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CT Preface

This book is based on the Sixth Toulouse Lectures in Economics that I gave at the

Toulouse School in Economics on March 17-19, 2008. Being invited to give the lectures,

and presenting them, were highlights of my professional career. I thank the faculty at

the Toulouse School for their thoughtful comments and lavish hospitality.

The resulting book is designed to be used in an advanced Ph. D. course

(second year or beyond) in either macroeconomics or public finance. For example,

I covered the material in Chapters 3-6 in a special nine-hour summer course at the

University of Oslo in June 2008. (The students in the course were an outstanding group

of European Ph. D. students and assistant professors. All had completed at least two

years Ph. D. coursework in macroeconomics and/or public finance.) For those who

are so inclined, it would certainly be possible to teach Chapters 3, 6, and 7 in one

self-contained unit. These chapters have little if any treatment of taxes, and focus

instead on properties of Pareto optimal allocations in dynamic settings with private

information.
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CN Chapter 1

CT Introduction

The goal of this book is to figure out at least some characteristics of the best possible

tax system. This problem is a difficult one even to pose. The amount of taxes that a

typical citizen pays is a function of many economic variables. A far from exhaustive list

includes labor earnings, interest income, dividend income, consumption, and money-

holdings (via inflation). The dependence of collected taxes on these variables may be

quite complicated. Moreover, taxes depend on asset incomes and assetholdings, and

these represent the outcomes of decisions about how much wealth to transfer from one

period to another. The problem of designing a good tax system that includes asset

income taxes is intrinsically a dynamic one.

At the end of the 1990’s, most of the research on optimal taxation in multi-

period settings was being done by macroeconomists (as opposed to specialists in public

1
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finance). Following an approach pioneered by Chamley (1986), the research made some

rather strong assumptions: it restricted taxes to be linear and (generally) assumed all

agents are identical. The resulting research program is extremely tractable. Unfortu-

nately, it is also deeply flawed. Its key economic trade-off is that the government would

like to make the taxes nonlinear but cannot. This basic tension is really irrelevant in

the actual design of taxes, because governments can (and do) use nonlinear taxes.

In response to this conceptual problem, the new dynamic public finance1

(NDPF) thinks about how to design optimal taxes using the fundamentally different

approach pioneered by Mirrlees (1971). The NDPF explicitly allows taxes to be non-

linear and allows for heterogeneity among people in the economy. The heterogeneity

comes from a rather natural source. People’s labor earnings depend on their choices

of labor inputs (how hard or long to work). Increasing the size of this input causes

them disutility, but generates more labor income. As Mirrlees (1971) originally did,

1I believe that I can take full credit for the name "new dynamic public finance". In July 2004, I

gave a plenary talk at the Society for Economic Dynamic Meetings conference in Florence. I knew that

I wanted to choose a title for the talk that would generate attendance and also signal that I wanted

to discuss an agenda broader than of my own individual papers. I chose the deliberately catchy "The

New Dynamic Public Finance." The title beautfiully served its main, presentation-specific, purposes.

I’m more surprised that it has continued to stick as a way to describe the literature - but it has. For

example, Golosov, Tsyvinski, and Werning (2006) refer to the literature in exactly this way.
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the NDPF presumes that people differ in their skills - that is, how much labor input

they need to generate a given level of labor income. By way of extension to Mirrlees’

baseline analysis, the NDPF allows for the possibility that these skills evolve over time

stochastically (so that people may gain or lose skills over time in a surprising fashion).

In the NDPF, the government commits itself ex-ante to a tax schedule that

maximizes a (possibly weighted) average of agents’ utilities. The only restriction on

this schedule is that taxes can only depend on incomes, and not directly on people’s

skills. This restriction immediately translates into the main trade-off that the govern-

ment faces when designing its optimal tax schedule. On the one hand, the benevolent

government wants to provide insurance. People can turn out highly skilled or low skilled

at the beginning of their lives or over the course of their lives. The government would

like to insure them against this skill risk. This force leads the government to favor

high taxes on income. On the other hand, the government would like to motivate the

highly-skilled people to produce more income than the low-skilled people. This force

leads the government to favor low taxes. The government’s problem is to figure out

how to resolve this tension in various dates and states.

I have made no explicit mention of private information in describing the

NDPF. However, the government’s inability to condition taxes directly on skills ends up

implying that it has to treat agents as being privately informed about their productiv-

ities. It follows that the optimal tax problem in the NDPF is isomorphic to a dynamic
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contracting problem between a risk-neutral principal and a risk-averse agent who is

privately informed about productivities. There is a large literature on such dynamic

principal-agent problems (including work by Rogerson (1985), Spear and Srivastava

(1987), and Atkeson and Lucas (1995)), and the NDPF exploits its technical insights

in many ways.

In the remainder of this introduction, I discuss the scope of the book. I lay out

four main lessons of the new dynamic public finance. Finally, I describe the structure

of the book.

A 1.1 Scope

This book is normative. It is interesting and important to figure out why we see the

taxes that we do. But this book is not about this question. Instead, this book is about

trying to figure out what taxes should be. It follows that the actual specification of

taxes is irrelevant for the purposes of this book, except to indicate the range of taxation

possibilities available to the government. Here’s an analogy that might be helpful. The

existence of agricultural subsidies and tariffs means that the government has the ability

to levy these taxes. But the existence of these taxes does not mean that economists

are wrong to recommend their elimination. In the same vein, if taxes recommended

by the NDPF differ from the taxes that are actually used, there is no logical reason to

conclude that there is something wrong with the NDPF.
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This argument does not imply that normative economics in general or the

NDPF in particular is disconnected from reality. The ultimate goal of the NDPF

is to provide relatively precise recommendations as to what taxes should be. These

recommendations will depend on a host of model parameters, and we will need to use

data to obtain these parameters. Saez ’s classic 2001 paper is a first step along these

lines, but he abstracts entirely from dynamic considerations. As yet, the NDPF has not

made much progress in obtaining good measures of the necessary inputs. This book

reflects this weakness, but in Chapter 7, I provide some ideas about how more progress

can be made.

The normative focus means that I am not going to discuss two related recent

literatures. One such literature is on time-consistency. (More technically, it focuses

on the structure of sequential equilibrium taxes when governments choose those taxes

periodically.) The other literature is on dynamic political economy. (It focuses on the

structure of sequential equilibrium outcomes when taxes are determined by periodic

voting.) These literatures examine the properties of equilibrium outcomes of particular

dynamic games. Hence, they are trying to model the actual behavior of governments.

They are not normative in nature and so lie outside the scope of this book.



6 Introduction

A 1.2 Lessons

As the remainder of this book shows, we have learned a great deal in a short time from

the NDPF. However, I think that there are four particularly important lessons that are

worth emphasizing. The first three require preferences to exhibit separability between

consumption and leisure. The last does not.

B 1.2.1 Lesson 1: Optimality of Asset Income Taxes

The first lesson concerns the design of optimal asset income taxes. It is valid regardless

of the data generation process for skills. Consider a risk-averse person at date t who

faces skill risk at date (t+1). Under an optimal tax system, the person’s shadow interest

rate from period t to period (t + 1) must be less than the market interest rate. This

result immediately implies that an optimal tax system must confront such a person

with a non-zero asset income tax which deters him from saving.

Intuitively, when preferences are separable between consumption and leisure,

leisure is a normal good. Normality of leisure means that agents with a large amount

of accumulated wealth in period (t+ 1) are harder to motivate in that period. Hence,

on the margin, good tax systems deter wealth accumulation from period t to period

(t+ 1) to provide people with better incentives to work in the latter period.

This result was originally derived by Diamond and Mirrlees (1978) in the

context of a model of endogenous retirement. However, Diamond andMirrlees restricted
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attention to a specific data generation process for skills (a two-point Markov chain

with an absorbing state). The contribution of the NDPF (and specifically Golosov,

Kocherlakota, and Tsyvinski (2003)) is to show that Diamond and Mirrlees’ finding

applies to all data generation processes for skills, and can in fact be extended to models

in which skills are endogenous.2

B 1.2.2 Lesson 2: An Optimal Asset Income Tax System

The first lesson implies that any optimal tax system features non-zero asset income

taxes. The second lesson is about the structure of these non-zero asset income taxes,

and is best divided into two parts. The first part is that in many settings, the optimal

tax on a person’s asset income in period (t + 1) must be a nontrivial function of his

labor income in period (t+1). People’s decisions about assetholdings in period t depend

on their labor input plans in period (t+ 1), and optimal asset income taxes must take

this intertemporal connection into account. (This conclusion was originally reached in

work by Albanesi and Sleet (2006) and Golosov and Tsyvinski (2006).)

The second part of this lesson is that there is an optimal tax system in which

taxes are linear functions of asset income in every period. In this system, given the

information available at period t, period (t + 1) asset income taxes are negative for

2The proof of the result is based on the elegant approach taken by Rogerson (1985) in a two-period

context.
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people with surprisingly high labor income in period (t + 1), and positive for people

with surprisingly low labor income. The cross-sectional average asset income tax rate,

and total asset income tax revenue, is always zero regardless of the aggregate state of

the world. (This conclusion was originally reached in work by Kocherlakota (2005).)

B 1.2.3 Lesson 3: Optimal Bequest Taxes and Intergenerational

Transmission

Some of the most exciting work in the NDPF concerns the optimal taxation of bequests

(see in particular Phelan (2006) and Farhi and Werning (2007)). There are two main

results. The first has nothing to do with incentives: even if parents are altruistic, in

most Pareto optimal tax systems, optimal bequest taxes are negative. The intuition

is simple. In any Pareto optimum in which society puts positive weight on all people,

society cares about a child in two ways: through its ancestors and directly as a person.

It follows that society always puts more weight on a given child than its ancestors do,

and so society wants to subsidize parent-child transfers.

The second result is a characterization of a particular optimal bequest tax

system and is connected to incentives and insurance. If parents are altruistic, it is

optimal for a child’s after-tax outcomes to depend on its parents’ labor earnings. This

dependence is a good way to motivate parents to work hard. On the other hand, society

does want to insure children somewhat against their parents’ outcomes. As a result, it
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is optimal to subsidize bequests at a higher rate for poor parents than for rich parents.

B 1.2.4 Lesson 4: Individual Ricardian Equivalence and Social

Security

In the NDPF, a person’s labor income taxes at a given date are allowed to be a function

of one’s full history of labor earnings. This kind of generality mimics the flexibility that

governments actually enjoy. For example, in the United States, social security transfers

are a function of the full history of one’s labor earnings.

The fourth lesson is that, with this degree of flexibility, optimality considera-

tions only pin down the present value of labor income taxes as a function of a person’s

labor earnings. Thus, if a person owes $10000 in taxes at age 25, the government could

collect half of that at age 60 (with appropriate interest charges) without affecting indi-

vidual decisions at all. This indeterminacy is essentially an individual-level version of

Ricardian equivalence. (See Bassetto and Kocherlakota (2004) for a discussion.)

The government can exploit this indeterminacy to simplify the structure of

labor income taxes. In particular, there is an optimal tax system in which the govern-

ment imposes a flat tax on labor earnings while people are working, and then bases

post-retirement social security transfers on the full history of labor earnings. Intuitively,

all that matters for incentives and insurance is the dependence of the present value of

labor income taxes on the history of labor incomes. Any required dependence can be
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fully encoded into the structure of post-retirement transfers, as long as agents can bor-

row against these transfers. (This argument is explained more fully in Grochulski and

Kocherlakota (2008).)

A 1.3 Structure

The remainder of the book is divided into six chapters. The second chapter of the book

concerns the Ramsey (that is, linear tax) approach to dynamic optimal taxation. The

chapter derives the classic Chamley (1986) result concerning long-run capital income

taxes. The chapter also contains a discussion of the limitations of the Ramsey approach

and motivates the alternative Mirrleesian approach that informs the rest of the book.

As discussed above, the NDPF is closely linked to the problem of optimal

resource allocation in dynamic economies with private information. Chapter 3 provides

an analysis of such problems, including a discussion of the "reciprocal" Euler equation

and the long-run properties of optimal allocations. Relative to other treatments, its

novelty is that it allows for general specifications of data generation processes for indi-

vidual skills. This generality rules out the recursive approaches used by, among others,

Atkeson and Lucas (1992). Instead, I employ classical perturbation methods similar to

Rogerson (1985). These methods are both more general and (I believe) more intuitive.

In chapter 4, I develop the implications of the NDPF for macroeconomists.

I set up a canonical optimal nonlinear taxation problem in a dynamic economy with
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heterogeneous agents. I show how, in terms of quantities, the solution to this problem

is the same as the solution to the private information allocation problem in Chapter

3. I use this connection to derive general properties of optimal taxes, and discuss the

properties of a particular optimal tax system.

Chapter 5 extends the analysis to bequest taxes. Mathematically, the chapter

is similar to the previous one. However, the results differ in important ways, because the

societal objective puts more weight on descendants than parents do. This difference

affects both the sign of bequest taxes and their dependence on the income levels of

parents.

The analysis in these chapters 2-5 is entirely qualitative.3 In chapter 6, I set

forth recursive methods that in principle allow one to find approximate solutions to the

basic nonlinear taxation problem when skills follow a Markov chain. This literature

is an old one (dating back at least twenty years), but progress has been slow: much

remains to be done. I then solve for optimal taxes in a simple numerical example. The

example is purely illustrative, but it is nonetheless suggestive.

In chapter 7, I discuss possible paths for future research. This chapter is

probably the most important but it is also necessarily the most speculative.

I should add a final warning about notation. In terms of their economic

3The material in Chapters 3-5 extends and builds upon my survey of similar material in Kocher-

lakota (2006).
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lessons, the various chapters are certainly cumulative. However, the chapters use rather

distinct models to derive these lessons. For this reason, I have made no attempt to

ensure that the notation is consistent across chapters, although it is consistent within

chapters.
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CN Chapter 2

CT The Ramsey Approach And Its

Problems

The Ramsey approach was the dominant approach to dynamic optimal taxation (and,

indeed, for discussions of much of macroeconomic policy) in the late twentieth century.

The approach begins with the premise that taxes are distorting. It captures this distor-

tion in the simplest possible fashion by assuming that all taxes are linear functions of

current variables. It then chooses those tax rates to optimize social welfare (measured

in some fashion). As we shall see, the Ramsey approach is remarkably tractable, which

is one of its main attractions.

In this chapter, I show how the Ramsey approach can be used to answer

a fundamental question: how should a government time capital income taxes so as

15
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to minimize their distortionary impact? The analysis hews closely to that originally

presented in Chamley (1986) and surveyed by Chari and Kehoe (1999). I then discuss

a major weakness of the Ramsey approach, and sketch the alternative method that we

will pursue in this book.

A 2.1 A Simple Model of Government Finance

Consider a model economy with an infinite number of periods, and a large number (a

unit measure) of identical agents. The agents all have preferences of the form:

∞X
t=1

βt−1[u(ct)− v(lt)], 0 < β < 1

where ct is consumption at date t, and lt is labor at date t. I assume that u0,−u00, v0, v00

exist and are positive. I also assume that limc→0 u0(c) =∞ and liml→0 v0(l) = 0.

All agents are initially endowed with K1 units of capital. Capital goods de-

preciate at rate δ. The agents have a technology that converts period t consumption

goods one for one into period (t + 1) capital goods, and vice-versa. There are a large

number of competitive firms with production functions which convert k units of capital

and l units of labor into y units of consumption goods:

y = F (k, l)

where the function F is homogeneous of degree one and concave. I assume that Fk, Fl >

0, and limk→0 Fk(k, l
∗) = liml→0 Fl(k

∗, l) =∞ for all (k∗, l∗).
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There is a government that can convert private consumption goods one-for-

one into public goods. The government is required to create Gt units of public goods

in period t. Note that Gt may be a nontrivial function of t.

The government needs to raise funds to generate its public goods. It does so

in three possible ways: borrowing and lending, levying linear taxes on labor income,

and levying linear taxes on capital income. Let τ lt represent the period t tax rate on

labor income and τ kt represent the period t tax rate on capital income.

Define wt to be the relative price of period t labor in terms of period t con-

sumption, and rt to be the relative price of period t capital usage in terms of period

t consumption. Let qt be the price of period t consumption in terms of a numeraire

(this is basically the price of a t period zero-coupon bond). Then, given (τ k, τ l), we can

define an equilibrium to be a specification of quantities (c∗, k∗, l∗) and prices (w, r, q)

such that agents optimize:

(c∗, k∗, l∗) ∈ arg max
(c,k,l)

∞X
t=1

βt−1{u(ct)− v(lt)} (2.1)

s.t.
∞X
t=1

qt[ct + kt+1] ≤
∞X
t=1

qt{wtlt(1− τ lt) + rtkt(1− τ kt) + (1− δ)kt}

ct, lt, kt ≥ 0 for all t

k1 ≤ K1,

firms optimize
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For all t, (k∗t , l
∗
t ) ∈ argmax

k,l
F (k, l)− rtk − wtl, (2.2)

and markets clear for all t:

ct + kt+1 +Gt = F (kt, lt) + (1− δ)kt. (2.3)

(Note that depreciation is not tax-deductible, but the main results don’t depend on

this assumption.)

We do not explicitly impose a government budget constraint in equilibrium.

However, it is straightforward to prove that, by Walras’ Law, any equilibrium allocation

satisfies an intertemporal government budget constraint of the form:

∞X
t=1

{τ ltwtltqt + τ ktrtktqt} =
∞X
t=1

qtGt (2.4)

The government budget constraint (2.4) is not satisfied, and there is no equilibrium,

for most specifications of (G, τ). For example, if the tax rates (τkt, τ lt)Tt=1 equals zero

at all dates, then there is no equilibrium for any positive specification of G.

A 2.2 The Dynamic Ramsey Taxation Problem: Setup

The government’s goal in this economy is to choose tax rate sequences (τk, τ l) so as to

minimize the distortions associated with taxation. We assume that the government is

able to commit to this choice at the beginning of time. This problem of choosing linear
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tax rates to raise sufficient revenue to fund a given level of expenditures is often called

a Ramsey taxation problem.

Formally, we define E(τk, τ l) to be the set of equilibrium allocations, given

tax rates (τk, τ l). Then, we can formulate the government’s problem as:

max
(c,k,l,τk,τ l)

∞X
t=1

βt−1{u(ct)− v(lt)}

s.t. (c, k, l) ∈ E(τ k, τ l) (2.5)

This simple problem does implicitly make one non-trivial assumption. It assumes that

if there are multiple equilibria given (τk, τ l), then the government can choose which

of these equilibria actually occurs. In this real representative agent economy, this

assumption typically is not problematic (because E(τk, τ l) is generally a singleton or

empty).

This formulation of the government’s problem is elegant but not useful. The

following proposition allows us to convert the single abstract constraint into a system

of usable equality constraints.

Proposition 1 A strictly positive allocation (c, k, l) lies in E(τk, τ l) for some tax se-



20 The Ramsey Approach

quence (τ k, τ l) in which τk1 = τ ∗k1 if and only if:

k1 = K1 (2.6)

ct + kt+1 +Gt = F (kt, lt) + (1− δ)kt for all t (2.7)

∞X
t=1

βt−1[u0(ct)ct − v0(lt)lt] = K1[1− δ + Fk(K1, l1)(1− τ ∗k1)]u
0(c1) > 0 (2.8)

G Proof. See the technical notes at the end of the chapter.

Constraints (2.6) and (2.7) are feasibility constraints that describe how tech-

nological considerations shape what is achievable. The final constraint (2.8) is usually

termed an implementability constraint. We derive the implementability constraint by

replacing the after-tax prices in the agent’s budget constraint with marginal rates of

substitution. Arbitrarily nonlinear taxes allow the government to eliminate the con-

nection between its tax revenues and the agent’s marginal rates of substitution. But

this connection cannot be removed if the government can only use linear taxes. The

content of the proposition is that the implementability constraint exactly captures the

impact of the restriction that taxes have to be linear.

Using Proposition 1, and assuming that the government’s optimal choice of

taxes generates a positive equilibrium allocation, we can convert the government’s
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choice problem into:

max
(c,k,l,τk1)

∞X
t=1

βt−1{u(ct)− v(lt)}

s.t.
∞X
t=1

βt−1[u0(ct)ct − v0(lt)lt] = K1(1− δ + Fk(K1, l1)(1− τk1))u
0(c1) (2.9)

ct + kt+1 +Gt = F (kt, lt) + (1− δ)kt for all t

ct, kt+1, lt ≥ 0 for all t

This problem is often termed the primal problem, because the government directly

chooses quantities (and period 1 capital taxes), instead of choosing tax rates and thereby

indirectly influencing quantities.

Governments ultimately choose tax rates, not quantities. Fortunately, once

we solve the primal problem, it is straightforward to calculate the implied tax rates

from the quantities. In equilibrium, firm and individual optimization imply that:

Fl(kt, lt) = wt (2.10)

Fk(kt, lt) = rt (2.11)

u0(ct)wt(1− τ lt) = v0(lt) (2.12)

βu0(ct+1)(1− δ + rt+1(1− τk,t+1)) = u0(ct) (2.13)
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Hence, if (c∗, k∗, l∗, τ∗k1) solves the primal problem, then the implied tax rates are:

τ lt = 1− v0(l∗t )
u0(c∗t )Fl(k∗t , l∗t )

(2.14)

τ k,t+1 = 1−
u0(c∗t )

βu0(c∗t+1)
− 1 + δ

Fk,t+1(k∗t+1, l
∗
t+1)

(2.15)

for t ≥ 1.

A 2.3 The Dynamic Ramsey Taxation Problem: Solu-

tion

The solution to the dynamic Ramsey taxation problem hinges critically on how much

revenue the government can raise using period 1 capital income taxes τ k1. To see this,

suppose we drop the implementability constraint from the primal problem. Removing

a constraint in this way serves to enlarge the constraint set, and so we can think of this

problem as being a relaxed Ramsey problem.

Proposition 2 Let (cRP , lRP , kRP ) be a solution to the relaxed Ramsey problem. Sup-

pose:
∞X
t=1

βt−1
u0(cRPt )Gt

u0(cRP1 )
< (1− δ + Fk(K1, l

RP
1 ))K1
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Then, the optimal tax rates in a solution to the Ramsey problem (are:

τ lt = 0 for t ≥ 1

τ k,t+1 = 0 for t ≥ 1

τ k1 =

P∞
t=1 β

t−1u0(cRPt )Gt

Fk(K1, lRP1 )K1u0(cRP1 )

G Proof. See the technical notes at the end of the chapter.

The premise of this proposition is that the period 1 value of the capital stock

is larger than the present value of the stream of government purchases. Under this

assumption, the proposition demonstrates that it is optimal to fund government pur-

chases using only the taxes on first period capital taxes. Intuitively, agents can make no

decisions to influence the amount of period 1 capital in the economy, beyond discarding

the capital entirely. Hence, as long the tax rate is not sufficiently high to induce the

agents to discard their capital, any taxes on this factor are purely non-distortionary.

Proposition 2 contradicts the whole starting point of the Ramsey approach

that taxes are necessarily distorting. To get around Proposition 2, most analyses of the

dynamic Ramsey problem assume that the government cannot adjust τk1. (Equivalently,

they assume that τ k1 is bounded above by some small number.) Once one does so, it

is no longer possible to fund all expenditures using non-distorting taxes. The policy

analyst then faces a real trade-off about how to set taxes over time.
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Intuitively, since both taxes are distortionary, it seems that societies should

end up using both capital income taxes and labor income taxes. This intuition turns out

to be wrong. Indeed, if the utility function u is of the power form, so that u0(c) = c−γ ,

we get the remarkable result that capital income tax rates should be zero in any period

t > 2.

Proposition 3 Suppose u0(c) = c−γ, for γ > 0, and (c∗, k∗, l∗) solves the primal prob-

lem, given τ k1 = 0. Then for t ≥ 2:

c∗−γt = βc∗−γt+1 (1− δ + Fk,t+1(k
∗
t+1, l

∗
t+1))

Suppose, using (2.15), we define the period (t+ 1) capital income tax rate to be:

τ∗k,t+1 = 1−
u0(c∗t )

βu0(c∗t+1)
− 1 + δ

Fk(k∗t+1, l
∗
t+1)

.

Then τ∗k,t+1 = 0 for any t ≥ 2.

G Proof. The fonc for c∗t , for t ≥ 2, is given by:

βt−1c∗−γt = βt−1c∗−γt μ− γβt−1c∗−γt μ+ λt

where μ is the Lagrange multiplier on the implementability constraint. Hence, for t ≥ 2:

λt+1
λt

=
βc∗−γt+1

c∗−γt

It follows that for t ≥ 2:

(1− δ + Fk(k
∗
t+1, l

∗
t+1)) = c∗−γt β−1c∗γt+1
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and plugging into the formula for capital tax rates proves the proposition.

Levying a positive tax on capital income means that future consumption goods

are being taxed at a higher rate than current consumption goods. In general, optimal

goods taxes depend on the good’s income and price elasticities. But when u0(c) = c−γ ,

consumption at different dates have the same income and price (that is, interest rate)

elasticities. Hence, the tax rate on consumption at different dates should be the same,

which means that the capital income tax rate needs to be zero.

This logic applies to capital income taxes in period 3 and thereafter. Period 1

consumption is different, because it enters the right-hand side of the implementability

constraint (2.8). This difference implies that it is optimal to have a tax on period 2

capital income. Intuitively, the government is using this period 2 tax as an imperfect

way to tax period 1 capital income.

For more general utility functions, the Ramsey approach generates an im-

portant, surprisingly robust, result: capital income taxes should be zero in the long

run.

Proposition 4 Suppose a positive allocation (c∗, k∗, l∗) solves the primal problem, given

τk1 = 0. Suppose too that the sequence (c∗t , l
∗
t , k

∗
t )
∞
t=1 converges to a positive limit. If we

define:

τ ∗k,t+1 = 1−
u0(c∗t )

βu0(c∗t+1)
− 1 + δ

Fk(k∗t+1, l∗t+1)
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to be the implied capital income tax rate in period (t+ 1), then:

lim
t→∞

τ∗k,t+1 = 0

G Proof. Let λt be the multiplier on the period t feasibility constraint, and μ be the

multiplier on the implementability constraint. The first order necessary conditions

(f.o.n.c) are with respect to ct and kt+1 are:

βt−1u0(c∗t ) = βt−1u0(c∗t )μ+ βt−1u00(c∗t )c
∗
tμ+ λt

λt = λt+1(1− δ + Fk(k
∗
t+1, l

∗
t+1))

By assumption, ct converges as t goes to infinity. It follows from the consumption

f.o.n.c. that λtβ
1−t converges as t goes to infinity. Plugging this result into the second

f.o.n.c., we get:

lim
t→∞

β(1− δ + Fk(kt+1, lt+1)) = 1

and so:

lim τ ∗k,t+1 = 1−
β−1 − 1 + δ

β−1 − 1 + δ
= 0

The intuition for this proposition is related to the logic underlying proposition

3. Again, a positive capital income tax at date t means that the government is essen-

tially taxing consumption in period (t+1) at a higher rate than consumption in period
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t. The key to this proposition is that this difference in tax rates cumulates exponen-

tially over time. Hence, if the government imposes a long-run positive capital income

tax, then it is essentially taxing consumption at date (t+ s) at a rate infinitely higher

than consumption at date t as s and t get large. Such an extreme level of distortion is

suboptimal.

A 2.4 Problems with the Ramsey Approach

The Ramsey approach delivers a sharp answer to the question of optimal capital income

taxation in a deterministic infinite-horizon representative agent economy. The answer

(for the long run) is startlingly robust across different formulations of preferences and

technology. In this section, I consider applications of the Ramsey approach to other

questions and settings. We see that the Ramsey approach is disturbingly non-robust.

In particular, the set of possible tax instruments makes a big difference in the answers

to various optimal tax questions.

B 2.4.1 Overlapping Generations Economies

In deriving the zero capital income tax results, we used a model economy in which all

agents are infinitely-lived. Suppose we instead use an overlapping generations frame-

work in which agents are finitely-lived. In such a model, there are really a host of
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Ramsey problems, indexed by how the government weights different generations. Do

the zero tax results apply to the solutions to these problems? Erosa and Gervais (2002)

and Garriga (2003) show that the answer to this question depends on the set of tax

systems available to the government.

Suppose first that the government can impose different labor income tax rates,

at a given point in time, on differently-aged people. With age-dependent taxes, if the

marginal utility of consumption u0(c) = c−γ , capital income taxes should equal zero

(in period 2 and thereafter) in the solutions to any of these Ramsey problems. The

intuition behind the result is basically the same as in Proposition 3.

Now suppose that the government is required to set the labor income tax rate

to be the same for all people in a given period, regardless of their ages. In this case, the

structure of the optimal tax depends on how the planner weights different generations.

If the planner weights future generations sufficiently highly, then even in the long run,

the solution to the Ramsey problem must feature shrinking life-cycle consumption. If

labor income tax rates could be made age-dependent, the government could achieve

this goal by using labor income taxes that grow as people get older. Without this

ability, the government is forced to use positive capital income taxes as an imperfect

substitute. (In a similar vein, if the government discounts future generations’ utilities at

a sufficiently high rate, the government might set capital income taxes to be negative.)
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B 2.4.2 Monetary Policy

The question of how to time capital income taxes is a classic one in fiscal policy. In the

context of monetary economics, the nominal interest rate set by the Federal Reserve is

essentially a tax on the liquidity services provided by money. It is possible to use the

same optimal taxation tools to address how the Fed should set this tax. In this vein,

Correia, Nicolini, and Teles (2008) apply the Ramsey approach in a class of sticky-price

models. They find that the target interest rate should always be zero. Intuitively,

money is an intermediate input not a final good. It is a basic principle of public finance

that taxing intermediate goods generates a double distortion (one in production and

consumption) that is best avoided by only taxing final goods.

Schmitt-Grohe and Uribe (2004) use the Ramsey approach in the same class

of models to figure out the optimal response of monetary policy to aggregate shocks.

They obtain a very different answer. They find that the target interest rate should

typically be positive and should also vary in response to aggregate shocks. The reason

behind the difference in answers is a subtle one. In sticky price models, firms necessarily

have market power and so earn profits. These profits are essentially like the returns

to a fixed factor, and the government would like to tax them at a high rate. There

are many ways to accomplish this task effectively - profits taxes, consumption taxes,

or dividend taxes. Correia, Nicolini, and Teles assume that the government can tax

consumption, and that this tax rate can fluctuate with the state of the economy. In
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contrast, Schmitt-Grohe and Uribe rule out dividend taxes, consumption taxes, and

profit taxes. The government still has the same desire to tax away profits, but now

has no direct instrument to use. Because market activity is liquidity-intensive, it is

optimal for the government to use the tax on liquidity services - the interest rate - as

an imperfect way to tax the firm profits.

B 2.4.3 Another Way to Proceed: The Mirrlees Approach

These are but two examples of a general problem with the Ramsey approach: the an-

swers depend critically on the set of possible instruments. Indeed, we saw this problem

even in the infinite horizon capital income tax problem. In that setting, Proposition 2

underscores that the optimal tax on labor income depends on the upper bound on first

period capital income taxes. This general lack of robustness is due to a fundamental

limitation of the Ramsey approach: it takes the set of possible tax instruments as given.

We need to endogenize the government’s set of possible taxes in some fashion.

We can begin this process with the following simple question: why don’t gov-

ernments use lump-sum taxes? For example, suppose the government simply requires

each adult to pay $30000 or face jail-time. Such a plan would lead to an efficient

allocation of resources, because it does not distort any adult’s margins.

But this approach has a major problem: not everyone can produce $30000 of

income. According to this plan, any such person should be jailed. Such an outcome
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seems suboptimal, from both an ex-ante and an ex-post perspective. This consideration

suggests a different rule. First, figure out how much income each person can produce.

Then, levy a lump-sum tax on them according to that earning capacity.

This plan creates a new problem: how do we figure out their earning capacity

without creating some kind of distortion? For example, suppose the government taxes

everyone $30000 who earns over $50000, and taxes everyone zero who earns less than

$50000. There will be many people who will choose to earn $49999. The government

could instead try something based on initial conditions. For example, it might prescribe

that all college graduates should pay $40000 per year, while those who fail to graduate

college should pay only $10000 per year. Such a plan would help insulate the less

fortunate against a high tax burden. However, it creates a disincentive for people to

actually finish college.

This discussion illustrates the premise of the Mirrlees (1971) approach to op-

timal taxation. It is difficult or impossible to figure out each person’s earnings capacity

using some separate measure of ability. If we cannot condition taxes on ability directly,

then taxes are necessarily distorting. The optimal tax problem is about trading the level

of these distortions off against government objectives (like public goods expenditures

or redistribution). Mirrlees applied to this insight to thinking about optimal taxation

in a static setting. In what follows, we extend his analysis to dynamic taxation.
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A 2.5 Summary

In this chapter, I used the Ramsey approach to derive two distinct results about capital

income tax rates. First, if u(c) = c−γ, then it is optimal to set capital taxes so that

there is no distortion on capital accumulation decisions. Second, in the long run, for

more general utility functions, it is optimal for capital income taxes to converge to zero.

I then argued that the Ramsey approach has fundamental flaws, and suggested

using a generalization of Mirrlees’ approach instead. In the remainder of the book, we

take this path. Chapter 4 shows that once we do so, we reach different conclusions

about optimal taxes.

A 2.6 Technical Notes

In this subsection, I provide proofs of Propositions 1 and 2.

B 2.6.1 Proof of Proposition 1

I begin by proving the necessity of the three conditions. Suppose a positive sequence

(c, k, l) ∈ E(τk, τ l) for some tax sequence (τk, τ l) in which τk1 = τ ∗k1. Let (w, r, q) be

the associated wages, rental rates, and bond prices. Since k1 > 0, it must be true that

(1 − δ) + r1(1 − τ∗k1) > 0, and so it is individually optimal for agents to set k1 = K1.
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Market clearing implies that:

ct + kt+1 +Gt = F (kt, lt) + (1− δ)kt for all t (2.16)

The agents’ utility functions are increasing in ct and decreasing in lt, and so the budget

constraint holds with equality:

∞X
t=1

qt[ct − wtlt(1− τ lt)] =
∞X
t=1

qt{rtkt(1− τkt) + (1− δ)kt − qtkt+1} (2.17)

The agents’ first order necessary conditions with respect to (lt, ct, kt+1) imply that:

wt(1− τ lt)u
0(ct) = v0(lt), t ≥ 1 (2.18)

βt−1u0(ct)/u0(c1) = qt/q1, t ≥ 1 (2.19)

qt = [1− δ + rt(1− τ k,t+1)]qt+1, t ≥ 1 (2.20)

We can substitute these first order necessary conditions into the budget constraint to

obtain:
∞X
t=1

βt−1[u0(ct)ct − v0(lt)lt] = u0(c1)[1− δ + r1(1− τ ∗k1)]K1 (2.21)

The firm’s first order condition in the period 1 capital rental market implies that r1 =

Fk(K1, l1), which completes the proof of necessity.

I now turn to the proof of sufficiency. Suppose (c, k, l) is positive and there
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exists τ ∗k1 < (1− δ)/Fk(K1, l1) + 1 such that:

k1 = K1 (2.22)

ct + kt+1 +Gt = F (kt, lt) + (1− δ)kt for all t (2.23)

∞X
t=1

βt−1[u0(ct)ct − v0(lt)lt] = K1[1− δ + Fk(K1, l1)(1− τ ∗k1)]u
0(c1) (2.24)

As in equations (2.10)-(2.15), define:

rt = Fk(kt, lt) (2.25)

wt = Fl(kt, lt) (2.26)

qt = βt−1u0(ct) (2.27)

τk,t+1 = 1−
u0(ct)

βu0(ct+1)
− 1 + δ

Fk(kt+1, lt+1)
(2.28)

τ l,t+1 = 1− v0(lt)
u0(ct)Fl(kt, lt)

(2.29)

It is clear that (c, k, l) satisfies market-clearing. As well, the definition of (w, r) ensures

that (k, l) are optimal choices for the firm given (w, r). It remains only to verify that

(c, k, l) is optimal for the agent, given (w, r, q, τ k, τ l). If (c, k, l) satisfy the agents’ f.o.c.
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and budget constraint, then (c, k, l) is optimal. The f.o.c. are:

βt−1u0(ct) = qtλ (2.30)

qt = qt+1(1− δ + rt+1(1− τk,t+1)) (2.31)

βt−1v0(lt) = qtwtλ(1− τ lt) (2.32)

If we set λ = 1, it is clear that these f.o.c. are satisfied. The budget constraint is given

by:

∞X
t=1

qt[ct + kt+1] =
∞X
t=1

qt{wtlt(1− τ lt) + rtkt(1− τkt)}+ (1− δ)kt} (2.33)

The definition of (q, r) implies that qt[(1− δ) + rt(1− τkt)]kt = qt−1kt, and so we need

only verify that:

∞X
t=1

qtct =
∞X
t=1

qtwtlt(1− τ lt) + qt(1− δ + Fk(K1, l1)(1− τ∗k1))K1 (2.34)

But if we substitute qt in for β
t−1u0(ct) and wt(1− τ lt)qt in for β

t−1v0(lt), then (2.34) is

implied by the implementability constraint (2.24).

Note that the proof of sufficiency works because there are no restrictions on

(τk, τ l ). Suppose for example that the government has to use a constant labor income

tax rate over time. There is no guarantee that the labor income tax rates in (2.29) will

satisfy this additional restriction.
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B 2.6.2 Proof of Proposition 2

The proposition’s hypothesis is that:

∞X
t=1

βt−1u0(cRPt )Gt < u0(cRP1 )(1− δ + Fk(K1, l
RP
1 ))K1 (2.35)

We can rewrite the LHS of (2.35) as:

∞X
t=1

βt−1u0(cRPt )[F (kRPt , lRPt )− kRPt+1 + kRPt (1− δ)− cRPt ] (2.36)

=
∞X
t=1

βt−1u0(cRPt )[Fk(k
RP
t , lRPt )kRPt + Fl(k

RP
t , lRPt )lRPt − kRPt+1 + kRPt (1− δ)− cRPt ]

=
∞X
t=1

βt−1u0(cRPt )[Fl(k
RP
t , lRPt )lRPt − cRPt ] + u0(cRP1 )[Fk(K1, l

RP
1 ) + (1− δ)]K1

We can conclude that (2.35) implies that:

∞X
t=1

βt−1[u0(cRPt )ct − v0(lRPt )lt] > 0

Then, we can find a positive value of τRPk1 (possibly larger than 1) such that:

u0(cRP1 )(1− δ + (1− τRPk1 )Fk(K1, l
RP
1 ))K1

=
∞X
t=1

βt−1[u0(cRPt )cRPt − v0(lRPt )lRPt ] (2.37)

We know that (cRP , kRP , lRP , τRPk1 ) is a solution to the relaxed problem. But (c
RP , kRP , lRP , τRPk1 )

satisfies the (tighter) constraints of the dynamic Ramsey problem itself, and so it solves

the dynamic Ramsey taxation problem.



The New Dynamic Public Finance 37

We can rewrite our formula for τRPk1 as follows:

u0(cRP1 )(1− δ + (1− τRPk1 )Fk(K1, l
RP
1 ))K1

= −
∞X
t=1

βt−1u0(cRPt )Gt + u0(cRP1 )[Fk(K1, l1) + (1− δ)]K1 (2.38)

and so:
∞X
t=1

βt−1u0(cRPt )Gt = u0(cRP1 )τRPk1 Fk(K1, l
RP
1 )K1

which proves the proposition. QED
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CN Chapter 3

CT Basics of Dynamic Social

Contracting

The Mirrleesian approach to optimal taxation is based on the premise that people

differ in their abilities to produce, but taxes cannot be directly conditioned on those

abilities. This premise implies that, from the point of the view of the tax system,

people are privately informed about their skills. Since the goal of this book is to extend

the Mirrleesian approach to dynamic economies, we have to understand properties of

desirable allocations of resources in dynamic economies in which people are privately

informed.

In this chapter, I take up this task. I consider a class of economies with a

large number of agents. Agents’ skills can evolve over time. The law of evolution of

39
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skills is commonly known, but the realization of an agent’s skills at each date is known

only to him. The existence of private information means that not all feasible allocations

can actually be achieved by such societies. I use the Revelation Principle to provide

a simple but complete mathematical characterization of the set of achievable (that is,

incentive-feasible) allocations.

The main theorem in this chapter is a partial characterization of the behavior

of consumption in a Pareto optimal allocation.1 It shows that the reciprocal of an

individual’s period t marginal utility of consumption (MUt) satisfies the restriction:

1

MUt
= β−1R−1Et

1

MUt+1

where β is the individual’s discount factor and R−1 is society’s discount factor. This

reciprocal Euler equation was originally derived by Diamond and Mirrlees (1978) and

Rogerson (1985) for special cases. Following Golosov, Kocherlakota, and Tsyvinski

(2003), I derive the reciprocal Euler equation for a general class of models. In particular,

the restriction is valid regardless of the law of motion of skills. I show how the reciprocal

Euler equation can be used to reach general and significant conclusions about the

intertemporal evolution of the distribution of consumption.

At this stage, I say nothing about taxes. I seek only to understand some

1I use the term Pareto optimal to mean "relative to all allocations achievable given the existence

of private information". Other researchers may use the term "constrained Pareto optimal" for this

concept.
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basic properties of Pareto optimal allocations or quantities. In the following chapter, I

discuss how we can use those features of Pareto optimal allocations to reach conclusions

about taxes.

A 3.1 Class of Environments

In this section, I describe a class of economic environments. An environment is a

specification only of preferences, technology, and information. I view these attributes

of a society as being immutable, so that the government cannot affect them via policies.

Once we know preferences, information, and technology, the problem of institutional

design is to fill in the other details of agent interaction in such a way as to achieve

desirable outcomes.

The environments last for T periods, where T is finite. The population of

agents is sufficiently large that we can think of the economy as having a unit measure

of agents. People are indexed by a parameter ω in the finite set Ω. A fraction πΩ(ω) of

the population have parameter ω, and πΩ(ω) > 0 for all ω in Ω. As will become clear,

this parameter ω does not affect preferences, technology, or information. It represents

an observable characteristic, like height, weight, race or sex, which society can use to

distinguish among people who have identical preferences and technologies.
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All people have the same preferences. They maximize the expected value of:

TX
t=1

βt−1[u(ct)− v(lt)], 0 < β < 1 (3.1)

Here, ct is consumption in period t and lt is effort in period t. I require u0, v0,−u00, v00

to all be positive. Hence, utility is an increasing and concave function of consumption,

and a decreasing and convex function of effort.

Agents are distinguished by skills. At date t, an agent with skill θt who

exerts effort lt generates yt = θtlt units of consumption as output. I assume that yt

is observable. However, both lt and θt are privately known to the agent. Thus, it is

impossible to know if an agent who generates little output does so because he exerts

little effort or because he has low skills.

Skills evolve over time in the following stochastic fashion. Let Θ be a finite

set, and πΘ be a probability density function over ΘT . At the beginning of period 1,

Nature draws a skill vector θT for each agent from ΘT according to πΘ. The vector

θT represents the agent’s lifetime sequence of skills. These draws are independently

and identically distributed across agents, and are independent of ω (so that all agents,

regardless of their ω’s, have the same πΘ). At date t, an agent privately learns the

realization of θt. Thus, at date t, an agent knows his history θt, but does not know

future realizations of his skills.

If there were a small number of agents, then the cross-sectional distribution

of skill realizations in the population would be random. (For example, with some
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probability, all agents could be highly skilled, or all could be low skilled.) In contrast,

I have described a model in which there is a large population - in fact, a unit measure

- and the draws of θT are i.i.d. across agents. With such a large population, a law of

large numbers holds2, and so the fraction of agents who have skill history θT is given by

πΘ. (In later chapters, I extend the analysis to allow for publicly observable aggregate

shocks.)

I am flexible about the specification of πΘ. This flexibility means that I am

being wholly agnostic about the time series behavior of θt. For example, suppose T = 2

and Θ = {θH , θL}. If πΘ(θi, θj) = 1/4 for all i, j in {H,L}, then θt is i.i.d. over time. If

πΘ(θi, θj) = 3/8 if i = j and πΘ(θi, θj) = 1/8 if i 6= j, then θt follows a Markov chain.

An allocation in this setting specifies the amount of output y produced by

each agent and the amount of consumption consumed by each agent, as a function of

the date, the history θt, and ω. Let D = {θT |πΘ(θT ) > 0}. Then, an allocation (c, y) is

a mapping such that:

c : Ω×D → RT
+ (3.2)

y : Ω×D→ [0, y]T (3.3)

(ct, yt) is (ω, θ
t)-measurable (3.4)

2The mathematics underlying this bald assertion is deep and beyond the scope of this book. See

Sun (2006) for a useful discussion.
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The last restriction requires that (ct, yt) depends only on (ω, θ
t), and not on future

realizations of θ. Note that I restrict output to be bounded from above by y. This

upper bound makes the set of feasible allocations compact and thereby ensures the

existence of optimal allocations.

To simplify notation, I assume for now that the economy is a small open one,

with gross interest rate R > 1. (I relax this assumption in later chapters.) Hence, I

define an allocation (c, y) to be feasible if:

X
ω∈Ω

X
θT∈ΘT

TX
t=1

R−tπΩ(ω)πΘ(θT ){ct(ω, θT )− yt(ω, θ
T )} ≤ 0 (3.5)

This restriction says that the present value of per-capita consumption is no larger than

the present value of per-capita output.

The class of environments is highly general in some respects. In particular, I

impose no restrictions on the evolution of θ. This agnosticism is desirable, because there

is still considerable dispute about the time series behavior of individual wages. On the

other hand, I require preferences to be additively separable between consumption and

labor, and over time. This assumption ensures that the marginal rate of substitution

between consumption at different dates is publicly known. This property of preferences

plays an important role in what follows.
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A 3.2 Incentive-Compatibility

The inequality (3.5) describes the set of allocations that are achievable, given the limits

imposed by technology. But because some information is private, not all feasible allo-

cations are actually achievable in this environment. Suppose for example that T = 1,

Ω is a singleton, and Θ = {θ, θ0}. Consider a feasible allocation such that:

c1(θ) = c1(θ
0)

y1(θ) > y1(θ
0)

In this allocation, type θ agents produce more output, but consume the same, as type θ0

agents. However, the type θ agents cannot be identified as such. They can always choose

to act like the type θ0 agents and produce the low amount of output. This allocation

may be physically feasible, but it is nonetheless impossible to achieve. Society simply

has no way to get some agents produce more output without giving those agents more

consumption.

This little example captures the basic restrictions that private information

imposes in an economy. If skills are publicly observable, then society can require highly-

skilled people to act in a certain way. However, if skills are private information, agents

can always pretend to have skills other than the ones that they actually have. If the

agent is to produce and consume according to the dictates of the allocation, it must

be true that agents don’t want to mimic another skill type, and get that skill type’s
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allocation of (c, y).

We can use this insight to model the impact of private information more

systematically. As on page 41, let D = {θT |πΘ(θT ) > 0} be the set of lifetime skill

sequences that can occur with positive probability. Define a mimicking strategy σ to

be any mapping from D → D such that σt is θ
t-measurable. By using a mimicking

strategy σ, an agent indexed by ω with skill history θT gets the consumption and output

allocation meant for the skill history σ(θT ) instead of the allocation meant for the skill

history θT . Note that σt is a function of θ
t, so that a mimicking strategy is a complete

contingent plan of how the agent plans to act in every positive probability history.

Because θt is always private information, an agent can potentially use any

mimicking strategy. Let Σ be the set of all mimicking strategies. Given an allocation

(c, y), an agent with index ω gets ex-ante utility:

V (σ; c, y, ω) =
X
θT∈D

πΘ(θ
T )

TX
t=1

βt−1[u(ct(ω, σ(θT ))− v(
yt(ω, σ(θ

T ))

θt
)] (3.6)

from using mimicking strategy σ. (He gets the consumption and output associated

with σ(θT ), but must provide effort according to his true skill θt). Let σTT be the non-

mimicking3 strategy, so that σTT (θ
T ) = θT , and suppose V (σTT ; c, y, ω) < V (σ; c, y, ω).

Then, agents with characteristic ω will use mimicking strategy σ, and will not con-

sume/produce according to the allocation (c, y).We can conclude that for an allocation

3I use the subscript TT to denote "truth-telling".
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(c, y) to be achievable, it must satisfy:

V (σTT ; c, y, ω) ≥ V (σ; c, y, ω) for all ω in Ω and all σ in Σ (3.7)

The above argument implies that the restriction (3.7) is necessary if an al-

location is to be achievable in the presence of private information. The restriction is

also sufficient in the following sense. Suppose (c, y) satisfies (3.7) and is also feasible.

Then, we can design a game for the agents in the economy to play such that (c, y)

is a (Bayesian-Nash) equilibrium outcome of that game. There are many such games

that can be used, but the simplest one is what is known as a direct mechanism. The

direct mechanism works as follows. At each date, agents report their current skills to a

centralized authority. They receive (c, y)(ω, aT ), where aT is the sequence of reported

skills. In this game, the set of possible strategies corresponds to Σ, and the restriction

(3.7) implies that truth-telling (the strategy σTT in Σ) is a (Bayesian-Nash) equilibrium

in this game.

Thus, the set of allocations that are achievable in this setting given that

skills are private information are exactly the ones that satisfy the incentive constraints

(3.7) and the usual feasibility constraints. In what follows, I refer to these allocations

as being incentive-compatible (this is the standard terminology for allocations that

remain achievable, given the presence of an incentive problem).4 Allocations that are

4Throughout this book, I rule out stochastic allocations in which agents receive random consump-

tions and outputs as a function of their realized skills. It is readily shown that randomized consumption
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simultaneously feasible and incentive-compatible are called incentive-feasible.

A 3.3 Remarks on Incentive-Compatibility

This section addresses some possible concerns with the above definition of incentive-

compatible in this dynamic setting. (Readers who aren’t concerned about the definition

can safely skip it.).

B 3.3.1 But People Do Lie in the Real World!

In the previous subsection, I described how, if an allocation satisfies (3.7), there is a

game in which that allocation is an equilibrium outcome. The constructed game was

a direct mechanism, in which agents simply reported their information to a centralized

authority, which allocates resources based on these reports. The equilibrium strategy

in this game was to tell the truth.

It is important to realize though that there is no intrinsic connection between

truth-telling and incentive constraints. Many allocations can emerge as equilibrium

outcomes of some direct mechanism, even though agents are lying in equilibrium about

their types. To take an extreme, suppose we have an allocation with the property

allocations are suboptimal. (Intuitively, we can simply replace the stochastic allocation with its cer-

tainty equivalent to create a welfare-equivalent incentive-compatible allocation and free up resources.)

It may be optimal though to use stochastic allocations of output.
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that all types get the same consumption and output sequences. Such an allocation

is an equilibrium outcome of the direct mechanism, in which agents tell the truth.

However, this allocation is also an equilibrium outcome, given an equilibrium strategy

that involves lying with positive probability.

More generally, direct mechanisms with truth-telling equilibrium strategies

are but one way to derive the sufficiency of incentive constraints. There are many

others.

B 3.3.2 The Range of Mimicking Strategies

In the above formulation of incentive-compatibility, we restrict agents to mimic positive

probability types (elements of D). For example, suppose T = 2, and π(1, 0) = π(0, 1) =

1/2. In this setting, an agent has two choices of mimicking strategies available in period

1. Whatever he chooses in period 1, though, pins down what he can do in period 2.

Thus, if he acts like an unskilled agent in period 1, he cannot also act unskilled in

period 2.

In some ways, this restriction builds a large amount of commitment into the

environment. In some allocations, an agent who claims to be unskilled in period 1 will

receive some consumption, while giving up consumption in period 2. Such a person is in

some sense a borrower. He is required to repay the loan, because he is unable to mimic

a low-skilled type in period 2. (The term "mimic" is in fact fundamentally wrong here,



50 Dynamic Social Contracting

because there is no one of this type to mimic.)

There are two possible reasons why one might be concerned about this level

of commitment. One is that, implicitly, we are assuming that it is possible to impose

an infinite penalty for non-repayments of debts. In reality, there may well be limits

to the kinds of penalties that can be imposed. But if they exist, these enforcements

limits should be incorporated fully into our analysis, not just for zero-probability events.

Doing so remains technically challenging.

The other concern is that there are no truly zero-probability events. If

π(0, 0) = ε > 0, no matter how small ε is, it becomes believable for a person to

act low-skilled in both periods. Incentive constraints are fundamentally different in

this case, and it becomes possible for a borrower in period 1 to claim to be unable to

repay in period 2. From a technical point of view, this concern is easy to handle: just

change π so that π(1, 1) and π(0, 0) are non-zero.

B 3.3.3 Centralization?

It is not controversial that any achievable allocation in this setting must satisfy the in-

centive constraints (3.7). Take any game that these agents could possibly play. (Here,

by "game", I mean any possible rules of interaction, including competitive trade mod-

ulated by taxes or some more or less centralized system). In any such game, any of

them can mimic any other type. It follows trivially that any equilibrium outcome of
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any game that gets played between these agents will have to satisfy (3.7).

The converse - that any allocation that satisfies (3.7) is achievable - is more

controversial. Recall that to establish this converse, we use a mechanism in which all

information gets reported to a centralized authority, and then that authority allocates

resources based on that information. This degree of centralization seems unappealing

to many economists. They express two distinct concerns.

The first is that agents can circumvent the dictates of the centralized author-

ity. In the direct mechanism contemplated earlier, the centralized authority allocated

resources and then no further trade took place. But how (ask these critics) is the cen-

tralized authority supposed to prevent such re-trading?5 The second kind of concern is

that there are significant costs associated with centralization, and the above analysis

ignores those costs. To cite but one example, informational transmission and processing

is assumed to be costless.6

These two concerns are often confused, and so it is important that to realize

they are quite distinct. The first says that centralization may well be desirable, but

argues that it is impossible. The second argues that centralization is not desirable,

because it may have significant costs. I am especially sympathetic to the latter concern,

5See Ales and Maziero (2009) for a discussion of how such re-trading affects the structure of optimal

allocations.
6See Segal (2006) for a discussion of how to take information transmission costs into account in

social contracting problems.
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and would like to see useful formalizations of its impact.

A 3.4 Pareto Optimal Allocations

I focus on the properties of (ex-ante) Pareto optimal allocations. I define an incentive-

feasible allocation (c, y) to be Pareto Optimal if there exists no other incentive-feasible

allocation (c0, y0) such that:

X
θT∈ΘT

TX
t=1

βt−1πΘ(θT )[u(c0t(ω, θ
T ))− v(

y0t(ω, θ
T )

θt
)] (3.8)

≥
X

θT∈ΘT

TX
t=1

βt−1πΘ(θT )[u(ct(ω, θT ))− v(
yt(ω, θ

T )

θt
)]

for all ω in Ω, with a strict inequality for some ω. Hence, an allocation is Pareto optimal

if it is impossible to make some ω better off without making some other ω0 worse off.

It is straightforward to provide a useful mathematical characterization of

Pareto optimal allocations. Fix ω∗ to be some element of Ω. An allocation (c∗, y∗)

is Pareto optimal if and only if there exists a vector of ex-ante utility levels Uω,
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ω ∈ Ω− {ω∗}, such that:

(c∗, y∗) ∈ argmax
(c,y)

X
θT∈ΘT

TX
t=1

βt−1πΘ(θT )[u(ct(ω∗, θT ))− v(
yt(ω

∗, θT )
θt

)] (3.9)

s.t.
X

θT∈ΘT

TX
t=1

βt−1πΘ(θT )[u(ct(ω, θT ))− v(
yt(ω, θ

T )

θt
)] ≥ Uω, ω ∈ Ω− {ω∗}

s.t.
X
ω∈Ω

X
θT∈ΘT

TX
t=1

R−tπΩ(ω)πΘ(θT ){ct(ω, θT )− yt(ω, θ
T )} ≤ 0

s.t. V (σTT ; c, y, ω) ≥ V (σ; c, y, ω) for all σ in Σ and ω in Ω

s.t. ct(ω, θ
T ) ≥ 0, yt(ω, θT ) ≥ 0, yt(ω, θT ) ≤ y for all t, ω, θT

s.t. (ct, yt) is (ω, θt)-measurable

In this programming problem, an artificial planner seeks to maximize the ex-ante utility

of type ω∗ agents, subject to delivering a certain amount of reservation ex-ante utility

to all other agents. By varying the reservation utilities (Uω)ω∈Ω−{ω∗}, we can sketch out

a frontier of Pareto Optimal allocations.

A 3.5 The Reciprocal Euler Equation

In this subsection, I provide an important intertemporal characterization of Pareto

Optimal allocations.
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B 3.5.1 Pareto OptimaWithout Private Information: Two Euler

Equations

Consider a version of the planner’s problem without any incentive-compatibility restric-

tions, and suppose a positive (c, y) solves this planner’s problem. Such an allocation

(c, y) is Pareto Optimal in an environment without private information. The consump-

tion allocation satisfies the first order necessary conditions that for all θT in D:

βt−1u0(ct(ω∗, θT )) = λR−tπΩ(ω∗) (3.10)

βt−1u0(ct(ω, θT ))φ(ω) = λR−tπΩ(ω), ω ∈ Ω− {ω∗} (3.11)

where λ is the multiplier on the resource constraints, and φ(ω) is the multiplier on

the ω reservation utility constraint. These first order conditions tell us ct(ω, θ
T ) may

depend on t and ω, but is independent of θT . Agents are fully insured against their

productivity shocks in a Pareto Optimal allocation without private information.

Full risk-sharing implies two types of intertemporal Euler equations. The first

one takes the form:

u0(ct(ω, θ
t
, θTt+1)) = βR

P
θT≥θt π(θ

T )u0(ct+1(ω, θT ))P
θT≥θt π(θ

T )
(3.12)

= βRE{u0(ct+1(ω, θT ))|θt = θ
t} (3.13)

for any ω in Ω and for any θ
t
that can occur with positive probability. (The notation
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θTt+1 refers to the partial history (θt+1, ..., θT ). The notation θ
T ≥ θ

t
refers to any positive

probability θT with initial history θ
t
.) In words, the marginal utility of consumption

in history θ
t
equals βR multiplied by the expected marginal utility of consumption in

period (t+1). This Euler equation says that, in a Pareto Optimal allocation, agents are

left marginally indifferent between further borrowing and lending in the asset market.

Put another way, if agents are endowed with a Pareto Optimal allocation (c, y), they

will not trade away from this allocation by borrowing and lending.

The second intertemporal Euler equation is more unusual. It takes the form

that for all θ
T
in D:

1

u0(ct(ω, θ
T
))

= β−1R−1
P

θT≥θt π(θ
T )u0(ct+1(ω, θT ))−1P
θT≥θt π(θ

T )
(3.14)

= β−1R−1E{ 1

u0(ct+1(ω, θT ))
|θt = θ

t} (3.15)

In words, this equation says that the reciprocal of marginal utility in period t equals

β−1R−1 multiplied by the expectation of the reciprocal of marginal utility in period

(t+1). This equation is often called the reciprocal Euler equation because it applies to

the reciprocal of marginal utility.

The intuition behind this restriction is less familiar. It comes from thinking

about the planner as using resources to produce utility. The planner’s goal is to smooth

the marginal cost of utility production over time. Mathematically, if C(U) is the period
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t resource cost of producing U utiles in period t, this desire for smoothing implies that:

C 0(Ut(ω, θ
T
)) = β−1R−1E{C 0(Ut+1(ω, θ

T ))|θt = θ
t} (3.16)

Note though that C 0(U) = 1/u0(C(U)). Hence, the marginal cost-smoothing condition

(3.16) is exactly the same as (3.15).

B 3.5.2 Reciprocal Euler Equation: Derivation with Private In-

formation

At this point, I turn back to the planner’s problem (3.9) with private information.

I derive a set of necessary conditions of Pareto optimality, designed to capture the

intertemporal trade-off in consumption. The derivation takes the usual form of finding

conditions that ensure that there is no way to increase the objective by perturbing the

optimum in a limited set of directions that lie inside the constraint set

In particular, suppose (c∗, y∗) is Pareto optimal and there exists ω0 such that

c∗t (ω
0, θT ), c∗t+1(ω

0, θT ) > 0 for all θT in D.

Then, pick any ε : Θt → R and any constant ∆. We can use these to construct a

perturbed allocation (c0, y∗), where c0s(ω, .) = c∗s(ω, .) if s /∈ {t, t + 1} or ω0 6= ω, and
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(c0t, c
0
t+1) satisfies:

u(c0t(ω
0, θT )) = u(c∗t (ω

0, θT )) +∆+ ε(θt) for all θT ∈ D (3.17)

u(c0t+1(ω
0, θT )) = u(c0t+1(ω

0, θT ))− β−1ε(θt) for all θT ∈ D (3.18)⎛⎜⎜⎝
P

θT (c
0
t(ω

0, θT )− c∗t (ω
0, θT ))πΘ(θT )

+R−1
P

θT (c
0
t+1(ω

0, θT )− c∗t+1(ω
0, θT ))πΘ(θT )

⎞⎟⎟⎠ = 0 (3.19)

The first restriction says that for type ω agents, we change utility in each history θt.

This utility change has two pieces: ε(θt) and ∆. The second restriction says that we

undo the change ε(θt) by subtracting β−1ε(θt) in all successor nodes. Note that the

perturbation adds the same amount of utility ∆ along every sample path θT . The third

restriction ensures that c0 uses up the same resources as c∗ does.

Our goal is to derive necessary conditions of optimality. Hence, if this pertur-

bation is to be of use to us, it must lie within the constraint set. It is clear that (c0, y∗)

is feasible, because it uses up the same resources as (c∗, y∗). Also, we have added the

same utility to (c∗, y∗), for all θT sequences that occur with positive probability. Hence,

for any mimicking strategy σ:

V (σ; c0, y, ω0)− V (σ; c, y, ω0) = ∆

It follows that the ranking of mimicking strategies is the same under (c0, y∗) as under

(c∗, y∗), and so (c0, y∗) must be incentive-compatible if (c∗, y∗) is.

In this fashion, given any incentive-feasible allocation (c∗, y∗), we can construct
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a set of incentive-feasible allocations (c0, y∗). (Note that this set is a proper subset of

all incentive-feasible allocations. Indeed, it is a proper subset of all incentive-feasible

allocations with output given by y∗). If (c∗, y∗) is to be Pareto optimal, it must be true

that (0, c∗t , c
∗
t+1) solves:

max
∆,c0t,c0t+1

∆ (3.20)

s.t. u(c0t(ω
0, θT )) + βu(c0t+1(ω

0, θT ))

= u(c∗t (ω
0, θT )) + βu(c∗t+1(ω

0, θT )) +∆ for all θT ∈ D

X
θT∈D

(c0t(ω
0, θT )− c∗t (ω

0, θT ))πΘ(θT ) +R−1
X
θT∈D

(c0t+1(ω
0, θT )− c∗t+1(ω

0, θT ))πΘ(θT ) = 0

c0t(ω
0, .) is θt-measurable, c0t+1(ω

0, .) is θt+1-measurable

c0t(ω
0, θT ), c0t+1(ω

0, θT ) ≥ 0 for all θT in D

By varying the constant ∆, we are varying the amount of extra ex-ante utility that we

can deliver to type ω0 agents over (c∗, y∗), while keeping the utility delivered to other

agents the same. If (c∗, y∗) is Pareto optimal, then we should not be able to deliver

any extra utility. By varying c0, we are varying the timing of when agents receive their

utility from consumption. A Pareto optimal allocation must deliver this utility in an

optimal fashion over time.

We can attack this constrained optimization problem (3.20) using Lagrangian

methods. Let ηt(θ
T ) be the multiplier on the first constraint, and λ be the multiplier on
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the second constraint. The first order necessary conditions with respect to (c0t, c
0
t+1,∆)

are:

u0(c∗t (ω
0, θ

T
))
X
θT≥θt

ηt(θ
T ) = λ

X
θT≥θt

πΘ(θ
T ) for all θ

T
in D (3.21)

βu0(c∗t+1(ω
0, θ

T
))

X
θT≥θt+1

ηt+1(θ
T ) = λR−1

X
θT≥θt+1

πΘ(θ
T ) for all θ

T
in D (3.22)

X
θT

ηt(θ
T ) = 1 (3.23)

The different sums of ηt(θ
T ) in the various first order conditions capture various mea-

surability restrictions. In particular, because c0t is θ
t-measurable, we sum across all ηt’s

that have the same θ
t
. We can combine (3.21) and (3.22) to get:

1

u0(c∗t (ω0, θ
T
))
= β−1R−1{

X
θT≥θt

πΘ(θ
T )

u0(c∗t+1(ω0, θ
T ))
}/
X
θT≥θt

πΘ(θ
T ) (3.24)

This can be rewritten as:

1

u0(c∗t (ω0, θ
T
))
= β−1R−1E{ 1

u0(c∗t+1(ω0, θ
T ))
|θt = θ

t} for all θT in D (3.25)

which is the same as the reciprocal Euler equation (3.15) derived earlier.

This result is sufficiently important so as to merit being labelled a theorem.

Theorem 5 Suppose (c∗, y∗) is a Pareto optimal allocation such that c∗t (ω, θ
T ) > 0 and

c∗t+1(ω, θ
T ) > 0 for all θT in D. Then for all θ

T
in D:

1

u0(c∗t (ω, θ
T
))
= β−1R−1E{ 1

u0(c∗t+1(ω, θ
T ))
|θt = θ

t} (3.26)
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B 3.5.3 Robustness of the Reciprocal Euler Equation

We earlier demonstrated that any Pareto Optimal allocation must satisfy the reciprocal

Euler equation when θ is public information. The content of Theorem 5 is that Pareto

Optimal allocations must satisfy this restriction even if θ is private information. A

remarkable feature of Theorem 5 is that it is true regardless of πΘ. In contrast, the

specification of πΘ has a great impact on the overall properties of optimal allocations.

(For example, we cannot conclude that preferences over consumption and output display

single-crossing without knowing πΘ.)

The proof of Theorem 5 works because consumption and the utility from

consumption are both publicly observable. The proof can be readily extended to much

richer environments if they have this same property. For example, in this economy,

skills evolve exogenously. Theorem 5 will still apply if we change the environment to

allow for skill augmentation via hidden effort.

On the other hand, the proof breaks down if agents face privately observed

shocks to their marginal utilities of consumption, can consume secretly, or if agents’ dis-

count factors are private information (as in Townsend (1982), Green (1987), or Atkeson

and Lucas (1992)).. More subtly, if preferences are nonseparable between consumption

and labor, then the marginal utility of consumption is private information, and we

cannot prove Theorem 5.

We have restricted πΘ to have finite support. However, Golosov, Kocherlakota
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and Tsyvinski (2003) extend the proof of Theorem 5 to cases in which Θ is infinite (for

example, an interval). I discuss some aspects of this extension in the technical notes at

the end of this chapter.7

B 3.5.4 Failure of the Standard Euler Equation

Theorem 5 demonstrates that the reciprocal Euler equation generalizes in the presence

of private information. This subsection shows that the standard Euler equation does

not.

The reciprocal Euler equation tells us that:

u0(c∗t (ω, θ
T
)) = βR[E{ 1

u0(c∗t+1(ω, θ
T ))
|θt = θ

t}]−1 (3.27)

In a Pareto Optimal allocation without private information, c∗t+1 depends on ω, but

is independent of θT . We can get rid of the expectation on the right hand side, and

conclude that the standard Euler equation applies, because:

u0(c∗t (ω, θ
T
)) = βRu0(c∗t+1(ω, θ

T )) for all θT ≥ θ
t

(3.28)

= βRE{u0(c∗t+1(ω, θT ))|θt = θ
t}

7Farhi and Werning (2008) extend Theorem 5 to settings with non-expected utility preferences.

However, much of their analysis relies on the assumption that (the private information components

of) individual skills are i.i.d.over time. Grochulski and Kocherlakota (2008) extend Theorem 5 to a

class of environments in which preferences are nonseparable over time, but are restricted to be weakly

separable between consumption and labor.
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However, in a Pareto Optimal allocation with private information, c∗t typi-

cally depends on θT as well as on ω. Without this kind of dependence, people who

are highly skilled in period t will never choose to produce more than low-skilled peo-

ple in that period. So, in a Pareto Optimal allocation, we can typically expect that

V ar(c∗t+1|θt = θ
t
) > 0. Given this variability, we can apply Jensen’s inequality to the

reciprocal function on the right-hand side of (3.27) and conclude that:

u0(c∗t (ω, θ
T
)) < βRE{u0(c∗t+1(ω, θT ))|θt = θ

t} (3.29)

The marginal utility of consumption in period t is strictly lower than the expected

discounted marginal utility of consumption in period (t+ 1).

In a Pareto Optimal allocation with private information, there is a wedge

in the intertemporal Euler equation. This wedge means it is impossible to obtain

a Pareto Optimal allocation while allowing agents to undertake unlimited trading of

bonds. Note that the wedge is the opposite of what emerges frommodels with borrowing

constraints. In such models, agents would like to move consumption to period t from

period (t + 1) but cannot do so. In a Pareto Optimal allocation, agents would like to

move consumption from period t to period (t+1). They must be prevented from doing

so in some fashion.

There is a basic intuition for why consumption-smoothing (that is, (3.13)) is

not satisfied by Pareto Optimal allocations. For simplicity, assume thatΘ = {θH , θL}, θH >

θL, and Ω has one element. Suppose that (c, y) is a Pareto optimal allocation in which
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c satisfies:

u0(ct(θt)) = βRπHu
0(ct+1(θt, θH)) + βRπLu

0(ct+1(θt, θL)) (3.30)

u0(ct+1(θt, θH)) < u0(ct+1(θt, θL)) (3.31)

(Here, πi represents the probability of θt+1 = θi, conditional on θt.) This contract

provides perfect smoothing but limited insurance in period (t + 1). Intuitively, the

planner should be able to lower costs by offering a contract that pays the second-order

cost of reducing smoothing to get the first-order benefit of improving insurance.

To be more specific, suppose the planner changes the allocation by lowering

ct+1(θ
t, θL) by εL, lowering ct+1(θ

t, θH) by εH , and raising ct(θ
t) by ε. The planner

chooses (εH , εL, ε) so that there exists some δ with the property that:

δ = −βu(ct+1(θt, θH)− εH) + βu(ct(θ
t, θH) (3.32)

= −βu(ct+1(θt, θL)− εL) + βu(ct(θ
t, θL)) (3.33)

= −u(ct(θt)) + u(ct(θ
t) + ε) (3.34)

(In words, the utility loss in period (t+1) is the same across the two states, and equals

the utility gain in period t.) Because u is concave, such a contract must necessarily

have the property that εH > εL. Hence, while it necessarily worsens smoothing, the

alternative contract provides superior risk-sharing in period t.



64 Dynamic Social Contracting

We can approximate the changes as:

ε ≈ δ/u0(ct(θt)) (3.35)

εL ≈ δβ−1/u0(ct+1(θt, θL)) (3.36)

εH ≈ δβ−1/u0(ct+1(θt, θH)) (3.37)

If we apply Jensen’s inequality to the smoothing condition (3.30) and multiply through

by δ, we know that:

δ/u0(ct(θt)) < β−1R−1πHδ/u0(ct+1(θt, θH)) + β−1R−1πLδ/u0(ct+1(θt, θL)) (3.38)

which implies that:

−ε+R−1πHεH + β−1R−1πLεL > 0 (3.39)

The new allocation lowers the society’s costs of generating output y. In this fashion,

the planner is able to provide better risk-sharing by front-loading consumption.

A 3.6 Dynamics of Pareto Optimal Consumption

When θ is publicly observable, a Pareto optimal consumption allocation c∗t is indepen-

dent of θT for all t and ω. There is no reason for agents to face consumption risk, and

so past (and current) realizations of θ have no impact on consumption. At the same

time, there are differences in consumption because the planner might treat agents with
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different ω’s differently. If βR = 1, these differences stay fixed over time. In this case,

consumption inequality is constant over time in any Pareto Optimal allocation (when

θ is publicly observable).

In the remainder of this section, we explore to what extent these two properties

(history independence and constant inequality) are valid when θ is private information.

B 3.6.1 History Independence

With private information, it is no longer Pareto Optimal to give agents full consumption

insurance. Differently skilled agents should produce different levels of output, and they

can only be given the incentive to do so if they receive different consumptions. It follows

that shocks to skills are inherited (at least in part) by consumption.

More interestingly, the reciprocal Euler equation implies that a shock to skills

in period t impacts consumptions in future dates. Suppose βR = 1. The private

information problem implies that in period t, agents may not know their marginal

utilities of consumption in period (t+ 1). Define their innovation in information about

1/u0(ct+1) to be ∆t+1:

∆t+1 ≡ 1/u0(ct+1)− Et{1/u0(ct+1)} (3.40)

This innovation in information also affect the forecasts of future reciprocals of marginal
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utilities. We can measure this change in forecasts as:

Et+1
1

u0(ct+s+1)
−Et

1

u0(ct+s)
, s > 0 (3.41)

The reciprocal Euler equation implies that in a Pareto Optimal allocation,

1/u0(ct) is a martingale:8

1

u0(ct)
= Et

1

u0(ct+1)
(3.42)

We can use this formula, and the Law of Iterated Expectations, to conclude that the

change in agents’ forecasts (3.41) is exactly equal to their new information ∆t+1 about

1/u0(ct+1). In words, any shock that leads to a change of ∆t+1 in 1/u0(c) leads to a

change of ∆t+1 in agents’ forecasts of 1/u0(c) at any future date. In this sense, skill

shocks - regardless of their own data generation process - have a permanent impact on

the reciprocal of marginal utility. If utility is logarithmic, these permanent effects show

up in the level of consumption itself.

The intuition behind this result is similar to that underlying the Permanent

Income Hypothesis. It is efficient to require higher output from a person who gets

a higher skill realization in period t. However, given that θ is private information, a

Pareto Optimal allocation can only generate this higher output by rewarding this agent

an increase in his lifetime utility of consumption. The reciprocal Euler equation governs

how this increase is spread over time. When βR = 1, it is efficient to spread the utility

8A martingale is a stochastic process x that satisfies the property that xt = Etxt+1. A random

walk is a special kind of martingale such that the increments (xt+1 − xt) are i.i.d. over time.
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increase evenly over time, which means that even temporary shocks can translate into

permanent changes in 1/u0.

B 3.6.2 Consumption Inequality

The cross-sectional distribution of consumption never changes in a Pareto Optimal

allocation if θt is publicly observable. However, this result does not apply once θ is

private information.

To see why, suppose βR = 1. Then, the reciprocal Euler equation says that:

1

u0(ct)
= Et

1

u0(ct+1)
(3.43)

This property implies that:

1

u0(ct+1)
=

1

u0(ct)
+ εt+1 (3.44)

where εt+1 is mean zero and is uncorrelated with 1/u0(ct). It follows that:

V ar(
1

u0(ct+1)
) = V ar(

1

u0(ct)
) + V ar(εt+1) (3.45)

where V ar represents the unconditional variance of the relevant random variable. Be-

cause the population of agents is so large, this statement about unconditional variances

translates directly into a statement about cross-sectional variances within the popula-

tion.

As we have seen, the private information problem implies that in a Pareto

Optimal allocation, 1/u0(ct+1) typically depends on new information revealed at date
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(t+ 1). This dependence means that V ar(εt+1) is positive. It follows that in a Pareto

Optimal allocation:

V ar(
1

u0(ct+1)
) > V ar(

1

u0(ct)
) (3.46)

In a Pareto Optimal allocation, the cross-sectional distribution of the reciprocal of

marginal utility grows over time. If u is logarithmic, this statement translates into

growing inequality in consumption itself.

A 3.7 Long Run Properties of Pareto Optima

In the above section, we established two important properties of Pareto Optimal allo-

cations of consumption. These properties concern what happens for any finite period

t. In this subsection, we turn to the long run properties of Pareto Optima.9

B 3.7.1 Long Run Convergence

Suppose again that βR = 1, so that if (c, y) is Pareto Optimal, then 1/u0(ct) is a non-

negative martingale. (As well, because Θ is finite, 1/u0(ct) must have a finite mean.)

Martingales are beautiful objects in probability theory, and probabilists know a great

9To derive these results, we need to extend the class of environments to allow the horizon length T

to equal infinity. We can do so by making only minimal changes in the basic model. The main change

is that we now need to assume that πΘ is a probability density function over the countable set Θ∞.

With this change in hand, the proof of Theorem 1 carries over to infinite horizon settings.
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deal about the long-run properties of non-negative martingales. Take a sample path θ∞

of skill realizations. There are three logical possibilities for the behavior of the reciprocal

of marginal utility along this sample path:

lim
t→∞

1

u0(ct(ω, θ∞))
<∞ (3.47)

lim
t→∞

1

u0(ct(ω, θ∞))
=∞ (3.48)

lim
t→∞

1

u0(ct(ω, θ∞))
doesn’t exist (3.49)

The first possibility is that the reciprocal of marginal utility converges along the sample

path to a finite (non-negative) limit. The second possibility is that the reciprocal of

marginal utility grows along the sample path without bound. The final possibility is

that the reciprocal of marginal utility cycles forever (possibly aperiodically) between

two values.

The Martingale Convergence Theorem states that for a non-negative mar-

tingale with finite first moment, almost all sample paths are of the first kind. This

Theorem governs the long run behavior of Pareto Optima as follows.

Theorem 6 Let βR = 1, and suppose (c∗, y∗) is a Pareto Optimal allocation. Then,

there exists a random variable X∗ : Ω×Θ∞ → R+ such that:

lim
t→∞

1/u0(c∗t (ω, θ
∞)) = X∗(ω, θ∞) (3.50)

for all ω in Ω and almost all θ∞ in Θ∞. If limc→∞ u0(c) = 0, then there exists a finitely-
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valued random variable c∞ such that:

lim
t→∞

c∗t (ω, θ
∞) = c∞(ω, θ∞) (3.51)

for all ω in Ω and almost all θ∞ in Θ∞.

Note that the limiting random variable X∗ itself is random over sample paths.

Hence, Theorem 6 only tells us that 1/u0(c) converges along almost every sample path.

It says nothing about how these limits vary across sample paths. This distinction is

important in what follows.

I provide some (relatively crude) intuition for the Martingale Convergence

Theorem in the technical notes that follow the chapter. For a complete proof, the

interested reader should consult an advanced book in probability theory like Billingsley

(1986).

B 3.7.2 Immobility of Consumption

In a Pareto Optimal allocation when θ is publicly observable, consumption is highly

immobile if βR = 1. Agents’ consumptions are constant over time at possibly distinct

values pinned down by ω. Hence, it is impossible for agents’ consumption rankings to

change over time.

When θ is private information, it is Pareto Optimal for consumption rankings

to change over time. For example, suppose c∗t (ω, θ
t) > c∗t (ω

0, θt0), but only slightly. The
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need to provide for incentives may well imply that c∗t+1(ω, θ
t, θL) < c∗t+1(ω

0, θt0, θH), if

θH > θL.

However, Theorem 6 tells us that consumption is immobile in the long run.

In particular, consider the limit Lt(ω, θ
∞) = limτ→∞ |c∗t (ω, θ∞) − c∗t+τ(ω, θ

∞)| of the

difference between consumption at date t and consumption in the sufficiently distant

future. Then, consider the limit of this difference as date t gets sufficiently large (that

is, limt→∞Lt(ω, θ
∞)). By the triangle inequality, this limit can be bounded from above

by:

lim
t→∞

Lt(ω, θ
∞) (3.52)

≤ lim
t→∞

lim
τ→∞

|c∗t (ω, θ∞)− c∞(ω, θ∞)|+ lim
t→∞

lim
τ→∞

|c∗t+τ(ω, θ∞)− c∞(ω, θ∞)|

= 0 + 0

It follows that the difference between current consumption and very long-run consump-

tion gets smaller as time passes. In other words, agents’ consumptions don’t change

very much in the long run.

As I indicated earlier, Theorem 6 provides little information about the vari-

ance of long-run consumption across sample paths. In this subsection, I provide three

examples that illustrate the range of possible long run outcomes. Throughout, as in

Theorem 6, I assume that βR = 1, and I let u(c) = ln(c).
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C Example 1: A Two-Caste System

In this example, I suppose that the skill process is such that θt is equally likely to be θH

or θL, regardless of the history of past skills. I assume that v0(0) > 0, and v0(y) <∞.

Under these restrictions, the long-run behavior of consumption in a Pareto Optimal

allocation depends on the reservation utility Uω. First, and less interestingly, if Uω is

sufficiently high or sufficiently low, there is no incentive problem, and so the agent’s

consumption is constant over time in a Pareto Optimal allocation. More specifically,

suppose an agent’s reservation utility Uω is larger than Uω, where:

Uω =
ln(c)− v(0)

1− β
(3.53)

c ≡ θH/v
0(0) (3.54)

Then, c∗t
¡
ω, θt

¢
is constant at some consumption level higher than c, and y∗t (ω, θ

t) is

constant at 0. Intuitively, preferences exhibit wealth effects, and having a high reser-

vation utility is akin to having lots of wealth. When Uω ≥ Uω, the agent has so much

"wealth" that it is efficient for him never to work regardless of his skill realization.

Similarly, suppose the reservation utility Uω is lower than Uω, where:

Uω =
ln(c)− v(y/θH)/2− v(y/θL)/2

1− β

c ≡ θL/v
0(y)

Then, c∗t (ω, θ
t) is constant at some consumption level less than c, and y∗t (ω, θ

t) is con-
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stant at y. The intuition is the same as before: when the agent’s reservation utility

level is so low, he is so "poor" that it is efficient for him to produce the maximal level

of output regardless of his skill realization.

The more interesting case is if the reservation utility Uω lies in the open

interval (Uω, Uω). In that case, in a Pareto Optimal allocation, consumption c∗t (ω, θ
t)

lies in the open interval (c, c) for all (t, θt). At the same time, the reciprocal Euler

equation (applied to a log utility function) implies that consumption itself follows a

martingale. Hence, c∗t (ω, θ
t) must converge along almost every sample path θ∞. I will

not do so here10, but one can show that it is impossible for the limiting consumption

to be an element of the open interval (c, c). Instead, consumption must converge to one

of the endpoints of this interval, so that:

lim
t→∞

(c∗t (ω, θ
t), y∗t (ω, θ

t)) ∈ {(c, 0), (c, y)}

for almost all θ∞.

Thus, given Uω lies in (Uω, Uω), the long-run distribution of consumption

has a support of at most two points. Is it possible that all of the consumption paths

converge to the same limit? The answer is no. Consumption is a martingale, which

10The proof relies on results in Chapter 6. In that chapter, I show that when skills are i.i.d., we

can set up the planner’s problem as a dynamic program in which continuation utility is the lone state

variable. The dynamic programming formulation can be used to rationalize my description of long-run

behavior of consumption in this particular example.
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implies that for any t > s:

c∗s(ω, θ
s) = E(c∗t (ω, θ

t)|θs)

If we take limits of the right-hand side, we get:

c∗s(ω, θ
s) = lim

t→∞
E(c∗t (ω, θ

t)|θs)

= E( lim
t→∞

c∗t (ω, θ
t)|θs)

where the second equality relies on consumption’s being uniformly bounded from above

and below. Since c∗s(ω, θ
s) lies in the open interval (c, c), it must be true that the fraction

of paths that converges to (c, 0) is non-zero.

We conclude that, we end up with two distinct castes in the long run in a

Pareto Optimal allocation. The first caste produces no output, and consumes (at least)

c. The second caste produces y units of output and consumes (no more than) c. However,

convergence to these castes takes an infinite amount of time if Uω ∈ (Uω, Uω).

C Example 2: Immiseration

The above analysis relies crucially on the binding lower bound on output. Suppose

we assume that we change the above example by setting v0(0) equal to 0, so that the

marginal disutility of labor is zero. This change in preferences has a big effect on the

the long-run behavior of consumption in Pareto Optimal allocations.
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It is still true that if agent ω’s reservation utility Uω is sufficiently low (that is,

Uω ≤ Uω), then ω’s consumption is constant at some amount less than c. The change

in long-run allocations occurs if Uω > Uω. In the preceding example, when Uω is larger

than Uω, consumption converges to c along a positive fraction of paths. But in this

example, in which v0(0) equals 0, c is infinite. By the martingale convergence theorem,

consumption converges to a finite limit along almost every sample path, and so it can

only converge to c along a set of paths with probability zero. Instead, if Uω > Uω,

consumption must converge to the lower bound c along almost every sample.path.

This property is known as immiseration, because almost all agents’ consump-

tions converge to the same low level. Immiseration takes its most striking form when

v0(y) =∞. In that case, c equals zero. It follows that in any Pareto Optimal allocation,

almost all agents’ consumptions converge to zero!

This result often strikes people as counter-intuitive. Among other subtleties,

it is still true that the unconditional expectation of consumption is time-invariant for

any agent ω. How then is it that almost all agents’ consumptions converge to zero? The

trick is that there is no upper bound on consumption. As time passes, an increasingly

small fraction of agents consume an increasingly large amount of consumption. This

fraction eventually converges to zero, while the amount eventually converges to infinity,

in such a way so as to keep the average level always the same.11

11For example, suppose θ is uniform over [0, 1] and consider the sequence of random variables



76 Dynamic Social Contracting

C Example 3: Permanent Disability Shocks

In the above examples, the history of skill realizations has little impact on the long-run

limit of consumption. In Example 2, given ω, almost all sample paths of consumption

converge to the same limit. Even in Example 1, given ω, different histories of skill

realizations generate at most two possible limiting levels of consumption.

Suppose v(y) = y2/2, θH = 1, and θL = 0. Assume that π(θt+1 = 1|θt) = 1/2

if θs = 1 for all s ≤ t, and π(θt+1 = θH |θt) = 0 if θs = 0 for some s ≤ t. This stochastic

process for skills is such that agents are either able to produce or not. Being disabled

is an absorbing state.

Given the stochastic process, there is no remaining incentive problem once

an agent becomes disabled. Hence, if βR = 1, then consumption remains constant

for such agents in any Pareto Optimal allocation. The resulting constant level of con-

sumption does depend on exactly when the agent becomes disabled. Agents who stay

abled for longer periods of time must be rewarded for not falsely declaring themselves

disabled. Hence, an agent who becomes disabled in period s < t receives less perpetual

consumption than an agent who becomes disabled in period t.

It follows that in this setting, the long-run distribution of consumption in a

Pareto Optimal allocation, for any ω, has a countable support. The eventual limit of

{xn}∞n=1, where xn : [0, 1] → R+, and xn(θ) = 0 if θ ≥ 1/n and xn(θ) = n if θ < 1/n. Here, the

expectation of xn is one for all n, but xn converges to 0 almost everywhere.
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any agent’s consumption depends on the exact history of shocks that agent faces.

A 3.8 Summary

People differ in skills at the beginning of their lives, and those differences fluctuate

stochastically. If skills can be observed, then it is Pareto optimal for consumption

to be independent of skill realizations. However, in a world in which skills are pri-

vate information, high-skill agents must get more consumption if they are to produce

more output. In this fashion, private information about skills induce a Pareto optimal

dependence of consumption on skills.

In this section, we have seen that in intertemporal contexts, this dependence

of consumption on skills has a large impact on the evolution of consumption. Regardless

of whether skills are private information or not, and regardless of the law of motion of

skills themselves, the reciprocal of marginal utility follows the law of motion:

1/u0(ct+1) = βR/u0(ct) + εt+1 (3.55)

If skills are private information, and it is Pareto optimal to elicit more output from

highly skilled agents in period (t+1), then the conditional variance of εt+1 is non-zero.

This non-zero variance has two critical consequences for the Pareto optimal evolution of

consumption. First, u0(ct) < βREtu
0(ct+1), so that agents cannot be allowed to borrow

and lend freely at interest rate R. Second, the ε innovations to 1/u0(ct+1) persist over
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time to a degree governed by the size of βR.

If βR = 1, 1/u0(ct) follows a martingale and we can exploit the martingale con-

vergence theorem to reach useful conclusions about the long-run properties of 1/u0(c).

The general result is that along almost all histories, 1/u0(ct) converges and if u0(∞) = 0,

so does ct itself. The nature of the limit depends on the exact features of the environ-

ment. For example, if v0(0) = 0 and v0(y) = ∞, then we obtain immiseration: ct

converges to zero almost everywhere. If v0(0) > 0 and v0(y) < ∞, then all agents’

consumptions converge to one of two possible positive values.

The prior literature (see, among others, Farhi and Werning (2007)) has put a

great deal of emphasis on the immiseration result. Indeed, it is often regarded as being

the hallmark result of dynamic social contracting in the presence of private information.

In my view, this particular limiting result should be seen only as an example of a more

general finding that it is Pareto optimal for consumption to be unresponsive to skill

shocks in the long run. The lesson of the Martingale Convergence Theorem is that any

distortions associated with incentives must be front-loaded.12

12See Albanesi and Armenter (2007) for a more general discussion of front-loading in problems of

the second-best.
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A 3.9 Technical Notes

In this section, I describe how to generalize Theorem 5 to allow Θ to be any Borel set,

and I provide a heuristic justification for the Martingale Convergence Theorem.

B 3.9.1 Generalizing Theorem 5 to Intervals

In the body of the section, I assumed that the set Θ of skills was finite. It is more

traditional in public finance to assume, following Mirrlees (1971), that the set of skills

is an interval. Golosov, Kocherlakota, and Tsyvinski provide a proof of Theorem 5 that

is valid given that Θ is any Borel13 subset of R+. This kind of generality is important,

because it allows us to form connections between the work in macroeconomics on dy-

namic contracting and work in public finance on optimal taxation. For this reason, I

now go through this extension in some detail. The discussion requires some knowledge

of basic measure theory.

This more general proof builds off the same basic perturbation. We do have

to generalize the notion of probabilities in the setup. To simplify matters, assume Ω

has only one point. Let μ be a probability measure over the Borel subsets of ΘT ,

13The Borel σ-algebra B is the smallest collection of subsets of R+ that satisfies four properties.

First, B contains the empty set. Second, any countable union of elements of B is contained in B.

Third, the complement of any element of B is contained in B. Finally, any interval in R+ is contained

in B.
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with support equal to D ⊆ ΘT . Here, μ(A) represents the probability that a given

agent receives a skill sequence in A. Now, suppose (c∗, y∗) is optimal and there exists

δ > 0 such that c∗t (ω, θ
T ), c∗t+1(ω, θ

T ) ≥ δ for almost all θT in D. Then, using the same

argument as in the body of the paper, we know that (0, c∗t , c
∗
t+1) solves the following

programming problem:

max
∆,c0t,c0t+1

∆ (3.56)

s.t. u(c0t(θ
T )) + βu(c0t+1(θ

T ))

= u(c∗t (θ
T )) + βu(c∗t+1(θ

T )) +∆ for all θT ∈ D

Z
D

(c0t − c∗t )dμ+R−1
Z
D

(c0t+1 − c∗t+1)dμ = 0

c0t is θ
t-measurable, c0t+1 is θ

t+1-measurable

c0t(θ
T ), c0t+1(θ

T ) ≥ 0 for all θT in D

Note that this programming problem closely resembles (3.20), except that I have gen-

eralized the feasibility restriction to be an integral with respect to μ.

We now need to derive the first order necessary conditions to this problem.

To do so, though, we need to deal with three mathematical issues.
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C Issue 1: Almost Everywhere vs. Everywhere

The constraint set in (3.56) treats (c0t, c
0
t+1) as distinct from (c∗t , c

∗
t+1) if they differ for

any sequence θT in D. This formulation makes sense economically because the agent

has the ability to pretend to be any θT in D. But, from the point of view of the

probability measure μ, c0t and c∗t are indistinguishable if they differ only on a subset

A of D such that μ(A) = 0 (that is, they are equal almost everywhere). There is an

intrinsic incompatiblity between our formulation of the constraint set (3.56) and μ.

We can readily fix this difficulty by considering the problem:

max
∆,c0t,c0t+1

∆ (3.57)

s.t. u(c0t(θ
T )) + βu(c0t+1(θ

T ))

= u(c∗t (θ
T )) + βu(c∗t+1(θ

T )) +∆ for almost all θT ∈ D

Z
D

(c0t − c∗t )dμ+R−1
Z
D

(c0t+1 − c∗t+1)dμ = 0

c0t is θ
t-measurable, c0t+1 is θ

t+1-measurable

c0t(θ
T ), c0t+1(θ

T ) ≥ 0 for almost all θT in D

instead. This problem expands the constraint set of (3.56), and so could potentially

have a different (superior) solution. However, suppose (∆∗, c0t, c
0
t+1), with ∆

∗ > 0, solves
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(3.57). Then, there exists A ⊂ D, μ(A) = 0, such that:

u(c0t(θ
T )) + βu(c0t+1(θ

T )) (3.58)

= u(c∗t (θ
T )) + βu(c∗t+1(θ

T )) +∆∗

c0t(θ
T ), c0t+1(θ

T ) ≥ 0 (3.59)

for all θT in D−A. Define a new pair of consumptions (c00t , c00t+1) so that (c00t , c00t+1) equals

(c0t, c
0
t+1) except:

c00t (θ
T ) = c∗t (θ

T ) + ε(θT ) if θT is in A (3.60)

c00t+1(θ
T ) = c∗t+1(θ

T ) if θT is in A (3.61)

where:

ε(θT ) = u−1(u(c∗t (θ
T ) +∆∗)− c∗t (θ

T ) (3.62)

The triple (∆∗, c00t , c
00
t+1) lies in the constraint set of the original problem, and so we have

a contradiction to the supposition that (c∗, y∗) is optimal.

This argument implies that (0, c∗t , c
∗
t+1) must satisfy the first order necessary

conditions to (3.57) if it is to be optimal.
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C Issue 2: A Useful Metric

To derive first order necessary conditions, we need to be able to take derivatives of

functions of c∗. At its most basic level, a derivative is a measure of the change in a

function relative to the change in its arguments. In order to differentiate, we need to

have a measure of distance between (c0t, c
0
t+1) and (c

∗
t , c

∗
t+1).

Not all measures of distance will work. To generate a first order necessary

condition like (3.15), it must be true that if (c0t, c
0
t+1) is "close to" (c

∗
t , c

∗
t+1), then (c

0
t, c

0
t+1)

is positive almost everywhere. (Otherwise, we have to worry about the possibility

of binding non-negativity constraints in formulating our first order conditions.) This

requirement is trivially satisfied by the Euclidean norm when Θ is finite and the pair

(c∗t , c
∗
t+1) is positive. However, for an arbitrary Borel set Θ, many standard measures

of distance will not have this property.

For example, suppose Θ = [0, 1], and consider any Lp metric, p < ∞. This

metric measures the distance between two random variables c∗t and c
0
t as the pth moment

of the absolute difference between those random variables. Suppose c∗t is positive almost

everywhere (in fact, uniformly bounded away from zero almost everywhere). Pick any

δ, no matter how small. We can find some c0t such that the L
p-distance between c0t and

c∗t is less than δ, and c
0
t has a positive probability of being less than 0. The construction

of c0t works by squeezing the negative portion of c
0
t onto a smaller set of θ

T as δ shrinks.

One measure of distance that does work is the essential-supremum (ess-sup)



84 Dynamic Social Contracting

metric. The ess-sup of a random variable x is the smallest numberM such that |x| ≤M

almost everywhere. The ess-sup metric measures the distance between c∗t and c0t as the

ess-sup of |c∗t − c0t|. The squeezing trick described in the above paragraph doesn’t work

with the ess-sup metric, because it definitionally covers almost all θT . Hence, if c∗t is

uniformly bounded away from zero, then there exists some δ such that if c0t is within δ

of c∗t in terms of the ess-sup metric, then c0t is also uniformly bounded away from zero.

With the ess-sup measure of distance, we can, without loss, change the prob-

lem (3.57) one more time. In this final change, we drop the non-negativity constraints,

and impose the requirement that c0t and c0t+1 lie in L∞ (that is, they have essential

suprema that are finite):

max
∆,c0t,c0t+1

∆ (3.63)

s.t. u(c0t(θ
T )) + βu(c0t+1(θ

T ))

= u(c∗t (θ
T )) + βu(c∗t+1(θ

T )) +∆ for almost all θT ∈ D

Z
D

(c0t − c∗t )dμ+R−1
Z
D

(c0t+1 − c∗t+1)dμ = 0

c0t is θ
t-measurable, c0t+1 is θ

t+1-measurable

c0t, c
0
t+1 ∈ L∞
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C Issue 3: Lagrangians in L∞

The putative optimum (0, c∗t , c
∗
t+1) is, in the language of Luenberger (1969), a regular

point of the above constraint set. (Intuitively, we can move in at least one direction away

from (0, c∗t , c
∗
t+1) and stay within the constraint set.) This means that we can attack

this problem using Lagrangian analysis, and that (0, c∗t , c
∗
t+1) must be a stationary point

of the functional:

L(∆, c0t, c
0
t+1) = ∆+

­
z∗, u(c0t) + βu(c0t+1)−∆

®− λ

Z
D

c0t +R−1c0t+1dμ (3.64)

Here, λ is a standard Lagrange multiplier. The notation hz∗, xi represents a linear op-

erator that inputs elements x of L∞ and outputs elements of R. It would be desirable to

transform this linear operator into a more interpretable form. The Riesz representation

theorem guarantees that linear operators that map Lp into R can be written as the in-

tegral of the product of the input x with a fixed element z∗ of Lq, where 1/p+1/q = 1.

Unfortunately, this theorem does not apply when p =∞.

Nonetheless, Golosov, Kocherlakota, and Tsyvinski (2003) show how one can

use the above Lagrangian (3.64) to derive the reciprocal Euler equation. Let L∞t be

the set of elements of L∞ that are θt-measurable and L∞t+1 be the set of elements of L
∞

that are θt+1-measurable. To be a stationary point of L, (0, c∗t , c
∗
t+1) must satisfy:

hz∗, u0(ct)δti− λ

Z
D

δtdμ = 0 for all δt in L∞t (3.65)

hz∗, βu0(ct+1)δt+1i− λR−1
Z
D

δt+1dμ = 0 for all δt+1 in L∞t+1 (3.66)
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We can substitute out the z∗ operators to get:

λ

Z
D

δt
u0(c∗t )

dμ = λR−1β−1
Z
D

δt
u0(c∗t+1)

dμ for all δt in L∞t (3.67)

Since we can pick δt to be any element of L∞t , we can conclude that:

1

u0(c∗t )
= β−1R−1E{ 1

u0(c∗t+1)
|θt} (3.68)

B 3.9.2 Heuristic Argument for theMartingale Convergence The-

orem

In this subsection, I follow Chamley (2003) and sketch a proof of the martingale con-

vergence theorem. Be forewarned: the proof of the general theorem is considerably

deeper than the following discussion indicates.

LetXt be a non-negative martingale. To simplify the argument, I assume that

the probability density function of Xt+T −Xt, conditional on Xt, is symmetric around 0

for any t, T. Recall that, along a given sample path, Xt must either converge to infinity,

converge to a finite non-negative number, or fail to converge. The fact that E(Xt)

is constant and finite immediately implies that the probability that Xt converges to

infinity is zero. It remains to be shown that Xt must converge along almost all sample

paths.

The martingale property implies that first-differenced Xt has an autocorrela-
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tion of zero. Hence:

V ar(Xt+T |Xt) = V ar(Xt+T −Xt|Xt) (3.69)

=
TX

k=1

V ar(Xt+k −Xt+k−1|Xt) (3.70)

The density of Xt+T −Xt, conditional on Xt, is symmetric around 0 (by assumption).

Since Xt+T is non-negative, we know that Xt+T −Xt is bounded from below by −Xt;

symmetry implies that Xt+T −Xt is bounded from above by Xt. Hence:

X2
t ≥ lim

T→∞

TX
k=1

V ar(Xt+k −Xt+k−1|Xt) (3.71)

Since the right-hand-side sum converges, we know that its tail partial sums converge

to zero:

0 = lim
T→∞

lim
S→∞

SX
s=1

V ar(Xt+T+s −Xt+T+s−1|Xt) (3.72)

= lim
T→∞

lim
S→∞

E{(Xt+T+S −Xt+T )
2|Xt} (3.73)

Thus, |Xt+T+S − Xt+T |2 is converging to zero almost everywhere as T, S converge to

infinity. We can conclude that Xt+T converges to some (possibly random) X∞ as T

goes to infinity.
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CN Chapter 4

CT Dynamic Optimal Taxation: Lessons

for Macroeconomists

In this chapter, we return to the fiscal policy issues that lay at the heart of Chapter

2. I augment the model from that chapter so as to include agent heterogeneity and

aggregate shocks to the aggregate production function. As in Chapter 3, the agent

heterogeneity takes the form of differences in skills (labor productivities), and these

differences can fluctuate stochastically over time. Within this class of environments, I

set up a canonical optimal nonlinear taxation problem for the government. I assume

that the government has access to a complete record of the history of an agent’s labor

incomes and can also observe an agent’s current capital income. The government is

able to contemplate any tax schedule as a function of these agent-specific variables,

90
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and can also condition the tax schedule on the aggregate shocks.

The government’s ability to tax is limited, though: it cannot condition tax

payments directly on agents’ skills. From a strict mathematical point of view, this

restriction as simply one more ad hoc limitation on the functional form of taxes (like

linearity in Chapter 2). However, from an economic point of view, this restriction

is a much more natural one because it emerges endogenously when skills are private

information (as in Chapter 3).

The key to the analysis in this chapter is that, in many circumstances, the

quantities in the solution to this canonical optimal tax problem also solve the social

planner’s problem in Chapter 3. This result allows us to use the characterizations

of optimal quantities in Chapter 3 to reach important conclusions about the nature

of optimal capital income taxes, labor income taxes, government debt, and monetary

policy.

A 4.1 A Nonlinear Tax Problem

In this subsection, I describe a canonical nonlinear taxation problem for a class of

dynamic economies with heterogeneous agents. Suppose there is a unit measure of

agents in a T -period economy, T <∞. The agents have identical preferences:

TX
t=1

βt−1[u(ct)− v(lt)]
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where ct is consumption in period t, lt is effort in period t, and θt represents the agent’s

level of skill in period t. We assume u is increasing and v is increasing.

The shock structure works as follows. Let Z and Θ be finite sets. Nature first

draws a T -period sequence zT of aggregate shocks from the set ZT according to πZ .

Then, she draws θT from the set ΘT for each agent, according to the p.d.f. πΘ(.|zT ). For

convenience, assume that both probability density functions πZ and πΘ put positive

probability on all elements of ZT and ΘT respectively. We assume that a law of large

number holds: for each zT , the fraction of agents who have history θT is given by

πΘ(θ
T |zT ).

I assume that for all θt, the conditional density:

πθ(θ
t|zT ) ≡

X
(θt+1,...,θT )

πθ(θ
t, θt+1, ..., θT |zT ) (4.1)

is independent of zTt+1 ≡ (zt+1, .., zT ). This restriction says that, conditional on zt, θt

and zTt+1 are independent.
1 It has two consequences. First, given zt, we know the cross-

sectional distribution of the agents’ personal histories (θt). Second, an agent’s personal

history in period t reveals nothing to him about future aggregate shocks beyond what

is in zt.

At each date, agents can produce effective labor using effort, according to the

1In the technical notes to this chapter, I discuss some of the issues that emerge when this restriction

is relaxed.
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technology:

yt = θtlt

As we shall see, effective labor is then used together with capital to produce out-

put. Note that as in Chapter 3, I’m imposing few restrictions on the data generation

processes for shocks (both individual and aggregate).

There is a government with a technology that can turn private goods one for

one into public goods. We assume that the government’s public goods production is

governed by the (exogenous) stochastic process G, where G = (Gt)
T
t=1, Gt : Z

T → R+,

and Gt is zt-measurable.

All agents in the economy are initially endowed with k1 units of capital. Then,

an allocation is a mapping (c, y, k) such that:

c : ΘT × ZT → RT
+

y : ΘT × ZT → [0, y]T

k : ΘT × ZT → RT−1
+

where (ct, yt, kt+1)Tt=1 is measurable with respect to (θ
t, zt). Let F (K,Y, z) be an ag-

gregate production function such that F is homogeneous of degree one in its first two

arguments, and suppose capital depreciates at rate δ from one period to the next. Then,
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a feasible allocation must satisfy:

Ct(z
T ) +Kt+1(z

T ) +Gt(z
T )

≤ (1− δ)Kt(z
T ) + F (Kt(z

T ), Yt(z
T ), zt) for all t, zT

K1 ≤ K1

where:

Ct(z
T ) ≡

X
θT∈ΘT

πΘ(θ
T |zT )ct(θT , zT )

Yt(z
T ) ≡

X
θT∈ΘT

πΘ(θ
T |zT )yt(θT , zT )

Kt(z
T ) ≡

X
θT∈ΘT

πΘ(θ
T |zT )kt(θT , zT )

represent per capita consumption, effective labor, and capital respectively.

There is a large number of identical competitive firms. The firms rent capital

and hire effective labor from the agents, taking wages wt(z
T ) and rental rates rt(zT )

as given in period t. At each date t, agents can trade capital with one another, lease

capital to the firms, and provide effective labor to the firms.

Before period 1, the government commits to a tax schedule τ = (τ t)Tt=1, where

τ t : R
t × R × Zt → R maps the agent’s history of labor incomes, his period t capital

income, and the history of aggregate shocks zt into taxes. Note that, as mentioned

above, taxes do not depend directly on agent skills. Given τ , and stochastic processes
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w and r for wages and rents respectively, the agent solves the problem:

max
c,y,k

X
zT∈ZT

X
θT∈ΘT

TX
t=1

πΘ(θ
T |zT )πZ(zT )[u(ct(θT , zT ))− v(yt(θ

T , zT )/θt)]β
t−1

s.t. ct(θ
T , zT ) + kt+1(θ

T , zT ) + τ t((ws(z
T )ys(θ

T , zT ))ts=1, rt(z
T )kt(θ

T , zT ), zt)

≤ (1− δ + rt(z
T ))kt(θ

T , zT ) + wt(z
T )yt(θ

T , zT ) for all (t, θT , zT )

(ct, yt, kt+1, y − yt) is non-negative and (θ
t, zt)-measurable

k1 ≤ K1

(We ignore firm profits; with the constant returns to scale technology, profits are zero

in equilibrium.)

Then, given a government’s choice τ , an equilibrium in this economy is an

allocation (c, y, k) and prices (r,w) such that (c, y, k) solves the agent’s problem given

(τ , r, w) and markets clear in every date and history:

Ct(z
T ) +Kt+1(z

T ) +Gt(z
T ) = (1− δ)Kt(z

T ) + F (Kt(z
T ), Yt(z

T ), zt) for all t, zT

K1 = K1

As was true in the Ramsey model, given that G is exogenously specified,

there is no equilibrium for most specifications of τ . (Thus, if we set τ = 0 and G

is positive in all dates and states, then there is no equilibrium.) I denote the set
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of equilibrium allocations (c, y, k) for a given τ and G by EQMNL(τ ,G) (where NL

represents nonlinear). Note that in any equilibrium, since F is homogeneous of degree

one, we know that for all t, zT :

Ct(z
T ) +Kt+1(z

T ) +
X

θT∈ΘT

πΘ(θ
T |zT )τ t((ws(z

T )ys(θ
T , zT ))ts=1, rt(z

T )kt(θ
T , zT ), zt)

= (1− δ)Kt(z
T ) + F (Kt(z

T ), Yt(z
T ), zt).

Market-clearing then implies that for all t, zT

Gt(z
T ) =

X
θT∈ΘT

πΘ(θ
T |zT )τ t((ws(z

T )ys(θ
T , zT ))ts=1, rt(z

T )kt(θ
T , zT ), zt)

We can conclude that in any equilibrium, the government maintains budget balance in

each period.

Before period 1, the government chooses tax system τ so as to maximize ex-

ante utility. Hence, the government’s problem in this economy is akin to that in the

Ramsey model:

max
(c,y,k,τ)

X
θT∈ΘT

X
zT∈ZT

TX
t=1

βt−1πΘ(θT |zT )πZ(zT ){u(ct(θT , zT ))− v(
yt(θ

T , zT )

θt
)}

s.t. (c, y, k) ∈ EQMNL(τ ,G) (4.2)

The objective in this problem assumes that the government treats all agents symmet-

rically. However, it is straightforward to extend the analysis to allow for alternative

weightings of individuals (based for example on the ω’s described in Chapter 3).
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A 4.2 Any Tax Equilibrium is Incentive-Compatible

In developing the model in this chapter, I have made no reference to an agent’s personal

history of shocks actually being private information. Nonetheless, I now prove that any

equilibrium allocation is in fact incentive-compatible in the sense described in Chapter

3. This crucial result is implied by our assumption in the preceding section that taxes

cannot be conditioned directly on skills. The result allows us to connect our study

of optimal incentive-feasible allocations in Chapter 3 with the study of optimal tax

systems.

To prove this result, we first need to develop a definition of incentive-compatibility

in this economy with macroeconomic shocks. Define a mimicking strategy to be a map-

ping:

σ : ΘT × ZT → ΘT

where σt is (θ
t, zt)-measurable for all t. This definition is completely analogous to that

in Chapter 3 except that we allow the agent to condition his choices on the history of

aggregate shocks and in this case all histories have positive probability. Let Σ be the

set of all mimicking strategies. Then, an allocation (c, y, k) is incentive-compatible if
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and only if:

X
zT∈ZT

πZ(z
T )

TX
t=1

βt−1
X

θT∈ΘT

πΘ(θ
T |zT )[u(ct(θT , zT ))− v(yt(θ

T , zT )/θt)]

≥
X

zT∈ZT
πZ(z

T )
TX
t=1

βt−1
X

θT∈ΘT

πΘ(θ
T |zT )[u(ct(σ(θT , zT ), zT ))− v(yt(σ(θ

T , zT ), zT )/θt)]

for all σ in Σ. Note that if (c, y, k) is incentive-compatible, so is (c, y, k0) for any k0.

With this definition of incentive-compatibility in hand, we can prove that

equilibrium outcomes are in fact incentive-compatible. The proof is essentially an

application of the Revelation Principle.

Proposition 7 Suppose an allocation (c, y, k) is an equilibrium given some tax τ func-

tion, so that (c, y, k) ∈ EQMNL(τ ,G). Then, (c, y, k) is incentive-compatible.

G Proof. Note first that the allocation (c, y, k) lies in the budget set of the agent. Now

suppose the agent uses a mimicking strategy σ. He gets an allocation (bc, by,bk), where
(bc, by,bk)(θT , zT ) = (c, y, k)(σ(θT , zT ), zT )

The range of σ implies that σ(θT , zT ) ∈ ΘT for all (θT , zT ). Hence, we know that:

ct(σ(θ
T , zT ), zT ) + kt+1(σ(θ

T , zT ), zT )

+τ t((ws(z
T )ys(σ(θ

T , zT ), zT )ts=1, rt(z
T )kt(σ(θ

T , zT ), zt))

≤ (1− δ + rt(z
T ))kt(σ(θ

T , zT ), zT ) + wt(z
T )yt(σ(θ

T , zT ), zT ) for all t, (θT , zT )
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It follows that the allocation (bc, by,bk) is in the budget set of the agent. Since (c, y, k) is
an equilibrium, we can conclude that (c, y, k) provides at least as much ex-ante utility

to the agent as (bc, by, bk). Hence, for any σ:
V (σTT ; c, y, k) ≥ V (σ; c, y)

and so (c, y, k) is incentive-compatible. QED

The key to this Proposition is that taxes are only a function of an agent’s

choice of (y, k), and not his true θ.When faced with this kind of tax schedule, an agent

with skill θT is free to choose the same allocation (c, y, k) as an agent with alternative

skill history θT 0. It follows that a tax equilibrium outcome must be robust to any possible

mimicking strategy, and so must be incentive-compatible.

A 4.3 Building an Optimal Tax System

The definition of the constraint set in the maximization problem (4.2) is overly abstract

for the problem to be of use. In the Ramsey problem, we were able to show that the set

of allocations that lie in E(τk, τ l) for some (τ k, τ l) is defined by a simple set of equality

constraints. We were then able to apply Lagrangian methods to solve the resulting

constrained optimization problem and characterize the optimal τ .

With nonlinear taxes, Proposition 7 only characterizes a superset of imple-

mentable allocations. For this reason, we follow a different approach with the maxi-



100 Lessons for Macroeconomists

mization problem (4.2) than we did in Chapter 2 with the Ramsey problem. We have

shown that the set of incentive-compatible allocations is larger than the set of tax equi-

librium outcomes. Let IF (G) be the set of incentive-feasible allocations, given G, and

consider the social planner’s problem:

max
c,y,k

X
zT∈ZT

X
θT∈ΘT

πΘ(θ
T |zT )πZ(zT )[u(ct(θT , zT ))− v(yt(θ

T , zT )/θt)]β
t−1 (4.3)

s.t. (c, y, k) ∈ IF (G)

Suppose (c∗, y∗, k∗) solves this problem. If we can construct τ and k0 such that (c∗, y∗, k0)

is in EQMNL(τ ,G), then τ is necessarily an optimal tax. The goal of this section is to

describe one of the many such τ .

B 4.3.1 The Static Case

In this subsection, I re-create an old result in public finance, and show how we can find

such a τ in static settings. Suppose that T = 1 and Z is a singleton, so that we have a

static economy with no aggregate shocks. Suppose (c∗, y∗) solves the planner’s problem

(4.3). I claim that c∗ depends on θ1 only through y∗. To see the truth of this claim,

suppose by way of contradiction that y∗(θ1) = y∗(θ01) and c∗(θ1) is larger than c∗(θ01).

Then:

u(c∗(θ1))− v(y∗(θ1)/θ01) > u(c∗(θ01))− v(y∗(θ01)/θ
0
1)

and so (c∗, y∗) is not incentive-compatible.
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This logic implies that there exists a strictly increasing function bc : ∪θ1∈Θ{y∗(θ1)}→
R+ such that:

c∗(θ1) = bc(y∗(θ1))
The function bc has a finite domain, given by the range of possible effective

labors in the optimal allocation. In order to build a realistic tax schedule, which allows

agents to choose from an interval of possible effective labor, it is useful extend the

domain of bc to all y ≥ minθ1 y∗(θ1). For such y, define:

bc(y) ≡ max
y0≤y

bc(y0)
s.t. y0 ∈ ∪θ1∈Θ{y∗(θ1)}

Let w = fl(K1,
P

θ1∈Θ πΘ(θ1)y
∗(θ1)) be the marginal product of effective labor in the

optimal allocation, and define a tax schedule τ as a function of labor income e so that:

τ(e) = e+ (1− δ + r)K1 − bc(e/w) if e ≥ min∪θ1∈Θ{wy∗(θ1)}
= 2e+ (1− δ + r)K1 if e < min∪θ1∈Θ{wy∗(θ1)}

Here, r is the marginal product of capital, calculated using the optimal effective labor

allocation y∗. (I abstract from the tax on capital income. In this setting, this tax is

equivalent to an intercept term in the labor tax schedule.)

I claim that (c∗, y∗) ∈ EQMNL(τ ,G). Given the tax schedule τ , an individual
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with skill θ∗1 faces a choice problem of the form:

max
(c,y)∈R2+

u(c)− v(y/θ∗1)

s.t. c ≤ wy − τ(wy) + (1− δ + r)K1

c, y − y, y ≥ 0

It is budget-infeasible for the agent to choose y0 < min∪θ1∈Θ{y∗(θ1)}, because his taxes

then exceed his income. Suppose instead that the agent chooses y0 ≥ min ∪θ1∈Θ{y∗(θ1)},

where y0 /∈ ∪θ1∈Θ{y∗(θ1)}, and sets c = wy0 − τ (wy0) + (1− δ + r)K1. Then, the agent

can get the same consumption and work no more if he chooses

y = max
y0≤y

y0

s.t. y0 ∈ ∪θ1∈Θ{y∗(θ1)}

rather than y0. Hence, there is no loss in generality in restricting attention to choices

of y ∈ ∪θ1∈Θ{y∗(θ1)}.

We also know that because (c∗, y∗) is incentive-compatible:

u(wy∗(θ∗1) + (1− δ + r)k1 − τ(wy∗(θ∗1)))− v(y∗(θ∗1)/θ
∗
1)

= u(c∗(θ∗1))− v(y∗(θ∗1)/θ
∗
1)

≥ u(c∗(θ1))− v(y∗(θ1)/θ∗1)

= u(wy∗(θ1) + (1− δ + r)k1 − τ(wy∗(θ1)))− v(y∗(θ1)/θ∗1)
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and so it follows that (c∗(θ∗1), y
∗(θ∗1)) solves the individual’s choice problem. We can

conclude that indeed (c∗, y∗) ∈ EQMNL(τ ,G).

In this way, we can take any solution to the planner’s problem (4.3) in the sta-

tic setting, and use it to construct an optimal tax schedule. The tax schedule is designed

so that after-tax earnings are a right-continuous step function of earnings themselves.

The jumps in the step function take place at points in the set ∪θ1∈Θ{wy∗(θ1)}. These

jump discontinuities disappear if Θ is an interval, as opposed to a finite set as we have

assumed.

B 4.3.2 The Need for Capital Income Taxes

In the static setting, there was no way for agents to accumulate capital and hence

no room for capital income taxes. We turn to the issue of how to construct optimal

tax schedules in dynamic settings. We focus first on the following question. Suppose

(c∗, y∗, k∗) is a solution to (4.3), and we want to find (τ ,G) such that (c∗, y∗, k0) is in

EQMNL(τ ,G). How would such a τ need to treat capital income?

Here, the lessons of Chapter 3 about the intertemporal characteristics of

Pareto optima with private information are crucial. Theorem 5 proved that, in a

setting without aggregate shocks, a Pareto optimal allocation satisfied a “reciprocal”

Euler equation, but not a standard Euler equation. This result can be extended to our

setting with aggregate shocks.
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Theorem 8 Suppose (c∗, y∗, k∗) is a solution to (4.3) such that c∗t (θ
T , zT ) > 0, and

c∗t+1(θ
T , zT ) > 0 for all (θT , zT ). Let (K∗

t+1, Y
∗
t+1) be per-capita capital and effective

labor in period (t + 1). Then, for any zT in ZT such that K∗
t+1(z

T ) > 0, there exists

λt+1 : Z
T → R+ such that λt+1 is zt+1-measurable and:

λt+1(z
T ) =

β{E{ 1
u0(c∗t+1)

|θt = θ
t
, zt+1 = (zt, zt+1)}}−1

u0(c∗t (θ
T
, zT ))

for all θ
T
in ΘT (4.4)

and:

1 = E{λt+1(1− δ + fk(K
∗
t+1, Y

∗
t+1)|zt = zt} (4.5)

G Proof. In technical notes at the end of the chapter.

The programming problem (4.3) has both feasibility constraints and incen-

tive constraints. The function λ represents the ratio of the multipliers on the history

(zt, zt+1) feasibility constraint and the history zt feasibility constraint (normalized by

the conditional probability of zt+1. In this sense, λ represents the planner’s marginal

rate of substitution between consumption in history zt and history (zt, zt+1).With this

interpretation, (4.5) is simply the planner’s Euler equation for capital accumulation.

The expression (4.4) ties the planner’s marginal rate of substitution to indi-

vidual level consumption. The numerator is the cross-sectional harmonic mean of indi-

vidual marginal utilities, conditional on aggregate history (zt, zt+1) and private history

θ
t
. (Implicitly, the expectation is summed over realizations of θt+1). The denominator

is simply marginal utility in aggregate history zt and private history θ
t
. Note that both
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the numerator and denominator may depend on θ
t
, but their ratio does not.

These two equations are a direct generalization of the reciprocal Euler equa-

tion in Theorem 5. Suppose Z is a singleton. Then, λ−1 is a constant that simultane-

ously equals:

(1− δ + fk(K
∗
t+1, Y

∗
t+1)

and:

β−1u0(c∗t (θ
T
, zT ))E{ 1

u0(c∗t+1)
|θt = θ

t}

Combining these two delivers the reciprocal Euler equation, with (1−δ+fk(K
∗
t+1, Y

∗
t+1)

playing the role of the gross rate of return.

This Theorem is a characterization of optimal quantities. However, it pro-

vides important information about any tax system τ such that an optimal allocation

(c∗, y∗, k∗) ∈ EQMNL(τ ,G). Suppose (c∗, y∗, k∗) solves (4.3). Suppose too that the

incentive problem is such that the optimal c∗t+1 depends on the current realization of

θt+1, so that:

V ar(u0(c∗t+1)|θt = θ
t
, zt+1 = zt+1) > 0

Then, we can apply Jensen’s inequality to (4.4) conclude that: :

λ(zt+1) < β
E{u0(c∗t+1)|θt = θ

t
, zt+1 = zt+1}

u0(c∗t (θ
T
, zT ))

If we substitute into (4.5), we obtain:

u0(c∗t (θ
T
, zT )) < βE{u0(c∗t+1)(1− δ + fk(K

∗
t+1, Y

∗
t+1))|θt = θ

t
, zt = zt} (4.6)
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The wedge in (4.6) immediately tells us that capital must be taxed in period

(t+1). Suppose that, on the contrary, (c∗, y∗, k0) ∈ EQMNL(τ ,G), and τ t+1 is indepen-

dent of kt+1. Then, the individual’s Euler equation for capital accumulation will imply

that:

u0(c∗t (θ
T
, zT )) ≥ βE{u0(c∗t+1)(1− δ + fk(K

∗
t+1, Y

∗
t+1))|θt = θ

t
, zt = zt} (4.7)

which contradicts (4.6). If τ implements a socially optimal allocation in which incentives

matter at some date, then it is not possible for capital tax rates to equal zero in period

(t+ 1).

This result about the need for capital income taxes contrasts with the conclu-

sion that we obtained in Chapter 2. (It is true that in Chapter 2, we had no aggregate

shocks. But the distinction between (4.6) and (4.7) exists even if Z is a singleton, so

that there are no aggregate shocks.) We found there that the Ramsey approach says

that capital income tax rates are optimally set to zero after period 2 if u is of the power

form. The key difference here is that agents with a lot of capital in period (t + 1) are

hard to motivate via incentives in period (t+1). It is therefore optimal to deter capital

accumulation in some fashion. In what follows, we figure out how best to do so.

B 4.3.3 How Not to Design Optimal Capital Income Taxes

We now know that if we are to construct a tax schedule that implements a given

socially optimal allocation, that schedule must feature non-zero capital taxes. I turn
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to the question of how to structure these capital income taxes. The typical approach

in public finance is to set these taxes equal to the wedges in the social optimum. This

approach, originally due to Pigou, makes the first order conditions in the individual’s

problem line up with those in the planner’s problem. In this subsection, I show in the

context of a prototypical example that this approach does not always work.2

The example has two periods, with no shocks in period 1, and two equally

likely possible realizations of skills in period 2. Specifically, let u(c) = ln(c), v(l) = l2/2,

and β = 1. Suppose too that T = 2,Θ = {0, 1}, Z = {1} (so that there are no

aggregate shocks), f(K,Y ) = rK + wY, and δ = 1. As well, suppose v(l) = l2/2, and

πΘ(1, 1) = πΘ(1, 0) = 1/2. Set G = 0. Just for the purposes of this example, let (c2i, y2i)

denote consumption and effective labor when θ = i. Then, we can re-write the planner’s

problem (4.3) as:

max
c1,c21,c20,y1,y21,K2

ln(c1)− y21/2 + ln(c21)/2− y221/4 + ln(c20)/2

s.t. c1 +K2 = rK1 + wy1

c21/2 + c20/2 = rK2 + wy21/2

ln(c21)− y221/2 ≥ ln(c20)

c21, c20, y21, K2, y1 ≥ 0
2The example closely resembles ones in Albanesi and Sleet (2006) and Golosov and Tsyvinski (2006).
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(In this statement of the problem, I have set y20 = 0, as would be true in a social

optimum.) The solution to this problemmust satisfy the following first order conditions:

c∗1 +K∗
2 = rK1 + wy∗1 (4.8)

c∗21/2 + c∗20/2 = rK∗
2 + wy∗21/2 (4.9)

ln(c∗21)− y∗221/2 = ln(c
∗
20) (4.10)

1/c∗1 = r/[0.5c∗21 + 0.5c
∗
20] (4.11)

w/c∗21 = y∗21 (4.12)

y∗1 = w/c∗1 (4.13)

Note that (4.10) implies that in the social optimum, the highly-skilled agent is

indifferent between acting high-skilled and acting low-skilled. This indifference is nec-

essary to provide the maximal insurance against skill risk.

In this social optimum, all agents face an intertemporal wedge equal to:

1−
1

0.5c∗21+0.5c
∗
20

0.5/c∗21 + 0.5/c
∗
20

Hence,we can readily construct a linear tax on capital income that is equal to this

wedge. Consider a tax system τ such that if an agent has capital holdings k2 at the

beginning of period 2, and effective labor y2 in period 2, then he pays period 2 taxes

τkrk2+τ
y(wy2). Given this tax system, an equilibrium in this economy is a specification
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of (bc1,bc21,bc20, y1, by21,bk2) such that it solves:
max

c1,y1,c21,c20,y21,k2
ln(c1)− y21/2 + ln(c21)/2 + ln(c20)/2− y221/4

s.t. c1 + k2 = rk1 + wy1

c21 = rk2 + wy21 − τkrk2 − τy(wy21)

c20 = rk2 − τ krk2 − τy(0)

k2, c21, c20, y21, y1 ≥ 0

and markets clear:

bc1 + bk2 = rk1 + wy1

bc21/2 + bc20/2 = rbk2 + wby21/2
Note that in equilibrium, τkrbk2+0.5τ y(wby21) + 0.5τ y(0) = 0, so that the government’s
budget is balanced in period 2.

Suppose that (c∗, y∗, k∗) is a socially optimal allocation in which y∗21 > 0. I

claim that there is no tax system τ such that (c∗, y∗, k∗) is an equilibrium. Suppose to

the contrary that (c∗, y∗, k∗) is an equilibrium given τ . Then, the capital tax τ k is such

that the agent is marginally indifferent between saving a little more or a little less:

1/c∗1 = (1− τk)r[0.5/c∗21 + 0.5/c
∗
20] (4.14)
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It is also individually optimal for an agent to set his individual choice (y21, k2) equal to

the socially optimal choice (y∗21, k
∗
2).

Now, consider two alternative specifications of (y21, k2):

shirk: (0, k∗2)

shirk-and-save : (0, k∗2 + ε)

Suppose the agent uses the shirk-and-save strategy k2 = k∗2 + ε and y21 = 0. His utility

gain from this plan, relative to that provided by the shirk of setting y21 = 0 and k2 = k∗2,

is given by:

ln(c∗1 − ε) + ln(c∗20 + rε− τkrε)− ln(c∗1)− ln c∗20

For ε small, this utility difference is well-approximated by:

−ε/c∗1 + r(1− τk)ε/c∗20

Because c∗20 < c∗21,the utility difference is larger than:

−ε/c∗1 + r(1− τ k)ε[0.5/c∗21 + 0.5/c
∗
20]

which, by (4.14), equals zero. The shirk-and-save strategy makes the agent strictly

better off relative to the shirking strategy.

We also know from (4.10) that the agent is indifferent between shirking and

not shirking (that is, setting y21 = y∗21 and k2 = k∗2). Hence, the shirk-and-save strategy
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makes the agent strictly better off relative to choosing the socially optimal (y∗21, k
∗
2).

The socially optimal allocation is not an equilibrium.

Intuitively, we have set the capital tax rate to guarantee that the agent does

not save too much or too little - assuming that he works y∗21 when skilled in period

2. The optimal allocation pushes the agent to be indifferent between working and

shirking. If he saves more, and wealth effects are nonzero, then he will prefer to work

0 even though he is skilled. The joint or double deviation of saving too much and then

shirking beats saving the right amount and working y∗21.

B 4.3.4 An Optimal Capital Income Tax System: Two Period

Example

The above implementation uses a linear tax on capital income, which is set equal to

the intertemporal wedge in the social optimum. This wedge is calculated ex-ante, and

so puts equal weight on both possible outcomes. However, at date 2, the agent has the

ability to decide which outcome actually takes place. His choices actually determine the

distribution of consumption in period 2. Thus, if he chooses to shirk with probability

p when his skill level is 1, then his consumption equals c∗21 with probability (1 − p)/2

and equals c∗20 with probability (p/2 + 1/2). The tax needs to keep the individual at

the right savings level, for any of these possible distributions of consumption in period

2.
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One simple way that we can achieve this goal is to set the capital income

tax rate equal to the ex-post wedge, not the ex-ante wedge. Given a socially optimal

allocation (c∗, y∗), I define the following tax system:

τ (rk2, wy2) = τkHrk2 + τ yH if wy2 > 0 (4.15)

= τkLrk2 + τ yL if wy2 = 0

In this system, I pick the coefficients (τkH , τ
y
H , τ

k
L, τ

y
L) so that:

τkH = 1− 1/c∗1
r/c∗21

(4.16)

τkL = 1− 1/c∗1
r/c∗20

(4.17)

τyH = y∗21 − c∗21 + (1− τkH)rk
∗
2 (4.18)

τyL = −c∗20 + (1− τkL)rk
∗
2 (4.19)

Under this tax system, the agent’s ex-post Euler equations for capital accumulation:

(1− τ kH)r/c
∗
21 = 1/c∗1 (4.20)

(1− τ kL)r/c
∗
20 = 1/c∗1 (4.21)

are both satisfied.

My claim is that the socially optimal allocation (c∗, y∗, k∗) is individually

optimal, given this tax system. This claim can be justified in two parts. Suppose that
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the agent chooses y21 > 0. Then, given an arbitrary choice of (y1, k2), his consumptions

are equal to:

c1 = wy1 − k2

c21 = w(y21 − y∗21) + (1− τ kH)r(k2 − k∗2) + c∗21

c20 = (1− τ kL)r(k2 − k∗2) + c∗20

The agent’s derived utility is a concave function of (y1, y21, k2), and so his optimal choice

is the unique solution to the first order conditions:

1/c1 = wy1

1/c21 = wy21

1/c1 = r[0.5(1− τkH)/c21 + 0.5(1− τ kL)/c20]

It is readily shown that these first order conditions are satisfied by the socially optimal

allocation. It follows that, conditional on a positive specification of y21, the agent’s

optimal choice is to set y1 = y∗1, y21 = y∗21, and k2 = k∗2.

Now suppose the agent chooses y21 = 0. Given an arbitrary choice of (y1, k2),
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his consumptions are given by:

c1 = wy1 − k2

c21 = (1− τ kL)r(k2 − k∗2) + c∗20

c20 = (1− τ kL)r(k2 − k∗2) + c∗20

Again, the agent’s utility function is concave as a function of (y1, k2). His optimal choice

must solve the first order conditions:

1/c1 = wy1

1/c1 = 0.5(1− τkL)r[0.5/c21 + 0.5/c20]

It is optimal for the agent to set y1 = y∗1 and k2 = k∗2.

This discussion implies that there is no loss in discarding all elements of the

agent’s budget set except the two elements implied by setting y1 = y∗1, k2 = k∗2, and

y21 ∈ {y∗21, 0}. Because (c∗, y∗) is incentive-compatible, we know that the agent weakly

prefers the former choice of y21. It follows that (c∗, y∗, k∗) is in EQMNL(τ ,G).

We have successfully designed an optimal tax system for this two-period ex-

ample economy. Note that while capital accumulation decisions are made in period 1,

tax rates on capital brought into period 2 depend on the agent’s effective labor in period

2. This dependence ensures that agents make the right capital accumulation decisions,

regardless of how much they work in period 2.



The New Dynamic Public Finance 115

B 4.3.5 A Generally Optimal Tax System: Description

The tax system in the previous subsection applies only to a simple example. In this

subsection, I describe how to construct an optimal tax system in a wide class of envi-

ronments; I justify its validity in the next subsection. The basic principle is the same

as in the prior subsection: we set capital income tax rates equal to ex-post wedges, not

ex-ante wedges. However, we first need to deal with an important subtlety.

In a solution (c∗, y∗, k∗) to (4.3), allocations depend on θ. In the optimal

tax problem (4.2), taxes only depend on choice variables like y and k. In words, tax

systems do not ask agents for direct reports about their skill shocks. Instead, tax

systems condition agents’ payments on their decisions about economic variables like

labor income and capital income. This difference creates a potential problem: optimal

consumption c∗t may be different across two realizations of skill histories θ
t, even though

the histories of labor income are not different. Then, it will be challenging to implement

(c∗, y∗, k∗) using a tax system that depends only on (wsys)
t
s=1 and rtkt.

To guard against this problem, I make the following assumption. Given a

solution (c∗, y∗, k∗) to the planner’s problem (4.3), define DOMT be a subset of [0, y]T×

ZT such that (yT , zT ) is in DOMT if and only if yT = y∗(θT , zT ) for some θT in ΘT . In

words, (yT , zT ) is in DOMT if in the socially optimal allocation, there exists some type

in ΘT that receives the effective labor history yT when the public history is zT . I then

make the following assumption.
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Assumption 4.1 For any solution (c∗, y∗, k∗) to the planner’s problem (4.3), there a

function bc such that:
bc : DOMT → RT

+ (4.22)

bct is (yt, zt)-measurable (4.23)

c∗(θT , zT ) = bc(y∗(θT , zT ), zT ) for all (θT , zT ) (4.24)

We have seen in section 4.3.1 that in a static setting Assumption 4.1 is satisfied

for any incentive-compatible allocation (not just optimal ones). However, in a dynamic

setting, an agent’s realization of θ provides information about both his current skills

and his future skills. In a socially optimal allocation, a surprisingly large realization

of current skills leads to higher consumption and more effective labor. Consumption

and effective labor co-vary positively across agents as in the static case. In contrast,

information in period t that generates upward revisions in forecasts of future skills lead

the planner to reward the agent with more consumption and more leisure in period

t. Thus, information about future skills induces a negative covariance between current

consumption and current effective labor.

It is then no longer obvious that current consumption depends on current

and past skills only through current and past effective labor. However, it is easy to

prove that Assumption 4.1 is satisfied as well when skill shocks are i.i.d., because the

agent receives no information about his future skills. There is no similar proof for what
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happens when skill shocks are mean-reverting. However, it is intuitively plausible that

the effect of information about future skills is outweighed by the effect of information

about current skills. This intuition would suggest that Assumption 1 continues to be

valid when skills are mean-reverting. (This intuition is further supported by the fact

that when skills are fixed over time, it is optimal for consumption and effective labor

to co-vary positively in period 1.)

Matters are different if skills actually are an explosive process in the sense that

a high current level of skills implies that the future growth rate of skills is high. In this

case, the above intuition suggests that Assumption 4.1 may be violated. Kocherlakota

(2005) presents an example of this kind.

Given an optimal allocation (c∗, y∗, k∗) that satisfies Assumption 4.1, I next

construct the details of the tax system that implements an optimal allocation (c∗, y∗, k0)

as an equilibrium. As in the prior subsection, I use a linear tax on capital income.

However, the tax rate in period t is a function of both current and past labor incomes;

we set the tax rate equal to ex-post wedges. I first define the tax system for elements

of DOMT , and then extend its domain to include all of [0, y]T × ZT .

More specifically, given the optimal allocation (c∗, y∗, k∗), we know from The-

orem 8 that there exists λ∗t+1 : Z
t+1 → R+ such that:

λ∗t+1 = β[E(u0(c∗t+1)
−1|θt, zt+1)]−1/u0(c∗t ) (4.25)

Let MPKt(z
T ) = fk(K

∗
t (z

T ), Y ∗t (z
T ), zt) be the marginal product of capital in history
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zt. Define the capital income tax rate τ kt+1 : DOMT → R so that:

βu0(bc∗t+1(yT , zT ))
u0(bc∗t (yT , zT )) {1− δ + (1− τ kt+1(y

T , zT ))MPK∗
t+1(z

T )}

= λ∗t+1(z
T )(1− δ +MPK∗

t+1(z
T )) (4.26)

for (yT , zT ) in DOMT . In this way, the capital income tax rate is defined so that the

ex-post intertemporal Euler equation is satisfied with equality at each date.

Next, I describe the labor tax code. In the static case, we simply defined labor

taxes to be the difference between labor income and consumption. In the dynamic case,

we operate somewhat similarly, but we have to be careful in our treatment of asset-

holdings. First, define

MPL∗t (z
t) ≡ fy(K

∗
t (z

t−1), Y ∗t (z
t), zt) (4.27)

to be the marginal product of effective labor. Then, let (ψ∗,bk∗) : DOMT → RT ×RT
+,
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(ψ∗t ,bk∗t ) (yt, zt)-measurable, be defined so that:
bc∗t (yT , zT ) + bk∗t+1(yT , zT ) (4.28)

= (1− δ +MPK∗
t (z

T )(1− τkt (y
T , zT )))bk∗t (yT , zT ) (4.29)

+MPL∗t (z
T )yt − ψ∗t (y

T , zT )

X
θT∈ΘT

π(θT |zT )bk∗t+1(y∗(θT , zT ), zT ) = K∗
t (z

T ) for all zT (4.30)

bk∗1 = K∗
1 (4.31)

bk∗T+1(yT , zT ) = 0 for all (yT , zT ) (4.32)

for all t and for all (yT , zT ) in DOMT . The function ψ∗ describes the labor taxes,

given that the agent chooses an effective labor sequence in DOMT . The function bk∗
describes the agent’s capital-holdings so as to satisfy the flow budget constraint. The

restriction (4.30) requires individual capital-holdings to aggregate to the optimal level

of per-capita capital.

It is easy to see that given (c∗, y∗, k∗), there exists a (ψ,bk) that satisfies (4.28)−
(4.32). For example, set bkt(yT , zT ) = K∗

t (z
T ), where K∗ is per-capita capital in the

optimal allocation (c∗, y∗, k∗), and define:

ψ∗t (y
T , zT ) = −bc∗t (yT , zT )− bk∗t+1(yT , zT ) (4.33)

+(1− δ +MPK∗
t (z

T )(1− τ kt (y
T , zT )))bk∗t (yT , zT ) +MPL∗t (z

T )yt
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Then, (ψ,bk) satisfies (4.28)− (4.32).
We have now defined both labor and capital taxes for (yT , zT ) in DOMT .

However, we we also need to describe taxes when the agent chooses an effective labor

sequence not in DOMT . In doing so, we need to ensure that the extended tax schedules

specify period t taxes that are measurable with respect to (yt, zt). To this end, define

DOMt to be a subset of [0, y]T ×RT
+ such that (y

T , zT ) is in DOMt if and only if there

exists (byT , bzT ) in DOMT with the property that (byt, bzt) = (yt, zT ). DOMt contains all

(yT , zT ) that, as of period t, are consistent with the agent’s using the effective labor

strategy y∗.

It is straighforward to extend the domain of ψ∗ and τk∗ to DOMt. For each

(yT , zT ) is inDOMt, let Φ(yT , zT ) be an element of DOMT so that Φt(yT , zT ) = (yt, zt).

Define:

ψ∗ext,t(y
T , zT ) = ψ∗t (Φ(y

T , zT )) for all (yT , zT ) in DOMT

τ k∗ext,t+1(y
T , zT ) = τ k∗t+1(Φ(y

T , zT )) for all (yT , zT ) in DOMT

Clearly, ψ∗ext,t is (y
t, zt)-measurable and τk∗ext,t+1 is (y

t+1, zt+1)-measurable. Then, define

ψ∗∗ : RT
+ × ZT → RT by:

ψ∗∗t (y
T , zT ) = ψ∗ext,t(y

T , zT ) if (yT , zT ) is in DOMt (4.34)

= 2ytwt(z
T ) for any (yT , zT ) not in DOMt
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and define τ k∗∗ : RT
+ × ZT → RT by:

τk∗∗t+1(y
T , zT ) = τ k∗ext,t+1(y

T , zT ) if (yT , zT ) is in DOMt

= 1− (δ − 1)/MPK∗
t+1(z

T ) if (yT , zT ) is not in DOMt

As is made clear in the next subsection, the taxes when (yT , zT ) is outside of DOMt

are sufficient to make only effective labor strategies that lie in DOMT budget-feasible.

Finally, we can combine these two pieces together to form the overall system.

Let et denote labor earnings (wtyt) in period t and Γt denote capital income (rtkt) in

period t. Then the overall tax system is τ = (τ t)Tt=1, where τ t : R
t
+ ×R+ × Zt → R is

defined by:

τ t(e
t,Γt, z

t)

= τk∗∗t ((es/MPL∗s(z
T ))ts=1, z

t)Γt (4.35)

+ψ∗∗t ((es/MPL∗s(z
T ))ts=1, z

t)

If Θ is finite (as we have assumed), this tax system has a number of discontinuities.

Only a finite number of labor income histories are consistent with social optimality,

and so all other labor income histories result in draconian penalties. If Θ is instead an

interval, the sets DOMt will be intervals too, and the discontinuities in the tax system

will vanish.
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B 4.3.6 A Generally Optimal Tax System: Justification

In the previous subsection, I described a tax system. In this subsection, I show explicitly

that (c∗, y∗, k0) ∈ EQMNL(τ ,G), where:

k0t(θ
T , zT ) = bk∗t (y∗(θT , zT ), zT ) for all (θT , zT )

and in this way show that τ is in fact a solution to the optimal tax problem (4.2).

C Optimal Consumption-Savings Decisions

Suppose that the agent chooses an effective labor strategy y such that y(θT , zT ) is not

DOMT for some (θ
T , zT ). Then, at some date, he loses all of his wealth and his taxes

become twice as large as his income. It follows that the agent cannot afford to pay his

taxes if he uses such a strategy. Hence, an effective labor strategy is budget-feasible

only if y(θT , zT ) is in DOMT for all (θ
T , zT ).

Fix an effective labor strategy y0 : ΘT × ZT → R+ such that y0(θT , zT ) ∈

DOMT for all elements of ΘT × ZT . What are the agent’s strategies for consumption

and capital, given y0? I claim that the agent chooses:

c0t(θ
T , zT ) = bc∗(y0(θT , zT ), zT ) (4.36)

k0t(θ
T , zT ) = bk∗(y0(θT , zT ), zT ) (4.37)

In words, agents’ consumption-savings decisions are fully determined by their effective

labor strategy y0.
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To justify this claim, we can first verify the intertemporal Euler equation.

Define:

Rk
t+1(y

T , zT ) = (1− δ +MPK∗
t+1(z

T )(1− τ kt+1(y
T , zT ))

to be the after-tax return on capital, as a function of the agent’s effective labor yT and

the aggregate shock history zT . Note that:

E{βu
0(c0t+1(θ

T , zT ))Rk
t+1(y

0(θT , zT ), zT )

u0(c0t(θ
T , zT ))

|(θt, zt) = (θt, zt)} (4.38)

= E{λ∗t+1(zT )(1− δ +MPK∗
t+1(z

T ))|θt = θ
t
, zt = zt}

because of the ex-post definition of τkt+1 in (4.26). Both λ
∗
t+1 andMPK∗

t+1 depend only

on aggregate shocks, and so θt is useless in predicting λ∗t+1(1− δ+MPK∗
t+1), given zt.

Hence, the right-hand side of this expression becomes:

E{λ∗t+1(zT )(1− δ +MPK∗
t+1(z

T ))|zt = zt}

which equals 1 according to Theorem 8. It is simple (but tedious) to verify that k0

satisfies the flow budget constraints (4.28), given c0 and y0. Since (c0, k0) satisfies both

the budget constraints and intertemporal Euler equations, it is individually optimal

given the choice of y0.

C Optimal Labor Choices

We have designed the tax system so that agents will only choose effective labor strategies

which result in sequences in DOMT . Let y0 be any effective labor strategy other than
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y∗ such that (y0(θT , zT ), zT ) is in DOMT for all (θ
T , zT ). This range restriction means

that the observed sequences of effective labor choices are all consistent with different

realizations of θT . We can define:

σ : ΘT × ZT → ΘT

so that:

y0(θT , zT ) = y∗(σ(θT , zT ), zT )

for all (θT , zT ) and σt is (θ
t, zt)-measurable for all t. We know from the previous

subsection that this choice y0 of an effective labor strategy implies that the agent’s

consumption is:

c0(θT , zT ) = bc(y∗(σ(θT , zT ), zT ), zT ) for all (θT , zT )
which equals c∗(σ(θT , zT ), zT ).

This argument implies that the tax system τ defined in (4.35) has the property

that varying effective labor strategies in the agent’s budget set is exactly equivalent to

his varying mimicking strategies in the incentive constraint. Since (c∗, y∗) is incentive-

compatible, we know that σTT (that is, not pretending to be anyone else) is the best

mimicking strategy available. It follows that the agent’s optimal choice from his budget

set is (c∗, y∗, k0).
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A 4.4 Properties of the Optimal Tax System

We now know how to find a solution to the optimal tax problem (4.2). First, find a

solution (c∗, y∗, k∗) to the planner’s problem (4.3). Second, if that solution satisfies

Assumption 1, we use the recipe (4.35) to find an optimal tax system. This connection

between the solution to the planner’s problem and the solution to the optimal tax

problem allows us to exploit the results in Chapter 3 to understand the properties of

optimal taxes.

B 4.4.1 Purely Redistributive Capital Income Taxes

In this subsection, we show that the period t expectation of the capital income tax rate

in period (t+ 1) is zero. We also show that this result implies that capital income tax

raises no aggregate revenue.

Recall that the capital income tax rate τ kt+1 is defined so as to satisfy:

βu0(bc∗t+1(yT , zT ))
u0(bc∗t (yT , zT )) {1− δ + (1− τ kt+1(y

T , zT ))MPK∗
t+1(z

T )}

= λ∗t+1(z
T )(1− δ +MPK∗

t+1(z
T )) (4.39)

This tax is defined for all possible labor income histories. We can define equilibrium

capital income tax rates as a function of skills themselves:

τk∗t+1(θ
T , zT ) = τkt+1(y

∗(θT , zT ), zT ) for all (θT , zT ) (4.40)
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which implies that:

(1− τ k∗t+1) =
β−1λ∗t+1(1− δ +MPK∗

t+1)u
0(c∗t+1)

−1u0(c∗t )− 1 + δ

MPK∗
t+1

Theorem 8 implies that:

λ∗t+1(z
T )u0(c∗t (θ

T
, zT ))E{β−1u0(c∗t+1)−1|θt = θ

t
, zt+1 = zt+1} = 1 (4.41)

Hence, if we take the expectation of the after-tax rate, conditional on (θt, zt+1) equalling

(θ
t
, zt+1), we get 1. It follows that:

E{τ k∗t+1|θt = θ
t
, zt+1 = zt+1} = 0

Thus, when an investor buys more capital at date t, his expected tax rate in period

(t+ 1) is zero, conditional on any realization of the aggregate state in that period.

Who pays the higher tax? This is also easy to see. Conditional on (θt, zt+1),

the variance in the wealth tax rate derives from the dependence of u0(c∗t+1)
−1 on θt+1.

The after-tax rate (1 − τ k∗t+1) is surprisingly high for agents with a surprisingly high

1/u0(c∗t+1) - that is, a high c∗t+1.

There is a second, slightly more subtle, implication: under the optimal system,

wealth taxes are purely redistributional. Suppose (c∗, y∗, k0) is in EQMNL(τ ,G). At any

date, all agents with the same history θt take the same capital-holdings k0 into period

(t + 1). Some of these agents will end up facing a high tax rate on the income from

their holdings. Some will get a subsidy. However, from the Law of Large Numbers, the
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cross-sectional average tax rate across these agents equals the expected tax rate, and

so equals 0. Since the tax is linear, the net collections from these agents with the same

level of capital-holdings will be zero.

Hence, in any public history zt, regardless of the level of government pur-

chases, the government’s total capital income tax collections are zero. Note that the

redistribution is somewhat counterintuitive: The government takes from those agents

with surprisingly low consumption in period (t + 1) and gives to those agents with

surprisingly high consumption in period (t + 1). This high tax rate on capital income

for surprisingly poor people deters agents from over-accumulating capital from period t

to period (t+1), and then working less in period (t+1). In this fashion, the tax system

is able to provide better incentives to agents to work and generates more output for all

to share.

Recall that socially optimal allocations feature a wedge between tomorrow’s

marginal value of capital and today’s. More specifically, recall that if (c∗, y∗, k∗) solves

(4.3), and u0(c∗t+1) is a nondegenerate function of θt+1, then:

u0(c∗t (θ
T , zT )) < βE{u0(c∗t+1)(1− δ + fk(K

∗
t+1, Y

∗
t+1))|θt = θ

t
, zt = zt} (4.42)

How does a tax system with zero average taxes generate this wedge? The answer lies

in risk. When an agent buys an extra unit of capital under the optimal tax system,

he gets taxed at a high rate when his consumption is low. The tax system introduces

a positive covariance between agents’ consumptions and their after-tax rates of return.
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Capital is a worse hedge against idiosyncratic consumption risk than it would be in the

absence of taxes. In this fashion, the tax system creates the wedge present in (4.42).

B 4.4.2 Long Run Capital Income Taxes

Under the Ramsey approach, capital income taxes are zero after period 2 if u is of the

power form (Proposition 3). This result is not true of solutions to the nonlinear tax

problem (4.2). However, it is also true under the Ramsey approach that for more general

utility functions, capital income taxes converge to zero over time (Proposition 4). In

this subsection, I consider an infinite horizon version of the optimal tax problem (4.2),

and evaluate whether the zero long-run capital income tax characterization applies to

solutions to the nonlinear tax problem. I restrict attention to the case in which Z is a

singleton.

Suppose that (c∗, y∗, k∗) solves an infinite horizon version of (4.2), and limt→∞E[1/u0(c∗t )]

converges to a finite positive limit. Then, Theorem 8 (the reciprocal Euler equation

with capital) implies that:

1 = lim
t→∞

β(1− δ +MPK∗
t+1)

It follows from the Martingale Converence Theorem (Theorem 6) that in a solution

(c∗, y∗, k∗) to (4.3), limt→∞ 1
u0(c∗t (θ

∞)) is finite for almost all θ
∞.We can use these results

about optimal quantities to derive implications for the long run behavior of capital

income taxes.
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When Z is a singleton, capital income tax rates τk∗t+1 satisfy:

β(1− δ + (1− τ k∗t+1(θ
∞))MPK∗

t+1)

u0(c∗t (θ
∞))

=
1

u0(c∗t+1(θ
∞))

(4.43)

for all θ∞ in Θ∞. If we subtract:

β(1− δ +MPK∗
t+1)

u0(c∗t (θ
∞))

from both sides, and then take limits with respect to t, we obtain:

lim
t→∞

βτk∗t+1(θ
∞)MPK∗

t+1

u0(c∗t (θ
∞))

= lim
t→∞

[
1

u0(c∗t (θ
∞))
− 1

u0(c∗t+1(θ
∞))

] (4.44)

For almost all θ∞, 1/u0(c∗t (θ
∞)) converges to a finite limit as t goes to infinity. For any

such θ∞, the right hand side of side converges to zero, and so for almost all θ∞.

lim
t→∞

βτk∗t+1(θ
∞)MPK∗

t+1

u0(c∗t (θ
∞))

= 0 (4.45)

There are now two possibilities. If limt→∞ 1/u0(c∗t (θ
∞)) is positive for a given

sample path θ∞, then the long-run capital income tax rate (limt→∞ τk∗t+1(θ
∞)) is 0 for

that sample path. To understand this case, consider Example 1 in Section 3.7.3. In

that example, skill shocks are i.i.d. over time, v0(0) > 0, and v0(y) <∞. In that case,

in optimal allocations, agents either got so wealthy that they did not produce anymore,

or they got so poor that they always produced y. In both cases, the incentive problem

vanishes in the limit, and so it’s optimal to set long-run capital income taxes to zero.

In contrast, consider Example 2 in Section 3.7.3. In that example, skill shocks

are i.i.d. over time, and v0(y) =∞. Then, c∗t (θ
∞) converges to zero (immiseration) along



130 Lessons for Macroeconomists

at least some sample paths. For such sample paths, (4.45) does not pin down the long

run capital income tax rate, and it may well be positive.

B 4.4.3 Indeterminacy of Labor Income Taxes and Government

Debt

The nature of optimal allocations tells us a lot about the structure of capital income

taxes. However, the optimal allocation also imposes tight restrictions on the present

value of lifetime taxes, as a function of yT . It is easiest to see this when Z is a singleton,

so that there are no aggregate shocks. Then, the capital tax rate is set so that the

ex-post Euler equation holds for all yT in DOMT :

u0(bc∗t (yT )) = βu0(bc∗t+1(yT ))(1− δ +MPK∗
t+1(1− τkt+1(y

T )) (4.46)

Now multiply each flow budget constraint (4.28) by βt−1u0(bc∗t (yT )), and add them over
t. Because of (4.46), the capital terms cancel, and we get the following present value

restriction:

TX
t=1

βt−1u0((bc∗t (yT ))ψ∗t (yT ) = TX
t=1

βt−1u0((bc∗t (yT )){MPL∗tyt − bc∗t (yT )} (4.47)

for all yT in DOMT . This present value formula uses the individual’s own shadow

interest rate, evaluated at the socially optimal c∗. The present value of the difference

between earned income and consumption is on the right-hand side of (4.47). This

difference depends only on socially optimal quantities (c∗, y∗). The present value of
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labor income taxes collected is on the left-hand side of (4.47). Just like in the static

case, but now in present value terms, the gap between income and consumption in the

socially optimal allocation equals labor income taxes for every yT in DOMT .

However, this present value restriction says little about the timing of tax

collections; indeed, there is a large set of labor income tax schedules and individual

capital-holdings (ψ∗, k0) such that (c∗, y∗, k0) ∈ EQMNL(τ ,G). For example, suppose

T = 2, but people only earn labor income in period 1 (which implies in turn that

optimal capital taxes are zero for everyone). Half of the people are high-skilled and

half are low-skilled. Suppose one optimal tax system is to tax agents with high income

$10000 in period 1 to buy public goods, and not tax agents with low income. Then, we

can construct another optimal tax system by taxing high-income agents $5000 in period

1, and $5000(1 + r) in period 2, while taxing low-income agents $5000 in period 1 and

then giving them $5000(1 + r) in period 2. This tax system is also optimal, because

the present value of the tax burden for each possible income sequence is kept the same.

But individual-capital holdings in equilibrium change (high-income agents hold more

capital under the second system, while low-income agents hold less).

In the class of optimal tax systems that we have considered, we have imposed

the restriction that: X
θT∈ΘT

π(θT )bk∗t+1(y∗(θT )) = K∗
t (4.48)

This restriction ensures that the total wealth of private agents at each date equals the
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total wealth of society. The government never has any debt or assets. However, using

the reasoning in the above paragraph, it is possible to construct optimal tax systems

with alternative streams of government debt. For example, suppose as in the above

paragraph that we have an optimal tax system which taxes high-income agents $10000

in period 1 and does not tax low-income agents. Suppose we lower the taxes of high-

income agents to $1000 in period 1 and raise them to $9000(1+r) in period 2. This new

tax system is still optimal, because the present value of taxes has remained unchanged

for all agents. However, the total taxes collected in period 1 is only $500 per capita

instead of $5000. If the government is to continue to spend $5000 per person in period

1, it must borrow $4500 per high-skilled agent.

In this way, even though taxes are distortionary, a given optimal allocation

is consistent with a host of processes for government debt. The main idea is that if

taxes in a given period are allowed to depend on past realizations of individual income,

then we can change the timing of tax collections in arbitrary ways without affecting

individual choices. In this fashion, we obtain an individual-level version of Ricardian

equivalence, which eliminates any notion of an optimal debt plan for the government

(Bassetto and Kocherlakota (2004)).

This irrelevance result can be used to provide a simple tight relationship be-

tween an optimal allocation and the set of optimal labor income tax schedules. We have

seen that any optimal ψ∗ must satisfy (4.47). Suppose conversely that ψ∗ : DOMT →
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RT , ψ∗t y
t-measurable for all t, satisfies (4.47). Define:

bk∗t+1(yT ) = β1−tu0(bc∗t (yT ))−1 TX
s=t

βs−1u0((bc∗s(yT )){MPL∗sys − bc∗s(yT )− ψ∗s(y
T )} (4.49)

It is simple to show that (ψ∗, bk∗) satisfies the agent’s flow budget constraint (4.28). This
capital-holdings process may not satisfy (4.48) - but this restriction arises only because

we are imposing period-by-period government budget balance. It follows that if the

government can freely borrow and lend, the restriction (4.47) completely describes the

set of all possible labor income tax schedules as a function of yT in DOMT .

B 4.4.4 A Social Security Implementation

The United States government keeps track of every worker’s complete history of labor

earnings. In (4.2), we allow both labor and capital income taxes to depend on this rich

record at every date. Such dependence is certainly technologically feasible, but it is not

a feature of the current tax code. In this subsection, I describe a particular optimal

tax system that more closely resembles the dependence that we observe in the current

tax system. Again, I focus on the case in which Z is a singleton; the discussion closely

follows that in Grochulski and Kocherlakota (2008).

We have seen that if (c∗, y∗, k∗) is optimal, then any labor income tax schedule

ψ∗ that satisfies (4.47) is optimal. Until now, we have been assuming that all elements

of ΘT have positive probability. Suppose instead that there exists some period S < T

such that θt = 0 for all t > S, so that agents retire after date S. We know that c∗t is
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θS-measurable for any t ≥ S.

Now, define the following labor income tax schedule:

ψ0t(y
t) = αyt, where 0 < α < 1, t ≤ S

ψ0t(y
S) = γ(yS), where γ(yS) < 0 for all yS

This tax schedule levies a flat tax α on labor income until retirement. Then, after

retirement, agents receive a transfer that depends on their history of labor incomes.

The structure of this tax plan closely resembles the current social security system. We

can readily set the constant α and the function γ so that the present value of net

taxes collected equals the present value of the difference between labor incomes and

consumptions:

SX
t=1

βt−1u0((bc∗t (yS))αys − TX
t=S+1

βt−1u0((bc∗t (yS))γ(yS) (4.50)

=
TX
t=1

βt−1u0((bc∗t (yS)){MPL∗tyt − bc∗t (yS)}
for all yS. In this tax system, all desired insurance is accomplished via the dependence of

social security transfers on the history of labor incomes. Agents with high labor income

realizations, who have paid a lot into the system, will get back disproportionately less.

There are two ways in which this tax system differs from the current one in

structure. First, in the proposed system, people are able to borrow against their social

security payments. Such loans are not currently legally enforceable. Second, while labor
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income taxes at date t are functions only of labor income at that date, capital income

taxes as defined in (4.40) necessarily depend on the full history of labor incomes.

The general point is that optimal social insurance can be accomplished in

many ways other than the tax code itself. There is little history dependence in the

current United States tax system except in social security. Yet, even this small amount

of history dependence is enough to achieve desirable outcomes, as long as agents can

borrow against their future transfers.

B 4.4.5 Optimal Monetary Policy

As discussed in Chapter 2, the nominal interest rate set by the Federal Reserve is

essentially a tax on the liquidity services provided by money. Following da Costa and

Werning (2008), we can use the Mirrleesian approach of this chapter to understand how

this tax should be set over time.

There are many ways to model the liquidity services that agents derive from

money relative to other assets. One simple way is to assume, as Lucas and Stokey

(1987) do, that there are cash and credit goods. Agents can use money to buy either

of these goods, but cannot use credit or bonds to buy cash goods. Assume that agents’

momentary utility functions take the form:

u(ccash, ccredit)− v(l)

where ccash is the consumption of cash goods, ccredit is the consumption of credit goods,
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and l is labor. Preferences are additively separable between consumption goods and

labor. However, u need not be homothetic, so that cash goods may be luxuries or

necessities or neither.

For the moment, I will ignore money and think about the government as facing

an optimal commodity taxation problem. Suppose that cash goods can be transformed

one-for-one into credit goods, and vice-versa. Suppose too that the government taxes

cash goods at a rate equal to R and does not tax the credit goods. It uses the proceeds

for lump-sum redistribution or for government purchases. It is simple to show that the

government could make all agents better off relative to this system. Suppose agents with

labor income y have after-tax labor income y− τ(y). These agents choose consumption

goods and credit goods so as to solve:

max
ccash,ccredit

u(ccash, ccredit)

s.t. ccash(1 +R) + ccredit = y − τ(y)

Let (ccash, ccredit)(y) solve this problem, and U∗(y) be the associated maximized utility.

Now define τ 0(y) so that U∗(y) is also the maximized value of this problem:

max
ccash,ccredit

u(ccash, ccredit)

s.t.ccash + ccredit = y − τ 0(y)

In this problem, the tax rate R on cash goods has been lowered to zero. Because this

distortion has been removed, we know that τ 0(y) is larger than τ(y).Without affecting
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incentives (U∗(y) is unchanged), the government can collect more tax revenue via a tax

on labor income than by taxing cash goods.

This logic is an example of the uniform commodity taxation theorem. The tax

on cash goods distorts both cash/credit good purchases and labor supply decisions. This

double distortion is inefficient. The government can collect more revenue by eliminating

the distortion between cash and credit goods, and raising taxes on labor supply. In cash-

credit models of money, this same logic implies that an optimal monetary policy is to

set the nominal interest rate to be zero. More generally, in any monetary model, money

is not a final good of value unto itself. Rather, it is merely an intermediate input that

agents need for (at least some) final good consumption. Taxing this intermediate input

is a form of double taxation that is suboptimal.3

A 4.5 Remarks About the Optimal System

In this section, I briefly discuss some additional aspects of the optimal system.

3This discussion de-emphasizes the role of price rigidities. Correia, Nicolini, and Teles (2008) show

that even if the government is restricted to use linear taxes, it can use correctly timed sales taxes to

undo the impact of price rigidities. This power does not disappear if taxes are allowed to be nonlinear.
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B 4.5.1 Linear vs. Nonlinear Capital Income Taxes

In the optimal system described above, capital income taxes are linear. One conse-

quence of this restriction is that in the optimal system, agents’ taxes only depends on

past activities through the record of their past labor incomes. More generally, a tax

system could use an agent’s capital holdings as a source of information about his past

labor income choices. Such tax systems are necessarily nonlinear in capital income.

Albanesi and Sleet (2006) describe such an optimal system for the case in which skill

shocks are i.i.d. over time. One advantage of their system over the one described here

is that period t taxes are functions only of current variables.

B 4.5.2 Tax Arbitrages

The tax on capital income is a linear function of capital income itself. However, agents

with different labor incomes do not face the same marginal capital income tax rate.

As a consequence, the tax system still admits tax arbitrages - that is, intertemporal

trades that would be gainful if done behind the back of the tax authority. For example,

suppose that there are two agents A and B. Both hold capital in period (t − 1), but

agent A faces no labor income risk from period t onwards while B does. Then, agent

B should give agent A his capital in period (t− 1) in exchange for receiving a risk-free

repayment in period t. This trade allows agent B to avoid the tax risk that the optimal
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system imposes on him.4

This trade is but one of many possible arbitrages. However, I don’t view these

arbitrage opportunities as big flaws in the proposed system. All of these arbitrages are

intrinsically intertemporal, and so they necessarily depend on an element of enforce-

ment. (For example, in the above transaction, agent B relies on agent A to repay a

loan.) But such loans are specifically designed to cheat the tax authorities, and so it is

difficult to see how they would actually be enforced.

B 4.5.3 Private Sector Insurance

There are two distinct kinds of private information: adverse selection and moral hazard.

Adverse selection refers to private information that exists at the time of signing a

contract. Moral hazard refers to private information that arises during the course of

a contract. In the model that I describe in this chapter, the government’s problem

maximizes the objective of a representative agent. Hence, all of the private information

takes the form of moral hazard.

As Prescott and Townsend (1984) emphasize, there is no role for government

intervention when agents are faced with moral hazard. This general point takes the

following form in our model. There could be a date 0 market, in which firms compete

4Golosov and Tsyvinski (2007) explore the properties of optimal capital income taxes under the

constraint that the tax system must be free of these kinds of arbitrages.
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to hire workers. The firms would offer contracts that would fully specify compensation

(consumption) as a function of current and past effective labors. The firms would either

ban or monitor all asset trades on the part of their workers. The contracts would be

full-commitment, in the sense that neither party could tear up the contract, and the

contract could not be renegotiated even if it were in the best interests of both parties

to do so. This competitive market would result in socially optimal insurance. If G > 0,

then the government could supplement the market with a date 0 lump-sum tax on all

consumers of sufficient size to fund all future government purchases.

In principle, this purely private sector arrangement works fine. However, the

contracts require a great deal of commitment on the part of both workers and firms.

In reality, of course, workers can quit their jobs anytime in the United States. Even

employers offer only limited amounts of commitment. It is certainly difficult for firms to

default on contracts with a given worker. However, firms can readily renege on contracts

with a group of workers, by shutting down divisions or closing down completely. Given

this background, there is a role for a tax system that provides insurance against large

skill shocks that lead to unemployment, job to job transitions, or long-term disability.

Having said that, the model does exaggerate the role for government. There is

strong evidence that firms do provide insurance against productivity shocks for workers5

and the model completely dispenses with this role for the private sector. We do need

5See Guiso, Pistaferri, and Schivardi (2005).
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intermediate analyses of optimal taxation that entertain a role for both private and

public sectors in insuring workers against skill risk. (Chetty and Saez (2008) provide

a useful first step in this direction in a static context.) It is a reasonable conjecture

that, unless firms have a great deal of ability to monitor asset transactions, it will

be necessary for the government to employ the kinds of asset income taxes that are

described in this chapter.

B 4.5.4 The Ramsey Approach in Heterogeneous Agent Economies

There is a host of work that analyzes optimal taxation of labor and capital incomes

in heterogeneous agent economies, given that the taxes satisfy various functional form

restrictions. In an early influential contribution, Aiyagari (1995) assumes that taxes

are linear functions of current capital and labor incomes. He finds that long-run opti-

mal capital income taxes are positive when agents face uninsurable skills that evolve

stochastically over time. Intuitively, agents tend to over-accumulate capital for precau-

tionary savings reasons, and need to be taxed to deter this effect. Aiyagari’s model

assumes away income effects on labor supply, which lie at the heart of the discussion

of taxation in this chapter. More recently, several authors have studied the properties

of optimal taxes in which agents have fixed heterogeneous attributes over time. Saez

(2002) studies the properties of optimal affine taxes on capital income, assuming that

people are initially heterogeneous in wealths (not skills). Werning (2007) analyzes the
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properties of optimal affine taxes on labor income and capital income, when idiosyn-

cratic shocks are fixed at their period 1 realizations.6 These authors emphasize that

affine tax systems (which allow for exemptions via intercept terms) can offer consider-

able improvement over linear ones.

In an ambitious quantitative exercise, Conesa, Kitao, and Krueger (CCK)

(2008) consider an overlapping generations economy in which agents are born with

distinct life-cycle profiles of skills. The government can use nonlinear taxes on current

labor income, as long as the tax schedule lies in a particular finite-dimensional class of

functions. However, all tax systems are age-independent and must exhibit separability

between capital and labor incomes. CKK find that the optimal capital income tax rate

is large and positive.

All of these papers are fundamentally flawed because their analyses hinge

critically on blatantly unrealistic functional form restrictions. Contrary to Aiyagari,

Saez, and Werning, all governments use nonlinear and, indeed, non-affine tax schedules.

CKK do allow for non-affine tax schedules. However, they require that taxes cannot be

conditioned on age.7 It is hard to understand what the motivation for this restriction

might be. Age is clearly an observable and immutable characteristic. (Indeed, in

the United States, transfers are explicitly conditioned on age (via social security).)

6He also analyzes the properties of optimal taxes when one relaxes the restriction of affineness.
7See also Gorry and Oberfield (2008). Weinzierl (2008) shows that there are large welfare gains

from conditioning taxes on current labor income and age as opposed to current labor income alone.
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Unfortunately, this unrealistic restriction matters a great deal for CKK’s results. In

their model, if the government can condition labor income taxes on age, then the

optimal capital income tax rate is in fact near zero.

In this chapter, we have also imposed a functional form restriction: govern-

ments cannot condition taxes on agents’ skills. This restriction is overly strong, because

governments do receive a steady stream of signals about an individual’s skills over the

course of that person’s lifetime. Optimally designed taxes should condition on variables

like height (Mankiw and Weinzierl (2008)) or educational attainment that are corre-

lated with skills. However, the failure of the current suboptimal tax system to condition

on all relevant public information does not invalidate the characterizations of optimal

taxes that we derived in this chapter. Our key assumption is only that it is impossible

to condition taxes on all variables that both affect labor productivity and are known to

the individual. It is this privacy of information about at least some aspects of earnings

ability that lies at the heart of the Mirrlees approach.

A 4.6 Summary

In a world with evolving skill risk, optimal labor income taxes trade off insurance versus

incentives. To resolve this trade-off optimally, capital income taxes must be non-zero

at any finite date. Without such taxes, agents will be left with an incentive to over-

accumulate capital from one period to the next and under-work in the later period.
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I allow the government to contemplate a rich set of tax instruments, and so

there are many optimal systems. I focus on systems in which capital income taxes are

linear and the capital income tax rate is designed to equate ex-post private and social

marginal rates of transformation. In this kind of system, aggregate capital income tax

revenues are always zero. The key to the system is tax risk: agents face a high capital

income tax rate when their consumption is low, and this deters them from accumulating

capital.

I reach more limited conclusions about the structure of other kinds of macro-

economic policy. Within the proposed class of tax systems, the present value of optimal

labor income taxes is pinned down as a function of a person’s labor incomes over his

lifetime. However, the timing of collection of these taxes (and government debt) is not

determined. I show that we can exploit this indeterminacy to construct an optimal tax

system that is a relatively minor modification of the current social security system.

A 4.7 Technical Notes

These notes provide a proof of Theorem 8 and a brief discussion about allowing agents

to have private information about aggregate shocks.
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B 4.7.1 Proof of Theorem 8

The proof is similar to the proof of Theorem 5. I consider a class of perturbations to

a putative optimum. The perturbations work the same as in the earlier proof: I raise

period t utility from consumption by δt(θ
t) and then lower period (t + 1) utility by

δt+1(θ
t, zt+1), so that the discounted gain/loss is the same for all θ

t+1. I then optimize

over this class of perturbed allocations.

Suppose (c∗, y∗, k∗) solves (4.3). Fix zt. Suppose c∗t (θ
t, zt) > 0 for all θt in Θt,

c∗t+1(θ
t+1, zt, zt+1) > 0 for all θ

t+1 in Θt+1 and all zt+1 in Z, and K∗
t+1(z

t) > 0. (In this

proof, I write c∗t as a function of (θ
t, zt), because it is measurable with respect to those

variables; similarly, I write Kt+1 as a function of zt, not zT .) Consider c0 that satisfies:

u(c0t(θ
t, zt)) = u(c∗t (θ

t, zt)) + δt(θ
t) ∀θt ∈ Θt (4.51)

u(c0t+1(θ
t+1, zt, zt+1)) (4.52)

= u(c∗t+1(θ
t+1, zt, zt+1)) + δt+1(θ

t, zt+1) ∀(θt+1, zt+1) ∈ Θt+1 × Z

where:

β
X
zt+1

δt+1(θ
t, zt+1)πZ(zt+1|zt) + δt(θ

t) = ∆ (4.53)

Our first step is to show that (c0, y∗, k∗) is incentive-compatible. Suppose the agent uses
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a mimicking strategy σ. He gets extra expected utility:

V (σ; c0, y∗)− V (σ; c∗, y∗)

=
X

zt+1∈Z
πZ(z

t, zt+1)
X

θt+1∈Θt+1

πΘ(θ
t+1|zt, zt+1)

⎛⎜⎜⎝ u(c0t(σ
t(θt, zt), zt))

+βu(c0t+1(σ
t+1(θt+1, zt, zt+1), z

t, zt+1))

⎞⎟⎟⎠

−
X

zt+1∈Z
πZ(z

t, zt+1)
X

θt+1∈Θt+1

πΘ(θ
t+1|zt, zt+1)

⎛⎜⎜⎝ u(c∗t (σ
t(θt, zt), zt))

+βu(c∗t+1(σ
t+1(θt+1, zt, zt+1), z

t, zt+1))

⎞⎟⎟⎠
from c0 relative to c∗. We can rewrite the difference in expected utility as:

V (σ; c0, y∗)− V (σ; c∗, y∗)

= πZ(z
t)
X
θt∈Θt

πΘ(θ
t|zt)δt(σt(θt, zt))

+πZ(z
t)β

X
zt+1∈Z

X
θt+1∈Θt+1

πΘ(θ
t+1|zt, zt+1)πZ(zt+1|zt)δt+1(σt(θt, zt), zt+1)

By (4.1), we know
P

θt+1
πΘ(θ

t, θt+1|zt, zt+1) = πΘ(θ
t|zt). Hence, we can rewrite the
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difference again as:

V (σ; c0, y∗)− V (σ; c∗, y∗)

= πZ(z
t)
X
θt∈Θt

πΘ(θ
t|zt)δt(σt(θt, zt))

+πZ(z
t)β

X
zt+1∈Z

X
θt∈Θt

πΘ(θ
t|zt)πZ(zt+1|zt)δt+1(σt(θt, zt), zt+1)

= πZ(z
t)
X
θt∈Θt

πΘ(θ
t|zt)δt(σt(θt, zt))

−πZ(zt)
X
θt∈Θt

πΘ(θ
t|zt)δt(σt(θt, zt)) +∆

= ∆

It follows that the ranking of mimicking strategies is the same under (c0, y∗) as under

(c∗, y∗).

Given this result, (0, 0, 0, c∗t , c
∗
t+1, K

∗
t+1) must solve the following problem.
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max
∆,δt,δt+1,c0t,c0t+1,K

0
t+1

∆

s.t. u(c0t(θ
t, zt)) = u(c∗t (θ

t, zt)) + δt(θ
t) for all θt in Θt

u(c0t+1(θ
t+1, zt, zt+1)) = u(c∗t+1(θ

t+1, zt, zt+1)) + δt+1(θ
t, zt+1) for all θ

t in Θt and zt+1 in Z

β
X
zt+1

δt+1(θ
t, zt+1)πZ(zt+1|zt) = ∆− δt(θ

t) for all θt in Θt

X
θt∈Θt

πΘ(θ
t|zt)c0t(θt, zt) +K 0

t+1 =
X
θt∈Θt

πΘ(θ
t|zt)c∗t (θt, zt) +K∗

t+1(z
t)

X
θt+1∈Θt+1

πΘ(θ
t+1|zt, zt+1)c0t+1(θt+1, zt, zt+1)− F (K 0

t+1, Y
∗
t+1(z

t), zt+1)− (1− δ)K 0
t+1

= −K∗
t+2(z

t, zt+1)−Gt+1(z
t, zt+1) for all zt+1 in Z

c0t(θ
t, zt), c0t+1(θ

t+1, zt, zt+1),K
0
t+1 ≥ 0 for all θt+1 in Θt+1 and all zt+1 in Z

The first order necessary conditions to this problem imply that:

u0(c∗t (θ
t, zt))ηt(θ

t) = πΘ(θ
t|zt)ξt (4.54)

ηt+1(θ
t+1, zt+1)u

0(c∗t+1(θ
t+1, zt+1)) = πΘ(θ

t+1|zt, zt+1)ξt+1(zt+1) (4.55)

βπZ(zt+1|zt)ηt(θt) =
X

θt+1∈Θ
ηt+1(θ

t+1, zt+1) (4.56)

ξt =
X
zt+1

(1− δ + Fk,t+1(z
t, zt+1))ξt+1(zt+1) (4.57)

where ηt is the multiplier on the first set of constraints, ηt+1 is the multiplier on the
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second set of constraints, ξt is the multiplier on the first feasibility constraint, and ξt+1

is the multiplier on the zt+1 feasibility constraints. We can substitute out ηt and ηt+1

to get:

βπZ(zt+1|zt)πΘ(θt|zt)ξt
u0(c∗t (θ

t, zt))
(4.58)

=
X

θt+1∈Θ

πΘ(θ
t, θt+1|zt, zt+1)ξt+1(zt+1)

u0(c∗t+1(θ
t, θt+1, z

t, zt+1))
∀θt ∈ Θt, zt+1 ∈ Z

Define λ(zt+1) ≡ πZ(zt+1|zt)−1ξt+1(zt+1)/ξt. We can then solve for λ to be:

λ(zt+1) = [
X

θt+1∈Θ

πΘ(θ
t, θt+1|zt, zt+1)πΘ(θt|zt)−1u0(c∗t (θt, zt))

u0(c∗t+1(θ
t, θt+1, z

t, zt+1))
]−1 (4.59)

By assumption (4.1), we know that πΘ is such that πΘ(θ
t|zt, zt+1) is independent of

zt+1. Hence:

πΘ(θ
t|zt, zt+1) = πΘ(θ

t|zt) for all zt+1 in Z (4.60)

and so:

πΘ(θ
t, θt+1|zt, zt+1)
πΘ(θ

t|zt) (4.61)

=
πΘ(θ

t, θt+1|zt, zt+1)
πΘ(θ

t|zt, zt+1)
(4.62)

= πΘ(θt+1|θt, zt, zt+1) (4.63)

It follows that:

λ(zt+1) =
E{1/u0(c∗t+1)|θt, zt, zt+1}

u0(c∗t (θ
t, zt))

for all θt, zt+1 (4.64)
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and using (4.57) and the definition of λt+1, we get:

1 = E{λt+1(1− δ + FK,t+1)|zt} (4.65)

which proves the theorem. QED

B 4.7.2 Private Information About Aggregates?

In this chapter, I impose the restriction (4.1) that (zt+1, ..., zT ) is independent of θ
t,

conditional on zt. This restriction implies that all agents have common information

about current and future aggregates. Relaxing this assumption is certainly desirable,

but it raises some intriguing subtleties.

Suppose, for example, that T = 2, that Z = {zH , zL}, and that πZ(zi, zH) =

πZ(zi, zL) = 1/4 for any i. As well, suppose that Θ = {θL, θH}, and that:

πΘ(θj , θj|zi, zj) = 0.97 for j ∈ {H,L}

πΘ(θk, θm|zi, zj) = 0.01 for j ∈ {H,L} and (k,m) 6= (j, j)

Here, there are two possible joint distributions. One joint distribution puts a lot of

weight on all agents being high-skilled in both periods, while the other joint distribution

puts a lot of weight on all agents being low-skilled in both periods.

The period 1 realization of z is uninformative. In this sense, agents receive no

information in period 1 about the current cross-sectional distribution of θ’s, other than
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their own realization of θ.However, the agents’ period 1 allocations of c and y necessarily

depend on the joint distribution of θ’s, because of the feasibility constraint. This

connection introduces a subtle feedback from the allocation of resources to the agent’s

period 1 information about the period 2 joint distribution of skills. This information

has the possibility to affect the agent’s incentives in period 2.

It follows that to design a socially optimal allocation, a planner must take into

account the allocation’s effect on the agents’ information. For example, it is possible

that, as in Townsend (1988), an optimal allocation will feature random consumption

(as a way of hiding information about the future). We can avoid this "information

leakage" issue in economies with a unit measure of agents by imposing the assumption

(4.1) on the shocks. In a finite-agent economy, agents’ skill realizations always give

them private information about the joint distribution of skills in the population. This

feature makes all finite-agent economies hard to analyze.
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CN Chapter 5

CT Optimal Intergenerational Taxation

Chapter 4 describes an optimal tax system given the presence of skill risk within a fixed

cohort of individuals. The taxation of wealth plays a critical role in this system. In

this chapter, we turn to the issue of how taxes should be structured in the presence of

intergenerational transmission of skills and assets. We will be especially interested in

how governments should set bequest taxes1 in this setting. The answer to this question

is far from clear. Optimal taxes trade off incentives against insurance, and bequests

affect this trade-off in a number of ways. On the one hand, bequests create adverse

incentive effects on their recipients. They also create undue risk for children, by linking

their outcomes to those of their parents. These considerations suggest that bequests

should be taxed. On the other hand, bequests provide a way to motivate parents to

1Throughout this chapter, bequests can really be any form of parent-to-child transfers.
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work harder.

In this chapter, we extend the Mirrleesian tools developed in chapters 3 and 4

to resolve these issues. This extension builds heavily on the work of Phelan (2006), Farhi

and Werning (2007) and Farhi and Werning (2008). A key element of the analysis is a

simple point: in an intergenerational context, a generic Pareto optimal allocation puts

weight on the currently alive and those yet to be born. It follows that even if parents

care about their children and other descendants, a planner necessarily cares even more

about those children and descendants. This disconnect between the objectives of the

society and its member individuals has important consequences for the structure of

optimal bequest taxes.2

A 5.1 An Intergenerational Tax Problem

In this section, I describe a canonical intergenerational taxation problem. I begin by

constructing an infinite horizon model with a unit measure of dynasties. A dynasty lasts

forever, and consists of a sequence of finitely-lived people who are altruistically linked.

A newborn agent’s skills are random, given his ancestors’ skills. The government’s

problem is how to design a tax system that insures people against this pre-natal skill

2See Amador, Angeletos, and Werning (2006) for a related analysis of optimal social insurance

when agents have hyperbolic preferences and stochastic tastes.
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risk, while still providing incentives to them to produce output.

B 5.1.1 Dynastic Environment

In this subsection, I describe an infinite horizon model with a unit measure of dynasties.

In each dynasty, only one person is alive at each date. At the beginning of each period

t, the existing dynasty representative dies. He is immediately replaced by a newborn

dynasty member, who lives for that period, and then dies at the beginning of the next.

In its mathematics, the model closely resembles the model that we studied in Chapter

3. However, its economics is quite different.

An agent born in period t has utility:

u(ct)− v(lt) + βVt+1, 0 < β < 1

where ct is the agent’s consumption, lt is his effort, and Vt+1 is the utility of the dynasty

member born in period (t + 1). As before, u0,−u00, v0, v00 are all positive. This utility

function resembles the utility functions that we used in prior chapters. However, β is

now the agent’s altruism factor toward his descendants, not his discount factor.

I abstract from aggregate shocks and government purchases, and I restrict

attention to the case in which a dynasty’s skills are Markov. Specifically, Nature draws

a skill θt from a finite set Θ for the newborn agent in date t > 1, so that conditional

on the history θt−1, the probability of θt is given by μ(θt|θt−1). These draws are i.i.d.

across dynasties with the same history θt−1. I assume full support, so that at each date,
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μ(θt|θt−1) > 0 for all θt, θt−1 in Θ2. Also, I assume that a law of large numbers applies,

so that the fraction of dynasties with skill history θt is equal to the ex-ante probabil-

ity π(θt) = μ(θt|θt−1)....μ(θ2|θ1)π(θ1), where π is the probability density function of

Nature’s period 1 draw of θ1.

As before, an agent with skill θt can generate effective labor according to the

production function:

yt = θtlt

All dynasties in the economy are initially endowed with K1 units of capital. Then, an

allocation is a mapping (c, y, k) = (ct, yt, kt+1)∞t=1 such that:

ct : Θt → R+

yt : Θt → [0, y]

kt+1 : Θt → R+

(Note that in this chapter, as opposed to the two prior ones, I write allocations in period

t as a function of θt.) Let F (K,Y ) be an aggregate production function such that F is

homogeneous of degree one in its first two arguments, and suppose capital depreciates

at rate δ from one period to the next. Then, a feasible allocation must satisfy:

Ct +Kt+1 ≤ (1− δ)Kt + F (Kt, Yt) for all t

K1 ≤ K1



158 Intergenerational Taxation

where:

Ct ≡
X
θt∈Θt

π(θt)ct(θ
t)

Yt ≡
X
θt∈Θt

π(θt)yt(θ
t)

Kt+1 ≡
X
θt∈Θt

π(θt)kt+1(θ
t)

represent per capita consumption, effective labor, and capital respectively.

B 5.1.2 Dynastic Equilibrium with Taxes

At each date t, a new dynasty member is born. Hence, a dynasty’s asset holdings in

a given period t can be interpreted as being the bequest received by that newborn

dynasty member. With this interpretation, we can set up a canonical taxation problem

that will allow us to analyze optimal bequest taxation.

Suppose that there is a large number of identical firms. The firms rent capital

and hire effective labor from the agents, taking wages wt and rental rates rt as given

in period t. At each date t, agents can lease capital to the firms and provide effective

labor to the firms. They can also trade one-period government debt and capital with

one another.

Before period 1, the government commits to a tax schedule. A tax schedule

specifies tax collections in period t as a function of current and past labor incomes

for the dynasties, and also the bequest received in period t. Thus, a tax schedule is a
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sequence of mappings (τ t)∞t=1 such that τ t : R
t
+ ×R+ → R. Given τ , and sequences w

and r for wages and rents respectively, the dynasty solves the problem:

max
c,y,k,b

∞X
t=1

X
θt∈Θt

π(θt)βt−1[u(ct(θt))− v(yt(θ
t)/θt)] (5.1)

s.t. ct(θ
t) + kt+1(θ

t) + bt+1(θ
t) + τ t((wsys(θ

s))ts=1, kt(θ
t−1) + bt(θ

t−1))

≤ (1− δ + rt){kt(θt−1) + bt(θ
t−1)}+ wtyt(θ

t) for all (t, θt)

(ct, yt, kt+1 + bt+1, y − yt) is non-negative for all t, θ
t

k1 ≤ K1, b1 = 0

Here, k represents the dynasty’s holdings of capital and b represents the dynasty’s

holdings of government debt. I impose the restriction that bequests (k + b) are non-

negative.

I assume that the initial dynast solves the choice problem for all descendants.

However, this is without loss of generality, because the initial dynast’s objective function

is increasing in the utilities of all descendants. This "pure" altruism means that the

initial dynast’s plan is time-consistent, in the sense that no descendant would choose

to deviate from it.

The formulation of (5.1) assumes that a decision-maker at date t knows the

entire history θt (his parents’ skills, grandparents’ skills, etc.). However, it is not
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essential that the agent have this much information. The agent at date t does need

to know the recorded history (wsys)
t−1
s=1 of labor incomes, because this information

potentially influences his taxes and those of his future descendants. However, θ is

Markov, and so the history of skills θt−1 plays no role in forecasting future realizations

of θ. There would be no loss in generality if we were to restrict an agent at time t to

condition his decisions only on θt and (wsys)
t−1
s=1 rather than θt−1.

The government also commits at the beginning of period 1 to a sequence of

government debts (Bt)
∞
t=2. Then, given a government’s policy (τ ,B), an equilibrium

in this economy is an allocation (c, y, k) and prices (r, w) such that (c, y, k) solves the

agent’s problem given (τ , r, w) and markets clear in every date and history:

Ct +Kt+1 ≤ (1− δ)Kt + F (Kt, Yt) for all t

X
θt∈Θt

π(θt)bt(θ
t) = Bt

K1 = K1

If (c, y, k) is an equilibrium given a policy (τ , B), then I write that EQMDYN (τ , B).

(Here, DYN stands for dynasty.)

In this dynastic model, I explicitly allow for government assets. Bequests are

implicitly and realistically restricted to be non-negative, because of the lower bound

on individual asset-holdings. Hence, government assets and debt can potentially play

a large role in intergenerational wealth transmission. (In contrast, individuals faced no
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borrowing constraint in the model of Chapter 4, and so government assets ended up

being irrelevant.) As well, the government taxes the stock of bequests rather than the

flow of income from capital. Other than that, there is little formal difference between

the setup in Chapter 4 and this dynastic one.

One patently unrealistic feature of the tax schedules in this setting is that

they condition on a dynasty’s entire past of labor incomes. For now, I retain this

assumption. In chapter 6, I show how optimal labor income tax schedules need only

condition on a low-dimensional summary statistic of the past.

B 5.1.3 A Novel Government Objective

The big impact of the dynastic model is on the nature of the social objective. At each

date, a new group of agents is born. A generic Pareto optimal allocation puts weight

on all of these agents. We consider a particular weighting scheme, and assume that the

government seeks to maximize the objective function:

∞X
t=1

ρt−1
X
θt∈Θt

π(θt)Vt(θ
t)

for some choice of ρ, where 0 < ρ < 1. Recall here that Vt is the utility of agents born in

period t. In this objective, the planner treats all dynasties equally. The planner weights

future agents less, but does put weight on those future agents.

This objective is interesting because the planner puts weight on agents born
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in period t in two ways. First, because their ancestors care about those agents. Second,

because the planner puts weight ρt on those agents. To see this more clearly, it is useful

to unfold it in terms of the underlying flow utilities u(ct)− v(lt). Recall:

Vt = u(ct)− v(lt) + βVt+1

Then:

V1 + ρV2 + ρ2V3 + ...

= u(c1)− v(l1) + (ρ+ β)V2 + ρ2V3 + ...

= u(c1)− v(l1) + (ρ+ β)(u(c2)− v(l2) + βV3) + ρ2V3 + ...

= u(c1)− v(l1) + (ρ+ β)(u(c2)− v(l2)) + (β
2 + ρβ + ρ2)V3 + ....

=
∞X
t=1

bρt(ρ)[u(ct)− v(lt)] + lim
t→∞

bρtVt
where:

bρ1(ρ) = 1

bρt(ρ) = ρt−1 + ρt−2β + ρt−3β2 + ...+ ρβt−2 + βt−1

It is simple to prove that if u and v are bounded, then limt→∞ bρtVt is zero. Hence, the
planner’s objective is:

∞X
t=1

bρt(ρ)[u(ct)− v(lt)]
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What’s interesting in this objective is that the planner is always more patient

than the dynasty is. That is:

bρt+1(ρ)bρt(ρ) = β +
ρtbρt(ρ) > β

Intuitively, the planner always puts more weight on a newborn than his ancestors did,

because of the presence of the ρt term.

B 5.1.4 Government’s Problem

With this objective in hand, we can define the government’s optimization problem to

be:

max
(c,y,k,τ ,Kg)

∞X
t=1

X
θt∈Θt

bρt(ρ)π(θt){u(ct(θT ))− v(
yt(θ

T )

θt
)} (5.2)

s.t. (c, y, k) ∈ EQMDYN(τ ,B)

We need to convert this abstract problem into one that is more manageable.

We proceed as in Chapter 4. Taxes are not directly based on skills, but instead are based

only on histories of labor incomes. Hence, as in Chapter 4, any tax-equilibrium outcome

must be incentive-compatible given privacy of information about θ. Put another way,

if (c, y, k) ∈ EQMDYN(τ , B), (c, y) must satisfy the incentive constraint:
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∞X
t=1

X
θt∈Θt

π(θt)[u(ct(θ
t))− v(yt(θ

t)/θt)]β
t−1 (5.3)

≥
∞X
t=1

X
θt∈Θt

π(θt)[u(ct(σ
t(θt)))− v(yt(σ

t(θt))/θt)]β
t−1

for any mimicking strategy σ = (σt)∞t=1, where σt : Θ
t → Θ. (Again, because the initial

dynast’s utility is strictly increasing in the utility of his descendants, there is no loss

in assuming that the initial dynast is the family member who chooses among possible

mimicking strategies.) I call any (c, y) that satisfies (5.3) incentive-compatible.

We can then attack (5.2) as follows. Consider the following planner’s problem:

max
(c,y,k)

∞X
t=1

X
θt∈Θt

bρt(ρ)π(θt){u(ct(θt))− v(
yt(θ

t)

θt
)} (5.4)

K1 ≤ K1

(c, y) is incentive-compatible

(c, y, k) is feasible

I refer to solutions to the problem (5.4), for any specification of ρ, as being social optima.

Suppose (c∗, y∗, k∗) is a social optimum. We know that the set of (c, y, k) that lie in

the constraint set of the planner’s problem (5.4) is no smaller than the set of (c, y, k)

that lie in the constraint set of the optimal tax problem (5.2). Hence, given a solution

(c∗, y∗, k∗) to (5.4), if we can find (k0, τ , B) such that (c∗, y∗, k0) ∈ EQMDYN(τ , B), then
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the government tax-asset policy (τ , B) is an optimal one.

In this discussion, I have treated ρ as a fixed parameter. More correctly,

different choices of ρ correspond to different Pareto optima. When ρ is near one, we are

essentially looking at a Pareto optimum that puts a lot of weight on future generations.

When ρ is near zero, we are looking at a Pareto optimum that puts a lot of weight on

the initial dynasts. There is nothing fundamental that pins down the value of ρ.

A 5.2 Another Reciprocal Euler Equation

In this section, I derive a necessary condition that a social optimum must satisfy. The

necessary condition is a generalization of the reciprocal Euler equation originally derived

in Chapter 3.

B 5.2.1 Reciprocal Euler Equation: General Case

We can derive another version of the reciprocal Euler equation in this setting. Suppose

(c∗, y∗,K∗) is a solution to (5.4). As we did in Chapter 3, we can set up the following

maximization problem3:

3Sleet and Yeltekin (2006) use a similar problem to analyze sustainable equilibrium outcomes when

a government can repeatedly choose tax systems over time.
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max
c0t,c0t+1,K

0
t+1,∆

⎛⎜⎜⎝ bρt(ρ)Pθt∈Θt π(θ
t)u(c0t(θ

t))

+bρt+1(ρ)Pθt+1∈Θt+1 π(θ
t+1)u(c0t+1(θ

t+1))

⎞⎟⎟⎠ (5.5)

s.t.

u(c0t(θ
t)) + βu(c0t+1(θ

t+1)) = ∆+ u(c∗t (θ
t)) + βu(c∗t+1(θ

t+1)) ∀θt+1 (5.6)

X
θt∈Θt

π(θt)c0t(θ
t) +K 0

t+1 =
X
θt∈Θt

μ(θt)c∗t (θ
t) +K∗

t+1 (5.7)

X
θt+1∈Θt+1

π(θt+1)c0t+1(θ
t+1)−

X
θt+1∈Θt+1

π(θt+1)c∗t+1(θ
t+1) (5.8)

= (1− δ)K 0
t+1 + F (K 0

t+1, Y
∗
t+1)− (1− δ)K∗

t+1 − F (K∗
t+1, Y

∗
t+1)

The constraint set to this problem is essentially identical to that in the maximiza-

tion problem (3.20) that we used to derive the reciprocal Euler equation in chapter

3. The constraint set includes a set of possible perturbations (c0, K 0) to consumption

and capital for the planner. The first constraint (5.6) ensures that (c0, y∗) is incentive-

compatible, because c0 is formed by adding a constant ∆ to the utility that the dynasty

gets along any path θt+1. The latter constraints (5.7)-(5.8) ensure that the perturba-

tions are feasible. However, the planner’s objective (5.5) is not simply ∆, as it was in

problem (3.20). The different objective reflects the fact that in this dynastic setting,

the planner’s discount factor bρt+1/bρ is different from β.

The constraint set in the above problem is smaller than that in (5.4) but
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contains the socially optimal allocation (c∗, y∗,K∗). Hence, setting c0t = c∗t , c
0
t+1 =

c∗t+1,K
0
t+1 = K∗

t+1 and ∆ = 0 satisfies the first order necessary conditions. These

take the form of a reciprocal Euler equation:

1

u0(c∗t (θ
t))

= β−1(1− δ +MPK∗
t+1)

−1 X
θt+1∈Θ

μ(θt+1|θt)
u0(c∗t+1(θ

t+1))
(5.9)

+(1− bρt+1(ρ)β−1bρt(ρ) )
X
θt∈Θ

π(θt)[
1

u0(c∗t (θ
t))
]

whereMPK∗
t+1 ≡ FK(K

∗
t+1, Y

∗
t+1). (I derive these first order necessary conditions in the

technical notes following this chapter.)

To understand the intuition behind (5.9), it is useful to break it into two

pieces. First, by taking unconditional expectations of both sides, we obtain:

E{ 1

u0(c∗t+1)
} = bρt+1(ρ)bρt(ρ) (1− δ +MPK∗

t+1)E{
1

u0(c∗t )
} (5.10)

Recall that 1/u0(c) is the marginal cost to the planner of providing more momentary

utility to an agent. The restriction (5.10) is an Euler equation that says that the

planner allocates resources over time so that the discounted average marginal cost in

period (t + 1) is equal to the average marginal cost in period t. This restriction is

governed solely by the planner’s discount factor (not by the dynasty’s altruism factor).

Next, if we multiply (5.9) through by β(1− δ +MPK∗
t+1) and then add it to

(5.10), we obtain:
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{Et
1

u0(c∗t+1)
− E

1

u0(c∗t+1)
} = β(1− δ +MPK∗

t+1){
1

u0(c∗t )
− E

1

u0(c∗t )
} (5.11)

This equation (5.11) imposes an intertemporal restriction on the deviation of 1/u0(c∗t )

from its mean E[1/u0(c∗t )]. These deviations exist in a socially optimal allocation as an

optimal response to the incentive problem. The condition (5.11) says that it is optimal

to smooth the marginal cost of these deviations over time. This smoothing is governed

by the dynasty’s own altruism factor β, because it is this factor that enters the incentive

constraints.

B 5.2.2 Special Cases of the Reciprocal Euler Equation

In this subsection, we build intuition into the reciprocal Euler equation (5.9) by exam-

ining several special cases.

Suppose first that ρ = 0. This means that the planner puts no extra weight

on children, beyond the weight imposed by the initial dynast. Then:

(1− bρt+1β−1bρt ) = 0

and we return to the original reciprocal Euler equation. If ρ > 0, then the original

reciprocal equation does not hold. Instead, we obtain:

1

u0(c∗t (θ
t))

< β−1(1− δ +MPK∗
t+1)

−1 X
θt+1≥θt

μ(θt+1|θt)
u0(c∗t+1(θ

t+1))
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or:

u0(c∗t (θ
t)) > β(1− δ +MPK∗

t+1){
X

θt+1≥θt

μ(θt+1|θt)
u0(c∗t+1(θ

t+1))
}−1

because the planner puts more weight on the future than in the long-lived agent case.

The case in which θt = θ1 for all t (so that skills are constant over time for a

dynasty) is especially interesting. Then:

1

u0(c∗t (θ1))
= β−1R−1

1

u0(c∗t+1(θ1))
+ (1− bρt+1β−1bρt )E[

1

u0(ct)
]

In this case, we can conclude that:

u0(c∗t (θ1)) > βRu0(c∗t+1(θ1))

In this fixed skill case, an agent would like to borrow from their children. This makes

sense, because the planner systematically puts more weight on descendants than indi-

viduals themselves do.

A 5.3 Properties of Socially Optimal Allocations

In a socially optimal allocation, when an agent is privately informed about his skill

level, c∗t typically depends on θt. This dependence is necessary to elicit higher output

from the highly skilled agents. It is possible to use the reciprocal Euler equation (5.9)

to learn a great deal about the dependence of consumption on current and past skill

realizations of the dynasty’s members.
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In Chapter 3, we established three critical properties of Pareto optimal allo-

cations with private information in the non-dynastic model (ρ = 0). The first property

is that allocations are history dependent. The second property is that there is an in-

tertemporal wedge between current consumption and future consumption. Finally, if

βR = 1, Pareto optimal allocations feature growing inequality and zero mobility in the

long run. In this section, we assess to what extent these properties are true of socially

optimal allocations in the dynastic model.

B 5.3.1 History Dependence

Recall that if (c∗, y∗, K∗) is socially optimal in the dynastic setting, it must satisfy the

restriction:

{Et
1

u0(c∗t+1)
− E

1

u0(c∗t+1)
} = β(1− δ +MPK∗

t+1){
1

u0(c∗t )
− E

1

u0(c∗t )
} (5.12)

In words, this equation says that if an agent’s 1/u0(c∗t ) is larger than its mean over all

agents, then we should expect 1/u0(c∗t+1) to be larger than its mean too. Intuitively,

suppose it is socially optimal to reward a parent with higher than average consumption

in period t. Because u is concave, and because the parent is altruistic, it is optimal to

smooth this extra reward over the parent’s current consumption and the consumptions

of his descendants. This smoothing may well not be one for one. Indeed, if β is small

relative to (1 − δ +MPK∗
t+1), the left hand side will be a small fraction of the right

hand side; the parent receives most of his rewards during his lifetime.
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This simple result has an important consequence. It is socially optimal for

children’s opportunities to depend on the performance of their parents. This depen-

dence is an optimal way to provide incentives to the parents, given that they care about

their children. As we shall see, the strength of this dependence is influenced by the

relative size of the planner’s discount factor ρ to the parents’ altruism factor β.

B 5.3.2 Intertemporal Wedge

Recall that if (c∗, y∗, K∗) is socially optimal in the dynastic setting, then:

1

u0(c∗t )
= β−1(1− δ +MPK∗

t+1)
−1Et

1

u0(c∗t+1)
+ (1− bρt+1(ρ)β−1bρt(ρ) )E{ 1

u0(c∗t )
}

If ρ = 0, then this restriction collapses to the now-familiar reciprocal Euler equation:

1

u0(c∗t )
= β−1(1− δ +MPK∗

t+1)
−1Et

1

u0(c∗t+1)

This Euler equation implies that if V art(u0(c∗t+1)) > 0, so that children’s consumption

is a nontrivial function of their realized skills in period (t+ 1), then:

u0(c∗t ) < β(1− δ +MPK∗
t+1)Etu

0(c∗t+1).

It is an optimal response to an incentive problem in period (t+1) for the (discounted)

expected marginal utility of period (t + 1) consumption to exceed period t marginal

utility.
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However, if ρ > 0, then this result is ameliorated. We know that if ρ > 0,

then: bρt+1(ρ)β−1bρt(ρ) > 1

because the planner’s discount factor exceeds the parent’s altruism factor. Hence, we

can conclude that:

1

u0(c∗t )
< β−1(1− δ +MPK∗

t+1)
−1Et

1

u0(c∗t+1)
(5.13)

or:

u0(c∗t ) > β(1− δ +MPK∗
t+1){Et

1

u0(c∗t+1)
}−1 (5.14)

The planner puts more weight on children than parents do and so it is socially optimal

for u0(c∗t ) to be relatively high. This extra weight on u0(c∗t ) may or may not undo the

extra weight on u0(c∗t+1) generated by the incentive effect.

B 5.3.3 Long Run Planner’s Discount Factor and Long Run Al-

locations

The long run properties of socially optimal allocations hinge critically on the discount

factor of the planner between date t and date (t + 1). This discount factor can be

written as: bρt+1(ρ)bρt(ρ) = β +
ρtPt−1

s=0 ρ
sβt−1−s

(5.15)
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What happens to this expression as t converges to infinity? We can rewrite it as:

lim
t→∞

bρt+1(ρ)bρt(ρ) = β +
1

limt→∞
Pt−1

s=0 β
t−1−sρs−t

(5.16)

= β +
1

β−1 limt→∞
Pt−1

s=0(β/ρ)
t−s (5.17)

This limit depends on the relative sizes of β (a fundamental parameter of the environ-

ment) and ρ (a parameter that indexes various socially optimal allocations). If β ≥ ρ,

then the limit of the denominator of (5.9) is 0, and:

lim
t→∞

bρt+1(ρ)bρt(ρ) = β (5.18)

If β < ρ, then:

lim
t→∞

bρt+1(ρ)bρt(ρ) = β +
β
β/ρ
1−β/ρ

(5.19)

= β + ρ− β (5.20)

= ρ (5.21)

We can conclude that limt→∞
bρt+1(ρ)bρt(ρ) = max(ρ, β).

Now suppose that (c∗, y∗,K∗) is socially optimal and that limt→∞E{1/u0(c∗t )}

is a finite positive number. We know that for all t:

E{ 1

u0(c∗t+1)
} = bρt+1(ρ)bρt(ρ) (1− δ +MPK∗

t+1)E{
1

u0(c∗t )
}

It follows that in the long run, the marginal gross rate of return on capital is given by
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the reciprocal of the planner’s discount factor.

lim
t→∞

(1− δ +MPK∗
t+1) =

1

max(ρ, β)

The reciprocal Euler equation (5.9) then implies that in the long run:

1

u0(c∗t+1)
=

β/max(ρ, β)

u0(c∗t )
+ (1− β/max(ρ, β))E[

1

u0(c∗t )
] + ξt+1 (5.22)

where ξt+1 is a martingale difference.

The three components of the right-hand side of (5.22) have simple interpre-

tations. The first piece represents the planner’s desire to smooth rewards over time.

This need for smoothing is small if the parent’s altruism factor β is small relative to

ρ, and disappears if β = 0. The second piece represents the planner’s desire to insure

future children against the risk of having relatively unskilled parents. This gets large if

ρ is large relative to β. Finally, the martingale difference ξt+1 arises from the planner’s

need to provide incentives in period (t+ 1).

If ρ ≤ β, then the long run properties of social optima in this dynastic model

are the same as those in the model with long-lived agents. The reciprocal of mar-

ginal utility follows a martingale. As long as ξt+1 is nondegenerate, inequality grows

over time. Eventually, because of the martingale convergence theorem, we know that

consumption becomes immobile. Note that this result means that the (conditional)

variance of the incremental shocks ξt+1 must be shrinking along every sample path. In

this sense, incentive effects have to vanish in the long run.
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In contrast, suppose ρ > β. Now, individual 1/u0(c∗t ) is mean-reverting (be-

cause β/max(ρ, β) < 1). Intuitively, the high value of ρ means that the planner

cares more about ensuring equality of opportunity for newborns than about smoothing

rewards to their parents. There are now two opposing forces. As before, the incen-

tive effect ξt+1 tends to increase inequality over time. However, the transmission of

past shocks is now less one for one, and this makes inequality shrink over time. This

tension between the (inequality-increasing) incentive effect and (inequality-decreasing)

imperfect transmission means that there may be a long run limiting cross-sectional

distribution of consumption with nontrivial incentive effects.

A 5.4 Optimal Bequest Taxation

We now move to mapping our characterizations of socially optimal allocations into

characterizations of optimal taxes. Suppose (c∗, y∗, k∗) is a socially optimal allocation

such that:

y∗t(θt) = y∗t(θt0) =⇒ c∗t (θ
t) = c∗t (θ

t0)

for all (t, θt, θt0). Then, as in chapter 4, we can build an optimal tax system τ such

that (c∗, y∗, k0) ∈ EQM(τ , B) for some (k0, B). This optimal tax system is a nonlinear

function of a current dynast’s labor income, his ancestors’ labor incomes, and the

current dynast’s inheritance To avoid repetition, I will not go over that construction in
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detail. Instead, I will focus on the properties of the optimal bequest taxes intrinsic in

that system.

In Chapter 4, we constructed optimal wealth taxes by setting tax rates so as

to satisfy ex-post Euler equations. In this setting, wealth is equivalent to bequests. So,

we can design optimal bequest taxes in the same way. Thus, if τ ∗t+1 is the tax rate on

the bequest inherited by the agent born in period (t+ 1), the tax rate should satisfy:

β(1− τ ∗t+1(θ
t+1))

u0(c∗t+1(θ
t+1))

u0(c∗t (θ
t))

(1− δ +MPK∗
t+1) = 1 (5.23)

for all θt+1.

B 5.4.1 Regressive Ex-Post Bequest Taxes

Bequest taxes satisfy ex-post Euler equations, and so, when a person receives an inher-

itance, his bequest tax depends on his labor income. In particular, (5.23) implies that

the bequest tax rate equals:

τ ∗t+1(θ
t+1) = 1− β−1(1− δ +MPK∗

t+1)
−1u0(c∗t (θ

t))

u0(c∗t+1(θ
t+1))

The tax rate is a decreasing function of c∗t+1. Hence, conditional on a parent’s con-

sumption c∗t , surprisingly low-consumption descendants face a high tax rate on their

bequests. This tax deters a double deviation in which parents leave a large bequest to

a child, and then that child shirks.
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B 5.4.2 Expected Bequest Tax Rates

When we calculated expected wealth tax rates in the long-lived agent case, they were

zero. When we calculate expected bequest taxes, we obtain:

E{τ∗t+1(θt+1)|θt}

= 1− β−1R−1u0(c∗t (θ
t))E{ 1

u0(c∗t+1(θ
t+1))

|θt}

= (1− bρt+1β−1bρt )u0(c∗t (θ
t))E[

1

u0(c∗t )
]

Because the planner puts more weight on the future, the term in brackets is negative.

Expected tax rates on bequests are always negative - the planner subsidizes bequests.

Why is this? The planner likes children more than parents do.

Note that this has nothing to do with private information. In fact, if Θ is a

singleton, we still get a subsidy. This subsidy is exactly the Pigouvian subsidy:

(1− bρt+1β−1bρt )

that corrects the gap between private incentives and social ones.

B 5.4.3 Parents’ Skills and Subsidies

Consider again the expression:

E{τ t+1(θt+1)|θt} = (1− bρt+1β−1bρt )u0(c∗t (θ
t))E[

1

u0(ct)
]
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The absolute value of this expression is decreasing in c∗t . Consumption-poor parents are

subsidized at a higher rate than consumption-rich parents.

Again, the Pigouvian subsidy is a useful benchmark. Suppose:

u0(c∗t (θ
t)) > {E[ 1

u0(c∗t )
]}−1 (5.24)

These consumption-poor agents are subsidized more than the Pigouvian subsidy. If:

u0(c∗t (θ
t)) < {E[ 1

u0(c∗t )
]}−1 (5.25)

these consumption-rich agents are subsidized less than the Pigouvian subsidy. Note

that:

E(MUt)E{1/MUt} (5.26)

= 1− Cov(MUt, 1/MUt)

> 1

and so E{τ t+1(θt+1)} > (1− bρt+1β−1bρt ). The overall average subsidy rate is less than the

Pigouvian subsidy.

Intuitively, the planner’s extra weight in his discount factor is given by:

ρtbρt (5.27)

The extra weight in his rate of time preference is given by:

[
bρt

ρtu
0(c∗t (θ

t))
]−1 (5.28)



The New Dynamic Public Finance 179

The planner is more patient than all households. But he is especially more patient than

poor households.

B 5.4.4 Long Run Bequest Taxes

We earlier identified three properties of bequest taxes. First, surprisingly low-skilled

children face higher bequest tax rates. Second, for any parent, the expected bequest tax

rate is negative. Third, low-consumption parents face higher expected bequest subsidy

rates. What happens to these properties in the long run?

If β < ρ, they all survive, because the limiting planner discount factor is larger

than β. But if β ≥ ρ, then the limiting planner discount factor equals β. In this case,

the first property survives because:

τ ∗t+1(θ
t+1) = 1− β−1R−1u0(c∗t (θ

t))

u0(c∗t+1(θ
t+1))

(5.29)

still implies that taxes are a decreasing function of c∗t+1. However, the other two prop-

erties vanish. Recall expected bequest tax rates are equal to:

E{τ t+1(θt+1)|θt} = (1− bρt+1β−1bρt )u0(c∗t (θ
t))E[

1

u0(c∗t )
]

and this becomes zero in the limit if β ≥ ρ.

Thus, the long run expected bequest tax rates vary across social optima,

depending on the value of ρ. If the social optimum is one in which the planner puts

a lot of weight on future generations, we get long run subsidies. If it is one in which
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the planner’s extra weight on descendants vanishes, then we get long run zero bequest

taxes, which are regressive ex-post.

A 5.5 Summary

Generically, a social planner’s objective puts weight on all individuals both born and

unborn. Hence, even if parents care about their children, societies necessarily care even

more. Even without any incentive considerations, it is good social policy to subsidize

bequests not tax them.

Incentives introduce two key features into the structure of bequest taxes. Be-

quest subsidies introduce more inequality (that is, pre-natal risk) for the next genera-

tion. To control this force, it is optimal to subsidize bequests from poor parents at a

higher rate than the bequests from rich parents. As well, bequest subsidies introduce

adverse incentive effects for the recipients, because rich children will not work as hard.

It is optimal to control this effect by subsidizing at a lower rate the bequests received by

children who produce less. In this way, incentive effects generate a subtle interaction

between the outcomes of parents, the outcomes of children, and the size of bequest

subsidies.

The degree of long-run immobility varies across Pareto optimal allocations. If

the planner’s discount factor is low, then (as in the immortal agent case) the martingale

convergence theorem implies that consumption is immobile in the long run. If the
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planner’s discount factor is high, then 1/u0(c) is mean-reverting, and so consumption

need not be immobile. The cross-generational mobility of wealth or consumption is not

informative about the optimality or suboptimality of intergenerational insurance

A 5.6 Technical Notes

In this section, I provide a proof of the intergenerational reciprocal Euler Equation. Re-

call that if (c∗, y∗, k∗) is an optimal allocation, then (c∗t , c
∗
t+1, K

∗
t+1, 0) solves the problem

(5.5):

max
c0t,c0t+1,K

0
t+1,∆

bρt(ρ) X
θt∈Θt

π(θt)u(c0t(θ
t)) + bρt+1(ρ) X

θt+1∈Θt+1

π(θt+1)u(c0t+1(θ
t+1))

s.t.

u(c0t(θ
t)) + βu(c0t+1(θ

t+1)) = ∆+ u(c∗t (θ
t)) + βu(c∗t+1(θ

t+1)) ∀θt+1 (5.30)

X
θt∈Θt

π(θt)c0t(θ
t) +K 0

t+1 =
X
θt∈Θt

μ(θt)c∗t (θ
t) +K∗

t+1 (5.31)

X
θt+1∈Θt+1

π(θt+1)c0t+1(θ
t+1)−

X
θt+1∈Θt+1

π(θt+1)c∗t+1(θ
t+1) (5.32)

= (1− δ)K 0
t+1 + F (K 0

t+1, Y
∗
t+1)− (1− δ)K∗

t+1 − F (K∗
t+1, Y

∗
t+1)

Let ηt+1 be the multiplier on the first constraint (5.30), and (λt, λt+1) be the multipliers

on the latter two constraints (5.31)-(5.32). The first order conditions for this problem
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are:

bρt(ρ)π(θt)u0(c∗t (θt)) = u0(c∗t (θ
t))

X
θt+1≥θt

ηt+1(θ
t+1) + λtπ(θ

t) (5.33)

bρt+1(ρ)π(θt+1)u0(c∗t+1(θt+1)) = βu0(c∗t+1(θ
t+1))ηt+1(θ

t+1) + λt+1π(θ
t+1) (5.34)

λt = λt+1(1− δ +MPK∗
K,t+1) (5.35)

X
θt+1

ηt+1(θ
t+1) = 0 (5.36)

If we substitute out for ηt+1 using (5.34), and plug into (5.33), we obtain:

bρt(ρ) = β−1bρt+1(ρ)− β−1
X

θt+1≥θt
λt+1μ(θt+1|θt)/u0(c∗t+1(θt+1)) (5.37)

+λt/u
0(c∗t (θ

t)) (5.38)

At the same time, if we sum (5.33) over θt, and use (5.36), we get:

0 = bρt(ρ)−X
θt

λtπ(θ
t)/u0(c∗t (θ

t))

Combining these two equations gives:

X
θt

π(θt)/u0(c∗t (θ
t)) = β−1bρt+1(ρ)λ−1t −β−1λt+1λ−1t E[1/u0(c∗t+1)|θt]+1/u0(c∗t (θt)) (5.39)
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Rearranging and substituting out for λt, we get:

1/u0(c∗t (θ
t))

= β−1(1− δ +MPK∗
t+1)

−1E[1/u0(c∗t+1)|θt]

+(1− β−1bρt+1(ρ)/bρt(ρ))X
θt

π(θt)/u0(c∗t (θ
t))

which proves the proposition.
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CN Chapter 6

CT Quantitative Analysis: Methods and

Results

The preceding chapters provide qualitative characterizations of optimal tax systems.

These characterizations are robust, in the sense in that they are applicable for a wide

class of shock processes and preferences, but partial. I now take up a different question.

Suppose we have a quantitative specification of primitives (preferences, technology,

and the law of motion of shocks) for a particular economy. How do we translate this

information about primitives into a complete specification of an optimal tax system for

this economy?

The analysis in Chapters 4 and 5 is key to answering this question. That

discussion shows how we can convert an optimal allocation of resources into an optimal

184
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tax system, and allows us to focus on a more basic question: given a specification of

primitives in the economy, how do we solve for an optimal allocation of resources? In

most cases of interest, we cannot answer this question analytically. Instead, we must

compute numerical approximations to its answer. The big difficulty is that optimal

allocations generally depend on the entire history of past realizations of skill shocks.

We can only hope to make progress if we somehow make this dependence manageable.

In this chapter, I consider two possible ways to do so. The first approach is

to figure out a method to summarize the dependence of the optimal allocation on the

past via a relatively low-dimensional summary statistic. I use the work of Spear and

Srivastava (1987) to show how this can be done when skill shocks are i.i.d.. I then

extend their analysis using the method of Fernandes and Phelan (2000) to include the

case in which skills follow a Markov chain.1

The second approach is to assume that agents live for a small number of

(lengthy) periods, and that the space of possible skill realizations is small. Under these

assumptions, the planner’s problem becomes a nonlinear optimization problem with a

1Battaglini and Coate (2008) consider an economy in which agents are risk-neutral and skills evolve

according to a Markov chain with a two-point support. They provide an explicit characterization of

optimal labor income taxes in this environment. (Asset income taxes play no role because preferences

are linear in consumption.) They find that labor income taxes should be zero for any agent who is

currently or was ever highly-skilled in the past. We shall see in Section 6.2 that this sharp result

disappears when we use a more plausible parameterization of preferences.
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small number of controls. I show how this approach can be used to great effect in an

infinite-horizon overlapping generations economy, as long as the agents themselves are

finitely-lived.

A 6.1 Immortal Agents in an Open Economy

In this section, I discuss how to make the social planner’s problem recursive with

respect to a low-dimensional state, given an exogenous interest rate. The baseline

model is essentially an infinite horizon version of the setup in Chapter 3. There is a

unit measure of infinitely-lived agents. The agents have preferences of the form:

∞X
t=1

βt−1[u(ct)− v(lt)], 0 < β < 1

where ct is period t consumption and lt is period t effort. Let θt be the agent’s skill

at date t, where θt is an element of a finite set Θ. An agent with skill θt can produce

yt = θtlt units of output. Skills evolve stochastically so that the probability of any

sequence θt = (θ1, ..., θt) in Θt is positive.

An allocation (c, y) is a sequence of mappings (ct, yt)∞t=1, so that (ct, yt) :

Θt → R2+. At each date, an agent’s output yt is observable. However, his skill and

effort decision are private information, and so the agent can employ any mimicking

strategy σ = (σt)∞t=1, where σt : Θ
t → Θt. Let Σ be the set of all such strategies. Then,
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(c, y) is incentive-compatible (IC) if and only if:

E
∞X
t=1

βt−1{u(ct(θt))− v(yt(θ
t)/θt)} (6.1)

≥ E
∞X
t=1

βt−1{u(ct(σt(θt))− v(yt(σ
t(θt)/θt)} for all σ ∈ Σ

We assume that the economy is an open one, with an exogenous gross interest

rate R = β−1. The planner’s problem is to choose a specification of (c, y) so as to

maximize ex-ante utility, subject to a intertemporal societal budget constraint and

subject to (c, y) being incentive-compatible:

max
c,y

E
∞X
t=1

βt−1[u(ct)− v(yt/θt)] (6.2)

s.t. E
∞X
t=1

βt−1[yt − ct] ≥ 0

(c, y) is IC

yt(θ
t), ct(θ

t) ≥ 0 for all θt ∈ Θt

In the next subsections, we study how to make this problem computationally feasible

if θ is i.i.d., and, more generally, if θ is Markov.

B 6.1.1 I. I. D. Skills

In this subsection, I suppose that θt is i.i.d. over time. Under this assumption about

skills, Spear and Srivastava (1987) demonstrate that the solution (c∗, y∗)(θt) depends on
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θt−1 only through the continuation (sometimes called promised) utility that the agent

has at date t. In this way, they make the problem (6.2) recursive in a useful fashion.

To understand their argument, we consider an optimal allocation (c∗, y∗) and

fix a skill history θ
t
. Define the continuation allocation (c0s(θ

s), y0s(θ
s))∞s=1 by c0s(θ

s) =

c∗t+s(θ
t
, θs) and y0s(θ

s) = y∗t+s(θ
t
, θs)), and define U∗t (θ

t
; c∗, y∗) to be the continuation

utility of the agents with history θ
t
:

U∗t (θ
t
; c∗, y∗) = E[

∞X
s=1

βs−1{u(c∗t+s(θt+s))− v(y∗t+s(θ
t+s)/θt+s)}|θt = θ

t
]

The continuation allocation (c0, y0) is obviously incentive-compatible. Spear and Sri-

vastava’s key insight is much stronger: this continuation allocation is actually the

least costly incentive-compatible allocation among all of those that provide utility

U∗t (θ
t
; c∗, y∗) to the agents.

We can establish this result by contradiction. Suppose that we can find an

incentive compatible allocation (c00, y00) such that:

E{
∞X
s=1

βs−1[u(c00s(θ
s))− v(y00s (θ

s)/θs)]} (6.3)

= U∗t (θ
t
; c∗, y∗)

but:

E{
∞X
s=1

βs−1[c00s(θ
s)− y00s (θ

s)} (6.4)

< E{
∞X
s=1

βs−1[c0s(θ
s)− y0s(θ

s)}
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Then, we can construct a better allocation than (c∗, y∗) by substituting (c00, y00) for

(c0, y0) as a continuation allocation. Define (c∗∗, y∗∗) to be an allocation so that:

c∗∗ = c∗, y∗∗ = y∗ except (6.5)

c∗∗t+s(θ
t
, θt+st+1) = c00s(θ

t
, θt+st+1)

y∗∗t+s(θ
t
, θt+st+1) = y00s (θ

t
, θt+st+1)

where θt+st+1 = (θt+1, θt+2, ..., θt+s). This new allocation (c
∗∗, y∗∗) is cheaper than (c∗, y∗)

and provides the same ex-ante utility as (c∗, y∗). Hence, the new allocation is superior

to (c∗, y∗) as long as (c∗∗, y∗∗) is in fact incentive-compatible. Checking the incentive-

compatibility of (c∗∗, y∗∗) is nontrivial, though, because substituting in a new continua-

tion allocation in this fashion could change a person’s incentives to mimic other agents

in earlier periods.

It is here that the i.i.d. structure of θ plays a critical role. Suppose that an

agent has true type θt0, but has acted in periods 1 through t like his type is bθt. This
agent’s continuation utility under the doubly starred allocation is:

Ut(bθt, θt0; c∗∗, y∗∗) = E[
∞X
s=1

βs−1[u(c∗∗t+s(bθt, θt+st+1))− v(y∗∗t+s(bθt, θt+st+1)/θt+s)]|θt = θt0] (6.6)

The conditioning is irrelevant here, because θt is i.i.d. over time, and so the continuation
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utility is the same under (c∗∗, y∗∗) as under (c∗, y∗):

Ut(bθt, θt0; c∗∗, y∗∗) = Ut(bθt,bθt; c∗∗, y∗∗) (6.7)

= Ut(bθt,bθt; c∗, y∗) (6.8)

= Ut(bθt, θt0; c∗, y∗) (6.9)

We can conclude that since the starred allocation is incentive-compatible, so is the

doubly starred allocation (c∗∗, y∗∗).

We have shown that at any history, the continuation part of (c∗, y∗) is a

minimal-cost incentive-compatible allocation among all those that provide the same

continuation utility. This characterization of (c∗, y∗) implies it must satisfy the following

functional equation. Let Domain be the set of ex-ante utilities U such that there exists

an incentive-compatible allocation (c, y) which satisfies:

U = E{
∞X
s=1

βs−1[u(cs)− v(ys/θs)]} (6.10)

Define the function C to be:

C(U) = min
(c,y)

E{
∞X
s=1

βs−1[cs − ys]} (6.11)

s.t. E{
∞X
s=1

βs−1[u(cs)− v(ys/θs)]} = U

(c, y) is IC

c, y ≥ 0
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In words, C(U) is the cost (in net present value terms) that needs to be paid by the

planner in order to provide utility U to the agent. Then, the cost function C is a

solution to the following functional equation.

C(U) = min
c,y,U 0

X
θ∈Θ

π(θ)[c(θ)− y(θ) + βC(U 0(θ))] (6.12)

s.t. u(c(θ))− v(y(θ)/θ) + βU 0(θ) ≥ u(c(θ0))− v(y(θ0)/θ) + βU 0(θ0) for all θ, θ0

X
θ

π(θ)[u(c(θ))− v(y(θ)/θ) + βU 0(θ)] = U

U 0(θ) ∈ Domain for all θ in Θ

c(θ), y(θ) ≥ 0 for all θ in Θ

The functional equation (6.12) captures the following recursive procedure. After a

history θt−1 of skill shocks, the planner has to deliver some continuation utility U to the

agent. To do so in an efficient (that is, cost-effective) fashion, he looks to minimize costs

among all incentive-compatible allocations. These incentive-compatible allocations can

be characterized by their specification of (c, y) and their specification of continuation

utility U 0 as a function of the agent’s skill realization θ in period t. Then, in the following

period, the planner repeats the procedure (and so C(U 0(θ)) captures his continuation

costs).

By Blackwell’s Theorem, the right-hand side of (6.12) describes a contraction

on the space of bounded functions that map fromDomain into the real line. We can use
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standard dynamic programming arguments to conclude that C is the unique bounded

solution to this functional equation.

One important subtlety is the Domain of U 0 in the above problem. As defined

above, Domain includes any U 0 such that there is an incentive-compatible allocation

that delivers initial utility U 0. Suppose u is bounded from above and below by u+ and

u+. Suppose too that v is bounded from above and below by v+ and v+. Then, utility

is bounded from above and below by:

U+ = (u+ − v+)/(1− β) (6.13)

U+ = (u+ − v+)/(1− β) (6.14)

Can we pick any U in this domain [U+, U+]? The answer is no, because it is typically

not possible to find an incentive-compatible allocation that delivers the minimal level

of consumption in every date and state, and also gets the agent to work as hard as

possible in every period. The incentive-compatibility constraints impose restrictions on

what the domain of U 0 is.

We can solve forDomain numerically using a simple recursive procedure.2 De-

fine a mapping T that maps intervals [a, b] in the real line into intervals [T+(a, b), T+(a, b)]

2In this description, I assume that Domain is an interval (as opposed to a disconnected subset of

the real line). We can ensure that it is connected by allowing for stochastic allocations of output.
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in the real line as follows:

T+(a, b) = min
c,y,U 0

X
θ

π(θ)[u(c(θ))− v(y(θ)/θ) + βU 0(θ)] (6.15)

s.t.u(c(θ))− v(y(θ)/θ) + βU 0(θ) ≥ u(c(θ0))− v(y(θ0)/θ) + βU 0(θ0) for all θ, θ0

c(θ), y(θ) ≥ 0 for all θ

U 0(θ) ∈ [a, b] for all θ

T+(a, b) = max
c,y,U 0

X
θ

π(θ)[u(c(θ))− v(y(θ)/θ) + βU 0(θ)] (6.16)

s.t.u(c(θ))− v(y(θ)/θ) + βU 0(θ) ≥ u(c(θ0))− v(y(θ0)/θ) + βU 0(θ0) for all θ, θ0

c(θ), y(θ) ≥ 0 for all θ

s.t. U 0(θ) ∈ [a, b] for all θ

In words, T+ (T+) presumes that period (t+ 1) continuation utilities U 0 are in the set

(a, b), and then generates the lowest (highest) possible period t continuation utility.

These operators are both monotone and continuous. We can start with a big interval

that includes Domain (such as [U+, U+]). Then, beginning with that interval, we can

iteratively apply T until we get convergence. The resulting interval is the domain of U 0

in (6.12).
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This discussion has two major implications. The first concerns computation.

We now have a tractable procedure to compute optimal allocations when θt is i.i.d..

First, we iterate on T to find Domain. We iterate on the functional equation to find

C and policy functions (c∗, y∗, U 0). We find the initial ex-ante utility by looking for

U0 such that C(U0) = 0. Given that U0, we can roll the policy functions forward to

construct an optimal allocation process.

The second implication concerns tax systems. The optimal tax systems de-

scribed in Chapters 4 and 5 depend potentially on the entire past history of skill re-

alizations. But we know that if θt is i.i.d., optimal allocations are a time-invariant

increasing function of a one-dimensional summary statistic. (In a finite horizon setting,

the allocation must depend on a time-index and on this one-dimensional summary sta-

tistic.) Analogously, if θt is i.i.d. over time, we can restructure the optimal tax systems

in Chapters 4 and 5 so that they depend on the past only through a one-dimensional

summary statistic.3 This result is especially important in the intergenerational context

discussed in Chapter 5. Instead of keeping track of the entire dynasty’s labor income

history, the tax system only needs to condition on a summary statistic (U).

3It is well-known that for any n, there is a continuous function from [0, 1]n into [0, 1]. Given this

result, it is always possible to devise a one-dimensional summary statistic for past histories of labor

income, no longer how long they might be. However, these "space-filling" encodings of the past are

necessarily non-differentiable almost everywhere. Economically, this property implies that even small

mistakes on the part of past agents may lead to large changes in future allocations.
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B 6.1.2 Markov Skills

Assuming skills are i.i.d. over time is highly problematic. If we think of θ as being

wages, the i.i.d. assumption implies that a person with a wage of $20 per hour is

just as likely to earn $10 per hour next year as someone who currently earns $10 per

hour. In reality, wages display a lot more persistence. To capture this persistence, in

this subsection I suppose instead that θt is governed by a Markov chain. I attack this

problem using methods originally due to Fernandes and Phelan (2000). Unfortunately,

the results are somewhat negative. In many familiar dynamic models (like real business

cycle models), adding this kind of persistence adds one state variable (θt), because the

state variable is useful in forecasting the future. However, as we shall see, a state

variable that is both private information and Markov adds N states, where N is the

number of possible realizations of the Markov chain. Like continuation utility itself,

these additional states are continuous, not discrete, variables.

Suppose θ1 is drawn from a probability density π+ over a set Θ = {θ1, ..., θN},

and then θt evolves according to a transition probability density π(θn|θm), which is

positive for all m,n. Let (c∗, y∗) be an optimal allocation, and suppose an agent with

history eθt has continuation utility U∗t (eθt) in this optimal allocation. In the i.i.d. case,
we showed that the continuation allocation from this node must be the minimal-cost

incentive-compatible allocation that delivers U∗t (eθt). To make this argument, we ex-
ploited the fact that when θt is i.i.d., the continuation utility of a person with true
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history bθt who mimicked a person with history eθt is given by:
Ut(eθt,bθt; c∗, y∗) (6.17)

= E[
∞X
s=1

βs−1[u(c∗t+s(eθt, θt+st+1))− v(y∗t+s(eθt, θt+st+1)/θt+s)]|θt = bθt]
= U∗t (eθt; c∗, y∗)

This utility is independent of bθt. This meant that we could stick in any continuation
allocation with the same U∗(eθt), without affecting the incentive to mimic another skill
in prior periods.

But this argument no longer works if θt is Markov. In that case, Ut(eθt,bθt) de-
pends on both eθt and the last true skill realization, bθt. Another continuation allocation
with the same U∗t (eθt) will typically have a different Ut(eθt,bθt). Plugging in such a contin-
uation allocation may well generate a new allocation that is not incentive-compatible,

because it might make lying optimal for an agent in period t. This means that the

continuation allocation will typically not be the minimal-cost incentive-compatible al-

location that delivers U∗t (eθt) and so our recursiveness argument no longer applies.
This issue implies that we have to change to a different solution method.

Suppose (c∗, y∗) is optimal, and fix a history eθt. Let Ut(eθt,bθt) be the continuation
utility for an agent who has acted as if he had a skill history eθt but was actually a type
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bθt in period t. Pick any continuation allocation (c0, y0) such that:

Ut(eθt, θn) = E[
∞X
s=1

βs−1[u(c0s(θ
s))− v(y0s(θ

s)/θs)]|θ0 = θn]

for all θn. Then, if we substitute in this continuation allocation, we know that the

resulting overall allocation must be incentive-compatible.

This result suggests the following recursive approach. Define:

C(θ, Uθ1
, Uθ2

, ..., UθN
)

= min
c,y

E{
∞X
t=1

βt−1[ct(θt)− yt(θ
t)]|θ0 = θ}

s.t. (c, y) IC

s.t. E{
∞X
t=1

βt−1[u(ct(θt))− v(yt(θ
t)/θt)]|θ0 = θn] = Uθn

to be the minimum cost of providing an incentive-compatible allocation which delivers

utility Uθn
to each true skill θn, given that the agent has acted as if his skill realization

was θ. Thus, θ captures the principal’s beliefs about the agent’s future draws of θ. The

principal’s beliefs are correct given that the agent responds optimally by not mimicking

any other type. But the only way to ensure that a non-mimicking strategy is optimal

is to keep track of the agent’s utility for all other types.

At any node, we will not lose incentive-compatibility if we substitute in a

continuation allocation that keeps continuation utility the same for all possible types.
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It follows that the cost function C must satisfy the functional equation:

C(θ, Uθ1
, Uθ2

, ..., UθN
) (6.18)

= min
c,y,U 0

X
θn

π(θn|θ)[c(θn)− y(θn) + βC(θn, (U
0
θk
)Nk=1(θn))]

s.t. u(c(θn))− v(y(θn)/θn) + βU 0
θn
(θn)

≥ u(c(θ0n))− v(y(θ0n)/θn) + βU 0
θn
(θ0n) for all θn, θ

0
n (6.19)

X
θn

π(θn|θm)[u(c(θn))− v(y(θn)/θn) + βU 0
θn
(θn)] = Uθm

,m = 1, .., N

c(θn), y(θn) ≥ 0 for all n (6.20)

U 0(θn) ∈ DOM for all n (6.21)

Here, the set DOM represents the set of possible continuation utility vectors associated

with incentive-compatible allocations. Mathematically, (Uθk
)Nk=1 ∈ DOM if and only if

(c, y) is incentive-compatible and:

E{
∞X
t=1

βt−1[u(ct(θt))− v(yt(θ
t)/θt)]|θ0 = θk] = Uθk

The functional equation (6.18) captures the following procedure. For each θn, the

planner picks a consumption, an output, and a vector of continuation utilities. The

vector describes the continuation utility for every true type.

The policy functions to this functional equation govern the evolution of the

optimal contract in periods 2 and thereafter. In period 1, the planner’s problem works
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differently because he does not need to worry about ensuring incentive-compatibility

in any prior period. The first period draw of θ is governed by π+. Then, in the first

period, the planner’s problem is:

max
c1,y1,U 0

X
θn

π+(θn)[u(c1(θn))− v(y1(θn)/θn) + βU 0
θn
(θn)] (6.22)

s.t. u(c1(θn))− v(y1(θn)/θn) + βU 0
θn
(θn)

≥ u(c1(θ
0
n))− v(y1(θ

0
n)/θn) + βU 0

θn
(θ0n) for all θn, θ

0
n

X
θn

π+(θn)[c1(θn)− y1(θn) + βC(θn, (U
0
θk
)Nk=1(θn))] = 0

c1(θn), y1(θn) ≥ 0 for all n

U 0(θn) ∈ DOM for all n

At this stage, if we know DOM, we can solve for the set of optimal allocations. We first

find C using (6.18). (The right-hand side of this functional equation is a contraction

operator on the space of bounded functions from Θ×RN into itself. Hence, if we know

DOM, we can iterate on this functional equation to solve for C.) Then, we solve for

(c1, y1) using (6.22), and future consumption allocations using the policy functions from

the maximization problem (6.18).

However, we still need to find the set DOM. We can find this set using an

approach similar to what we used in the i.i.d. case. First, we define a mapping T

that maps compact subsets of RN into compact subsets of RN as follows. A util-
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ity vector (Uθk
)Nk=1 is in T (B), where B is a compact subset of RN , if there exists

(c(θn), y(θn), (U
0
θm
)Nm=1(θn))

N
n=1 such that:

Uθk
=
X
θn

π(θn|θk)[u(c(θn))− v(y(θn)/θn) + βU 0
θn
(θn)] (6.23)

u(c(θn))− v(y(θn)/θn) + βU 0
θn
(θn) ≥ u(c(θ0n))− v(y(θ0n)/θn) + βU 0

θn
(θ0n) for all θn, θ

0
n

For all θn, (U 0θm)
N
m=1(θn) ∈ B

What does T do? It translates a set of continuation utility vectors from period (t+ 1)

into a set of continuation utility vectors in period t. The domain of continuation utility

vectors is a fixed point of T.

We can start with a very large B - that is known to contain the set of all

possible continuation utility vectors - and iterate on T until we converge to some fixed

point. This fixed point is the domain of continuation utility vectors. Hence, we have

a three-step procedure that works. We first iterate on T to find the set DOM of

continuation utility vectors. Given DOM, we iterate on the functional equation (6.18)

to find the cost function C. Finally, we use C to solve the period 1 problem.

Unfortunately, there are significant practical difficulties with steps 1 and 2.

First, it is basically impossible to work with a set operator numerically. We need some

way to describe the relevant sets in a more usable way. Thus, in the i.i.d. case, with a

one-dimensional set, we described the relevant sets using endpoints. In the Markov case,

when the sets are N -dimensional, it’s much more difficult to know how to summarize
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the relevant information. At a minimum, we need some way to guarantee that DOM

is convex. Generally, we do this by allowing for randomized allocations. Then, once we

get to step 2, we need to find a fixed point of a functional equation, where the function

maps Θ×DOM into R. This nontrivial task is made more challenging by the fact that

DOM is typically non-rectangular (i.e., it is not the Cartesian product of N intervals).

A 6.2 A Closed Overlapping Generations Economy

In this section, I study the properties of optimal taxes in a loosely calibrated infinite

horizon overlapping generations economy.4 In the model, agents live for three periods

and work for the first two of these periods. Their skills when young have two possible

realizations, and their skill growths into middle age also have two possible realizations.

The distribution of skill growths are independent of their skill realizations when they are

young. The agents are not altruistic toward their descendants. I calibrate the model,

using recent evidence on the evolution of the cross-sectional distribution of wages over

the life cycle.

4In a recent paper, Huggett and Parra (2009) construct optimal allocations in an overlapping

generations model economy, given that skills are fixed over time and are private information. They

use this calculation to inform the construction of desirable tax reforms for a model economy in which

skills can evolve stochastically over time. They find that the welfare gains of such a reform can be

large.
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It is straightforward to compute a highly accurate approximate solution for

optimal taxes, given that the planner wishes to maximize long-run welfare. The main

finding is that the optimal tax system provides more insurance to young low-skilled

agents against future skill shocks than to young high-skilled agents.

B 6.2.1 Model Description

Time is discrete and is indexed by the natural numbers. At each date, a unit measure

of agents is born. Agents live for three periods, and can work in the first two periods

of their lives. Agents born at date t have the utility function:

u(cyt )− v(lyt ) + β[u(cmt+1)− v(lmt+1)] + β2u(cot+2)

Here, cyt (l
y
t ) represents the consumption (effort) of young agents at date t, c

m
t (l

m
t ) is

the consumption (effort) of middle-aged agents at date t, and cot is the consumption of

old agents at date t.

At date 1, there is also a unit measure of middle-aged agents who will live for

two periods, but work only in period 1. They have the utility function:

u(cm1 )− v(ly1) + βu(co2)

Finally, at date 1, there is a unit measure of old agents who will live for one period

only. They do not work, and they prefer more consumption to less.

I assume that skill shocks are highly persistent. Specifically, half of the young
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agents born at date t have skills θH and the other half have skills θL. Half of the highly-

skilled young agents have skills θHθ
0
H when middle-aged, while the other half have skills

θHθ
0
L. Half of the low-skilled young agents have skills θLθ

0
H when middle-aged, while

the other half have skills θLθ
0
L. This specification means that logged skills have a unit

root. Similarly, equal fractions of the middle-aged agents at date 1 have skills θiθ
0
j ,

where i, j ∈ {H,L}.

All period 1 agents are endowed with K1 units of capital per person. In this

setting, an allocation is a specification of (cyt , c
m
t , c

o
t , l

y
t , l

o
t , Kt)

∞
t=1 such that:

Kt ∈ R+ (6.24)

cyt : {θH , θL}→ R+, t ≥ 1

cmt : {θH , θL} × {θ0H , θ0L}→ R+, t ≥ 2

cot : {θH , θL} × {θ0H , θ0L}→ R+, t ≥ 3

lyt : {θH , θL}→ R+, t ≥ 1

lot : {θH , θL} × {θ0H , θ0L}→ R+, t ≥ 2
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and:

cm1 : {θiθ0j}i,j∈{H,L} → R+ (6.25)

lm1 : {θiθ0j}i,j∈{H,L} → R+

co2 : {θiθ0j}i,j∈{H,L} → R+

co1 ∈ R+

Society can combine effective labor and capital to generate consumption goods ac-

cording to an aggregate production F. Capital depreciates over time at rate δ, but it

is possible to turn consumption goods one-for-one into capital and vice-versa. This

specification of technology implies that an allocation (cyt , c
m
t , c

o
t , l

y
t , l

m
t , Kt)

∞
t=1 is feasible
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if:

Ct +Kt+1 ≤ (1− δ)Kt + F (Kt, Yt), t ≥ 1 (6.26)

C1 =
X

i∈{H,L}
cy1(θi)/2 +

X
i,j∈{H,L}

cm1 (θiθ
0
j)/4 + co1

Y1 =
X

i∈{H,L}
ly1(θi)θi +

X
i,j∈{H,L}

lm1 (θiθ
0
j)θiθ

0
j/4

C2 =
X

i∈{H,L}
cy2(θi)/2 +

X
i,j∈{H,L}

cm2 (θi, θ
0
j)/4 +

X
i,j∈{H,L}

co2(θiθ
0
j)/4

Y2 =
X

i∈{H,L}
ly2(θi)θi/2 +

X
i,j∈{H,L}

lm2 (θi, θ
0
j)θiθ

0
j/4

Ct =
X

i∈{H,L}
cyt (θi)/2 +

X
i,j∈{H,L}

cmt (θi, θ
0
j)/4 +

X
i,j∈{H,L}

cot (θiθ
0
j)/4, t ≥ 3

Yt =
X

i∈{H,L}
lyt (θi)θi/2 +

X
i,j∈{H,L}

lmt (θi, θ
0
j)θiθ

0
j/4, t ≥ 3

B 6.2.2 Model Calibration

I now turn to the calibration of the above model. In doing so, I immediately face a

conflict between practicality and theoretical purity. In an abstract sense, the above

analysis works for any notion of labor input. However, in a calibration, I must have

information about elasticities that represent the response of labor input to changes in

an agent’s productivity or skill. There is an intrinsic conflict here: I need information

about labor input and skills, even though the optimal tax problem presumes that the

government is unable to condition taxes on either variable.
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More concretely, I treat earnings as being the product of wages and hours,

and assume that taxes can only be conditioned on earnings (the product of wages and

hours). This approach allows me to exploit off-the-shelf estimates of the usual notions

of elasticities to calculate optimal taxes. But it is silent about why the government is

unable to base taxes on wages or hours.

I treat a period as if it consists of twenty years. Given these considerations, I

set:

u(c) = ln(c) (6.27)

β = 0.9820

δ = 1− 0.920

F (K,Y ) = K0.3Y 0.7

These settings are twenty-year analogues of standard annual parameterizations used in

calibrated business cycle models.

The elasticity of labor supply plays a critical role in determining optimal taxes.

I set:

v(l) = l1+1/ψ/(1 + 1/ψ)

For these isoelastic preferences, the parameter ψ represents the Frisch elasticity of labor

supply. Microeconometric estimates of this parameter are typically low (around 0.1)
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while estimates based on aggregate data are higher (around 1). Accordingly, I consider

three values for ψ (0.1, 0.5, and 1).

I calibrate the wage process as follows. I assume that, on average, individual

wages grow by about 50% from youth to middle age. This specification is roughly

consistent with Figure 1 in Low (2005). I use recent work by Heathcote, Storesletten,

and Violante (2007) to calibrate the law of motion of θ. Using data from the CEX and

the PSID, they find that the cross-sectional variance of logged wages at age 30 equals

0.25 and the cross-sectional variance of logged wages at age 50 equals 0.37 (see their

Figure 2).5 Correspondingly, I set:

θH = exp(0.5) (6.28)

θL = exp(−0.5)

θ0H = exp(0.4 +
√
0.12)

θ0L = exp(0.4−
√
0.12)

This particular choice of parameters is not uncontroversial. However, it reflects three

key well-established properties of wages that will prove important when we solve for

5These variances are actually the result of a filtering procedure described in footnote 37 of Heath-

cote, Storesletten, and Violante: "Effectively, we regress age/year observations for second moments on

a full set of time-dummies and plot the residuals by age group, averaging across all cohorts. This is

how the lines labelled “Data” are constructed in Figures 2-4."
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optimal taxes. First, wages grow over the life-cycle. Second, wages are highly persistent

(here, logged wages have a unit root). Finally, much, but not all, of the uncertainty

about individual wages is resolved early in one’s life.

B 6.2.3 Computing Long-Run Optimal Allocations

In this subsection, I describe how to compute a particular Pareto optimal allocation,

given that agents are privately informed about wages and hours. In the next subsection,

I show how to map this allocation into an optimal tax schedule (much as we did in

Chapter 4).

In overlapping generations economies, Pareto optima are distinguished by the

relative weights of the various generations. As in Phelan (2006), I assume that the

planner maximizes steady-state welfare. Given that assumption, the optimal capital-

effective labor ratio (K/Y ) satisfies the golden rule:

αKα−1Y 1−α = δ (6.29)

Note that (as is standard in overlapping generations economies) the optimal capital-

effective labor ratio is unrelated to agents’ discount factors. We can denote this optimal

capital-effective labor ratio by k∗ = (δ/α)1/(α−1).

In this simple setup, a mimicking strategy σ = (σ1, σ2) is a pair of mappings
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where:

σ1 : {θH , θL}→ {θH , θL} (6.30)

σ2 : {θH , θL} × {θ0H , θ0L}→ {θ0H , θ0L}

Let Σ be the set of all mimicking strategies, and define:

W (cy, cm, co, ly, lm; σ) (6.31)

=
X

(i,j)∈{H,:L}2

⎡⎢⎢⎣ u(cy(σ1(θi))) + βu(cm(σ2(θi, θ
0
j))) + β2u(co(σ2(θi, θ

0
j)))

−v( ly(σ1(θi))σ1(θi)
θi

)− βv(
lm(σ2(θi,θ

0
j))σ1(θi)σ2(θi,θ

0
j)

θiθ
0
j

)

⎤⎥⎥⎦ /4
Then, socially optimal allocations of consumption and effort solve the planner’s prob-

lem:

max
cy,cm,co,K,l

X
(i,j)∈{H,:L}2

⎡⎢⎢⎣ u(cy(θi)) + βu(cm(θi, θ
0
j)) + β2u(co(θi, θ

0
j))

−v(ly(θi))− βv(lm(θi, θ
0
j))

⎤⎥⎥⎦ (6.32)

s.t. W (cy, cm, co, ly, lm; σTT ) ≥ W (cy, cm, co, ly, lm;σ) for all σ in Σ

Y =
X

i∈{H,L}
ly(θi)θi/2 +

X
(i,j)∈{H,:L}2

lm(θi, θ
0
j)θiθ

0
j/4

X
i∈{H,L}

cy(θi)/2 +
X

(i,j)∈{H,L}2
cm(θi, θ

0
j)/4 +

X
(i,j)∈{H,L}2

co(θi, θ
0
j)/4 + δk∗Y

= F (k∗Y, Y )

In words, the planner’s problem maximizes the expected utility of a given agent among

all incentive-compatible and feasible allocations, given that the capital-effective labor

ratio is k∗.
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The planner’s problem (6.32) has 16 controls, one feasibility constraint, and

63 incentive constraints. I consider a relaxed problem in which the agent is allowed to

use only four different mimicking strategies {σTT , σ1, σ2, σ3}, where:

σ11(θi) = θi;σ
1
2(θL, θ

0
j) = θ0j; σ

1
2(θH , θ

0
j) = θ0L for (i, j) ∈ {H,L}2

σ21(θi) = θi;σ
2
2(θH , θ

0
j) = θ0L; σ

2
2(θL, θ

0
j) = θ0j for (i, j) ∈ {H,L}2

σ31(θi) = θL;σ
3
2(θL, θ

0
j) = θ0j; σ

3
2(θH , θ

0
j) = θ0H for (i, j) ∈ {H,L}2

Under mimicking strategy σ1, agents who have skill history (θH , θH) when middle-aged

pretend to be low-skilled in that period. Under mimicking strategy σ2, agents who have

skill history (θL, θH) when middle-aged pretend to be low-skilled in that period. Finally,

under mimicking strategy σ3, agents who are highly-skilled when young pretend to be

low-skilled in that period, and then pretend to be high-skilled when middle-aged if they

are actually low-skilled.

The resulting relaxed problem has sixteen controls, and only four constraints.

To solve this problem, I derived analytical formulae for the twenty first-order conditions

to this problem. I then computed an approximate solution to these first-order conditions

by using the GAUSS routine EQSOLVE. For this scale of problem, this routine is

extremely fast (it took 0.02 seconds). The approximation is highly accurate, in the

sense that the twenty first order necessary conditions were all less than 10−15 in absolute

value.
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Finally, to ensure that I actually have a solution to the original planner’s

problem (6.32), I checked the sixty discarded incentive constraints. They were all

satisfied by my computed solution to the relaxed problem.

It might be helpful for readers to know that I tried a different relaxed problem

first. In this alternative relaxed problem, I allowed the agent to use three possible

mimicking strategies: σ1, σ2, and σ30, where σ30 is defined by:

σ30(θi) = θL; σ
30
2 (θi, θ

0
j) = θ0j for all (i, j) ∈ {H,L}2

In this mimicking strategy, agents who are highly skilled in period 1 deviate in that

period by acting low-skilled. Unlike in strategy σ3, they never deviate again.

Surprisingly (at least to me) the solution to this alternative relaxed problem

ends up not being incentive-compatible. The solution offers big incentives to a middle-

aged person with history (θL, θ
0
H) to ensure that he does not mimic a person with history

(θL, θ
0
L). However, the persistence of skills means that these incentives in middle age

have a perverse effect on choices of young agents. Consider a person with skill θH when

young who pretends to have skill θL. The contract is designed so that he loses when

young by doing so.. However, the big incentives when middle-aged mean that he can

recoup this loss by acting as if he has skill θLθ
0
H , when his true skill level is θHθ

0
L.

In other words, the solution to the alternative relaxed problem makes σ3 a profitable

deviation, and so I was led to use my formulation of the relaxed problem (with σ3

instead of σ03) instead.
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B 6.2.4 Optimal Quantities and Optimal Taxes

In this subsection, I describe the optimal quantities and optimal taxes for this calibrated

example. To economize on space, I use subscripts to refer to the agents’ realized skills.

Hence, cyi represents c
y(θi), l

y
i represents l

y(θi), c
a
ij represents c

a(θi, θj), and lmij represents

lm(θi, θj) for (i, j) ∈ {H,L}2 and a ∈ {m, o}.

C Optimal Quantities

The computed optimal quantities are in Table 1. I do not tabulate coij explicitly; it

equals βcmij for all (i, j).

Table 1: Optimal Quantities in the Calibrated Model

ψ = 0.1 ψ = 0.5 ψ = 1

cyH , l
y
H 0.68, 1.01 0.82, 0.94 0.92, 0.80

cyL, l
y
L 0.59, 0.92 0.53, 0.63 0.50, 0.40

cmHH , l
m
HH 0.49, 1.12 0.71, 1.47 0.85, 1.80

cmHL, l
m
HL 0.41, 1.05 0.39, 1.20 0.37, 1.40

cmLH , l
m
LH 0.41, 1.02 0.39, 1.02 0.38, 1.01

cmLL, l
m
LL 0.38, 0.96 0.32, 0.81 0.29, 0.66

These computed solutions have two interesting properties. First, the gap

between ln(cmLH) and ln(c
m
LL) is smaller than between ln(c

m
HL) and ln(c

m
HH). Agents who
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are low-skilled when young are better insured, in terms of consumption, against future

skill shocks than are agents who are high-skilled in period 1. Relatedly, the cross-

sectional distribution of consumption among middle-aged and old agents is skewed to

the right. Second, for ψ = 0.5 or ψ = 1, the gap between ln(lmLH) and ln(l
m
LL) is larger

than the gap between ln(lmHL) and ln(l
m
HH). Agents who are low-skilled when young face

larger amounts of hours risk when middle-aged than do agents who are high-skilled

when young.

These two features of the optimal solution are generated by two elements of

the model. The first is that skills are persistent, and so it is optimal for low-skilled young

agents to work less (on average) when middle-aged than high-skilled young agents. The

second is that the disutility of labor is convex. These two ingredients mean that the

disutility of middle-aged labor for young high-skilled agents is steeper than for young

low-skilled agents. This difference in slope implies that it is optimal for high-skilled

young agents to face more consumption risk and less hours risk when middle-aged than

do low-skilled young agents.

C Optimal Capital Income Taxes

Given the computed optimal allocation, we can use the lessons of chapter 4 to translate

it into an optimal tax system in which capital income taxes are linear. Recall that in

this tax system, the optimal tax on (gross) capital income is set so that agents’ ex-post
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Euler equations are satisfied. Similarly, in this economy, we can define the optimal

capital income tax τkij so that it satisfies:

βu0(cmij )(1− δ + (1− τ kij)δ)/u
0(cyi ) = 1 (6.33)

(Here, I exploit the fact that the marginal product of capital equals δ in the optimal

allocation.) We can rewrite this formula (6.33) to get:

τkij = [1−
β−1u0(cyi )
u0(cmij )

]/δ (6.34)

I describe these optimal taxes in Table 2 below.

Table 2: Optimal Capital Income Taxes

ψ = 0.1 ψ = 0.5 ψ = 1

τ kHH −0.11 −0.33 −0.45

τ kHL 0.11 0.33 0.45

τ kLH −0.038 −0.11 −0.15

τ kLL 0.038 0.11 0.15

As in Chapter 4, the expected capital income tax rate is zero for any young

agent. The variance of capital income tax rates differs across young agents though.

Young low-skilled agents face capital income tax rates that are near zero in absolute

value, especially if the elasticity of labor supply ψ is small. In contrast, young high-

skilled agents face capital income tax rates that are large in absolute value. These
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differences in capital income tax rates are a direct reflection of differences in the optimal

degree of consumption insurance across the two groups of agents.

C Optimal Labor Income Taxes

There are (at least) two ways to think about optimal labor income taxes in this dynamic

setting. The optimal allocation features wedges between agents’ consumption-labor

marginal rates of substitution and marginal rates of transformation. These wedges can

be interpreted as being implicit marginal tax rates on labor

ηyi = 1− v0(lyi )
w∗θiu0(c

y
i )

ηmij = 1− v0(lmij )
w∗θiθ0ju0(c

m
ij )

Here, w∗ is the marginal product of effective labor in the optimal allocation (w∗ =

(1− α)k∗α). The resulting values for η are reported in Table 3.

Table 3: Optimal Wedges
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ψ = 0.1 ψ = 0.5 ψ = 1

H 0 0 0

L 0.071 0.21 0.27

HH 0 0 0

HL 0.094 0.26 0.33

LH 0.13 0.28 0.33

LL 0.10 0.27 0.33

The wedge is zero for young highly-skilled agents (ηH) or for agents who

are highly-skilled in both periods (ηHH) of their working lives. This result is another

manifestation of the usual "no-distortion-at-the-top" principle. It is more surprising

that the wedge is non-zero for high-skilled middle-aged agents if they were low-skilled

when young. This positive wedge is generated by the binding double-deviation incentive

constraint faced by young agents.

Chapter 4 describes another way to think about optimal labor income taxes.

For all (i, j) in {H,L}2, define:

LIij = u0(coij)
−1β−2w∗[u0(cyi )l

y
i θi + u0(cmij )βl

m
ij θiθ

0
j ]

to be the future value (when old) of the labor income received by an agent who gets

skill shocks (θi, θ
0
j) over his lifetime. At the same time, we can define:

TAXij = LIij − u0(coij)
−1β−2[u0(cyi )c

y
i + βu0(cmij )c

m
ij + β2u0(coij)c

o
ij]
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to be the future value of taxes paid by an agent with the same history. Then, we

can define a function that maps realizations of LIij into corresponding realizations of

TAXij. A labor income tax schedule (regardless of its actual timing of tax collection

collections) is optimal if and only if it is consistent with this function from LIij into

TAXij.

Table 4 describes this function from LIij into TAXij for various specifications

of ψ. The results are relatively intuitive: in order to share skill risk, high-skilled agents

are taxed to subsidize low-skilled ones. The absolute levels of taxes are surprisingly

unaffected by the level of ψ.

Table 4: Optimal Future Values of Labor Earnings and Taxes

ψ = 0.1 ψ = 0.5 ψ = 1

LIHH , TAXHH 2.52, 0.96 3.15, 0.91 3.58, 0.88

LIHL, TAXHL 1.47, 0.18 1.41, 0.18 1.42, 0.25

LILH , TAXLH 0.83,−0.45 0.76,−0.47 0.69,−0.50

LILL, TAXLL 0.51,−0.69 0.38,−0.63 0.28,−0.63

A 6.3 Summary

This chapter describes methods to solve for optimal allocations in dynamic economies

with private information frictions. When agents are infinitely-lived, we need to make

the optimization problem recursive with respect to a low-dimensional state variable. If
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skill shocks are i.i.d., and the rate of return on capital is exogenous, then the problem

is recursive with respect to a one-dimensional state variable (continuation utility). It

is quite practical to compute approximate solutions to such a problem, and Albanesi

and Sleet 2006) do in fact compute optimal tax systems in calibrated versions of such

economies. The i.i.d. assumption is highly restrictive, though. We can also make the

social planner’s problem recursive if skills are Markov. However, the dimension of the

summary state variable equals the number of elements of the state space, and the state

variable’s domain must also be computed. The resulting method is only practical if the

state space has a small number of elements (no more than three).

In the next chapter, I discuss possible fixes to the problems associated with

the case in which skills are Markov. However, in the short run and possibly even

intermediate run, I believe that we should resort to computing solutions to overlapping

generations economies in which agents live for a small number of periods. As the

analysis in Section 6.2 indicates, these exercises can be quite informative.
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CT The Way Forward

In the prior chapters, I have provided a survey of the current state of the New Dynamic

Public Finance. Much has been accomplished in a relatively short period, but there

is certainly more to be done. In this chapter, I discuss what strike me as promising

directions for future research. I focus on tax systems that are more widely applicable, on

better solution methods, and on what information we need from the data to implement

the new dynamic public finance.

A 7.1 More Widely Applicable Tax Systems

I show in Chapters 4 and 5 that, given any data generation process for skills, we can

design a class of optimal tax systems. We know from Chapter 3 that optimal tax

systems must deter asset accumulation in some fashion. The tax systems presented in

220
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Chapters 4 and 5 do so in simple ways: the tax systems in Chapter 4 feature linear taxes

on asset income, and the tax systems in the intergenerational setup within Chapter 5

feature linear taxes on bequests.

The main restriction underlying the analysis in these chapters is that prefer-

ences are additively separable between consumptions at different dates and states, and

between consumption and leisure. There is a considerable amount of work on asset

pricing that suggests that the former assumption is problematic. With this motivation

in mind, Grochulski and Kocherlakota (2008) extend the analysis in Chapter 4 to pref-

erences that exhibit nonseparabilities (like habit formation) between consumptions at

different dates. The resulting tax systems are, as before, linear in asset incomes.

Grochulski and Kocherlakota (2008) do continue to require weak separability

between consumption sequences and labor sequences. (That is, they require the mar-

ginal rate of substitution between consumption at two different dates to be the same,

regardless of the agent’s chosen sequence of labor inputs.) It is unlikely that even this

weaker assumption is plausible. For example, Aguiar and Hurst (2005) document that

when people decrease market hours upon retirement, they also decrease their consump-

tions. This connection between market hours and consumption growth is inconsistent

with weak separability of preferences. It would definitely be desirable to be able to con-

struct optimal tax systems in dynamic settings in which preferences are nonseparable

between consumption and labor inputs.
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In a recent working paper, Werning (2009) tackles this problem with great

success. He considers a class of model economies similar to the ones in Chapter 3.

He starts with an arbitrary incentive-compatible allocation (not necessarily an opti-

mal one), assuming that skills are private information. Definitionally, given such an

allocation, no agent of a given skill wants to change his effort choices so as to mimic

some other agent’s output choices. Werning expands the range of possible choices for

agents by allowing them to borrow/lend at a fixed gross interest rate R in addition to

their being allowed to alter their effort choices. He then asks the question: how should

society design taxes on savings to deter agents from using this extra ability to borrow

and lend?

For any incentive-compatible allocation, there are many such tax schedules,

but Werning is able to provide a complete characterization of the entire set. This

characterization turns out to be particularly interesting when skills evolve according

to a Markov process with a continuous transition density. In that case, any incentive-

compatible allocation can be supported using a tax schedule that satisfies two proper-

ties. First, the tax schedule is differentiable with respect to period t savings, when the

derivative is evaluated at agents’ equilibrium savings levels. Second, the tax on period

t savings does not depend on labor income in period (t + 1). (Note that Section 4.3.3

shows that it is impossible to construct an optimal tax schedule that satisfies these two

properties when skills have a finite support.)
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In this differentiable tax system, the marginal tax rate on savings is equal to

the wedge between the interest rate R and the shadow interest rate associated with

the allocation. In the special case of preferences that are additively separable between

consumption and leisure, we know from our analysis in Chapter 3 that shadow interest

rates in an optimal allocation are never larger than, and are typically lower than, the

interest rate R. Hence, with additively separable preferences, the marginal tax rate on

period t savings is typically positive in any optimal tax schedule that is differentiable

and independent from period (t+ 1) labor income.

Werning’s derivation does assume that preferences are additively separable

over dates and states. However, he allows preferences to be nonseparable between

consumption and leisure. This ability to handle this broader class of preferences makes

Werning’s construction especially appealing. Werning’s construction also suggests that

in the context of the new dynamic public finance, it may be better to use processes

with continuous densities to model the evolution of the underlying shocks. The next

section underscores this message.

A 7.2 New Solution Methods

Chapter 6 proposes a method to compute optimal taxes in model economies in which

skills are Markov. The proposed method is, at best, computationally intensive. It can

be implemented if the state space of the Markov chain has only two elements (Fernandes
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and Phelan (2000)), but is probably impractical otherwise.1 Recent work by Kapicka

(2008) and Pavan, Segal, and Toikka (2008) suggests that it may be easier to proceed

if the set Θ of skills is actually an interval, and the transition density π(θt|θt−1) is

differentiable with respect to θt−1.

To understand the basic logic, it is helpful to consider a two-period model

with hidden skills. In period 1, agents’ skills are drawn from the density π1, which is

continuous over an interval Θ = [θ, θ]. The draws are i.i.d. over agents, so that there is

no aggregate risk. Then, conditional on θ1, agents’ skills in period 2 are drawn from the

density π2(θ2|θ1). Here, π2 is continuous with respect to θ2 (over Θ) and differentiable

with respect to θ1. Again, conditional on θ1, the draws are i.i.d. over agents. Agents

have a momentary utility function of the form u(c, y/θ) such that both utility and

marginal utility are non-negative and bounded from above.

Suppose (c, y) is an allocation in this setting. Define:

W (θ1,bθ1) = Z
Θ

u(c2(bθ1, θ2), y2(bθ1, θ2)/θ2)π2(θ2|θ1)dθ2 (7.1)

to be the agent’s period 2 (ex-ante) continuation utility. If the agent acts as if his skill

realization is bθ1, then he gets the continuation utility function W (.;bθ1), as a function
1Fukushima and Waki (2009) generalize the approach in Chapter 6 to design a solution method

that is practical for a larger class of transition matrices. As of this writing, their method does require

that the rank of the transition matrix be 3. Such Markov chains are non-generic, given a state space

that has more than 3 elements. However, Fukushima and Waki argue that it should be possible to use

their method to construct approximate solutions for a wide class of Markov chains.
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of his true type θ1. Thus, W is the analog of the continuation utility vector that we

used in Section 6.1.2. The allocation (c, y) is incentive-compatible if and only if:

u(c1(θ1), y1(θ1)/θ1) + βW (θ1, θ1) (7.2)

≥ u(c1(bθ1), y1(bθ1)/θ1) + βW (θ1,bθ1) for all θ1,bθ1

u(c2(θ1, θ2), y2(θ1, θ2)/θ2) (7.3)

≥ u(c2(θ1,bθ2), y2(θ1,bθ2)/θ2) for all θ1, θ2,bθ2 in Θ

These inequalities suggest that, to verify incentive-compatibility, we need to know the

entire continuation utility function W . From a computational point of view, keeping

track of this much information in the planner’s problem would be impossible.

However, it is possible to create a relaxed problem that has a simpler recursive

structure. The key to doing so is that the transition density π2 is differentiable with

respect to θ1. Suppose (c, y) is incentive-compatible. Define:

R(θ1,bθ1; c, y) = u(c1(bθ1), y1(bθ1)/θ1) + βW (θ1,bθ1) (7.4)

to be the utility that a type θ1 agent receives from pretending to have skill bθ1, and
define:

R∗(θ1; c, y) = R(θ1, θ1; c, y) (7.5)
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to be the utility that a type θ1 agent gets from not mimicking any other type. The

assumption that π2 is differentiable with respect to θ1 implies that W and R are both

differentiable with respect to θ1. For now, suppose (c1, y1,W ) are differentiable with

respect to bθ1. (This restriction on the incentive-compatible allocation is not necessary.
In the technical notes to this chapter, I show how to dispense with it.)

Since (c, y) is incentive-compatible, the partial derivative R2(θ1, θ1; c, y) = 0

for all θ1. Hence:

R∗0(θ1; c, y) = R1(θ1, θ1; c, y) +R2(θ1, θ1; c, y) (7.6)

= R1(θ1, θ1; c, y)

It follows from the Fundamental Theorem of Calculus that:

R∗(θ1; c, y) =
Z θ1

θ

R1(ε, ε; c, y)dε+R∗(θ; c, y) (7.7)

which can be rewritten as:

u(c1(θ1), y1(θ1)/θ1) + βW (θ1, θ1) (7.8)

=

Z θ1

θ

[−uy(c1(ε), y1(ε)/ε)y1(ε)/ε2 + βW1(ε, ε)]dε

+u(c1(θ), y1(θ)/θ) + βW (θ, θ)

Here, W1 is the partial derivative of W with respect to its first argument. Checking

this necessary condition (7.8) does not require us to know the entire continuation utility
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function W . Instead, we need only to know the level and partial derivative of W at all

points at which its arguments are the same. Thus, making sure that (c, y) satisfies local

incentive-compatibility, as opposed to global incentive-compatibility, greatly reduces

the amount of information that we need to carry forward from one period to the next.

Intuitively, to check first-order conditions, we don’t need to know all of W. We only

need to know how W changes with respect to infinitessimal changes in θ1 to make sure

that agents don’t want to mimic another type.

This argument suggests the following approach to solving for optimal alloca-

tions. Given a planner’s problem, replace the incentive-compatibility constraints with

the first order conditions (7.8). The above paragraph indicates that this relaxed prob-

lem has a relatively simply recursive structure (with two state variables instead of a

continuum). It is therefore possible to compute its solution numerically (as Kapicka

(2008) does).

The resulting allocation solves the relaxed problem. We still need to check if

this solution lies in the constraint set of the original problem. We do so by verifying

if the putative solution is in fact incentive-compatible. In the technical notes, I show

that any element (c, y) of the relaxed problem constraint set is incentive-compatible

if it satisfies a particular endogenous single-crossing condition (the partial derivative

R1(θ1,bθ1; c, y) is non-decreasing in bθ1).
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A 7.3 Inputs From the Data

This book characterizes optimal tax systems in dynamic economies. The character-

izations are robust (they apply for a wide class of preferences and virtually all data

generation processes for skills). Nonetheless, they are only partial and (largely) qual-

itative in nature. Going forward, it will be desirable to develop much more complete

and quantitative descriptions of optimal tax systems.

We can gain an understanding of how this might work by reading Saez (2001)’s

classic paper about optimal taxation in static economies. Saez re-writes Mirrlees’ (1971)

formulae in terms of estimable quantities from the data. The resulting optimal tax

formulae depend on the nature of the social welfare function (in terms of how it weights

people with different skills). More interestingly, Saez’s re-constructed formulae show

that, to design the optimal tax schedule, an analyst needs to be able to measure the

compensated elasticity of labor supply, the uncompensated elasticity of labor supply,

and the cross-sectional density of earnings. (Saez’s formulae allow for heterogeneity in

the various elasticities, so that the term "the" compensated elasticity is misleading.)

By plugging in estimates for these quantities, Saez is able to provide a characterization

of the optimal labor income tax schedule.

Of course, Saez’s analysis is limited by its static nature. He is forced to ignore

the interaction between asset accumulation and labor supply that I have stressed in

this book (see Chapter 3). Perhaps even more importantly, his approach dispenses
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with dynamic labor supply issues. Over the course of a lifetime, people make choices

that influence their labor productivities at future dates. To properly construct an

optimal labor income tax schedule, one needs to take into account the response of these

human capital accumulation decisions to changes in taxes.

The new dynamic public finance needs to become quantitative. It can do

so by building on Saez’s work in ways that take into account the dynamic incentive

issues that he ignores. The requisite extensions will be nontrivial in nature. To begin

with, Saez proceeds by mapping estimates of elasticities into optimal tax formulae.

In a dynamic setting, in which agents cannot fully insure against idiosyncratic risk,

this approach is considerably less fruitful. There are now a host of relevant elasticities

(how does an agent’s period s labor supply and human capital accumulation decisions

respond to a change in the wages that he anticipates t years from now, for any s, t?).

It is impossible to imagine having sufficient data to estimate these elasticities in a fully

flexible fashion. Instead, we should proceed by estimating an appropriate specification

for momentary utility functions and discount factors. Functional form restrictions on

preferences (of the kind often imposed by macroeconomists) will translate directly into

useful restrictions across the various elasticities.

Once we have specified preferences, we need to model the evolution of wages

over time. (I don’t mean to suggest that it will be desirable to estimate preferences

and wages separately; joint estimation might well be preferable.) Estimating this law
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of motion is challenging. In particular, we face the usual (and important) problem of

how to sort out persistent shocks from age/cohort effects.

Finally, I have assumed that agents cannot influence the evolution of skills.

More realistically, people differ in their abilities to translate current time into human

capital (that is, future wages).2 In dynamic settings, this form of heterogeneity could

play a critical role in shaping optimal taxes. For example, I would conjecture that a

desirable tax system would feature higher marginal tax rates on young high-income

agents as opposed to old high-income agents. This kind of age dependence would be

useful in generating higher levels of human capital accumulation.3

A 7.4 Summary

Throughout most of this book, I have imposed the restriction that skills evolve according

to processes with finite support. In this chapter, I argue that we can make progress by

assuming instead that skills evolve according to transitions with continuous densities.

Under this assumption, Werning suggests a way to design optimal taxes that works

even when preferences are not additively separable between consumption and leisure.

2Kapicka (2006) analyzes an optimal tax problem with this kind of heterogeneity. Yazici (2009)

addresses optimal taxation in the presence of parental investment into their children’s human capital.
3Grochulski and Piskorski (2006) study a dynamic optimal tax problem, given that agents have

different abilities to translate consumption into human capital, and that these consumption investments

are unobservable to tax authorities.



The New Dynamic Public Finance 231

We may also be able to design tractable solution methods for models in which skills

are persistent.

The ultimate goal is to extend Saez’s results for optimal taxes in a static set-

ting to dynamic models. Saez’s analysis generates elegant formulae that map estimable

features of labor supply into optimal tax schedules. In contrast, a desirable dynamic

analysis will almost inevitably be grounded in large-scale computational work and be

correspondingly less elegant. It will need to accomplish two related objectives. First, it

has to provide computational algorithms that map features of preferences, wage evolu-

tion, and human capital accumulation technologies into optimal tax schedules. Second,

it has to provide ways to measure these inputs from microeconomic evidence. My hope

and expectation is that this two-part agenda will lead to the qualitative lessons of this

book being supplanted by more precise quantitative ones in the relatively near future.

A 7.5 Technical Notes

In this section, I first justify (7.8). The argument is based on the proof of Theorem

2 in Kapicka (2008). I then show that (c, y) is incentive-compatible if it satisfies an

appropriate single-crossing condition. This latter argument is based on the proof of

Theorem 3 in Kapicka (2008).
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As in the text, define:

R(θ1,bθ1) = u(c1(bθ1), y1(bθ1)/θ1) + βw2(θ1,bθ1) (7.9)

R∗(θ1) = u(c1(θ1), y1(θ1)/θ1) + βw2(θ1, θ1) (7.10)

By the definition of incentive-compatibility, we know that:

R(θ1 + η, θ1)−R∗(θ1 + η) ≤ 0

Hence:

lim
η→0+

η−1[R∗(θ1)−R∗(θ1 + η)] (7.11)

= lim
η→0+

η−1[R(θ1, θ1)−R(θ1 + η, θ1 + η)] (7.12)

= lim
η→0+

{η−1[R(θ1, θ1)−R(θ1 + η, θ1)] (7.13)

+η−1[R(θ1 + η, θ1)−R(θ1 + η, θ1 + η)]} (7.14)

≤ lim
η→0+

η−1[R(θ1, θ1)−R(θ1 + η, θ1)] (7.15)
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As well:

lim
η→0−

η−1[R∗(θ1)−R∗(θ1 + η)] (7.16)

= lim
η→0−

η−1[R∗(θ1)−R∗(θ1 + η)] (7.17)

= lim
η→0−

η−1[R(θ1, θ1)−R(θ1 + η, θ1 + η)] (7.18)

= lim
η→0−

{η−1[R(θ1, θ1)−R(θ1 + η, θ1)] (7.19)

+η−1[R(θ1 + η, θ1)−R(θ1 + η, θ1 + η)]} (7.20)

≥ lim
η→0−

η−1[R(θ1, θ1)−R(θ1 + η, θ1)] (7.21)

We can conclude that R∗0(θ1) exists and equals R1(θ1, θ1), where R1 is the partial of R

with respect to its first argument (the true type). The fundamental theorem of calculus

then implies the restriction (7.8).

Next, suppose (c, y) satisfies (7.8) and the partial derivative R1(θ1,bθ1) is non-
decreasing in bθ1. If θ1 > bθ1, then:

R(θ1, θ1)−R(bθ1,bθ1) (7.22)

=

Z θ1

bθ1 R1(ε, ε; c, y)dε (7.23)

≥
Z θ1

bθ1 R1(ε,bθ1; c, y)dε (7.24)

= R(θ1,bθ1; c, y)−R(bθ1,bθ1; c, y) (7.25)
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and so R(θ1,bθ1; c, y) ≤ R(θ1, θ1; c, y). If θ < bθ1, then:
R(bθ1,bθ1; c, y)−R(θ1, θ1) (7.26)

=

Z bθ1
θ1

R1(ε, ε)dε (7.27)

≤
Z bθ1
θ1

R1(ε,bθ1)dε (7.28)

= R(bθ1,bθ1)−R(θ1,bθ1) (7.29)

which again implies R(θ1, θ1) ≥ R(θ1,bθ1).
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