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Abstract
Can variations in risk cause non-negligible fluctuations in the flow

of investment? This issue has so far only been studied in models with a

fixed level of risk. Comparative statics may be inadequate, since risk

varies over time. In this paper, a simple irreversible investment model is

extended by including a stochastic process for the risk level. An increase in

risk increases the value of waiting as in the standard model. The agent then

allows larger deviations from the target level before adjusting, as long as

the high risk period continues. The new result is that this effect is stronger,

the shorter the high risk periods are expected to be. Comparative statics

may thus underestimate the effects of fluctuations in risk.
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1. Introduction

To live is to take risks. This truism has its mirror image in the commonplace use of

stochastic models, where people’s choices are affected by risk. A direct implication is that

fluctuations in risk could cause or contribute to fluctuations in economic activity. This has been

stressed in recent literature on irreversible investment expenditures. A good example is Romer

(1990) who suggests that increased uncertainty due to the stock market collapse of 1929 was a

critical factor leading to the Great Depression. Pindyck (1991) argues that the level of risk may

be more important than taxes and interest rates for aggregate investments.1 Uncertainty is also

emphasized in the policy debate. The European Commission’s analysis of the 1992 project, the

Cecchini Report, claims that uncertainty is the most important factor in the medium term

planning of enterprises (E. C. Commission, 1988).

There is some empirical evidence of a negative relation between risk and general

economic activity. See, for example, Schwert (1989). In Hassler (1993) I also show that

durables demand is substantially lower during periods of large financial volatility. Theoretical

work on irreversibilities has, however, treated risk as constant. Instead of modeling a

fluctuating level of risk, the effects of variations in risk have been studied by comparative

statics on the risk parameter (see McDonald and Siegel, 1986, Bentolila and Bertola, 1990, and

Pindyck and Solimano, 1993, for example). This has a major drawback, especially in the

context of business cycles; namely, one cannot examine how the expected length of a high risk

period affects behavior. The purpose of this paper is to provide a model of irreversible

investments where the agents know that risk fluctuates.

                                                  

1 For firms it is not necessarily the case that increased uncertainty decreases investment. The

value of waiting increases with uncertainty, which tends to delay investment. But if the first derivative

of the profit function with respect to capital is convex, also the value of installed capital increases in

uncertainty and this works in the opposite direction. For a discussion of this, see Caballero (1991).



3

In Section 2, I construct a simple model with constant risk, close in spirit to the Ss

inventory model introduced by Arrow, Harris, and Marschak (1951). The Ss model has later

been substantially extended and used in many different settings (menu costs and inflation in

Sheshinski and Weiss, 1977, labor demand in Bentolila and Bertola, 1990, and consumer

durables in Caballero, 1993, for example). Optimal behavior in these models can be described

as variants of the famous Ss rule, proven optimal by Scarf (1959). According to the Ss rule the

agent chooses upper and lower trigger levels for the control variable. If it reaches a trigger

level, the agent adjusts it to a return point. The agent does nothing inside the band given by the

triggers. Eberly (1994) has demonstrated the empirical relevance of the Ss model for durables

demand. One of her findings is that the width of the inaction band is positively related to

income variability.

The model in Section 2 with constant risk serves as a base case to which we can

compare an extended model with stochastic risk in Section 3. In both models the agent wants to

keep a continuously depreciating durable stock close to a target level that depends on a

stochastic variable w. Without any friction, the durable stock would always be kept at the

target level, which consequently is often called the frictionless level. An economic interpretation

of the model is a consumer who suffers disutility if her current stock of durables deviates from

a target level that depends on her wealth (w). The disutility should then be interpreted as the

difference between utility at the target and actual utility. The stochastic shifts in w could also

be given a more general interpretation, e.g. permanent shifts in relative prices, tastes or

technology.

The agent has to pay an adjustment cost if she adjusts the stock of durables. This

prevents continuous adjustment to the target. Instead, the stock is left to depreciate until a

trigger is reached, when it is adjusted to the return point. This point will be above the target,

since the durable is continuously depreciating.
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I assume that w occasionally jumps up or down; the agent is infrequently hit by a

relatively large wealth shock. Risk is defined as the instantaneous probability that the agent is

hit by the wealth shock, i.e. the arrival rate of shocks. In Section 2, I use standard comparative

statics to study how the triggers and the return point are affected by shifts in risk. I show that a

shift to higher risk causes the agents to revise their Ss bands. In particular the lower trigger

falls, as is usually found in Ss models (see, for example, Bentolila and Bertola, 1990). The

return point also falls so the bandwidth between the lower trigger and the return point stays

almost unaffected.

In Section 3, I extend the model by allowing risk to be driven by a stochastic process,

known by the agents. I show that the lower trigger point falls more, the shorter the high risk

period is expected to be. The tendency to delay purchases is thus larger after a temporary risk

increase than after a permanent. The return point, on the other hand, falls less the shorter the

expected high risk period is.

The models in Section 2 and 3 are very simple. In addition to giving transparency, this

allows me to show the following useful homogeneity property of the optimal policy: The effect

a risk increase has on the optimal policy, expressed in years of depreciation, is the same for all

goods with the same bandwidth before the risk increase.

The simple structure also facilitates interpretation of the results. The lower trigger is

determined from the condition that the value of waiting equals the temptation to adjust. We will

see that the reason for the negative relation between the fall in the lower trigger and the length

of the high risk period is not that the value of waiting is higher when high risk periods are short.

The reason is instead that the instantaneous temptation to adjust is lower when high risk

periods are expected to be short. A lower temptation to adjust implies that it is optimal to allow

larger deviations before adjusting.

In Section 4, I discuss the results, the consequences of relaxing some assumptions in the

model and implications for aggregate behavior.
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2. A Simple Irreversible Investment Model with Constant Risk

Consider an agent who faces the problem to continuously control a stock of a durable

good. The log of the stock is denoted by κ. The agent suffers a loss of instantaneous utility if

the stock deviates from some target level κ* that evolves over time, driven by a stochastic state

variable w. In the case of a household controlling its stock of durables, w may be interpreted as

wealth. Shifts in w will thus be called wealth shocks in what follows.

κ depreciates at a constant rate δ. When it is adjusted, a lump sum adjustment cost has

to be paid. In absence of adjustment costs the agent would, of course, continuously set κ equal

to the target κ*. With adjustment costs, the agent faces the non-trivial problem of optimally

balancing the cost of frequent adjustments against deviations from the target.

The solutions to problems like this generally belong to the class of Ss rules; if κ reaches

an upper (lower) trigger it is adjusted to an upper (lower) return point. To achieve a simple

form of this optimal control, I first assume that the target is proportional to wealth, i.e. κ*

equals w plus a constant. Economically this may be interpreted as a unitary long-run wealth

elasticity of the stock of durables. Secondly, I assume that the utility loss of deviations from κ*

is ½(κ -κ*) 2. These two assumptions can be viewed as a simplification to a problem as in

Grossman and Laroque (1990). In their model it is optimal to set the target to a constant

fraction of wealth.

Given a suitable specification of the stochastic process for w, the trigger and return

points can now be expressed as state independent relative deviations from the target. That is,

the optimal control can be expressed as follows: If κ -κ* becomes smaller than some value U

adjust it to a ; if κ -κ* becomes larger than U  adjust it to a ; otherwise do nothing. The optimal

control is then fully specified by the four numbers U U a a, , ,� � and the relevant state variable is

z ≡ κ -κ*. Furthermore, the assumption of a constant lump sum adjustment cost implies that

a a a= ≡ .
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I may now state the problem formally as
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and the stochastic path of w. It is a variable with a unitary point mass at the points in time

when κ is adjusted. Otherwise it is zero. r is a constant discount factor and c is the adjustment

cost.2

To conclude the specification of the model, I assume that w follows a marked point
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Lastly, I assume that ε is so large that if a shock occurs, it is always optimal to adjust κ

immediately. A positive (negative) shock induces upward (downward) adjustment of κ. Positive

and negative shocks thus have the same consequences for the optimal control – the relative

deviation z is shifted to the return point. The relevant risk measure is thus the arrival rate of

shocks, parameterized by λ. The consequences of relaxing the large shock assumption are

discussed in the concluding section.

                                                  

2 Note that the adjustment cost is expressed in the same units as the cost function. An

economic interpretation of this is that the adjustment cost represents time spent on searching when a

new durable good is bought.



7

The optimal policy and sample paths for w, κ and z are illustrated in Figure 1. At t0 w

gets a positive shock. The relative deviation z then falls from A0 to B0, which is below the

lower trigger, so κ is immediately adjusted from D0  to E0. This shifts z to the return point at

C0. At t1 depreciation has moved z to the lower trigger at A1. This triggers adjustment and κ is

adjusted from D1 to E1, which moves the relative deviation to C1. At t2 a negative shock to w

occurs that shifts z from A2 to B2, which is above the upper trigger. This causes a downward

adjustment of κ from E2 to D2 so that the relative deviation again is moved to the return point

at C2.

(Figure 1 approximately here)

2.1. Solution to the Constant Risk Model

Define the total cost function V(z) as the expected total cost when the optimal control is

followed. In Appendix 1 I show that V(z) must satisfy the following differential equation3

rV z
z

V z V a c V zz( ) ( ) ( ) ( )= − + + −
2

2
δ λ� �. (1.4)

Note that the R.H.S. of (1.4) equals the current flow of disutility plus the expected rate

of change of the cost function. The set of solutions to (1.4) is found analytically in Appendix 1.

Lastly we have to use numerical methods to find { , , }U a U  and the integration constant. These

uniquely define V(z) from the set of solutions to (1.4). The total cost function has a graphical

appearance like in Figure 2. It reaches its maxima at the two triggers and its minimum at the

return point.

(Figure 2 approximately here)

                                                  

3 Without the large shock assumption the last term of (1.4) would read

λ ε ε( ( ) ( )) / ( ) .V z V z V z+ + − −( )2  This is a differential equation with both leads and lags with a set of

solutions I cannot find analytically.
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We should note from Figure 2 that a>0, i.e. the return point overshoots the frictionless

target. This is due to the depreciation. Setting a≤0 with positive depreciation would cause z to

always be non-positive. This cannot not be optimal.

Another important property of the optimal control is that the agent is indifferent between

adjusting and waiting an instant at the triggers. At the lower trigger we can write this condition

as:

Proposition 1

U a
rc c

2 2

2

− = + λ (1.5)

Proof in Appendix 2.

The L.H.S. of (1.5) can be interpreted as the instantaneous temptation to adjust and the

R.H.S. as the instantaneous value of waiting.4 This interpretation will be useful when we relax

the assumption of a fixed level of risk. The temptation to adjust is the decrease in the flow of

utility loss following an adjustment. The value of waiting has two positive parts. The first

reflects discounting and the second reflects the possibility of a wealth shock. If the agent pays

the adjustment cost and adjusts now and w shifts during the next instant, she has to adjust

again. She would thus have saved one adjustment cost by waiting.

In a dynamic analysis of the effects of changes in risk, we will typically be interested in

the timing of purchases. The expected value of the stochastic amount of time between

successive purchases, how this changes with risk and for how long upgrades are delayed after a

risk increase, are of focal interest. To be able to express the controls U a U, ,� � in time units I

normalize them by the depreciation rate. The normalized bandwidth ( ) /a U0 0− δ , for example,

equals the time it takes for z (and κ) to depreciate from the return point to the lower trigger if

no shocks occur. Similarly, a shift in the normalized lower trigger equals the extra time the

                                                  

4 The phrase "Value of Waiting" was used in the seminal paper by McDonald and Siegel

(1986).
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stock is left to depreciate from to the previous trigger before it is upgraded. The normalized

control has the following homogeneity property.

Proposition 2

Suppose that for some parameter values δ λ, , ,c r� � the optimal control is given by

U a U, ,� � and that for some other parameter values { ,( / ) , , }′ ′δ δ δ λ2 c r  the optimal control is

given by ′ ′ ′U a U, ,� � . Then for δ δ, ′ > 0 ,

U U a a U U

δ δ δ δ δ δ
= ′

′
= ′

′
= ′

′
, , . (1.6)

Proof in Appendix 2.

Proposition 2 states that the normalized optimal control is homogeneous of degree zero

in depreciation and the square of adjustment costs.5 Equivalently – multiplying depreciation by

k and the adjustment cost by k2 implies that the non-normalized optimal triggers and the return

point are k times their original levels.

The homogeneity has the following implication: Take a set of goods with different and

arbitrary depreciation rates but with equal normalized bandwidths, i.e. the time between

adjustments is the same for both goods if no shocks occur. Proposition 2 tells us that the effect

of a shift in risk on the triggers and return points, expressed in years of depreciation, is the

same for both goods. This result should be of empirical importance – to predict the effects of

shift in risk we only need to observe the bandwidth expressed in years of depreciation, not

depreciation rates or adjustment costs.

2.2. Comparative Statics on the Level of Risk

We may now perform comparative static analysis on the model to study the effects of

increased risk. This should be interpreted as a comparison between economies with different

risk levels. I set r to 0.05 per year and let λ vary between 0.01 and 0.10 per year in steps of

                                                  

5 Clearly this result does not generalize to non-quadratic instantaneous loss functions.
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0.0025. The adjustment cost is chosen so that with an arrival rate of 0.01 it is optimal to let the

stock depreciate for 5 years before upgrading if no shocks occur. Relying on Proposition 2, I

express the result normalized by the depreciation rate.

The large shock assumption and positive depreciation imply that z almost always will be

in the region between the lower trigger and the return point. It is only at the very instant a

wealth shock hits that z is outside this region. Immediately after the shock, z is adjusted back to

the return point. The level and change of U is thus not important and I will focus on how the

lower trigger U  and the return point a respond to changes in risk.

An increase in risk increases the value of waiting as seen in (1.5). We may suspect that

this tends to delay adjustment, i.e. U  should fall. Figure 3 shows that this is correct and

furthermore that the fall is approximately proportional to the risk increase. An increase in the

arrival rate risk with one percentage point causes the lower trigger to fall by 0.26 months.

(Figure 3 approximately here)

Also the return point falls after an increase in risk. This can be understood as follows:

Consider a case with zero risk and zero discount rate. The instantaneous utility loss due to

deviations from κ* is increasing and symmetric around zero. It should then be optimal to have

the band a U,  centered around zero, i.e. to set a U= − > 0 . Then z spends as much time above

as below 0. Now increase the arrival rate of shocks. Shocks are assumed to cause immediate

adjustment back to a. A centered band in the case of high risk would thus mean that z tends to

spend more time above zero than below. This cannot be optimal, and consequently, we set

a U< − . The intuition carries over to the case of positive interest rates as long as there is

depreciation.

In Figure 3 we see that also the fall in the return point is approximately linear in the risk

shift and only slightly smaller than the fall in the lower trigger. A percentage point increase in

the arrival rate causes the return point to fall by 0.24 months. Since the fall in the return point

is almost as large as the fall in the lower trigger, the band a U,  is shifted downwards rather
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than becoming wider. The band widening is negligible also if risk is increased ten-fold; the

band widens from 60 to 60.16 months. We will see in the following sections that this result

depends crucially on the assumption of a constant risk level.

3. A Model with Fluctuating Risk

Let us introduce a risk state variable s that switches stochastically between 0 and 1. The

arrival rate of shocks will now depend on the current value of the state variable. λ(s) is the

arrival rate of shocks in risk state s and I set λ(1)>λ(0). The risk state follows a Markov

process with the following instantaneous transition equation

s
s s dt

s s dtt dt
t

t
+ =

	
�
 with probability 1-

 with probability 

γ
γ

( )

( )
(1.7)

where s =1 if s=0 and vice versa. The probability of a shift of the risk state during the next

instant dt is thus γ(s)dt and the expected length until next shift is γ(s)-1. If γ(1) is different from

γ(0), the expected lengths of high and low risk periods are different. Nothing else in the model

is changed and λ(s) and γ(s) are the only parameters that depend on the risk state. In particular,

I keep the assumption that the target κ*  is proportional to wealth. Potential shifts in

precautionary savings that affect the target stock of durables are thus disregarded in the model.

The optimal policy for this problem also belongs to the class of Ss rules. The return

point and the triggers will, however, now depend on the current risk level, i.e. on the risk state.

A subscript s will thus be attached to the optimal control values U s , as and Us . In Appendix 1

I show that we can derive the following system of differential equations from the Bellman

equation.

rV z s
z

V z s s V a s c V z s s V z s V z sz s( , ) ( , ) ( ) ( , ) ( , ) ( ) ( , ) ( , )= − + + − + −
2

2
δ λ γ� � � � (1.8)

The interpretation is the same as that of (1.4): The value of the cost function multiplied

by the discount rate equals the current flow of costs plus the expected change in the value of

the cost function. We should, however, note the difference between (1.4) and (1.8). The R.H.S.
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of (1.8) has a fourth term. This is due to the possibility of risk state shift, which would cause

expected total costs to shift from V z s( , ) to V z s( , ).

In Appendix 1, I show how to analytically derive the set of solutions to (1.8). To find the

trigger points, return points and the integration constants I have to use numerical methods. The

total cost function is depicted in Figure 4. For each of the two values of s the function looks

approximately like in the constant risk case. V(z,1) is everywhere above V(z,0), so expected

costs always go up when risk shifts to the higher level.

(Figure 4 approximately here)

We can now state the analogue to Proposition 1 for the present model with fluctuating

risk.

Proposition 3

U a
rc s c s c V a s V U ss s

s s

2 2

2

−
= + + + −λ γ( ) ( ) ( , ) ( , )� � (1.9)

Proof in Appendix 2

The L.H.S. of (1.9) can be interpreted as the instantaneous temptation to adjust and the

R.H.S. as the instantaneous value of waiting, both computed at the lower trigger. The value of

waiting consists of three non-negative terms.

In Proposition 1, we found that the value of waiting is due to the discount rate and the

possibility of a shock to w. This is true also here, but there is also a third term in (1.9). This

term represents the possibility that the risk state shifts during the next instant. This possibility

also creates a non-negative option value of waiting. We will see that (1.9) is useful when we

want to understand what happens to the optimal policy if risk is increased or if the expected

length of a high risk period is changed.

The option value created by the potential risk state shift can be split up in two

conceptually different parts. The first is the option to wait further to adjust if the risk state

should shift. The other is due to that the information that a risk state shift has occurred can be
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used when choosing the return point. These two parts can be shown explicitly by using the

value matching condition in Appendix 1 to rewrite the third term of (1.9) as

γ ( ) ( , ) ( , ) ( , ) ( , )s V U s V U s V a s V a ss s s s− + −
�
�
��

�
�
��� � � �

1 2
6 7444 8444 6 7444 8444

(1.10)

The first term in (1.10) is the value of waiting further in case of a state shift. The second

is the value of using the information that the risk state has changed when choosing the return

point.

Proposition 2 showed that the normalized optimal control in the constant risk case is

homogeneous of degree zero in depreciation and the square of adjustment costs. The following

proposition shows that this is true also when risk follows the stochastic process described

above.

Proposition 4

Suppose that for some parameter values δ λ λ γ γ, , , ( ), ( ), ( ), ( )c r 0 1 0 1� �  the optimal control is

given by U U a a U U0 1 0 1 0 1, , , , ,� �  and that for some other parameter values

′ ′δ δ δ λ λ γ γ,( / ) , , ( ), ( ), ( ), ( )2 0 1 0 1c r� � the optimal control is given by ′ ′ ′ ′ ′ ′U U a a U U0 1 0 1 0 1, , , , ,� �.

Then for δ δ, ′ > 0  and s=1,2

U U a a U Us s s s s s

δ δ δ δ δ δ
=

′
′

=
′
′

=
′
′

, , . (1.11)

Proof in Appendix 2

Proposition 4 has the following implication: Take a set of goods with different

depreciation rates and adjustment costs but which have the same normalized bandwidth in the

low risk state, i.e. ( ) /a U0 0− δ  is the same. These goods will have the same normalized

bandwidth also in the high risk state. The shifts in the normalized controls associated with a

shift to higher risk is thus the same for all these goods. In empirical work we thus only have to

consider the bandwidth in years of depreciation, not the depreciation rate and the adjustment

cost, to find how the optimal policy is affected by risk shifts.
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3.1. Quantitative Effects of Shifts in the Level of Risk

I will now focus on how triggers and return points change when the risk state shifts for

different values of λ(1)-λ(0). In contrast to the previous section, I will now be able to relate the

effects to the expected length of the high risk periods. λ(1) and γ(1) will be varied and γ(0),

λ(0) and r held constant at 0.25, 0.01 and 0.05 per year. The value chosen for γ(0) implies that

low risk periods are on average 4 years long.

To evaluate the size of shifts of the controls associated with risk level shifts I need a

benchmark. By keeping the normalized bandwidth in risk state 0 constant at 5 years of

depreciation we may directly compare the results with the comparative statics in Section 2. A

constant bandwidth in risk state 0 is achieved by using a slightly different adjustment cost for

each combination of g ( )1  and λ ( )1  such that ( ) /a U0 0 5− =δ . I, of course, keep c the same in

the two risk states.6,7 All controls are normalized by the rate of depreciation, as in the previous

section.

Figure 5 depicts the change in normalized bandwidth, ( ) ( ) /a U a U1 1 0 0− − −� � δ , for

different values of λ(1) and γ(1). I let λ(1) vary between 0.02 and 0.10 per year and γ(1)

between 0 and 2 per year. The values for γ(1) imply that the average high risk periods are

between infinity and 0.5 years. I also include the comparative statics results from Section 2 in

the figure.

(Figure 5 approximately here)

                                                  

6 Since the bandwidth in state zero is relatively insensitive to g ( )1  and l( )1 , c does not have to

be changed much to achieve this. The difference between the largest and the smallest adjustment cost

is less than 5%.

7 I could alternatively keep c constant and report the shifts in the controls normalized by the

low risk state bandwidth. This produces almost identical results.
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Figure 5 shows that the band widening increases in both λ(1) and γ(1). If the expected

length of the high risk period is short, the band widens more for a given increase in risk. For

λ(1)=0.10 per year, the band widening is between 1.2 and 3.7 months, i.e. between 2.0% and

6.1% of the bandwidth in risk state 0. This may be compared with the comparative statics

result. In the constant risk model an increase in risk from 0.01 to 0.10 per year only caused the

band to widen by 0.16 months or 0.3% of the bandwidth.

shows the fall in the lower trigger point after a shift to the high risk state. The fall

increases in both λ(1) and γ(1). As in the constant risk case, the fall is almost linear in λ(1).

For λ(1) = 0.10 the fall is between 2.8 and 3.8 months, i.e. 4.7% to 6.4% of the bandwidth in

risk state 0. The lower trigger falls by 2.3 months for an equal increase in risk in the constant

risk model.

(Figure 6 approximately here)

I have shown that the fall in the lower trigger and the increase in bandwidth is smaller

the longer the expected high risk period is. In Figures 5 and 6 we see that the bandwidth is

more sensitive to the length of the high risk periods than the lower trigger is. This implies that

the fall in the return point is larger for long expected high risk periods. We will see that this is

of key importance for the interpretation of the results.

3.2. Some Interpretations of the Sensitivity to the Length of High Risk Periods

In the previous section I showed that how much the lower trigger falls after a risk

increase depends on the expected length of the high risk period. It may seem intuitive to explain

this finding by the assertion that the value of waiting is higher when the high risk period is

expected to be short. This assertion, however, turns out to be incorrect. In this section, I will

show that the value of waiting is relatively insensitive to the expected length of the high risk

period. Instead, it is the instantaneous temptation to adjust, i.e. the difference in the flow of
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costs at the lower trigger and the return point, that decreases when high risk periods are

expected to be short.

Let us examine how a risk state shift changes the value of waiting and the temptation to

adjust when the current value of z equals U 0. If the current risk state is zero the value of

waiting equals

rc c c V a V U+ + + −λ γ( ) ( ) ( , ) ( , )0 0 1 10 0� � . (1.12)

Now let the risk state shift to 1. The value of waiting then shifts and the change is given

by

λ λ γ γ( ) ( ) ( ) ( , ) ( , ) ( ) ( , ) ( , ) .1 0 1 0 0 0 1 1

1

1 0 0 0

2

− + + − − + −� � � � � �� �c c V a V U c V a V U
6 744 844

6 744444444444 844444444444

(1.13)

The first term in (1.13) is the increase in the value of waiting for wealth shocks. This

term only depends on the change in the arrival rate of shocks. The second term, the increase in

the value of waiting for a shift of the risk state, on the other hand, depends on γ(1) in a non-

trivial way. The value of waiting is, however, in both states dominated by the first term of

(1.13) which is independent of γ(1).8 This is shown in Figure 7 where we see that the increase

in the value of waiting is almost independent of γ(1).9

(Figure 7 approximately here)

                                                  

8 The value of waiting for a state shift, given by the third term in (1.13), actually falls after the

state shift. This can be understood by using (1.10). There the option value of waiting is split up into

two parts; the option to wait further before adjusting and the option to use the new information about

the state when choosing the return point in case of a state shift. Both these options have strictly

positive values at U
0
 if the current state is 0. But if the current state is 1, the first option is of zero

value. This since in this case it is optimal to adjust immediately if the state shifts back to 0. The

second option value is not necessarily the same in the two states, but the difference in the value of

waiting for a state shift is dominated by the disappearance of the value of the first option.

9 The parameters are as above, λ(1) is set to 0.10 per year and the values are normalized by the

adjustment cost.
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Now turn to the temptation to adjust. This shifts from ( ) /U a0
2

0
2 2−  to ( ) /U a0

2
1
2 2− , i.e.

by ( ) /a a0
2

1
2 2−  – the shift in the temptation to adjust equals the shift in the square of the return

point. This shift is also depicted in Figure 7. We see that the value of waiting increases more

than the temptation to adjust. It is therefore optimal to wait further before adjusting. More

important, while the increase in the value of waiting is insensitive to the expected length of the

high risk period, we see that this is not true for the increase in the temptation to adjust. It

decreases in γ(1) and it is almost zero for the shortest expected duration of the high risk period.

We may use the same intuition as in the constant risk case to understand the relation

between the return point and the expected length of the high risk period. Recall the example

with zero discounting and zero risk. We then wanted a band symmetric around zero. Higher

risk caused the return point to fall so that z continued to spend as much time above as below

zero.

Using this intuition we can understand that the fall in the return point depends on the

probability of a wealth shock over the whole period until the next adjustment. This probability

is less affected by a shift to the high risk state, the shorter the high risk period is expected to be.

This explains why the return point shifts less with the state when high risk periods are short.

To summarize the findings in this section; a shift to high risk increases the value of

waiting, i.e. the R.H.S. of (1.9) rises and this increase is insensitive to the length of the high

risk period. To restore the equality of (1.9), the temptation to adjust, i.e. the L.H.S., must

increase equally much. However, the way this is achieved depends crucially on the expected

length of the high risk period. When high risk periods are long the return point falls a lot. This

helps increase the temptation to adjust so the lower trigger does not have to fall as much as

otherwise. When high risk periods are short, on the other hand, the return point is largely

unaffected so the whole increase in the temptation to adjust must come from a fall of the lower

trigger. Consequently, the lower trigger falls more after a risk increase, the shorter the high risk

period is expected to be.
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4. Discussion

By using a simple model and giving some numerical examples, I have shown the effect of

a risk shift on optimal investment behavior. Given that the agents anticipate a cyclical behavior

of risk, investment behavior is sensitive to the expected length of the high risk period.

Specifically, when the expected high risk period is short, it is optimal to wait longer before

acting than when the expected high risk period is long. The conventional analysis of doing

comparative statics on the risk parameter misses this effect and underestimates the delay effect

of a risk shift.

The mechanism at work in this model should be operative in many types of irreversible

investment models where the return point overshoots the target because of an expected drift of

the control variable. The exact specification of the process for wealth shocks and the

instantaneous cost function will, of course, affect the quantitative effects of increased risk. A

steeper cost function at the triggers, for example, would produce smaller trigger shifts.

The large shock assumption, i.e. that a wealth shock always induces immediate

adjustment is unrealistic, of course. Relaxing it renders the model difficult to solve.10

Inspection of how equation (1.9) changes when the large shock assumption is relaxed may,

however, give some insights. Let F(ε) represent the wealth shock’s distribution function. We

can then rewrite equation  (1.9) as

U a
rc s c V a s V U s dF s c V a s V U ss s

s s s s

2 2

2

−
= + + + − +

�
��

�
�� + + −

−∞

∞�λ ε ε ε γ( ) ( , ) ( , ) ( ) ( ) ( , ) ( , )� � � � (1.14)

                                                  

10 In my dissertation (Hassler, 1994), I present an algorithm for solving the model numerically

for more general assumptions about the shock. Numerical solutions for the case when ε has a normal

distribution is supplied there. The qualitative results appear to be insensitive to variations in the form

of the distribution of ε although good numerical accuracy was hard to achieve.
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The functional form of the  L.H.S. of (1.14) is identical to that of (1.9). The discussion

in the previous section of why the return point is sensitive to the length of the high risk period

appears to be equally applicable here. It thus seems safe to conjecture that the temptation to

adjust from U 0  after a shift to the high risk state increases in the expected length of the high

risk state also for more general assumptions about the shock’s distribution.

Now turn to the R.H.S. of (1.14). The difference between (1.14) and (1.9) is the integral

in (1.14). It represents the difference in how costly a shock is if it hits the agent when z equals

the return point relative to if z equals the lower trigger. The integral may be non-zero if shocks

sometimes not cause immediate adjustment. Since V a ss( , ) <V U ss( , ), we expect it to be negative

for sufficiently small shocks. There is, however, a more important thing to note here, i.e.,  how

much the second term of (1.14) changes for a given increase in λ(s) may become sensitive to

γ(1) if the integral is non-zero. The findings in Section 3 could in principle be reversed if the

value of waiting increases substantially more when high risk periods are expected to be long.

Such an effect, however, appears to be less general than the positive relation between the

increase in the temptation to adjust and the expected length of the high risk period.

The model in this paper makes the stylized assumption that risk follows a two-state

stochastic process. In principle the model could handle any finite number of risk states. It is,

however, technically complicated to solve the model with many risk states, since each extra risk

state will generate an extra dimension in the system of differential equations (1.8). It seems

reasonable that addition of risk states with intermediate levels of risk has a simple consequence

for optimal behavior − intermediate Ss bands. This should have small or no consequences for

how optimal behavior depends on expected lengths of high risk periods.

My conjecture is that the mechanism behind the sensitivity of investment behavior to the

length of the high risk period should survive modifications like the ones discussed above. The

fall in the return point and thus the increase in the temptation to adjust for a given risk increase
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should generally be smaller, the shorter the high risk period is expected to be. A smaller

temptation to adjust makes it optimal to accept larger deviations before adjusting.

In the introduction, I motivated my interest in the effects of fluctuating risk by its

potential importance for aggregate behavior and, in particular, recessions and depressions. A

rigorous theoretical analysis should consider general equilibrium effects, instead of assuming a

fixed price as in the present model. This is, however, beyond the scope of this paper.

Furthermore, the present model is concerned with individual behavior. Aggregate implications

can therefore not be drawn immediately. I will, however, conclude by making some comments

about aggregation.

First it should be noted that the aggregate effects of a widening of individual Ss bands, at

least partially, are short run in nature. High risk periods may end, reversing the effects on

demand. Furthermore, also if the agents allow their durable stocks to deviate more from the

targets, eventually the new triggers will be hit. Of crucial importance is, thus, how persistent

the short run effects are. This issue should be addressed by simulating aggregated Ss-models

with fluctuating risk.

It is obvious that aggregate behavior is less lumpy and discontinuous than individual

behavior in models as the ones presented in this paper. The smoothing effect aggregation may

have is illustrated in Caplin and Spulber (1987), who show that individual inertia can disappear

after aggregation. In Ss models, an individual only acts when the deviation of her control

variable from the target reaches a limit of the Ss band. The flow of purchases and its sensitivity

to aggregate shocks is thus determined by the cross section distribution of individual deviations,

particularly the density close to the limits. Caballero and Engel (1991) generalize the result in

Caplin and Spulber (1987) and show that under some circumstances the cross-section

distribution of deviations can be invariant under aggregate and idiosyncratic shocks. In this

case individual inertia is irrelevant to aggregate behavior.
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A simultaneous shift in individual risk can, however, hardly wash out in the aggregate. If

risk increases and the Ss bands widen at the same time for many agents in the economy, the

cross-section density at the band limits must be affected. This will in general have a short-run

effect on the flow of purchases and on its sensitivity to aggregate shocks.

Even if risk shifts thus should have an initial effect on aggregate demand, the sign is not

unambiguous. An increase in risk in Ss models generally has both a negative and a positive

immediate effect on demand. The negative effect is that a widening of the Ss band means that

agents delay purchases, which reduces aggregate demand. This is the effect discussed in

Section 3. On the other hand, an increase in risk also means that more agents are hit by wealth

shocks. This tends to increase purchases. The overall initial effect is thus ambiguous in

direction, although it appears more likely to be negative. Due to the large shock assumption in

the present model, the two counteracting effects are here easily disentangled. The flow of

agents hitting the lower trigger equals the cross-section density at the lower trigger multiplied

by the depreciation rate. After a widening of the individual Ss bands the densities at the new

triggers are initially zero. The density at the lower trigger is zero for a period equal to the fall in

the normalized lower trigger, unless risk shifts back again. After that demand increases as

depreciation moves the whole distribution towards the lower trigger. The second effect is that

λ(s) agents per unit of time are hit by wealth shocks and adjust.

Obviously, the model does not generate a constant cross-section density and the

unconditional density is hard to compute. It is even more complicated to compute the average

demand in the two risk states algebraically. By simulation this is, however, easily done.

Aggregation of the model in Section 3 with equal parameters for all agents is certainly too

stylized to give a realistic description of the exact path of demand after a risk shift.11 The

purpose of the simulation is rather aimed at illustrating how average demand in the two states



22

may be affected by the length of the high risk period. reports the result from a simulation where

I have used the results from Section 3 for λ(1)=0.10 and γ(1)=0.25 and 2.12

(Table 1 approximately here)

In Table 1 we find that demand is substantially lower in the high risk states than in the

low risk state, when high risk periods are short. Average demand in the two states is, on the

other hand, equal up to two decimals when high and low risk periods are equal in length. The

fact that the difference is larger in the case of short high risk periods is due to two things. First,

in Section 3 we saw that the lower trigger falls more when high risk periods are expected to be

short. The agents thus delay upgrades more. Second, short high risk periods imply that average

demand in the high risk periods is more dependent on the short-run effect of a state shift. Short

high risk periods, of course, tend to end soon and then the negative effect on demand is

reversed. The initial negative effect on demand also diminish over time, as noted above. The

long-run effect of a shift to higher risk was actually slightly positive in the simulations.

Using panel data, Eberly (1994) finds that households with higher year-to-year income

variance have wider Ss bands. A one standard deviation higher income volatility implied 11%

wider band. Judging from the simulation results, this may be of small or no importance for

long-run demand. A simultaneous widening of all agents Ss  bands of that order could,

however, have short-run effects extending over several months or a few quarters.

                                                                                                                                       

11 More elaborate simulations are done in Hassler (1995). There it is shown that the negative

effect of a band-widening may be substantial also a year after a risk increase.

12 The cross-section density, f(z) is approximated by dividing the interval between the state 1

lower trigger and state 0 return point in 241 points. Time is made discrete in units Dt  that equal the

time it takes to depreciate between two points in the cross-section approximation. This means that the

time unit is approximately equal to 1/4 month. For each time unit net demand is then calculated as the

sum of net purchases from those hit by wealth shocks and those hitting the lower trigger, i.e.

λ λ( ) ( ) ( ) ( ( )) ( ) ( )s t a z f z s t a z f zsz sz sU∆ ∆− + − −∑ ∑ <1 .
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The general conclusion is thus not that the model supports the idea that a higher level of

risk permanently reduces the demand for durables or investment goods.13 The short-run,

however, may be long enough to be of importance in a business cycle context. Risk fluctuations

of moderately high frequency could potentially have substantial effects on the timing and

volatility of demand. To study such effects we need investment models where risk is stochastic.

                                                  

13 Remember, however, that in the presented model the target stock is unaffected by the level

of risk. If precautionary savings is important also the target may respond to the level of risk. Here we

would expect the effect to increase in the expected length of the high risk period. Another issue is

substitution between durables and non-durables. Higher risk makes it more costly on average to

consume durables which could give risk to a substitution of non-durables for durables when risk

increases. Some progress on the latter issue has been made by Beaulieu (1991).
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Appendix 1 Model Solutions

The Constant Risk Model

The Bellman equation for the problem is
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(A.1)

Setting dt2=0, dividing by dt and collecting terms we get the following differential equation:

( ) ( ) ( ) ( )r V z V z
z

V a cz+ + = + +λ δ λ
2

2
� � (A.2)

This is a standard differential equation and its set of solutions is given by
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where c1 denotes the integration constant. The four unknowns, { , , , }U a U c1 , are found by solving the

usual optimality conditions

Smooth pasting

Value matching

V U

V a

V a c V U

V a c V U

z

z

( )

( )

( ) ( )

( ) ( ).

=
=

���
+ =

+ =
���

0

0
(A.4)

The optimality conditions can only be solved by employing numerical methods.

The Stochastic Risk Model

The Bellman equation for the problem is

V z s
z

dt rdt V z st t
t

t dt t dt( , ) ( ) ( , )= + -
+ +

2

2
1 E (A.5)

For some values of z, a shift of s will lead to an immediate adjustment. As is intuitive and will

be shown to be correct later, if the current risk state is high and z is close to but not equal to the lower

adjustment point, a shift to low risk will reduce the value of waiting and cause immediate adjustment.

For an interior region this will not happen. Inside this region the Bellman equation can be written as
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V z s
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Setting dt2=0, dividing by dt we get the system of differential equations (3.2). The solutions to

the system are given by
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c1,2 are the integration constants and vi ,1
�  is the eigenvector corresponding to the eigenvalue

ρi of the matrix

1 1 1 1
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and,
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Lastly,
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and,
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Guess that U U1 0< .1 If z is in the region [ , ]U U1 0 , a switch from risk state 1 to zero then leads

to immediate adjustment. The function V(z,0) is thus constant for z∈  [ , ]U U1 0  and the system of

differential equations degenerates to
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By setting dt2=0 and collecting terms I get for s=1,

r V z V z
z

V a c V Uz+ + + = + + +λ γ δ λ γ( ) ( ) ( , ) ( , ) ( ) ( , ) ( ) ( , ) .1 1 1 1
2
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2
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Using the same solution technique as above,
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Above the upper triggers the total cost function is horizontal. I have guessed (and verified) that

for all tested parameter values

V a s V a s c ss s( , ) ( , ) ,− < = 0 1� � . (A.16)

The economic implication of (A.16) is that a switch in risk state never in itself induces down-

grading of z. Whether (A.16) is true or not has to be checked when a preliminary full solution is

found. If it is not true we have to construct a degenerate system of differential equations with one

equation being a constant also in the upper region. With the parameter values I have chosen

V a s V a ss s( , ) ( , )-  is never bigger than 0.103% of c, so (A.16) is far from being violated.

To summarize; V(z,0) is given by equation (A.7) for z¶ [U a a0 1 0, max ,� �], and is constant and

equal to V U( , )0 0  for z U� 0 . V(z,1) is given by equation (A.7) for z¶ [U a a0 1 0, max ,� �], by (A.15) for

z U U¶[ , ]1 0 , and is constant and equal to V U( , )1 1  for z U� 1. Due to the large shock assumption I do

not have to solve for V(z,s) above max ,a a1 0� � . To do this is straight forward, however.

To find the unknown integration constants, triggers and return points we solve the following

non-linear system:

                                                  

1 That this is true is verified when a full solution is found.
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The continuity equation in (A.17) is needed because the differential equation changes

functional form at U0 when V(z,1) becomes a constant. Continuity is assured at all points except

V(U0,1) so this equation pins down one constant.

It is not possible to find an algebraic solution to this system, so it has to be solved with numeric

methods.

Appendix 2 Proofs of the Propositions

Proof of Proposition 1

Evaluate equation (A.2) at U  and a. Subtract the second equation from the first to get

r V U V a V U V a
U a

z z+ − + − =
−( )λ δ( ) ( ) ( ) ( )� � � �

2 2

2
. (A.18)

The first term on the R.H.S. equals (r+λ)c by the value matching condition and the second is

zero by the smooth pasting condition so Proposition1 follows directly.

Proof of Proposition 2

Denote the total cost function for the parameter vector [ , , , ]c rd l  by V z( )  with the solutions to

the optimality conditions (A.4) given by the vector [ , , , ]U a U c1 . Substitute [ , , , , ]kz ka k c k c k2
1

2
d  for

[ , , , , ]z a c c1 δ  in (A.3) to get a candidate cost function for the parameters k2c and kδ that satisfies the

differential equation (A.2). Denote this function by 
~

( )V kz , By doing the substitution we immediately

find that

′ =~
( ) ( ),V kz kV zZ (A.19)

and

~
( ) ( ).V kz k V z= 2 (A.20)
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It now remains to show that [ , , ]kU ka kU  solves the optimality conditions for 
~

( )V ¿ . By using

(A.19) and the assumption that V z( )  satisfies the smooth pasting conditions at [ , , ]U a U  we can write

′ = =

′ = =
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~
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Lastly, I use (A.20) and the assumption that V( )¿  satisfies the value matching conditions to

show that

~
( )

~
( ) ( ) ( ) ,V kU V ka k V U k V U k c− = − =2 2 2 (A.22)

and

~
( )

~
( ) ( ) ( ) .V kU V ka k V U k V U k c− = − =2 2 2 (A.23)

(A.21)-(A.23) show that [ , , , ]kU ka kU k c2
1  solves the optimality conditions for 

~
( )V ¿  and thus

defines an optimal policy. By defining k ≡ ′δ δ/  Proposition 2 follows immediately.

Proof of Proposition 3

Set the expected cost of adjusting equal to the expected cost of waiting one instant, evaluated at

the lower triggers. Use the Bellman equation (A.6), the smooth pasting condition that V U sZ s( , ) = 0

and set dt2=0; then
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The L.H.S. represents the expected total cost of immediate adjustment and the R.H.S. the

expected total cost if one waits dt and then does what is optimal. Expanding the L.H.S. with the use of

the Bellman equation (A.6) I get

V a s c
a

dt rdt V a s s dtc

s dt V a s V a s c

s
s

s

s s

( , ) ( ) ( , ) ( )

( ) ( , ) ( , ) .

+ = + − + +

− +

2

2
1 λ

γ � �
(A.25)

By collecting terms, dividing by dt and using (A.24), (A.25) and the value matching condition

in (A.17) we have



29

U a
rc s V U s V a s
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(A.26)

The first two terms of the value of waiting are obviously positive and the last can be rewritten

as

γ ( ) ( , ) ( , )s c V U s V a ss s− − ≥� �� � 0 . (A.27)

The inequality is easy to see; V z s V z s c z z( , ) ( ’, ) , ’- � "  with equality only for

z U z U z as s s≤ ≥ =or and� � ’ . In less formal words, the minimum of the expected cost function can

always be reached if the adjustment cost c is paid. The expected cost can thus never be higher than

this minimum plus c.

Proof of Proposition 4

Fix the parameters { , , ( ), ( ), ( ), ( ), }c rd l l g g0 1 0 1 . Denote the cost function by V s( , )¿  with

U U a a U U c c c0 1 0 1 0 1 0 1 2, , , , , , , ,�   solving the optimality conditions. Now change the depreciation rate

to 
~
d d= k  and the adjustment cost to ~c k c=

2  where k is a positive scalar. Set the proposed new

solution to kU kU ka ka kU kU k c k c k c0 1 0 1 0 1
2

0
2

1
2

2, , , , , , , ,�  with associated cost function by 
~

( , )V s¿ . I

now need to show that the optimality conditions in (A.17) are satisfied for the proposed solution. I use

the tilde to denote constants given by the proposed solution and the new parameters. First note that

from (A.15)

~
( , ) ( )

( , ) .

V kU kU k k c e k

kV a
z

U

z

1 1 1
1

1
2 2

0 1
1

1

1

1 0

1
1

1= − −
= =

− − − −−

ψ δψ ψ δψ δ
(A.28)

Similarly, from (A.7) we have

~
( , ) ~ ~ ~ ~ .

~ ~
V ka ka k c e k c ez

ka ka
0 0 0 0

2
1 1

2
2 20 1 0 2 0

= + + +a b r r
r r (A.29)

From (A.8) and (A.9) we find that ~ ,
~

, , ,α α β βs s s sk s= = = 0 1  and ~ , ,2ρ ρi ik i= =−1 1 .

Substituting this into (A.29) we get

~
( , )

( , ) .

V ka ka k kc e kc e

kV a
z

a a

z

0 0 0 0 1 1 2 2

0

0

0 0

1 0 2 0= + + +
= =

α β ρ ρρ ρ
(A.30)

Following the same steps we find that also the other smooth pasting conditions are satisfied.

For the value matching condition we note that
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(A.31)

Doing the same for the other value matching conditions and checking the continuity condition

using the same method we find that the optimality conditions are satisfied for the proposed solution.
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Figure 1 A Sample Path of w, κ and z.

Figure 2 Total Cost Function

Figure 3 Effects of Risk Increase From 1% Per Year
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Figure 5 Change in Bandwidth After Shift to High Risk

Figure 6 Fall in Lower Trigger Point after a Shift to High risk

Figure 7 Increase in Value of Waiting and Temptation to
Adjust After a Risk State Shift*

Table 1 Net Demand for the Durable



Figure 1 A Sample Path of w, k and z.
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Figure 5 Change in Bandwidth After Shift to High Risk
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Figure 7 Increase in Value of Waiting and Temptation to
Adjust After a Risk State Shift*
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Table 1 Net Demand for the Durable

Relative1 Average Net Demand

Short High Risk
Periods, g(1)=2

Long High Risk
Period, g(1)=0.25

In Low Risk State 1.03 1.00
In High Risk State 0.76 1.00
First Month After Shift to High Risk 0.25 0.24
First Month After Shift to Low Risk 3.41 3.20

1. Net demand relative to average over all time intervals.


