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Abstract

For many kinds of capital, depreciation rates change systematically with the age of the capital.

Consider an example that captures essential aspects of human capital, both regarding its accumu-

lation and its depreciation: a worker obtains knowledge in period 0, then uses this knowledge in

production in periods 1 and 2, and thereafter retires. Here, depreciation accelerates: it occurs at a

100% rate after period 2, and at a lower (perhaps zero) rate before that. The present paper ana-

lyzes the implications of non-constant depreciation rates for the optimal timing of taxes on capital

income. The main finding is that under natural assumptions, the path of tax rates over time must

be oscillatory. Oscillatory tax rates are optimal when depreciation rates accelerate with the age of

the capital (as in the above example), and provided that the government can commit to the path of

future tax rates but cannot apply different tax rates in a given year to different vintages of capital.
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1. Introduction

What is the optimal path of taxes for a benevolent government that needs to finance

some essential public expenditures? We study this question in a setting where taxation must

take the form of proportional levies on capital income and where depreciation rates may vary

over time (i.e., non-geometric depreciation). We are particularly interested in the case where

depreciation rates increase with the age of capital, since we believe that it captures a realistic

feature of the depreciation of physical and, in particular, human capital. For example, when

a worker leaves the workforce, large parts of her human capital depreciates. We find that in

such economies, it is optimal for the government to commit (if it can) to an oscillating tax

sequence.

A standard principle in public finance is that taxation should be designed so as to keep

distortions smooth over time. This principle applies whenever the social cost of raising tax

revenue is convex, a circumstance that is met in most settings. In models where taxes only

distort static decisions (e.g., to labor supply), and where the relevant elasticities are constant

over time, this implies that taxes should be as close to constant as possible and that shocks

to expenditures should be absorbed by time-varying debt (see, e.g., Barro, 1979). However,

if taxes distort accumulation decisions, new issues arise, since such decisions depend not only

on a single tax rate but on the present value of taxes generated by each unit of investment.

One much studied question is how much tax revenue should be raised from income arising

from static decisions (say, labor income) and how much should be raised from taxing income

from accumulated production factors (such as physical capital). The seminal papers by

Chamley (1986) and Judd (1985) in this area show, in particular, that optimal taxation in

general involves taxing both labor and capital but at very particular, time-varying rates: over

time, the tax rate on the accumulated factor should go to zero. Thus, they should be “front-

loaded” and, in a typical setting (see Atkeson et al., 1999), high only for a finite number
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of periods and thereafter zero forever. In this paper we emphasize that the smoothing of

distortions across vintages of investment does not, in general, imply the smoothing of tax

rates. Rather, under non-geometric depreciation, oscillations in tax rates can turn out to

be a way of smoothing distortions while also imposing higher present-value taxes on the

inelastic supply of initial capital and on capital installed early on.1

We consider a modified version of the standard neoclassical growth model. In addition

to a more generalized depreciation structure, we consider linear utility—in order to avoid

tax effects on the interest rate—and a two-sector production structure.2 Consumption is

linear in the capital input (which could be human capital or physical capital) whereas the

production of investment involves decreasing returns. An important assumption for our

results is that at any point in time, all capital income has to be taxed at the same rate; i.e.,

the government cannot impose vintage-specific taxes. Moreover, the government cannot levy

taxes or subsidies on investments (see Section 5 for further discussion of these assumptions).

When depreciation is geometric, our model reproduces the standard result that taxes on

capital should be front-loaded. Suppose, as is standard in the literature, that the government

cannot tax capital income in period zero (which would be non distortionary). Then the

planner taxes capital income in period 1 at a very high rate so as to extract revenue from

the part of the initial tax base that is inelastic (i.e., from those assets that were accumulated

before the start of the planning horizon). Thereafter, the optimal tax rate drops to its steady-

state level. Though standard, an interesting aspect of this result is that the distortions on

asset accumulation generated by this tax sequence are far from smooth: the tax burden is

borne entirely by the investments in the first period. This may seem surprising: shouldn’t the

1Strong time variation of tax rates is a characteristic of the optimal policy also in Greulich and Marcet
(2007). They emphasize that, while capital taxes are front-loaded, labor taxes have to be back-loaded to
encourage early capital accumulation. Moreover, Hagedorn (2007) emphasizes that in the presence of search
frictions, Ramsey problems can be non-convex and therefore generate optimal tax cycles. This mechanism
is, however, quite difference from the one we emphasize here.

2With linear utility the government will not try to manipulate the interest rate; see Lucas and Stokey
(1983).
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planner shift some burden to future investments, so as to smooth distortions? In addition,

after the first period (with high taxation), since capital depreciates geometrically, there is

still inelastic capital left. Both these factors speak for a large tax rate in the second period.

However, the fact that the initial investment is heavily distorted by the first-period tax makes

it very costly to distort it further by a high second-period tax rate. This speaks for lower

taxes in period two. It turns out that the opposing forces cancel exactly under geometric

depreciation, so that taxes go to their steady-state level immediately, although in our model

the steady-state capital-income tax is not zero for reasons that are related to the analysis of

Correia (1996).3,4

If, on the other hand, capital depreciates at a time-varying rate (changing with the age

of the capital), the planner can and will use the timing of taxation to smooth distortions.

To establish the result in a transparent way, we focus on a simple deviation from geometric

depreciation that we label “quasi-geometric”: the depreciation rate in the first period is

allowed to be different from that in subsequent periods. The presence of a distribution

of capital vintages turns the timing of taxation into an additional instrument for enabling

distortion smoothing. We stress the case in which the depreciation rate increases with the

age of the asset, since this seems empirically relevant for most types of capital (see below

for more discussion). In this case, the Ramsey allocation implies oscillatory tax dynamics.

The case of human capital illuminates this point. Suppose that the asset is accumulated

in period t − 1 and is fully productive in periods t and t + 1 but not thereafter. This is

a particular case of quasi-geometric depreciation, where the depreciation increases with the

asset age (depreciation is zero initially, and then 100%). At time t, a surprise occurs, which

3Intuitively, if the present-value tax revenue extracted from inelastic capital were held constant, then
shifting capital taxation to later dates would be detrimental: it would not reduce the burden on time-zero
investments, and it would distort future investment decisions unnecessarily.

4Here, as in Correia (1996), we assume that a production input (investment goods) cannot be taxed.
Absent this restriction on taxation, some long-run taxation of capital income will be optimal, since such
taxation would indirectly allow some taxation of the untaxed input.
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increases the need for the government to raise funds (e.g., a war).5 In this case, the planner

wants to seize the opportunity to extract a large amount of tax revenue from the generation

that made its investment before the war. This generation sunk its investment under the

expectation of lower taxes, and this investment is, at t and t + 1, an inelastic tax base,

calling for a high tax rate. The key insight is that this high tax rate can be counteracted by

a lower tax rate in t + 2 so that investments in period t are not too distorted. The revenue

from taxes paid by capital originating from investments done before the shock is not hurt

by the reduction in period t + 2 taxes, since it is fully depreciated by then. Then, since

the t + 2 tax rate is low, a higher t + 3 tax rate helps smooth investments, and so on. This

oscillating plan features a smoother path of distortions than full front-loading would. At the

same time, it allows the planner to exploit the lower elasticity of the tax base at t. This

example is simple and intuitive because the asset (human capital) is only productive for two

periods. However, we show that this intuition is robust to the case where assets are infinitely

lived and depreciate smoothly but at rate that is increasing in the asset age.

In Section 2, we describe the basic setup from the perspective of standard Ramsey prob-

lems where the issue is that of how and when to finance an exogenous stream of government

expenditures when the government can borrow and lend. Section 3 derives our main results.

Section 4 introduces stochastic shocks to government spending needs. This extension shows

that, if government debt is not state contingent, optimal tax oscillations can arise after a

fiscal shock. Thus, the fluctuations in our examples are not necessarily mere memories of

the initial-period capital stock. However, if debt is state-contingent, no new fluctuations

occur: those that are present are indeed a memory of the initial period. Section 5 concludes.

The appendix contains some proofs and technical derivations. Some additional proofs are

5The assumption in this example—that the change is a “surprise”—is made for simplicity. It can be
interpreted as allowing the planner to make a commitment but then re-optimize after a zero-probability
shock realization. We show in Section 4 that the argument is robust to assuming that the shock is the
realization of a stochastic process of which agents know the probability distribution, and the government
commits, ex ante, to a state-contingent plan.
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contained in a technical appendix, available from the corresponding author’s webpage.

2. The model

In this section, we set up the basic model. We first discuss the main maintained assump-

tion – the general structure of depreciation – and then describe the Ramsey problem facing

a benevolent planner who must finance an exogenous stream of expenditures.

2.1. Quasi-geometric human capital depreciation

The key new element we consider is variable depreciation rates of the stock of capital.

To fix ideas, we will refer to human capital throughout, though we briefly argue in Section

5 that also many kinds of physical capital share this depreciation structure. Thus, let us

subdivide the life of a unit of capital, which is now represented by a worker, into three stages:

youth, young adulthood, and old adulthood. The conditional probability of death increases

with age. More precisely, a young agent dies with probability zero, a young adult dies with

probability δρ and an old adult dies with probability δ, where δ ∈ (0, 1] and ρ ∈ [0, 1].

Moreover, each period young agents are born so that the size of the population is constant.

Youth and young adulthood last for at most one period: a surviving young agent turns into

a young adult, whereas a surviving young adult turns into an old adult. Only young agents

invest in human capital, e.g., through education. A unit of investment at time t leads to one

unit of productive capital in period t + 1. Thereafter, human capital does not depreciate

within the lifetime of an individual, but disappears when an agent dies.6 Thus, the expected

contribution to the future stock of human capital of a unit of investment at t is 1 unit in

period t+1, 1−ρδ units in period t+2, and (1−ρδ)(1−δ)k units in period t+2+k. We label

this structure quasi-geometric depreciation. Note that ρ = 1, i.e., a constant mortality rate

6In addition, one could assume that the human capital (knowledge) of an individual decreases with age
even conditionally on survival. This would yield the same qualitative dynamics of human capital depreciation
as the mortality channel discussed in the text.
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within the working population, yields a standard, geometric depreciation of human capital,

whereas ρ < 1, i.e., an increasing mortality rate within the working population, yields a

lower initial depreciation than in the geometric case. The case ρ = 0 and δ = 1, on the

other hand, describes the case where worker human capital survives for two periods without

depreciation and then disappears. Figure 1 represents a case of accelerating depreciation,

showing the fraction of investments made in period t − 1 that survives at t, t + 1, ..., etc.

< FIGURE 1 ABOUT HERE >

In order to derive implications for the optimal taxation of human capital, we consider a

discrete-time, infinite-horizon model where agents age and die according to the description

above. To abstract from mortality risk issues, which are orthogonal to our focus, we assume

agents to be part of “large families”. In particular, the economy is populated by a continuum

of representative unitary households, each consisting of a continuum of agents of different

ages.7 The total size of the representative household is unity. The age distribution of each

household is constant over time. As above, an agent born in period t builds up it units

of human capital in the first period of her life and becomes productive as of period t+1.

Thereafter, her human capital remains constant until her death.

The total stock of human capital of the household is the integral of the human capital

of all its members. Because of the age-dependent mortality rates, in order to determine the

total human capital of the household, it is necessary to distinguish between two kinds of

human capital at time t: the capital of the old adults, for which we use the notation ho
t ,

and that of the young adults, hy
t . Clearly, hy

t = it−1. The difference between these kinds of

capital is not in their productivities—the total human capital input of the household at t,

which we call ht, equals ho
t + hy

t —but in their depreciation rates from t to t + 1. Thus, our

7In our unitary households, all utilities will be interpreted from the perspective of perfect altruism across
generations: the representative agent is a “dynasty planner” who internalizes the effects of current choices
on all future generations.
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assumptions are summarized by the following laws of motion for the two types of human

capital:

ho
t+1 = (1 − δ)ho

t + (1 − ρδ)it−1, (1)

hy
t+1 = it.

These equations amount to a generalized version of the standard accumulation equation:

ht+1 = it + (1 − δ)ht + δ(1 − ρ)it−1. (2)

In this formulation, total human capital productive next period equals (i) the investment

made this period plus (ii) total capital in use this period depreciated at rate δ, with (iii)

an adjustment upward by δ(1 − ρ)it−1 due to the fact that not all capital in use today

actually depreciates at a constant rate δ: part of it, it−1, depreciates at the lower rate ρδ.8

Notice, in particular, that when ρ = 1 equation (2) reduces to the standard Blanchard-Yaari

perpetual youth model which yields geometric depreciation.. Much of the analysis below will

be conducted in terms of old capital, ho, since it is a natural state variable, whereas ht is

not.

A standard three-period model where agents invest in their youth and work for two peri-

ods can be viewed as a particular case of the general quasi-geometric depreciation structure

described above, where δ = 1. 9 In this case, ρ = 0 means that productivity is constant

throughout the life of an individual, whereas ρ > 0 would capture a downward-sloping age-

earnings profile (the worker’s knowledge depreciates with age). We will focus on this simple

case in the analysis of stochastic shocks of Section 4.

8With ht − it−1 depreciating at rate δ and it−1 at rate ρδ, the new total capital in use becomes it +(ht −
it−1)(1 − δ) + it−1(1 − ρδ), which delivers the right-hand side of equation (2).

9Its counterpart in the literature on physical capital depreciation is a one-hoss shay depreciation structure,
where investment at t stays intact until t + 2 but then depreciates fully.
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2.2. Preferences and technology

Since our goal is to develop a tractable framework, we introduce two stark assumptions

about technology and preferences. First, we assume the intertemporal preferences of the

representative household to be time-additive and the intratemporal preferences to be linear

in consumption and quadratic in “educational effort.”10 More formally,

U0 =
∞∑

t=0

βt
(
ct − i2t

)
,

implying that the gross interest will be 1/β.11 Second, we assume that the production

function is linear in human capital. In particular, production at t is simply ht: it equals

total (old plus new) human capital. In this model, the issue is purely one of when income

should be taxed; there is no choice between taxing different factors of production.12

The representative household chooses investment plans to maximize U0. The optimal

choice of investment must balance the marginal cost of investment (2it) and the expected

present discounted value (PDV) of the after-tax output generated by a marginal unit of

human capital. Since the marginal product of human capital is unity by assumption, this

value is given by

β (1 − τ t+1) + (1 − ρδ)
∞∑

s=2

βs (1 − δ)s−2 (1 − τ t+s) .

Defining

κ ≡ β + (1 − ρδ)
∞∑

s=2

βs (1 − δ)s−2 = β
1 + βδ (1 − ρ)

1 − β (1 − δ)

10¿From now on, all variables will be aggregated at the unitary household level. Note that, due to risk
neutrality, our formulation is identical to one in which there is no unitary household and the planner is
utilitarian, i.e., attaches the same weight to all living agents.

11It is possible to relax the assumption of quadratic investment costs and generalize it to any convex
cost. Then, one can provide a characterization of the dynamics around a steady state which is qualitatively
identical to the global solution we obtain.

12In spite of the linear technology, our model does not feature endogenous growth, due to the quadratic
investment cost.
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and

Tt ≡ βτ t+1 + (1 − ρδ)
∞∑

s=2

βs (1 − δ)s−2 τ t+s, (3)

it follows immediately that we can write the household’s optimal choice of investments in

the following compact way;

it = i (Tt) ≡ 1

2
(κ − Tt) (4)

where κ is the effective duration of new investment and Tt is the the effective discounted sum

of taxes (which we label the “present-value tax”) on period-t investments.

2.3. The Ramsey problem

The government must finance a given sequence {gt}∞t=0 of expenditures subject to an

intertemporal budget constraint

b0 +
∞∑

t=0

βt(gt − τ t(h
o
t + it−1)) ≤ 0, (5)

where pre-tax output equals ht = ho
t + it−1 and b0 is initial government debt. Note that

the only instrument available to the government is taxation of the return to human capital,

which coincides here with output taxation.

The Ramsey problem can now be formulated as a planner choosing a tax sequence max-

imizing the representative household’s utility subject to its budget constraint (5), and the

restriction that the allocation be a competitive equilibrium. Due to risk neutrality, maxi-

mizing total utility of the representative household is equivalent to maximizing the PDV of

after-tax output minus investment costs. Therefore, the Ramsey problem amounts to

max
{τ t,it,ho

t+1}∞t=0

∞∑
t=0

βt
(
(ho

t + it−1) (1 − τ t) − i2t
)
,

subject to the budget constraint, (5), the law of motion of (old) capital under quasi-geometric

depreciation, (1), and the implementability constraint, (4). In addition, we impose that tax
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rates are bounded and that τ 0 = 0.13

Before turning to the analysis, it is useful to relate our model to existing results in the

optimal capital taxation literature. First, using a model with geometric capital depreciation

and a linear (as opposed to quadratic) investment cost, Chamley (1986) and Judd (1985)

established that if the Ramsey tax sequence converges to a steady state, then the steady

state must be zero.14 However, the Chamley-Judd result does not apply to our model even

in the particular case of geometric depreciation. In fact, we will show later that our model

features positive taxation in the long run, due to the quadratic investment costs. This result,

which is not the main focus of our analysis, is a particular case of the more general analysis

by Correia (1996).15

3. Analysis

Define λ as the Lagrangian multiplier associated with the government budget constraint.

The Lagrange method then implies that the Ramsey problem can be expressed, after rear-

ranging terms, as:

max
{τ t,it,ho

t+1}∞t=0

∞∑
t=0

βt((τ t (λ − 1) + 1)(ho
t + it−1) − i2t ) − λ

(
b0 +

∞∑
t=0

βtgt

)
. (6)

The solution to the problem in (6) depends on the Lagrangian multiplier, λ. The value

of λ is determined by minimizing the objective in (6). It represents the shadow value of

the government’s budget constraint, (5), and is increasing in the government’s needs to

13The tax τ0 would be lump-sum as it is levied on predetermined human capital only. Therefore, if τ0

were a choice variable, it would be set at its maximum feasible level, with no effect on any other choice.
Hence, setting τ0 = 0 is without loss of generality.

14In the analysis of Chamley and Judd, the planner can tax both labor and capital. However, this is not
important for the current discussion. Moreover, Atkeson et al. (1999) show that, under CRRA utility, the
Ramsey solution features zero capital taxation for all t ≥ 2.

15Correia’s main insight is that untaxed input factors provide one channel through which capital taxation
can be used beneficially, even in the long run. In our framework, the human-capital investment is a non-
taxable household activity, subject to increasing marginal cost. There are therefore untaxed “profits” in this
operation, which are equivalent to the untaxed factor income in Correia’s analysis.
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raise funds
(
b0 +

∑∞
t=0 βtgt

)
and decreasing in ho

t + it−1. In the rest of the paper, we will

characterize the optimal sequence of taxes conditional on λ, bearing in mind that conditioning

on λ is equivalent to conditioning on a set of initial conditions.16

The following Lemma is a useful step towards characterizing the solution to the Ramsey

problem (the proof is simple algebra and is, therefore, omitted).

Lemma 1 Setting τ 0 = 0, the Ramsey problem, (6), subject to (1) and (4) is equivalent to

the following program:

max
{τ t}∞t=0

(λ − 1)
(
τ 0 (ho

0 + i−1) + T̂0h
o
1

)
+

∞∑
t=0

βty (Tt) − λ(b0 +
∞∑

t=0

βtgt), (7)

where

T̂0 ≡ β

∞∑
t=0

(β(1 − δ))t τ t+1, (8)

y(Tt) ≡ λκi (Tt) − i (Tt)
2 (2λ − 1) , (9)

and Tt and i (Tt) are defined as in (3) and (4), respectively.

The new functions y (Tt) and T̂0 will be particularly useful in the analysis below. The

function y (Tt) is the contribution of the human-capital investment of generation t to the

planner’s discounted utility. Each such “vintage” investment contributes to the planner’s

utility via private consumption, it (κ − Tt), the financing of government expenditure, λTtit,

and the investment cost, −i2t . By using (4) to eliminate Tt, expression (9) follows imme-

diately. Furthermore, T̂0 is the effective discounted sum of taxes levied on human capital

investments made before the beginning of the planning horizon, and thus inelastic. With

analogy to previous definitions, we label it the “present-value tax on inelastic capital”. Taxes

16The Ramsey problem above admits an alternative interpretation whereby households derive utility from
both private consumption and the consumption of a public good. The intratemporal utility is modified to
u(c, g, i) = c + λg − i2, where λ in this case denotes the constant marginal utility agents derive from the
consumption of the public good, and government revenue is entirely spent on the public good. See the
working paper version of the present paper, Hassler et al. (2004), for details.
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entering T̂0 are discounted at the rate β(1− δ), reflecting the discount factor and the rate of

depreciation of the initial human capital.

The objective function (7) is then the sum of the PDV of the contribution to the planner’s

utility of all investments from time zero onwards,
∑∞

t=0 βty (Tt), and the PDV of the tax

revenue from pre-existing human capital. Ignoring irrelevant constants and predetermined

variables and recalling that we rule out lump-sum taxes (τ 0 = 0), the Ramsey problem

simplifies to

max
{T̂0,Tt}∞t=0

(λ − 1)T̂0h
o
1 +

∞∑
t=0

βty (Tt) , (10)

where

T̂0 =
∞∑

t=0

(−δβ (1 − ρ))t Tt. (11)

Expression (11) follows from equations (3) and (8) and is formally derived in the appendix.

This expression implies that T̂0 cannot be chosen independently of the Tts. Note that ho
1 is

a key predetermined variable; its size will influence the dynamics of present-value taxes.

The program (10) pins down the optimal sequence {Tt}∞t=0s and T̂0 rather than the

tax sequence {τ t}∞t=1. Since it = (κ − Tt) /2, this amounts to the planner choosing the

investment sequence. Thus, (10) is a primal formulation, where the planner chooses an

allocation directly, subject to the constraint that it is a competitive equilibrium. In the

appendix, we prove formally that there is a one-to-one mapping between the primal and the

dual formulations. Namely, a sequence of present-value tax rates (or investments) pins down

uniquely a sequence of individual tax rates satisfying (3) and (8).17

17Intuitively, because tax rates are bounded and β(1− δ) < 1, the present-value taxes must be bounded as
well. Forward iterating on equation (3) leads to Tt+1 = β−1(1− δ)−1 (Tt − βτ t+1). This difference equation
can be solved for a unique feasible sequence of tax rates. Namely, given a sequence {Tt}∞t=0, one can back
out a unique sequence of tax rates {τ t}∞t=1 which satisfies the boundedness condition. See Proposition 2
below and its proof in the appendix.
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3.1. The case of geometric depreciation

We first analyze the benchmark case of constant mortality rate of the adult population,

i.e., geometric depreciation (ρ = 1). In this case all the present-value taxes are geometric (as

opposed to quasi-geometric) sums of future tax rates. In particular, T̂0 = T0: the present-

value tax on inelastic capital is identical to the present-value tax on investment in period

zero, which is distortionary. Thus, we can rewrite the Ramsey problem of equation (10) as

max
{Tt}∞t=0

(λ − 1)T0h
o
1 +

∞∑
t=0

βty (Tt) .

Expression (11), which is formally derived in the appendix and follows from equations

(3) and (8), implies that T̂0 cannot be chosen independently of the Tts. Note that ho
1 is a

key predetermined variable; its size will influence the dynamics of present-value taxes.

The program (10) pins down the optimal sequence {Tt}∞t=1s and T̂0 rather than the tax

sequence {τ t}∞t=1. Since it = (κ − Tt) /2, this amounts to say that the planner chooses the

investment sequence. Thus, (10) is a primal formulation, where the planner chooses an

allocation directly, subject to the constraint that it is a competitive equilibrium. In the

appendix, we prove formally that there is a one-to-one mapping between the primal and the

dual formulation. Namely, a sequence of present-value tax rates (or investments) pins down

uniquely a sequence of individual tax rates satisfying (3) and (8).18

In period zero, the problem is different: here T0, which distorts i0, also raises revenue

from the taxation of the inelastic human capital, ho
1. Thus, the optimal T0, which we label

T ∗
0 , satisfies

(λ − 1)ho
1 + y′(T ∗

0 ) = 0.

18Intuitively, because tax rates are bounded and β(1− δ) < 1, the present-value taxes must be bounded as
well. Forward iterating on equation (3) leads to Tt+1 = β−1(1− δ)−1 (Tt − βτ t+1). This difference equation
can be solved for a unique feasible sequence of tax rates. Namely, given a sequence {Tt}∞t=0, one can back
out a unique sequence of tax rates {τ t}∞t=1 which satisfies the boundedness condition. See Proposition 2
below and its proof in the appendix.
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Clearly, T ∗
0 > T ∗ which in turn implies that τ 1 > τ ∗. The extent of the initial tax hike

depends positively on ho
1.

3.2. Quasi-geometric depreciation

In the general case with an increasing mortality rate (quasi-geometric human-capital

depreciation), T̂0 is no longer equal to T0. Since the inelastic capital, ho
1, depreciates at a

different rate from new investments, the timing of taxes can be used to improve efficiency.

Now, the connection between T̂0 and the sequence of Tts in equation (11) is key for un-

derstanding the oscillatory tax dynamics: if ρ < 1, the weights on the future present-value

taxes Tt have alternate signs. Thus, every Tt will influence the taxation of inelastic capital,

and whether Tt increases or decreases the present-value tax on inelastic capital depends on

whether t is even or odd.

After eliminating T̂0, using (11), from (10), the Ramsey problem now reads

max
{Tt}∞t=1

(λ − 1)

( ∞∑
t=0

(−δβ (1 − ρ))t Tt

)
ho

1 +
∞∑

t=0

βty (Tt) .

The first-order condition with respect to Tt is

(λ − 1)ho
1 (−δ (1 − ρ))t + y′ (Tt) = 0. (12)

The set of FOCs for t ≥ 0 pins down uniquely the optimal present-value tax sequence {Tt}∞t=1

and, hence, the optimal tax sequence {τ t}∞t=1 (see the proof of Proposition 2). Note that the

first-order condition for T0 is the same as in the case of geometric depreciation. However,

under geometric depreciation ho
1 only affects future present-value taxes via its effect on

the Lagrange multiplier, λ. In contrast, under quasi-geometric depreciation ho
1 also affects

directly the dynamics of the entire sequence of investments and taxes, as shown by equation

(12). The solution can be summarized by our main proposition.19

19The assumption that b0+
∑∞

t=0 βtgt is not too large is meant to avoid uninteresting complications arising
from corner solutions in the choice of taxes.
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Proposition 2 Assume that ‖δ (1 − ρ)‖ ≤ 1 and that b0 +
∑∞

t=0 βtgt is not too large. Then,

the optimal (Ramsey) present-value tax sequence is given by

Tt =
λ − 1

2λ − 1

(
κ + 2ho

1 (−δ (1 − ρ))t) for t ≥ 0. (13)

The corresponding unique tax sequence that implements the Ramsey allocation is:

τ t+1 = τ ∗ − δ (1 − ρ) (τ t − τ ∗) for t ≥ 1, (14)

τ 1 = τ ∗
(

1 + 2ho
1

1 + βδ (1 − δ) (1 − ρ)

β
(
1 − βδ2 (1 − ρ)2)

)
, (15)

where τ ∗ ≡ (λ − 1) / (2λ − 1) < 1/2, and λ guarantees that equation (5) is satisfied with

equality, given the investment rule (4), the definition of Tt in (3), and the optimal tax

sequence defined by (14)-(15). If δ (1 − ρ) = 0, then the tax sequence is constant after the

first period. If δ (1 − ρ) ∈ (0, 1), then the tax sequence converges in an oscillatory fashion to

τ ∗. If δ (1 − ρ) = 1, then the optimal tax sequence is a two-period cycle.

Proof (sketch): The first-order condition (12), together with the definition of y(Tt) as

given in (9), yield the optimal present-value tax sequence, (13). The proof in the appendix

amounts to showing that the tax sequence (14)-(15) is the unique sequence satisfying (13)

and the tax constraint τ t ≤ 1, given the definition of the Tt’s as in (3).

Figure 2 shows the dynamics of tax rates (τ t), present-value taxes (Tt), investments and

net output, defined as ho
t + it−1 − i2t , in a case of quasi-geometric depreciation. Note that

investments fluctuate less than taxes, an illustration of the fact that although taxes may

fluctuate a lot over time, investments and distortions are smoother. Net output fluctuates

around a geometric trend toward the steady state.20

< FIGURE 2 ABOUT HERE >

20However, gross output, excluding investment costs, i.e., ho
t + it−1, displays monotone convergence and

is, in fact, constant in the case of δ = 1. The proof and details about the calibration are in the technical
appendix, available from the corresponding author’s webpage.
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3.3. Interpretation

3.3.1. A second-best benchmark: age-specific taxation

In order to understand the results of the previous section, it is useful to compare them

with the case in which the planner has access to age-specific taxation, i.e., she can tax the

income produced by different cohorts at different rates. The Ramsey sequence is then very

simple: the planner taxes the human capital income of the initially old adults, ho
1, at the

highest possible rate every period, since these taxes are non-distortionary. All cohorts after

period zero are then taxed at the constant rate τ ∗ such that y′ (Ts) = 0 for all s > 0, where

Ts = T ∗ ≡ β (1 − β(1 − δ))−1 τ ∗. We will refer to this benchmark allocation as second best.

This allocation achieves a perfectly smooth distortion of investments by smoothing perfectly

the taxes affecting future investment vintages.

In contrast, when age-specific taxes are ruled out, the planner cannot separate taxation of

output produced by inelastic human capital from distortionary taxation on output produced

by later human-capital vintages.21 Thus, a trade off arises between the objective of smoothing

distortions and that of taxing inelastic human capital. Note, that the Ramsey tax sequence

of Proposition 2 features perfect tax and investment smoothing only when ho
1 = 0: when

there is no inelastic capital, the planner chooses constant taxes as she would do in the second

best.

3.3.2. Geometric depreciation (ρ = 1)

In the case of geometric depreciation, there are no oscillations, and taxes are smooth

after one period. Investments, however, are far from smooth. In particular, since τ 1 > τ ∗,

while τ t = τ ∗ for all t > 1, all distortions generated to extract income from the inelastic

capital are borne by the first cohort of young agents (T0 > Tt = T ∗, for all t > 0). This

21Hassler et al. (2007) analyzes the properties of the Ramsey allocation in a two-period version of this
model when age-dependent taxation is allowed.
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implies very low investments in period zero. Why does the planner not attempt to smooth

distortions by taxing capital at later dates, thus reducing τ 1 so as to increase i0?

First, given the present-value tax on inelastic capital, T̂0, it is impossible for the planner

to use the timing of taxes to alleviate distortions on period-zero investments. This follows

immediately from the fact that T̂0 = T0. For instance, if the planner were to reduce τ 1 and

increase τ 2 so as to keep T̂0 constant, investment in period zero would not change. Second,

such tax reallocation would increase T1 and distort it away from the second best level, T ∗.

The same argument applies to any other potential changes in the timing of taxation (e.g.,

the same experiment using τ 3 instead of τ 2 would increase both T1 and T2). In sum, it is

optimal for the planner to “front-load” taxes in order not to distort investments after the

first period.

Our results imply that taxes for periods t > 1 only depend on ho
1 via its effect on λ (a

larger ho
1 increases the tax revenue all else equal, relaxing the government budget constraint,

and implying lower λ and lower τ ∗). To understand this result, note that along the optimal

path, the marginal distortion of τ s must be proportional to the marginal revenue generated

by that tax. If ho
1 is increased, the marginal revenue raised by τ 1 increases, so τ 1 should

then be increased, increasing the distortion on period zero investments i0. What are the

implications for the optimal choice of τ 2? The trade-off between distortions and revenue

generation for τ 2 is affected in two ways. First, as for τ 1, the higher ho
1 affects the marginal

revenue of τ 2 positively. Second, however, the higher distortion on period-zero investments

increases the marginal distortionary cost of τ 2 since this tax affects i0 (in addition to affecting

i1). Under geometric depreciation, these two effects exactly balance each other out and the

increase in τ 1 caused by a higher ho
1 should not lead to any changes in τ 2 or, more generally,

in any subsequent tax rates.
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3.3.3. Quasi-geometric depreciation

We now move to the general case, where ρ < 1. According to Proposition 2, the Ramsey

tax sequence is oscillating when ρ ∈ [0, 1). We refer to this case as accelerating depreciation,

since capital depreciates less in the first period than afterwards. In order to understand why

oscillations arise, it is useful to start from a particular case.

A particular case: δ = 1 The case of δ = 1 has a feature that makes the analysis

particularly intuitive: τ 1 is the only instrument the planner has available for taxing the

inelastic capital. Taxes at later dates do not extract revenue from ho
1, since this will have

depreciated fully. Why, then, not set τ t = τ ∗ for t > 1, instead of producing an oscillating

sequence after the initial tax hike? The reason is that, unlike in the case of geometric

depreciation, the planner can now use the timing of taxes to smooth future distortions.

Recall that, while an initial tax hike is attractive since it generates revenue from an inelastic

base, it also distorts investments in period zero, i0 (as in the case of geometric depreciation,

the magnitude of such hike is increasing in the inelastic capital). These distortions can be

mitigated, because investment decisions depend on both τ 1 and τ 2 (recall that, when δ = 1,

we have Tt = τ t+1 + β (1 − ρ) τ t+2). Thus, the planner can alleviate the distortion on period

zero investments by promising a low tax rate in period two. In turn, the low tax rate in

period two stimulates investments in period one, and since it is optimal to keep distortions

smooth, it is therefore useful to compensate the tax break in period two by another tax hike

in period three, and so on.

In contrast to the case of geometric depreciation, taxes at dates t > 1 are now affected by

the size of the stock of inelastic capital, ho
1. To understand this, note that when ho

1 is higher,

it is optimal to increase τ 1 (relative to future taxes). This increases the marginal distortion

of τ 2 because i0 is already distorted by a high τ 1. Moreover, τ 2 does not extract revenue

from ho
1 since it is fully depreciated by period t = 2. Thus, it is optimal to reduce τ 2.
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The parameter ρ is key for the size of the oscillations. Consider for instance the extreme

case when ρ = 0: the one-hoss shay case. As Proposition 2 shows, in this case oscillations

do not die out: the economy ends up in a two-period cycle. The reason is that the increase

in the distortion entailed by τ 2 on i0 is particularly large since i0 has not depreciated at

all by period t = 2. Equivalently, the effectiveness of counteracting a current tax hike by a

next-period tax break is high. When ρ > 0, a larger share of the return on the investment

is accrued in the first period of life than in the second. Therefore, reducing τ 2 will be a

less effective instrument for counteracting distortions in period zero. Hence, oscillations are

smaller and die out in the long run.

The general case with accelerating depreciation We now turn to the general case

of accelerating quasi-geometric depreciation: ρ ∈ [0, 1) and δ ∈ (0, 1). As under geomet-

ric depreciation, human capital is never completely depleted, and the present-value tax on

inelastic capital, T̂0, depends on the entire tax sequence. However, unlike in the case of

geometric depreciation, the Ramsey tax sequence follows an oscillatory pattern. The general

point is that since T̂0 �= T0, it is possible to use the timing of taxes to alter T0 while leaving

T̂0 unchanged. For instance, if we decrease τ 2 and increase τ 1 so as to keep T̂0 constant,

T0 will decrease, since taxes from period two and onwards have a larger impact on T0 than

on T̂0.
22 The planner can now use the timing of taxation as an imperfect substitute for the

absence of age-specific taxes and achieve better distortion smoothing. Recall, in particular,

that the hike in τ 1 distorts heavily i0. Thus, distortion smoothing makes it desirable for the

planner to use future taxes to reduce T0. This is achieved by setting τ 2 < τ ∗ (as in the δ = 1

case). However, having done this, it is not optimal to set τ t = τ ∗ for t > 2, because such a

sequence would imply a deviation from the second-best benchmark in the direction of too

large investments in period one (T1 < T ∗), while all future investment levels would be set at

22The particular case of δ = 1 provides an extreme example: by keeping τ1 constant and reducing τ2, one
can decrease T0 while keeping T̂0 constant.
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the second-best level. Again, distortion smoothing suggests an increase in τ 3 so as to reduce

i1, and so on.

4. Stochastic government expenditure

Proposition 2 establishes conditions under which fluctuations in taxes and output are

efficient. However, if ho
1 = 0 (i.e., no pre-installed capital at time zero), the optimal tax

sequence is smooth; that is, the optimal tax oscillations implied by the model can be entirely

traced back to an initial condition. The aim of this section is to show that when future

expenditure needs are stochastic and markets are incomplete (no state-contingent debt can

be issued), then the transitional dynamics of the optimal tax sequence feature oscillations

even if there is no inelastic capital to begin with. However, if the government can issue

state-contingent debt, no oscillations arise.

For simplicity, government-expenditure risk is limited to a one-time event only. More

precisely, as of period 1 it is revealed whether spending requirements will be high (state

h) or low (state l). However, in period zero the state is unknown, and p ∈ (0, 1) denotes

the probability that the state will be high. Again, for simplicity we focus on the case δ =

1, i.e., the standard overlapping-generations case with no intergenerational human capital

transmission, and assume that i−1 = 0.

4.1. Incomplete markets

In this section, we assume that the government cannot issue state-contingent debt. How-

ever, the government can set, with full commitment, state-contingent taxes sequences, except

for τ 1. An interpretation of this assumption is that τ 1, as well as all other tax rates, must

be set one period in advance: there is an “implementation lag” of one period, implying that

the tax rate in period one cannot depend on information revealed in period one, whereas the
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subsequent taxes can depend on that information. Thus, at time zero, the planner sets τ 1

and a state-contingent tax plan, {τ j,t, τ j,t}∞t=2 for j ∈ {l, h}. When the first-period invest-

ment, i0, is chosen, only τ 1 is known with certainty, whereas agents do not know whether

the tax rate will be τh,2 or τ l,2 in period two. In contrast, all subsequent generations of

investments (including i1) are made under perfect information.

When uncertainty has unraveled, the sequence {τh,t}∞t=2 is implemented if spending re-

quirements are high, whereas the sequence {τ l,t}∞t=2 is implemented if these are low. The tax

sequences must now satisfy one government budget constraint for each state j ∈ {l, h}:

b0 + g0 +
∞∑

t=1

βtgj,t ≡ Gj = βτ 1i0 +
∞∑

t=2

βt(τ j,t(h
o
j,t + ij,t−1)), (16)

where ho
j,t and ij,t denote equilibrium stocks of old and new capital in state j at time t.

The Lagrange multipliers of the two budget constraints are denoted by λh and λl. Clearly,

Gh > Gl > 0 implies λh > λl > 0.23

We extend the definition (9) to the stochastic case:

yj (T ) ≡ λjκi (T ) − i (T )2 (2λj − 1) . (17)

Thus, yj (Tj,t) will be the realized contribution to the planner’s utility of the human-capital

investment of the generation born in period t ≥ 1, conditional on state j ∈ {l, h} and on

the realized present-value tax Tj,t. The analysis of the investment of the generation born in

period zero necessitates some new notation, as such

The investment i0 is made under uncertainty and requires some new notation. We denote

by

ye
0 (Tl,0, Th,0) ≡

[
i (T e

0 ) (κ − T e
0 ) − i (T e

0 )2]+ (1 − p) λli (T e
0 ) Tl,0 + pλhi (T e

0 ) Th,0 (18)

23As above, we do not solve explicitly for λj as a function of Gj . However, we note that the optimal
steady-state tax rate corresponding to a a particular value of λj is given by τ∗

j = (λj − 1) / (2λj − 1).
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the expected contribution to the planner’s utility of the generation born at zero. The expected

(as opposed to realized) period-zero present-value tax is denoted:

T e
0 ≡ pTh,0 + (1 − p) Tl,0, (19)

where, again, Tl,0, Th,0 are the realized present-value taxes on period-zero investments in the

two states. Due to certainty equivalence, i0 is fully determined by T e
0 . The right-hand side of

equation (18) consists of two terms: the certainty equivalent utility from private consumption

(in square brackets) and the expected value for the planner of the tax revenue levied on the

investments of the generation born at zero.

The Ramsey plan can be formulated as

max
{τ1,Th,t,Tl,t}∞t=0

ye
0 (T e

0 , Tl,0, Th,0) +
∞∑

t=1

βt (p · yh (Th,t) + (1 − p) · yl (Tl,t)) , (20)

subject to (17), (18), (19), and the constraints that, for j ∈ {l, h},

Tj,0 = βτ 1 + β (1 − ρ)
∞∑

t=0

(−β (1 − ρ))t Tj,t+1, (21)

which generalize equation (11).24

Here, we summarize the results. The details of the analytical derivations are provided in

the technical appendix available from the corresponding author’s webpage. Substituting the

constraints (19) and (21) into (20), T e
0 , Tl,0 and Th,0 can be eliminated from the objective

function. The Ramsey program can then be formulated as an unconstrained maximization

24The expression in (21) is derived from the definition Tj,t ≡ βτ j,t+1 + (1 − ρ) β2τ j,t+2, which implies

Tj,t−1 − βτ j,t = β (1 − ρ) Tj,t − β (1 − ρ) (Tj,t − βτ j,t+1) .

Forward substitution gives

Tj,t−1 − βτ j,t = β (1 − ρ)
∞∑

s=0

(−β (1 − ρ))s
Tj,t+s

−β (1 − ρ) lim
T→∞

(−β (1 − ρ))T (Tj,t+T − βτ t+T+1) ,

where the last term is zero.
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problem with choice variables τ 1 and {Th,t, Tl,t}∞t=1 . The first-order conditions for this prob-

lem imply a linear system of equations yielding unique solutions for τ 1, Th,0, and Tl,0 (with

Th,0 > Tl,0) in terms of primitives and the shadow values of the two budget constraints, λh

and λl. The the sequences of present-value taxes, {Th,t, Tl,t}∞t=1, can be shown to satisfy

Th,t − T ∗
h = −

(
T ∗

h − T e
0 +

λh − λl

2λh − 1
(1 − p) Tl,0

)
(− (1 − ρ))t , (22)

Tl,t − T ∗
l = −

(
T ∗

l − T e
0 − λh − λl

2λl − 1
pTh,0

)
(− (1 − ρ))t . (23)

Clearly, if 0 < ρ < 1, the sequences {Th,t, Tl,t}∞t=1 converge in an oscillatoryfashion

to their respective limits T ∗
h and T ∗

l , where T ∗
j ≡ κ (λj − 1) / (2λj − 1) for j ∈ {h, l}. If

ρ = 1 oscillations do not die out. The difference equations (22)-(23) and τ 1 provide a

complete characterization of the optimal state-contingent present-value taxes. Given τ 1 and

{Th,t, Tl,t}∞t=1, the tax sequences {τ j,t}∞t=2 can be backed out using (recursively) the expression;

τ j,t+1 =
Tj,t−1 − βτ j,t

β2 (1 − ρ)
,

where τh,1 = τ l,1 = τ 1. This yields

τ j,t+1 = τ ∗
j − (1 − ρ)

(
τ j,t − τ ∗

j

)
, t ≥ 2, (24)

where τ ∗
h ≡ (λh − 1) / (2λh − 1) and τ ∗

l ≡ (λl − 1) / (2λl − 1).

Figure 3 shows a numerical example. The upper panel shows that present-value taxes

(Tj,t), and thus investments, oscillate in both states of nature. The right panel shows the

actual tax sequence that implements the optimal allocation. Tax oscillations arise in both

states of nature, even though there is no inelastic capital. Had the state of nature been

known in advance, the planner would have chosen a constant sequence τ ∗
h = 1/3 in the

high-spending state and τ ∗
l = 0.3 in the low-spending state, respectively. However, due to

uncertainty, τ 1 must be set at a level producing an intermediate investment level in period

zero. In fact, T e
0 = 0.397 and is thus in between the two steady-state levels of present-value
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taxes (0.419 and 0.377, respectively). If the high-spending state is realized, the planner

sets τh,2 > τ ∗
h. The reason is twofold: first, the government faces larger spending needs than

expected; second, taxes have turned out to be lower than what agents born in period zero had

expected and based their investment upon. In other words, i0 is higher than the steady-state

investments under large financing needs. Then, distortion smoothing requires this generation

to be taxed more heavily in the second period. In contrast, if the low state is realized, the

planner sets τ l,2 < τ ∗
l and the mirror image of the argument a\above applies. From period

three and onwards, taxes continue to oscillate following the dynamics characterized in the

deterministic case of Proposition 2. For instance, the high (low) τh,2 (τ l,2) tends to distort the

investment of the generation born in time one heavily (lightly). Thus, distortion smoothing

requires a high (low) τh,3 (τ l,3), and so on.

< FIGURE 3 ABOUT HERE >

4.2. Complete markets

The results in the previous subsection can be compared with those in an environment of

complete markets, where there exist markets for state-contingent assets paying one unit of the

consumption good conditionally on the realization of the high-spending or the low-spending

state. Let period-one consumption be the numéraire and define qj,t as the Arrow-Debreu

price of the consumption good in period t and state j. The assumption of a one-period

implementation lag in taxes is maintained. The two government budget constraints given

by (16) can now be consolidated into one constraint:

b0 + g0 +
∞∑

t=1

∑
j∈{h,l}

qj,tgj,t+1 = βτ 1i0 +
∞∑

t=1

∑
j∈{h,l}

qj,tτ j,t+1

(
τ j,t+1(h

o
j,t+1 + ij,t)

)
. (25)

Since individual utility is linear in consumption, it follows that the Arrow-Debreu prices

must be given by the discounted probabilities, i.e., that qh,t = βtp and ql,t = βt(1 − p).
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Hence,

b0 + g0 +
∞∑

t=1

βt
(
ge

t+1 − τ e
t+1

(
τ e

t+1(h
o,e
t+1 + iet)

))
= 0, (26)

where variables with superscript e denote expected values: xe ≡ pxh +(1 − p) xl. Since there

is only one budget constraint, the Ramsey plan simplifies to

max
{Tt}∞t=0

∞∑
t=0

βtyCM (Tt) =
∞∑

t=0

βt
(
λCMκi (Tt) − i (Tt)

2 (2λCM − 1)
)
,

where λCM denotes the multiplier associated with the complete-market budget constraint

(26). Clearly, the solution features y′
CM (Tt) = 0 for all t, namely, constant present-value

taxes and investment.

Intuitively, under complete markets the government can achieve perfect distortion smooth-

ing by letting private agents bear all the spending risk. The resulting allocation is identical

to one where the government efficiently collects just enough resources to satisfy its spending

needs in expectation and then uses lump-sum taxes to cover additional needs in the high-

spending state and to rebate the surplus to the private agents in the low-spending state. Note

that the assumption of risk-neutrality ensures that agents are prepared to own a portfolio of

state-contingent debt that makes them act as insurers of the government.

5. Final remarks

We have shown, using a modified neoclassical growth model, that a benevolent govern-

ment can find it optimal to make the sequence of capital income tax rates oscillatory in order

to finance a given stream of expenditures at a minimal cost to consumers. Three assumptions

underlie this result. First, depreciation rates for capital are increasing in age, as opposed to

constant. Second, the government cannot apply different tax rates to income from different

vintages of capital. Third, the government has commitment to set future tax rates. We now

make brief comments on each of these assumptions.
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Our main argument rests on the assumption that depreciation rates increase as capital

ages. We do believe that this captures essential features of the evolution of human capital:

it tends to “die” with worker retirement, as well as to some extent when workers switch

tasks (to the extent that human capital is task-specific). There is also substantial empirical

evidence that the depreciation rate of many physical assets is increasing with age. A seminal

study by Coen (1975) estimates capacity depreciation for equipment and structures in 21

industries and finds a predominant pattern of depreciation increasing with age. In many

cases, capital depreciation is found to be of the one-hoss shay variety, i.e., capital maintains

its full capacity until when it is scrapped. Similar results are obtained by Penson et al.

(1977) and by Pakes and Griliches (1984), who find that the productive value of investments

is actually increasing over the first three years and remains constant for the following four

to five years. The evidence for increasing depreciation rates is particularly sharp in the case

of IT technologies (see e.g. Whelan (2002), Geske, Ramey, and Shapiro (2003), and Dunn

et al. (2004)).25

If the government could apply vintage-specific tax rates, the taxation problem would

become trivial: the planner could expropriate pre-installed capital and attain perfect distor-

tion smoothing on new investments. Such a conclusion follows independently of the depre-

ciation structure. In particular, taxation in the standard Chamley-Judd framework would

not feature any dynamics either.26 The motivation for ruling out vintage-specific taxation

by assumption is that we believe that it is difficult in practice to distinguish when existing

25In contrast, studies based on second-hand asset prices argue that geometric decay is a good model of
economic depreciation (see Hulten and Wykoff, 1981). We believe, however, that the price of second-hand
capital is a poor proxy for the internal productive capacity of installed capital (which is the relevant notion
for our analysis), since this is affected by private information and adverse-selection issues. Moreover, there
is some variation in results across studies using second-hand prices. For example, Oliner (1996) finds that
economic depreciation for machine tools is significantly increasing with age.

26In this case, all revenue generated by pre-installed capital could always be fully captured by the govern-
ment. Thus, in every period the government would have a separate tax rate for that income which originates
in investment prior to period zero. This rate could be bounded at any point in time, but taxation of the
initial base for capital income would then continue until it is exhausted.
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capital was built. For human capital, the timing of education is observable, but the timing

of later investments in human capital (on and off the job), and their importance relative to

educational investments, are for the most part not observed. For physical capital, though

initial investment amounts might be measured by tax authorities, later adjustments in the

form of maintenance and upgrades are difficult to assess. Moreover, a feature of many forms

of investments is that they have a consumption component. This is obvious for the case of

education, but it is arguably the case also for many other investment activities. Thus, with

substantial investment subsidies, the difficulty for fiscal authorities of sorting out the con-

sumption component from true productive investments arguably make such subsidies quite

imperfect tools. A more thorough treatment relying explicitly on information asymmetries

would be an interesting extension to the present work.27

Finally, what if the government could not commit to its future tax rates? Then taxes

would indeed be set differently, unless one could invoke reputational mechanisms: the com-

mitment equilibrium is time inconsistent, for reasons standard to capital taxation problems.

In a working paper version of the this paper, we show that the lack of commitment implies

a natural tendency for taxes not to fluctuate or, at least, to fluctuate less (see also Hassler

et al., 2005, for a similar result with a politico-economic interpretation). When there is no

commitment or commitment is imperfect (as in Debortoli and Nunes, 2006), the govern-

ment’s trade-off between costs and benefits changes. As a general principle for both the

case with and that without commitment, the excess value of government funds times the

marginal revenue of taxes at period t is set equal to the marginal distortionary cost of taxes

in period t. Under commitment, the marginal distortionary cost depends on a weighted sum

of the wedges between first-best and actual investments levels prior to t, where the weights

are determined by the depreciation structure. In contrast, if, due to a lack of commitment,

27The assumption that the government has no access to age-dependent taxes, upon which our results
depend, has been adopted elsewhere in the literature; see, for instance, Erosa and Gervais (2002).
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the government sets the tax for t no earlier than in period t − 1, the marginal cost of taxes

in period t depends only on the investment wedge in period t − 1, since all previous invest-

ments are then sunk, thus making decisions in different periods more similar. In the smooth

Markov-perfect (limit-of-finite-horizon) equilibrium we look at, this leads to a dampening,

or complete elimination, of the fluctuations we find to be optimal under commitment. In

conclusion, the policy implications can differ substantially depending on the extent of gov-

ernment commitment. Thus, our model suggests one avenue for testing the extent to which

commitment is present, at least if the other maintained assumptions of our analysis are met.
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7. Appendix

7.1. Derivation of equation (11)

From the definition

Tt ≡ βτ t+1 + (1 − ρδ)
∞∑

s=2

βs (1 − δ)s−2 τ t+s

it follows immediately that

Tt−1 − βτ t + (Tt − βτ t+1) βδ (1 − ρ) = β (1 − ρδ) Tt. (27)

Forward substitution implies

Tt−1 − βτ t = β (1 − ρδ)
∞∑

s=0

(−βδ (1 − ρ))s Tt+s +

lim
T→∞

(−βδ (1 − ρ))T (Tt+T − βτ t+T )

= β (1 − ρδ)
∞∑

s=0

(−βδ (1 − ρ))s Tt+s,

where limT→∞ (−βδ (1 − ρ))T (Tt+T − βτ t+T ) = 0, since taxes are bounded, implying that

their PDVs (in particular the Tts) are also bounded. In particular, the expression above

implies that

T0 = βτ 1 + β (1 − ρδ)
∞∑

s=0

(−βδ (1 − ρ))s Ts+1. (28)

Recall that, by definition, T0 ≡ βτ 1 + (1 − ρδ)
∑∞

s=2 βs (1 − δ)s−2 τ s. This, together with

equation (28), implies that

∞∑
s=2

βs (1 − δ)s−2 τ s = β

∞∑
s=0

(−βδ (1 − ρ))s Ts+1. (29)

Finally, rearranging the expressions for T̂0 and T̂0 =
∑∞

s=1 βs(1 − δ)s−1τ s leads to

T̂0 = βτ 1 + (1 − ρδ)
∞∑

s=2

βs(1 − δ)s−2τ s − δ (1 − ρ)
∞∑

s=2

βs(1 − δ)s−2τ s,
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which, in turn, can be rewritten, using (28)-(29), as

T̂0 = T0 +
∞∑

s=1

(−βδ (1 − ρ))s Ts,

which is expression (11) in the paper.

7.2. Details of the proof of Proposition 2

Solving (27) for τ t+1 yields

τ t+1 =
Tt−1 − βτ t − Ttβ (1 − δ)

β2δ (1 − ρ)
.

Using (13) and the expression for τ ∗ given in the text to replace Tt−1 and Tt yields (for t ≥ 1)

τ t+1 = τ
1 + βδ (1 − ρ)

βδ (1 − ρ)
− τ

1 + β (1 − δ) δ (1 − ρ)

δ2 (1 − ρ)2 β2
2h1 (−δ (1 − ρ))t − τ t

βδ (1 − ρ)
.

The complete solution to this difference equation can be written

τ t = τ ∗ +
1 + βδ (1 − δ) (1 − ρ)

β
(
1 − βδ2 (1 − ρ)2) 2h1τ (−δ (1 − ρ))t−1 + c

(
− 1

βδ (1 − ρ)

)t

,

where c is an arbitrary integration constant. The interpretation of the arbitrary c is that there

is an infinite number of tax sequences that implement the optimal allocation. However, since

the root of the homogeneous part, −1/ (βδ (1 − ρ)), is outside the unit circle, the constraint

τ t ∈ [0, 1] is not satisfied for c �= 0. Thus, the only feasible solution to (13) is determined by

setting c = 0. Writing this solution recursively yields the solution in Proposition (2).

The non-diverging dynamics implies that it is sufficient that τ 1 be bounded for guaran-

teeing a uniformly bounded τ t. Clearly, this condition is satisfied.
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Figure 1: Remaining stock of capital installed in period t − 1 with quasi-geometric de-

preciation (ρ ∈ (0, 1)). The parameter values in the example are ρ = 0.05 and δ = 0.5.
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Figure 2: Ramsey dynamics – an example with accelerating depreciation. The figure

displays the dynamic evolution of tax rates (τ t), present-value taxes (Tt), investments (it),

and net output (yt) in the optimal Ramsey allocation of Proposition 1. The parameter values

underlying the figures are δ = 0.7, ρ = 0, β = 0.8, and an initial stock of installed capital of

ho
1 = 0.25. Moreover, the government expenditure are such that the Lagrange multiplier is

λ = 1.3.
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Figure 3: Upper panel displays the present-value taxes in case of high Th,t (black) and

low Tl,t (red) spending requirement. The lower panels displays the associated sequence of

tax rates. The dotted lines represent steady-state values for taxes conditional on war and

peace, respectively. The parameter values underlying this example are ρ = 0.1, p = 0.5, and

β = 0.75. Moreover, the government expenditures associated with war and peace are chosen

so that the Lagrange multipliers become λh = 2, and λl = 1.75, respectively.




