, e, s(a, e; τn, T ); τ ∗n, T
∗)dµ(a, e)︸ ︷︷ ︸

Change in Prices = −0.0207

+

ˆ
E×A

en∗(a, e, s∗(a, e; τ ∗
n, T

∗); τ ∗n, T
∗)dµ(a, e)−

ˆ
E×A

en∗(a, e, s(a, e; τn, T ); τ
∗
n, T

∗)dµ(a, e)︸ ︷︷ ︸
Change in Savings = 0.0302

+

ˆ
E×A

en∗(a, e, s∗(a, e; τ ∗n, T
∗)dµ∗(a, e)−

ˆ
E×A

en∗(a, e, s∗(a, e; τ ∗n, T
∗); τ ∗n, T

∗)dµ(a, e)︸ ︷︷ ︸
Change in Distribution = −0.0895

where optimal values have a superscript ∗.
The labor tax change keeps the labor supply function n and the saving function s as well

as prices and the distribution �xed and is thus a combination of the substitution and the

income e�ect, which depends on household's wealth. Keeping the saving function and not
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consumption constant allows us to also compute the e�ects of paying transfers which increase

consumption and thus lower labor supply. The next step considers the change in prices as

this induces a di�erent labor supply function n∗ instead of n. Households also adjust their

savings behavior in response to the policy change leading to an adjustment in labor supply.

Finally households labor supply also depends on the assets a it holds and the productivity

shock e so that a change in the joint distribution µ over assets and productivity leads to a

di�erent aggregate labor supply.

Next we investigate how the optimal steady state policies and labor supply depend on the

labor supply elasticity and income e�ects. In the benchmark both the labor supply elasticity

and the income elasticity are quite high and we redo our analysis now for lower values for

these elasticities to see whether labor is still taxed at a high rate and capital income is taxed

at a quite low rate.

4.3 Comparison with the Literature

Dyrda and Pedroni (2015) also compute the optimal transition path in an incomplete markets

economy, using however a quite di�erent approach. In particular they do not characterize

the optimal steady policies �rst before computing the transition but instead compute both

jointly.12 They �nd that the optimal capital tax rate in the long-run is as high as 45%

and the labor tax rate is at a relatively low level, 13%.At the steady state the lump-sum

transfer is 3.5% of GDP and debt is −125%. As a comparison, we use their utility function

and income process to calibrate our model to match the targets used in their calibration.13

These targets are actually not so di�erent from what we use in our paper, except that the

government expenditure in their calibration is higher than ours: 15% of GDP v.s. 7.3%.

The targets and parameters are shown in table ??. Then we use our approach to solve for

the optimal steady state. TBC

12They approximate the optimal policies, including tax rates and transfers, over time, using splines with
nodes, and then search for the splines and the associated policies that lead to the highest welfare for the
Ramsey planner.

13The only di�erence is that in our model, the capital tax also applies to households with negative asset,
i.e., these households receive tax deduction for interest paid on debt. In their model, the capital tax only
applies to households with positive asset. Given that the borrowing limit in their paper is not so di�erent
from 0, we �nd that this di�erence does not change the calibrated equilibrium.
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5 Quantitative Analysis: Transition

A main objective of this paper is, as emphasized a couple of times before, to compute

the path of tax rates and government debt which maximizes welfare at date 0. This is a

huge computational challenge: Several hundred or thousands of variables have to be chosen

in a highly nonlinear optimization problem. However, our previous result on the optimal

steady state turn this non-manageable optimization problem into a manageable one. We

have shown that the optimal steady state is independent of initial conditions. From a

computational point of view this means that we know the optimal long-run policies and

allocations without having to compute the transition. Instead we know the initial conditions

(economy calibrated to U.S. economy) and we know the terminal condition, the optimal

steady state characterized above. The (still huge) computational problem is then to �nd the

optimal policy path which satis�es all necessary �rst-order conditions along the transition and

at the same time satis�es the initial and terminal conditions. This problem is still a challenge

as it involves solving hundreds or thousands of nonlinear equations but is signi�cantly easier

(and therefore tractable) than the original problem, which has to �nd the optimal transition

and the optimal terminal point at the same time. Given the large number of variables

involved there is no way to check the global validity of a candidate solution, a check which

is not necessary in the current approach.

Knowing the optimal path of policies allows us to compute the welfare gains of switching

to the optimal policy and helps to understand the properties of the optimal steady states

policies better as those obviously depend on the transition.

5.1 Computational Algorithm

Appendix III.2 outlines the details of computing an optimal transition, starting from the

model calibrated to the U.S. economy and going to the optimal long run steady state.

5.2 Calibration of Initial Steady State

In order to facilitate the computation of the optimal transition path we recalibrate the model

with 10-year periods. We make some changes that make the economy similar but not exactly

identical to the benchmark economy in Section 4. Most notably we assume that the variance

of the innovations to labor productivity, σu, is 10 times the variance on a one-yearly basis
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Parameters Value Description Source/Target
Exogenous Parameters

σ 2 Coe�cient of Risk Aversion
φ 1 Frisch Elasticity
α 0.36 Capital Share
δ 0.57 Depreciation Rate
τl 28% Labor Income Tax Rate

Trabandt and Uhlig (2011)
τk 36% Capital Income Tax Rate
B
Y

62% Debt to GDP Ratio Holter et al. (2015)
G
Y

7.3% Gov. Expenditure to GDP Ratio Prescott (2004)
Calibrated Parameters

ρ 0.39 Persistence of Labor Productivity a90/a50 = 7.55
σu 0.94 Std. Dev. of Labor Productivity var (log y) = 1.3
β 0.50 Discount Rate K/Y = 3
χ 37.0 Disutility from Labor mean(n) = 0.33

Table 6: Benchmark Calibration with 10-year Periods

an we then adjust the parameter governing the persistence of labor productivity, ρ, to still

hit the calibration target a90/a50 = 7.55. We also set K/Y = 0.3.

5.3 Results Transition

For now we focus on a transition path with optimal choice of debt, capital tax and labor

income tax. Transfers are kept at the calibrated benchmark level. Figure 5 plots the optimal

transition path of capital taxes, τk, and labor income taxes, τl, and Figure 6 plots the optimal

path of the capital stock, K, and government debt, B. It is optimal to subsidize labor in

the �rst few periods and to �nance this by increasing debt and taxing capital high. The

labor income tax, τl, starts out at -8.6% and gradually increases to a level of about 80%

after 100 years (the long run steady state level of τl is 80.3% with the 10-year calibration).

The capital tax starts out at 99.8% and gradually decreases to a level of about 10% after

100 years (the long run steady state level of τk is 11.6% with the 10-year calibration). Debt

is rapidly increasing in the �rst few periods and reaches a peak after 50 years before it starts

decreasing towards the steady state level. At the peak, debt relative to GDP in the initial

steady state, B/Y0, is about 0.29 (2.9 in yearly terms), whereas the long run level is about

0.18 (1.8 in yearly terms). The capital stock decreases smoothly towards the long run level
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for the �rst 70 years and then stays relatively constant.
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Figure 5: Optimal Transition Path for labor tax τl (left) and capital tax τk (right)

We solve an 800 year transition path even if there is not that much going on in terms of

the optimal policies after the �rst 100 years. It does, however, take 500-600 years before the

distribution of agents in the economy converges exactly to the long run steady state. To see

this one can for instance look at the average value of the Lagrange multipliers, λ, which we

plot in Figure 7. It converges to it's steady state level after about 550 years.
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Figure 6: Optimal Transition Path for B (left) and K (right). Y0 is 10-year output.
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Figure 7: Optimal Transition Path for Average λ

5.4 Welfare Gains

To quantify the lifetime welfare gain to agents in period 0 of the transition relative to the

initial steady state, we ask the question of by how many % we need to increase consumption

in every state of the initial steady state to make the expected value function equal to to the

expected value function in the �rst period of the transition. In other words we solve for a

constant, ϕ, such that:

E[VSS(a, e) | c(a, e) = ϕc(a, e)] = E[V0(a, e)] (27)

The lifetime welfare gain achieved from moving to the optimal policy taking into account

the full transition period is equivalent to increasing the consumption in all states of the

initial steady state by 4.2%.

6 Conclusion

In incomplete markets model of the Bewley-Imrohoroglu-Huggett-Aiyagari type, inequality

is to a large degree purely due to luck. This calls for a large amount of redistribution in

an optimal welfare maximizing policy. Several classic instruments are available for redis-

tribution: labor income taxation, capital income taxation and paying transfers. However,
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a large amount of redistribution could also in�ict large e�ciency losses limiting how much

redistribution is desirable. Whereas all of these instruments can reduce inequality, it is

therefore unclear how much redistribution should come from which instrument. Each of

these instruments comes with e�ciency losses in terms of distorting labor supply and/or

capital accumulation. Furthermore, if markets are incomplete, the planner can also reduce

the inequality of wealth through issuing more debt such that low-labor income households

can also rely on their asset income for consumption purchases.

This paper suggests the following conclusions how to redistribute in a welfare maximizing

way: The optimal policy to provide insurance is to heavily tax labor in the long-run, and

redistribute through transfers and government bonds. In particular redistribution is through

high labor taxation but capital income is taxed at a low rate only, a conclusion that holds

in high and low inequality economies and is also robust to changing parameters such as the

labor supply elasticity.

The choice whether to use transfers or higher debt, however, depends on the properties of

the economy. Paying transfers is an e�ective tool to redistribute when the income inequality

is high, but not if inequality is low since then the disincentive e�ects on labor supply outweigh

the gains from redistribution. In the latter case instead, a large amount of government debt

is used to lower wealth inequality and thus makes consumption more equal across households.

Given this role and the smaller disincentives e�ects than paying transfers, the debt level is

generally high, not only in low inequality economies but also in the high inequality economies

since redistributing through transfers only would in�ict too large disincentive e�ects on the

economy.

Results during the transition to the long-run optimum are quite di�erent though. During

the transition debt is accumulated and this increase in government revenue is used to lower

labor taxes below its current U.S. level. Only when the long-run steady state is approached

and the amount of debt and associated interest rate payments are high, it becomes necessary

to increase labor taxes to balance the budget. At that time, capital taxes have already

converged to a low level after initial periods of high high taxation, a well known result as

capital is supplied quite inelastically in the short-run.

We prove two theoretical results which enable this quantitative analysis. We show theo-

retically that the optimal capital stock is at the modi�ed golden rule and that the long-run

optimal steady state is independent of initial conditions. In particular, there is a unique

long-run optimal level of government debt independent of the initial level of debt in our
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incomplete markets model, a result not valid in complete market models.
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APPENDICES

I Appendix: Derivations

In this section, we provide the derivations of key equations for the household problem, the

Ramsey planner's problem and the steady state.

I.1 Households' Problem

A household's labor supply can be expressed as a function of e�ective wage and consumption,

using the F.O.C of nt:

uc (ct, nt) etw̄t + un (ct, nt) = 0⇒
−un (ct, nt)

uc (ct, nt)
= etw̄t ⇒

χn
1
φ

t

c−σt
= etw̄t ⇒

nt =
(
χ−1etw̄tc

−σ
t

)φ
,
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and labor income can be also expressed as a function of wage and consumption, as follows:

yt =

(
χ−1e

1+ 1
φ

t w̄
1+ 1

φ

t c−σt

)φ
.

Moreover,

etwtuct + unt = 0

will be a useful expression to simplify expressions later. Given the expressions of n and

y, using the F.O.C w.r.t. at+1 and Kuhn-Tucker condition for the borrowing constraint, a

household's policy functions solve the following system of necessary conditions:

u′ (ct) ≥ β (1 + r̄t+1)E [u′ (ct+1)] ,

0 = (at+1 + a) (u′ (ct)− β (1 + r̄t+1)Eu′ (ct+1)) ,

ct + at+1 ≤ at (1 + r̄t) + yt + Tt

at+1 + a ≥ 0.

I.2 Planner's Problem

Given the planner's problem described in the main text, here we derive the Lagrangian

equation (12). First, denote the history of a household's labor productivity from period

0 to t as ht = {ht−1, et} where h0 = {e0}. Let θt+1, ηt+1 and γt represent the present

value Lagrangian multipliers for (7), (8) and (2) respectively. Then the Lagrangian can be

expressed as

L =
∞∑
t=0

βt
∑
ht

Π
(
ht
)(

u
(
ct
(
ht
))

+θt+1

(
ht
)(

u′
(
ct
(
ht
))
− β (1 + r̄t+1)

∑
ht+1

Π
(
ht+1|ht

)
u′
(
ct+1

(
ht+1

)))

−ηt+1

(
ht
) (
at+1

(
ht
)

+ a
)(

u′
(
ct
(
ht
))
− β (1 + r̄t+1)

∑
ht+1

Π
(
ht+1|ht

)
u′
(
ct+1

(
ht+1

))))

+
∞∑
t=0

βtγt (F (Kt, Nt) + (1− δ)Kt +Bt+1 − (Gt + Tt + (1 + r̄t)Bt + r̄tKt + w̄tNt))
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=
∞∑
t=0

βt
∑
ht

Π
(
ht
)(

u
(
ct
(
ht
))

+ u′
(
ct
(
ht
))

(
θt+1

(
ht
)
− θt

(
ht−1

)
(1 + r̄t)− ηt+1

(
ht
) (
at+1

(
ht
)

+ a
)

+ ηt
(
ht−1

) (
at
(
ht−1

)
+ a
)

(1 + r̄t)

))

+
∞∑
t=0

βtγt (F (Kt, Nt) + (1− δ)Kt +Bt+1 − (Gt + Tt + (1 + r̄t)Bt + r̄tKt + w̄tNt)) .

De�ne λt+1 ≡ ηt+1 (at+1 + a)− θt+1, and the Lagrangian can be further simpli�ed as

L =
∞∑
t=0

βt
∑
ht

Π
(
ht
) (
u
(
ct
(
ht
))

+ u′
(
ct
(
ht
)) (

λt
(
ht−1

)
(1 + r̄t)− λt+1

(
ht
)))

+
∞∑
t=0

βtγt (F (Kt, Nt) + (1− δ)Kt +Bt+1 − (Gt + Tt + (1 + r̄t)Bt + r̄tKt + w̄tNt)) ,

subject to 3, 4, 9, 11 and 10, starting from initial conditions a0 (h−1) = a0, B0 and λ0 (h−1) =

0.

The �rst order conditions can be obtained from the Lagrangian, by taking derivatives

w.r.t. to the unknowns λt+1, at+1, Bt+1, Tt, r̄t, w̄t. This gives us the set of FOCs in the main

text, i.e., equation 13 to 17. The FOCs, together with the constraints, i.e., equation 3, 4,

11 and 10, characterize the necessary conditions for the interior solution of the planner's

problem.

In these FOCs, partial derivatives including ∂Nt
∂Tt

, ∂Nt
∂r̄t

and so on can be expressed as

∂Nt

∂Tt
=

ˆ
∂nt
∂ct

∂ct
∂Tt

dµt,

∂Nt

∂r̄t
=

ˆ
∂nt
∂ct

∂ct
∂r̄t

dµt,

∂Nt

∂w̄t
=

ˆ (
∂nt
∂w̄t

+
∂nt
∂ct

∂ct
∂w̄t

)
dµt.

Moreover, expressions for ∂nt
∂ct
, ∂ct
∂Tt

, and similar partial derivatives are easy to obtain given

equation (5), nt =
(
χ−1etw̄tc

−σ
t

)φ
, and (6), yt = etntw̄t = (etw̄t)

1+φ
(
χ−1c−σt

)φ
, which de-

scribe how nt and yt depend on ct and w̄t. Using also the household budget constraint,
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equation (3), we obtain the partial derivatives:

∂nt
∂ct

= −σφ
(
χ−1w̄tet

)φ
c−σφ−1
t = −σφnt

ct
,

∂nt
∂w̄t

= φ
nt
w̄t
,

∂ct
∂Tt

=
∂yt
∂ct

∂ct
∂Tt

+ 1 ⇒ ∂ct
∂Tt

=
1

1− ∂yt
∂ct

=
1

1 + σφyt
ct

,

∂ct
∂w̄t

=
∂yt
∂ct

∂ct
∂w̄t

+
∂yt
∂w̄t

⇒ ∂ct
∂w̄t

=

∂yt
∂w̄t

1− ∂yt
∂ct

=
etnt

1 + σφyt
ct

,

I.3 Steady State

Given the assumption that variables are stable at the steady state, we can obtain the FOCs

at the steady state by simply replacing variables in the FOCs of the transition dynamics at

their steady state values. For example, r̄t, r̄t+1 can be replaced by the steady state value r̄.

Same for w̄t, Bt, and all the aggregate variables. Notice that households' choice variables

at+1, λt+1 are di�erent, because they are not constant variables but depend on the state of

the household. Following Straub and Werning (2015), we focus on the recursive formulation

of the problem, that is to say, current period variables a and λ are the state variables which

summarize the history and decide next period choice variables a′ and λ′, together with current

period productivity shock e. We can then replace at and λt with a and λ, and replace at+1

and λt+1 with a
′ and λ′. Now the steady state solution is characterized by a set of FOCs, as

equation 19 to 23, together with following constraints:

c+ a′ = a (1 + r̄) + y (e, w̄) + T, (A1)

G+ (1 + r̄)B + r̄K + w̄N + T ≤ F (K,N) +B, (A2)

K = A−B, (A3)

A =

ˆ
adµ, (A4)

N =

ˆ
endµ. (A5)
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II Proofs of Section 3

Proof of Theorem 1

Equation γ = β (1 + FK (K ′, N ′)) γ′ implies in the steady state since γ = γ′ that 1 =

β (1 + FK (K,N)), which is the modi�ed golden rule.
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Proof of Theorem 2

The idea of the proof is as follows. We �rst show that the Ramsey problem is generically

regular (building on Debreu (1970) and Dierker and Dierker (1972)) which implies that

a stationary solution to the the Ramsey problem is locally unique. We then show that

the steady state depends continuously on initial conditions such as the initial debt level.

Together with the local uniqueness this implies that the steady state does not depend on

initial conditions. The proof for now assumes that labor supply is exogenous, n = N = 1,

and we explain later that the arguments generalize in a straightforward way to the case with

endogenous labor supply.

We �rst show local uniqueness and divide this proof into several steps. As a �rst step we

show that the steady state, which is characterized as a solution to

uc (c) ≥ β (1 + r̄′)E [uc (c′) |e] with equality if a′ > −a, (A6)

uc −
∂c

∂a′
ucc (λ (1 + r̄)− λ′) = βEt

[
(1 + r̄′)u′c +

∂c′

∂a′
u′cc (λ′ (1 + r̄′)− λ′′)

]
+ βγ (FK (K ′, N ′)− δ − r̄′) ,

if a′ > −a, otherwise λ′ = 0. (A7)

1 = β (1 + FK (K,N)− δ) , (A8)

γA = E [uc (c)λ+ auc (c) + aucc (c) (λ (1 + r̄)− λ′)] , (A9)

γN = E [enuc (c) + enucc (c) (λ (1 + r̄)− λ′)] . (A10)

c+ a′ = a (1 + r̄) + y (e, w̄) + T, (A11)

G+ (1 + r̄)B + r̄K + w̄N ≤ F (K,N) +B, (A12)

K = A−B, (A13)

A =

ˆ
adµ, (A14)

N =

ˆ
endµ. (A15)

can be characterized as the solution to two equations zAM(r̄, w̄) = 0 and zLM(r̄, w̄) = 0

in the unknowns r̄ and w̄, the �excess demand� functions in the Asset Market and the Labor

Market. Regularity of the steady state then means that these two functions are locally

invertible, what we establish in Step 2 below.

Step 1: Characterization of steady state (�excess demand�)
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To express the steady state as a solution to two equations we �rst show the existence of

steady-state Lagrange Multipliers q.

i) Proof of Existence of steady-state Lagrange Multipliers q

Here we prove the existence and uniqueness of a linear-a�ne function q′(q, a, e) = α0 (a, e) q+

α1 (a, e), which solves the steady state equation (A7), which after using (A6), division by γ

and de�ning q = λ/γ equals

If a′ = −a, q′ = 0.

If a′ > −a:

If a′ > −a: − ∂c

∂a′
ucc (c) [q (1 + r̄)− q′]

= βE
[
∂c′

∂a′
ucc (c′) [q′ (1 + r̄)− q′′] |e

]
+ 1− β (1 + r̄)

= βE
[
− (1 + r̄)

∂c′

∂a′′
ucc (c′) [q′ (1 + r̄)− q′′] |e

]
+ 1− β (1 + r̄) , (A16)

where we used that ∂c′

∂a′
= − (1 + r̄) ∂c′

∂a′′
.

We establish our results for given interest rate r̄ and wage w̄ , individual saving de-

cisions a′(a, e) and individual consumption decisions c(a, e). Introduce the notation v :=
∂c
∂a′
ucc(c(a, e)) > 0 and ditto notation for v′ := ∂c′

∂a′′
ucc(c(a

′, e′)) > 0. Rewrite the a�ne

q′(q, a, e) = α0 (a, e) q + α1 (a, e) as

q′(q, a, e) =
[
(1 + r̄)q +H(a, e)/v(a, e)

]
·K(a, e), (A17)

where H,K are nonnegative, K(a, e) = 0 for those (a, e) such that a′(a, e) = −a, so that

α0 (a, e) = (1 + r̄) ·K(a, e) and (A18)

α1 (a, e) = K(a, e)H(a, e)/v(a, e). (A19)

Similarly

q′′(q′, a′, e′) =
[
(1 + r̄)q′ +H ′/v′

]
·K ′ (A20)

for H ′, K ′ all nonnegative, K ′(a′, e′) = 0 for those (a′, e′) such that a′′(a′, e′) = −a.
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Insert this into (A16)

(1 + r̄)(K − 1)vq +KH − 1 + (1 + r̄)β = (1 + r̄)βE [(1 + r̄)(K ′ − 1)v′q′ +H ′K ′|e] (A21)

= (1 + r̄)βE
[
(1 + r̄)2(K ′ − 1)v′Kq + (1 + r̄)(K ′ − 1)HKv′/v +H ′K ′|e

]
(A22)

Gather the �q� terms:

(1 + r̄)(K − 1)v = (1 + r̄)3βE [(K ′ − 1)v′|e]K (A23)

and solve out for K, taking into account where it must be zero:

K =
1{(a,e);a′>−a}

1 + (1 + r̄)2βE
[
(1−K ′)v′/v

∣∣∣e] . (A24)

We de�ne an iteration of functions which converge to the solution. As initialization we set

K0(a, e) ≡ 0 and de�ne inductively

Kn+1(a, e) =
1{(a,e);a′>−a}

1 + (1 + r̄)2βE
[{

1−Kn(a′(a, e), e′)
}
v′(a′, e′)/v(a, e)

∣∣∣e] (A25)

By induction, it follows that 1 ≥ Km+1 ≥ Km ≥ . . . K0 = 0. This is obviously true for n = 0.

For m+ 1 it follows from Km+1 ≥ Km that

Km+2(a, e) =
1{(a,e);a′>−a}

1 + (1 + r̄)2βE
[{

1−Km+1(a′(a, e), e′)
}
v′(a′, e′)/v(a, e)

∣∣∣e] (A26)

≥
1{(a,e);a′>−a}

1 + (1 + r̄)2βE
[{

1−Km(a′(a, e), e′)
}
v′(a′, e′)/v(a, e)

∣∣∣e] (A27)

= Km+1(a, e). (A28)

We therefore obtain a well-de�ned measurable function K de�ned by the pointwise

K(a, e) := supmKm(a, e) (∈ [0, 1] and 0 when a′ = −a).
That was the �q� terms. For the constant term:

KH − 1 + (1 + r̄)β = (1 + r̄)βE
[
(1 + r̄)(K ′ − 1)HKv′/v +H ′K ′

∣∣∣e], i.e. (A29)
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H ·
{

1 + (1 + r̄)2βE
[
(1−K ′)v′/v

∣∣∣e]} ·K︸ ︷︷ ︸
=1 on {(a,e);a′>−a} by (A24)

= 1− (1 + r̄)β + (1 + r̄)βE
[
H ′K ′

∣∣∣e] (A30)

As we can safely put H = 0 on {(a, e); a′ = −a}, we can iterate from H0(a, e) ≡ 0 the relation

Hm+1(a, e) =

{
1− (1 + r̄)β + (1 + r̄)βE

[
Hm(a′(a, e), e′)K ′(a′(a, e), e′)

∣∣∣e]} · 1{(a,e);a′>−a}
(A31)

Now the condition (1 + r̄)β supe EK ′(a′(a, e), e′) < 1 (recall that K ′ ∈ [0, 1] and (1 + r̄)β < 1

� and except in the trivial case, zero when the credit constraint is binding) is su�cient for

a contraction and unique solution H; if we start at 0, then we have bounded monotonicity

1 ≥ Hm+1 ≥ Hm ≥ 0, and thus H de�ned by H(a, e) := supmHm(a, e) ∈ [0, 1] does the job.

We have therefore established the existence a solution q′(q, a, e) = α0 (a, e) q + α1 (a, e) =[
(1 + r̄)q +H(a, e)/v(a, e)

]
·K(a, e).

ii) �Excess Demand� Functions

For a given w̄, equations (A6) and (A11) describe households consumption and savings

behavior as a function of r̄, resulting in an aggregate asset supply function S(r̄, w̄).14

Asset demand D, the sum of capital and bonds, follows from the government budget

constraint (A12) using (A13) and (A15)

D(r̄, w̄) := A = K +B =
F (K,N)− w̄N −G

r̄
,

which, since we already established that capitalK satis�es the modi�ed golden rule (equation

(A8)), is actually just describing how many government bonds are demanded. We therefore

de�ne

zAM(r̄, w̄) = D(r̄, w̄)− S(r̄, w̄).

A solution r̄ (for given w̄) to zAM(r̄, w̄) = 0 fully characterizes a stationary Aiyagari economy

(and solves equation (A14)).

To derive the second equation zLM(r̄, w̄) we use the remaining equations (A9) and (A10).

14While it is conceivable that aggregate asset supply is not unique given r̄ and w̄, this is not a concern here
since we impose the standard assumption that the planner picks the unique welfare maximizing allocation.
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After division by γ equation (A9) reads

A = E
[
uc (c) q + a

uc (c)

γ
+ aucc (c) (q (1 + r̄)− q′)

]
,

where q′ depends on r̄, w̄ and other parameters. Solving this equation for γ yields a function

γ̃(·):

γ̃(·) =
E
[
a
A
uc (c)

]
1− E

[
uc(c)q
A

+ aucc (c) (q (1 + r̄)− q′)
]

Plugging this function into (A10) (and noting n = 1) yields

ˆ
endµ = E

[
e[
uc (c)

γ̃
+ ucc (c) (q (1 + r̄)− q′)]

]
.

We therefore de�ne

zLM(r̄, w̄) := E
[
e[
uc (c)

γ̃
+ ucc (c) (q (1 + r̄)− q′)]

]
.

The optimal steady state then satis�es

zLM(r̄, w̄) =

ˆ
endµ.

Step 2: Local Invertibility

We �rst show that the interest rate r̄ can generically (in the sense of Debreu (1970)) be

expressed locally as a function of w̄ (and other parameters). After that we show that w̄ is

also generically locally invertible.

i) Interest Rate

Acemoglu and Jensen (2015) show that a tightening of the borrowing limit leads to an

increase in the supply of assets for given r̄ and w̄ but will not change the modi�ed golden rule

level of capital.15 The transversality theorem (see e.g. Dierker and Dierker (1972), Shannon

15Acemoglu and Jensen (2015) call such an experiment a positive shock. Their objective is more demanding
then just showing an increase in the supply function. They characterize the response of the equilibrium output
per capita which has to take into account the endogeneity of prices.
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(2006)) implies then that

∂zAM(r̄, w̄)

∂r̄
6= 0,

which implies that r̄ is locally invertible and is thus a function of w̄ and can be written as

r̄(w̄).

ii) Wage The after tax wage w̄ is determined as the solution to

zLM(r̄(w̄), w̄, µ) =
∑
e∈E

eµ(e),

where we have plugged in r̄(w̄) and use, consistent with the numerical implementation, a

more convenient discrete space E = {e1 < e2, . . . < eN}.
We now follow Debreu (1970) and apply Sard's theorem to the function F : RN+1 → RN ,

F (w̄, {µ(ei)}Ni=1) = (µ(e1), µ(e2), . . . , µ(eN−1),
zLM(r̄(w̄), w̄, µ)−

∑N−1
i=1 eiµ(ei)

eN
).

The optimal solution is characterized as F (w̄, {µ(ei)}Ni=1) = (µ(e1), . . . , µ(eN)).

Following Debreu (1970) we use now Sard' theorem which implies that the set of critical

values has measure zero.16

Both the distribution µ and the after-tax wage w̄ live on a compact spaceK, (w̄, {µ(ei)}Ni=1) ∈
K. This is obvious for for µ(ei) ∈ [0, 1] and for w̄ follows from Aiyagari (1994b) who ensures

that no-one is willing to work in the market at a wage of 0 and the marginal productivity of

labor is bounded since capital and hours (time) are.

The inverse image F−1(µ(e1), . . . , µ(eN)) of a regular value ((µ(e1), . . . , µ(eN)) is compact

since F is continuous andK is compact. Consider now e := (w̄, {µ(ei)}Ni=1) ∈ F−1(µ(e1), . . . , µ(eN)),

for a regular ((µ(e1), . . . , µ(eN)) implying that the Jacobian does not vanish. The inverse

function theorem implies that for each such e there is an open neighborhood Ue of e such

that F−1(µ(e1), . . . , µ(eN)) ∩ Ue = {e}. Since F−1(µ(e1), . . . , µ(eN)) is compact it can be

covered by �nite number of open sets Ue and therefore is �nite.

This implies that the set of µ(e1), . . . , µ(eN) for which an in�nite number of steady states

exists consists of critical values only and has therefore measure zero (and so does its closure).

16For a continuously di�erentiable function F : U ⊂ Rm → Rn, a point e ∈ U is a critical point if the
Jacobian matrix of F at e has rank smaller than n. A point µ ∈ Rn is a critical value if there is a critical
point e ∈ U such that F (e) = µ. A point µ ∈ Rn is a regular value if it is not a critical value.
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Vice versa, the number of steady state solution is generically, that is on a measure one, �nite.

Step 3: Continuity w.r.t. Initial Conditions

Berge's maximum theorem17 implies that the optimal policy path, and thus in particular

the steady state, depends continuously on the initial level of government debt. That is the

function ζ : R→ Rn mapping the initial government debt level into the steady state policies

(tax rates and debt level) is continuous.

Step 4: Independence of Initial Conditions

We have shown in Step 2 that the set of solutions to the �rst order conditions is �nite.

These �rst-order conditions do not depend on the initial level of government debt. That

is the �nite set of solutions does not depend on the initial level of debt. The �rst order

conditions are necessary conditions for an optimum, implying that every optimal policy has

to be one of the �nite solutions to the �rst order conditions. What remains to be shown is

that each initial debt levels always yields the same solution to the �rst order conditions, that

is that there is no selection of these solutions based on initial conditions. Using our results

above, this is straightforward.

A continuous function mapping into a discrete set is constant, implying that ζ maps

every initial debt level to the same steady state policy.

Remarks:

Elastic Labor supply

The same arguments hold when labor supply is elastic. We then de�ne

zLM(r̄, w̄) := E
[
en[

uc (c)

γ̃
+ ucc (c) (q (1 + r̄)− q′)]

]
+ (FN (K,N)− w̄)

∂N

∂w̄

17See Theorem 17.31 in Aliprantis and Border (2006) for the in�nite-dimensional version. Here we use
the same topology, the product topology, as in Appendix A of Aiyagari (1994a). The equations describing
the constraints of the Ramsey planner problem are continuous and the constrained set is by Tychono�'s
theorem compact. The maximand of the Ramsey problem is continuous as well. These properties imply
that a solution to the optimal tax problem exists, as shown in Aiyagari (1994a), and allow us to apply
Berge's maximum theorem. Finally, note that a function is continuous in the product topology i� it all its
projections are continuous, implying that the usual real analysis ε/δ characterization of continuity holds for
all t and in particular for arbitrarily large t.
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and the optimal steady state then satis�es

zLM(r̄, w̄) =
∑
e

πeen (e, w̄) .

Additional Policy Instrument: Transfers

The same arguments hold when the government can use lump-sum transfers as an additional

instrument. We then de�ne a function

zT (r̄, w̄, T ) := E
[
uc (c)

γ̃
+ ucc (c) (q (1 + r̄)− q′)]

]
+ (FN (K,N)− w̄)

∂N

∂T
− 1,

so that the �rst-order condition reads as

zT (r̄, w̄, T ) = 0.

The arguments as above made for F now apply to the function F̃ :

F̃ (w̄, T, {µ(ei)}Ni=1)

=(µ(e1), µ(e2), . . . , µ(eN−1) + zT (r̄(w̄, T ), w̄, T ),
zLM(r̄(w̄, T ), w̄, T, µ)−

∑N−1
i=1 eiµ(ei)

eN
).

The optimal solution is characterized as F̃ (w̄, T, {µ(ei)}Ni=1) = (µ(e1), . . . , µ(eN)).
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III Computational Algorithms

III.1 Steady State

To numerically compute the steady state, we �rst need to introduce the steady state distri-

bution of state variables (a, λ, e), represented by a density function p (a, λ, e). Moreover, we

denote the density function of (a, e) as m (a, e). Now the steady state equations involving

expectation and integration can be explicitly expressed using p and m. Equation 24, 22, 23,

A4 and A5 are now:

γ =
∑
e

ˆ ˆ (
uc (c) +

∂c

∂T
ucc (c) [λ (1 + r̄)− λ′]

)
p (a, λ, e) dadλ

+ γ (FN (K,N)− w̄)
∂N

∂T
, (A32)

γA =
∑
e

ˆ ˆ
uc (c)λp (a, λ, e) dadλ

+ γ (FN (K,N)− w̄)
∂N

∂r̄

+
∑
e

ˆ ˆ
a (uc (c) + ucc (c) [λ (1 + r̄)− λ′]) p (a, λ, e) dadλ, (A33)

γN = γ (FN (K,N)− w̄)
∂N

∂w̄

+
∑
e

ˆ ˆ
en (e, w̄) (u′ (c) + u′′ (c) (λ (1 + r̄)− λ′))p (a, λ, e) dadλ, (A34)

N =
∑
e

πeen (e, w̄) , (A35)

A =
∑
e

ˆ
am (a, e) da. (A36)

Moreover, the density functions satisfy

p (a′, λ′, e′) =
∑
e

πee′

ˆ
I [ga′ (a, e) = a′, gλ′ (a, λ, e) = λ′] p (a, λ, e) dadλ, (A37)

m (a′, e′) =
∑
e

πee′

ˆ
I [ga′ (a, e) = a′]m (a, e) da. (A38)

Using the steady state equations, i.e., equation 19 to 21, A1, A2, and A32 to A38, we
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compute the steady state variables according to the following steps, with some exceptions

similar to Acikgoz (2014)18.

1. Guess T .

2. Guess w̄. Solve for r̄ (w̄) following Aiyagari (1995):

(a) Solve for K from (21).

(b) Guess r̄ and solve the household's problem: solve for c (a, e) , a′ (a, e) from (19)

and (A1), keeping in mind that n = (χ−1w̄ec−σ)
1
φ , y =

(
χ−1w̄1+φe1+φc−σ

) 1
φ .

(c) Compute N from (A35).

(d) Solve for m (a, e) or equivalently m (., e) from (A38).

(e) Solve for A from (A36).

(f) Solve for B from (A3).

(g) Verify r̄ using (A2). If the equation is not satis�ed, update r̄.

3. De�ne q ≡ λ
γ
, and solve for q′ (a, q, e) by iterating on q′ (a, q, e) using (20) until q′

converges. Guess q′ (a, q, e) = g0
q′ (a, q, e), and then use equation (20) to �nd the new

q′ (a, q, e) = g1
q′ (a, q, e) as follows:

q′ =
− ∂c
∂a′
ucc (c) q (1 + r̄) + βE

[
∂c′

∂a′
ucc (c′) q′′|e

]
− 1 + β (1 + r̄)

− ∂c
∂a′
ucc (c) + βE

[
∂c′

∂a′
ucc (c′) (1 + r̄)

]
where E

[
∂c′

∂a′
ucc (c′) q′′|e

]
can be computed using g0

q′ (a, q, e), and the new q′ gives us the

new policy function, denoted as g1
q′ (a, q, e). Keep updating until giq′ (a, q, e) converges

to gq′ (a, q, e). It can be proven that the above functional equation is a contraction

mapping.

4. Solve for γ from (22)

5. Check whether (23) is satis�ed. If so, stop. Otherwise update w̄.

6. Check whether (A32) is satis�ed. If so, stop. Otherwise update T .

18The utility function in Acikgoz (2014) is of a form that yields no income e�ect on labor supply. We use
an alternative method for �nding q′ (a, q, e) which will work also when the economy is not in steady state.
See point 3.
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III.2 Transition

Below we outline the algorithm for computing the transition from the model calibrated to

the U.S. economy to the optimal long run steady state.:

1. Choose a number of transition periods, J .

2. Compute the optimal long run steady state as outlined in III.1 and obtain at+1 (at, et),

ct (at, et) at time J .

3. Compute the steady state for the economy calibrated to the U.S. and obtain m0 (a0, e0)

A0, B0, K0.

4. Guess {w̄t, r̄t, Tt}Jt=0.

5. Solve the households' problem by backward induction and obtain at+1 (at, et), ct (at, et)
19.

6. Compute distribution of asset and productivity mt (at, et), using simulation starting

from m0 (a0, e0).

7. Compute At and Nt from (9) and (10).

8. Compute Kt and Bt+1 going backwards using (11) and (2), namely,

Kt = At −Bt

Bt+1 = F (Kt, Nt)−Gt + (1 + r̄t)Bt + r̄tKt + w̄tNt.

9. Compute γt backward using

γt = β (1 + FK (Kt+1, Nt+1)) γt+1

10. Solve for λt+1 (at, λt, et) from 14.

11. Compute pt forward by simulations using p0 and the policy functions: at+1 (at, et),

ct (at, et) and λt+1 (at, λt, et).

19We do this, using an endogenous rid approach.
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12. Check the errors implied by the guessed {w̄t, r̄t, Tt}Jt=0. This means check the equations

18 16 and 17. If they are not satis�ed, update the guess for {w̄t, r̄t, Tt}Jt=0. In practice

we do this by a simplex minimization routine, which minimizes the sum of the squared

errors in the equations.
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