
1 a) Business cycle regularities

General idea: Some sort of recurrence: Upturns are followed by downturns.

Two approaches:

First approach:
Classical business cycle: NBER Burns and Mitchell: Try to identify common turningpoints from

individual series.

Not a clear statistical foundation, a judgement by NBER, Business Cycle Dating Committee,Robert

Hall, Martin Feldstein, President,Jeffrey Frankel, Robert Gordon, Christina Romer,David Romer,Victor

Zarnowitz.

"A recession is a significant decline in economic activity spread across the economy, lasting more

than a few months, normally visible in real GDP, real income, employment, industrial production, and

wholesale-retail sales. A recession begins just after the economy reaches a peak of activity and ends as

the economy reaches its trough. Between trough and peak, the economy is in an expansion. Expansion

is the normal state of the economy; most recessions are brief and they have been rare in recent decades."

"The committee views real GDP as the single best measure of aggregate economic activity."

"Most of the recessions identified by our procedures do consist of two or more quarters of declining

real GDP, but not all of them.

Quotes from http://www.nber.org/cycles/recessions.html

Second approach:
Idea: Non-stationary variables can be separated in a cyclical (stationary) part and a trending non-

stationary. The cyclical is (approximately) covariance stationary:

EYt = µ (typically 0) ∀t
E (Yt − µ) (Yt−k − µ) = ψk∀t

Yt can be a vector of many variables.

Empirical problem:

No unique way of separating cycle from trend.

A time-series - a sum of sine-waves of different frequency —like light or noise.

A lot of variation at fairly low frequencies. Should this be kept? Remains if we use log-linear trend.

Show!
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Most common way to separate: Hodrick-Prescott (Whittaker-Hendersson) filter. Solution to

min
{Yc,t,Ytr,t}T0

T∑
t=0

(Yc,t)
2

s.t.
T∑
t=2

((Ytr,t − Ytr,t−1)− (Ytr,t−1 − Ytr,t−2))2 = k

Yt = Ytr,t + Yc,t

Trading of tracking Yt (giving small Yc,t) against a changing the slope of the trend Ytr,t. Lagrange

multiplier on first constraint determines split. Can be correct given a special structure of the data

generating process, e.g.,

(1− L)2 Ytr,t ≡ (Ytr,t − Ytr,t−1)− (Ytr,t−1 − Ytr,t−2) = εt

Yc,t = νt

with εt and νt i.i.d.
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In practice, easy to implement (a linear filter). Decide λ first, then multiply series by the matrix

Yc,t =
[
I − (I + λκ′κ)

−1
]
Yt

.

where κ is a matrix with dimension n− 2, n if the samle size is n, given by

κ =



1 −2 1 0 ... 0

0 1 −2 1 ... 0

0 0 1 −2 ... 0

. . . . ... .

. . . . ... .

0 0 0 1 −2 1


The matrix

[
I − (I + λκ′κ)−1

]
doesn’t contain many (any) zeros. This means that Yc,t is a linear

combination of all previous and future values of Yt. For example, take the 6 observation case for λ = 10,
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giving



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



−





1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


+ λ


1 −2 1 0 0 0

0 1 −2 1 0 0

0 0 1 −2 1 0

0 0 0 1 −2 1


T 

1 −2 1 0 0 0

0 1 −2 1 0 0

0 0 1 −2 1 0

0 0 0 1 −2 1





−1
λ=10

=



0.41 −0.37 −0.19 −5. 1× 10−2 0.05 0.14

−0.37 0.69 −0.22 −0.12 −3. 4× 10−2 0.05

−0.19 −0.22 0.77 −0.19 −0.12 −5.1× 10−2

−5. 1× 10−2 −0.12 −0.19 0.77 −0.22 −0.19

0.05 −3. 4× 10−2 −0.12 −0.22 0.69 −0.37

0.14 0.05 −5. 1× 10−2 −0.19 −0.37 0.41


It has become a standard to use λ = 1600 for quarterly data.

λ should be adjusted down with lower frequency. Unclear how much, some use linear, implying (λ =

1600/4 = 400) for yearly, some quadratic (1600/16=100) some even forth power adjustment (1600/44 =

6.25). For a discussion see e.g., Marcet and Ravn, 2003. http://www.econ.upf.edu/docs/papers/downloads/588.pdf

Some potential problems, but still used alot. Can keep to much low frequencies and to much high.

Can be important.

Alternative: Band-pass filter. Decide a spectrum. E.g., 3-8 years.

Characteristics of different filters: Show Figure 1 in "The Swedish Business cycle".

Note also that Yc,t is a function of future Yt+s. Dangerous to use Granger causality tests.

Definition:
Yt Granger cause Xt if Yt helps predict Xt+s, for s > 0 but the reverse is not true. Typically, in a
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regression of Xt+1 on Xt−s for s ≥ 0 and and Yt−s s ≥ 0, the coeffi cient on some Yt−s is significant, but

the reverse is not true.

1.1 Regularities

Typically look at correlation (possibly covariance) with output, Yc,t.

X is Procyclical if
corr(Yc,t, Xc,t) > 0.

X is Countercyclical if
corr(Yc,t, Xc,t) < 0.

X is Leading if
corr(Yc,t+s, Xc,t) is highest and positive for s > 0.

X is Lagging if
corr(Yc,t+s, Xc,t) is highest and positive for s < 0.

Findings (USA):
Consumption and investments strongly procyclical.

Durables purchases very volatile and procyclical, services much less.

Some evidence consumption Granger cause output.

Inventory investment procyclical. —perhaps surprising.

Exports not very cyclical.

Government spending neither.

Most sectors correlated (except mining).

Employment and hours strongly procyclical., employment with a slight lag (1 quarter). Employment

more volatile than hours/employee.

Vacancy rate leads.

Capacity utilization and productivity procyclical. (Solow residual).

Real wages almost acyclical (Rubinstein Tsiddon finds that for unskilled, there is substantial procycli-

cality).

Business cycle not a shift in labor demand along a constant labor supply function, then wages should

be procyclical.

Nominal interest rate strongly procyclical.

Real rate slightly countercyclical.

Raw inflation not cyclical while detrended is or when separating sub-periods.
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Consistent with expectation augmented Phillips-curve.

Monetary policy seems to affect output, prices much later.

These characteristics are fairly stable over time and between (similar) countries.
Small economies

Sweden: similar but exports much more procyclical, also export prices.

But no evidence that foreign demand drives Swedish GDP, FY not much correlated with Y. (Special

case of Sweden: devaluation cycles)
Continental countries, in part. Benelux, Germany, Austria highly correlated.

Fairly strong negative correlation between real wages and employment, positive with unemployment.

1.2 VAR

Vector-Auto regression. "Explain" data in a regression where a set of variables is regressed on lagged

variables of itself. For example, let

xt ≡

 πt

ut

rt


A (reduced form) VAR is then

xt = B1xt−1 +B2xt−2 + ...

 u1,t

u2,t

u3,t

 (1)

B1 =

 b1,11 b1,12 b1,13

b1,21 b1,22 b1,23

b1,31 b1,32 b1,33


By including suffi ciently many lags, we can always make ut uncorrelated over time.

Purpose:

1. Data description —provide benchmark for macro models.

(a) Impulse-responses

(b) Granger-causality — does one variable help predict another in the VAR regression? Is, for

example, b.,12 non-zero, then unemployment helps predict inflation.
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(c) Variance decomposition —which innovations are important for which variables deviations from

forecast?

2. Forecasting —provide good forecasts, better than most other methods.

3. Structural interpretation and policy evaluation. What is, e.g., the impact of a increase in the fed

funds rate? Can something be said about policy changes? Requires more assumptions —structure.

Non-reduced form VAR’s
1. Recursive VAR’s

In (1) innovations are typically correlated. What are these shocks and what accounts for their cor-

relation? Correlation makes interpretation of a change in just one innovation a little diffi cult. We can

make the errors orthogonal in the following way, πt

ut

rt

 =

 0 0 0

b0,21 0 0

b0,31 b0,32 0


 πt

ut

rt

+B1xt−1 +B2xt−2 + ...

 ε1,t

ε2,t

ε3,t


This ordering can in principle be done in any way —giving different estimates of parameters. Some-

times theory can make the ordering less arbitrary. Suppose, the one variable is fiscal policy, maybe

political constraints makes it impossible to react to current innovations to inflation or other variables. Or

conversely, suppose we know that interest rates are set based on current inflation unemployment, then it

makes sense to put it last. Now more direct to interpret an innovation, e.g., ε3,t as an innovation to the

interest rate.

Could we allow more contemporaneous interdependencies than in this triangular way? Not right away.

To see why consider a simple two variable VAR with one lag. Suppose

ut = b01rt + b11ut−1 + b21rt−1 + ε1,t

rt = b02ut + b12ut−1 + b22rt−1 + ε2,t

with ε1 and ε2 i.i.d. over time and between each other. To consistently estimate this, we as usual need

the regressors to be uncorrelated with the error term. Clearly, this is true for the lagged variables. Is is

true for the rt in the first equation and ut in the second? Let’s check
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E (rtε1,t) = E ((b02ut + b12ut−1 + ε2,t) ε1,t)

= E ((b02ut) ε1,t) 6= 0 if b02 6= 0.

E (utε2,t) = E ((b01rt + b11ut−1 + ε1,t) ε2,t)

= E ((b01rt) ε2,t) 6= 0 if b01 6= 0

Therefore, we cannot estimate the model directly, need some instrumental variables, for example. On

the other hand, if the recursive formulating is correct, b01 = 0 so we have

ut = b11ut−1 + b21rt−1 + ε1,t

rt = b02ut + b12ut−1 + b22rt−1 + ε2,t

Then, first equation is clearly identified. What about the second? We need to check

E (utε2,t) = E ((b11ut−1 + b21rt−1 + ε1,t) ε2,t)

= E (ε1,tε2,t) = 0.

2. Structural VAR’s

Suppose we know, or dare to assume, some more explicit contemporaneous relations between the

variables. For example, suppose we have a theory that says that inflation is caused by deviations of

ut from the natural rate, πt = −b (ut − u∗) and that interest rates follow a Taylor rule, rt = r∗ +

1.5 (πt − π∗)− 1.25 (ut − u∗) .We can then build in these relations in the VAR and get a structural VAR.
Note that this provides both an ordering and specific parameters. ut

πt

rt

 =

 0 0 0

−b 0 0

−1.25 1.5 0


 ut

πt

rt

+B1

 ut−1

πt−1

rt−1

+ ...

 ε1,t

ε2,t

ε3,t


If all equations comes from structural relations, we can, in principle use our model for policy change

evaluation. Usually diffi cult. We can instead use fully structural models, soon to be seen. Problem with

them is that they perform much worse in terms of replicating data.
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2 b) Labor/leisure trade-off—the RBC model

A reasonable model of business cycles arguably needs fluctuations in labor use. One way; search — it

takes time to find a job/worker and varying amounts of job-creation - destruction —Mortensen-Pissarides

—Shimer Puzzle. Can also endogeneize search effort. Various variants of labor market —random search

vs. directed search. Bargaining with/without commitment, wage posting, collective bargaining.

A principally different way, assume perfect labor markets and add a labor/leisure choice. Later, we will

discuss how labor market works, non-convexities, unions and other things that can cause unemployment.

Problem of planner/representative household:

max
{Ct+s,Kt+1+s,Lt+s}s≥0

E
∑
s=0

βsU (Ct+s, Lt+s) |Ωt

s.t. Ct+s +Kt+1+s = ZtF (Kt+s, 1− Lt+s) + (1− δ)Kt+s∀s ≥ 0

Kt given.

Zt is a productivity shock, perhaps autocorrelated and non-stationary. Why one or few shocks?

Lagrange objective:

Et
∑
s=0

βs (U (Ct+s, Lt+s) + λt+s (Zt+sF (Kt+s, 1− Lt+s) + (1− δ)Kt+s − Ct+s −Kt+s+1))

First-order conditions for ct:

UC (Ct, Lt) = λt

For Lt
UL (Ct, Lt) = λtZtFN (Kt, 1− Lt)

For Kt+1

Etβλt+1 (Zt+1FK (Kt+1, 1− Lt+1) + 1− δ) = λt

Defining

Rt+1 ≡ Zt+1FK (Kt+1, 1− Lt+1) + 1− δ

we get

UC (Ct, Lt) = EtβRt+1UC (Ct+1, Lt+1) (2)
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and defining

wt ≡ ZtFN (Kt, 1− Lt)
UL (Ct, Lt)

UC (Ct, Lt)
= wt. (3)

We have one intertemporal condition, the Euler condition (2)as before and now also a intratemporal

decision (3).

2.1 Balanced growth

Let’s now discuss under which circumstances we can have a balanced growth of the economy, i.e., a

situation where wages, production and consumption grow at the same constant rate while labor supply

and variables expressed per effi ciency unit of labor are constant. We do this since this is an arguably

reasonable description of reality and since it can have implications for business cycle behavior of the

economy, being the main topic of interest in this course.

Suppose the wage increases by a factor A, and consumption also increases by the same factor A.

Use intratemporal FOC. Then, if UL/UC decreases by a factor A, labor supply should be unchanged.

Mathematically,
UL (AC,L)

UC (AC,L)
= Aw∀A (4)

If this is the case, we can have a balanced growth path where C and w grow over time at the same

rate while N is constant.

In particular, if we use A = 1
C

UL (C,L)

UC (C,L)
= w

UL (1, L)

UC (1, L)
=

1

C
w

⇒ UL (C,L)

UC (C,L)
= C

UL (1, L)

UC (1, L)

Clearly, this implies the utility must be of the form

U (C,L) = u (Cv (L))

since only then is UL(C,L)
UC(C,L)

proportional to something only depending on Lt, with a proportionality factor
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C. Therefore,
UL (C,L)

UC (C,L)
=
u′ (Cv (L))Cv′ (L)

u′ (Cv (L)) v (L)
= C

v′ (L)

v (L)
.

Result: IffU (C,L) can be written u (Cv (L)) can we have a case when wages and consumption grow

while labor supply is constant.

Now, let’s turn to what is required for a constant (stationary) interest rate. In a steady state with

constant interest rate, and constant growth rate g of consumption the Euler equation is

UC (C,L)

UC ((1 + g)C,L)
= βR.

For this to be true for all C, we need a function with constant intertemporal elasticity if substitution

utility function (equivalently, CRRA). The only class of functions satisfying this are of the form

U (C,L) = u (Cv (L)) =
σ

σ − 1
(Cv (L))

σ−1
σ , (5)

or with σ = 1

U (C,L) = lnC + ṽ (L) .

The parameter σ > 0 measures the degree of intertemporal substitution1

−
(
d ln (Uc)

d ln c

)−1
= σ.

What happens with CARA?

U = −σe−σC

UC = σe−σC

UC (C)

UC (C (1 + g))
=

σe−σC

σe−σ(C(1+g))
=

e−σC

e−σ(C(1+g))
= eσCg

In words, as the level of consumption increases, the rate of interest required to support a constant

growth rate g increases. This is since with a CARA utility, the ratio of the marginal utilities between two

consumption levels depends on the difference between them, not the ratio. Therefore, with CARA utility,

constant interest rate can support growth that is constant in absolute levels, something that doesn’t seem

1In words; the inverse of many percent decrease in the marginal utility a percent increase in consumption yields.
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in accordance with empirics.

Final conclusion: if we want to have balanced growth, utility should be of the form (5).

2.2 Shocks and labor supply

A key task of the RBC model is to be able to produce variations in labor supply that is in accordance

with empirics (remember the stylized facts, labor is procyclical and has quite high variability). Let’s

begin with a discussion on temporary vs. permanent shocks.

Consider the log-case. Then, the intertemporal Euler condition is

1

Ct
= βEt

Rt+1

Ct+1

and the intratemporal

v′ (Lt) =
wt
Ct

(6)

If a permanent technological shock changes wages and consumption by the same proportion (like

along a balanced growth path), the RHS is unchanged and so should therefore labor supply be. On the

other hand, a temporary technological should shift wt more than Ct proportionally, since individuals want

smooth consumption. Therefore, a temporary shock should affect labor supply more the more temporary

it is. This suggests a problem with detrending. Suppose wage is a random walk, fully permanent. Then

labor supply should not react. Detrend shocks using HP-filter -> series of temporary shocks. Using these

shocks, we can "explain" that labor supply moves procyclically over the "cycle". Then we explain the

facts (procyclical labor hours) by using an erroneous series of shocks. But in this case, are there any

"cycles" at all?

We can go further by specifying

v (L) = φ ln (L) .

Then, (6) is

φ

Lt
=
wt
Ct

→ Ct =
wtLt
φ
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Using this in the Euler equation gives

1
wtLt
φ

= βEt
Rt+1

wt+1Lt+1
φ

1 = βEt

[
Rt+1

wt
wt+1

Lt
Lt+1

]
So, only a shock that makes wt high relative to wt+1 should make leisure Lt low relative to Lt+1, for

constant Rt+1.

If

wt+1 = wt + εt+1

Etwt+1 = wt,

a shock to wt should not in itself affect labor supply unless it affects the interest rate. We see that Lt is

high when the interest rate is low. Since the real interest rate is slightly countercyclical variations in the

interest rate should make leisure procyclical, and labor supply countercyclical. So this way to produce

strongly procyclical labor hours seems doomed.

By changing v, we can make Lt
Lt+1

more or less responsive to wt
wt+1

. Micro/labor evidence suggest a

low elasticity, maybe 0.2, that is labor hours reacts little to wages. This is a problem since hours move

much more than wages, but is the elasticity correctly measured by the labor people? Maybe idiosyncratic

shocks are more permanent than aggregate?

2.3 Solving the model

2.3.1 Special case.

Again, with log consumption utility and full depreciation, we can solve the model analytically.

Set

U (Ct, Lt) = lnCt + v (Lt)

Kt+1 + Ct = ZtK
α
t (1− Lt)1−α
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Defining the savings ratio st, we have Ct = (1− st)ZtKα
t (1− Lt)1−α . The Euler equation is then

1 = βEt

(
Ct
Ct+1

)
Rt+1

= βEt

(
(1− st)ZtKα

t (1− Lt)1−α

(1− st+1)Zt+1Kα
t+1 (1− Lt+1)1−α

)
Zt+1αK

α−1
t+1 (1− Lt+1)1−α

= βEt

(
1− st

1− st+1
ZtK

α
t (1− Lt)1−α

)
α

1

Kt+1

= βEt

(
1− st

1− st+1
ZtK

α
t (1− Lt)1−α

)
α

1

stZtKα
t (1− Lt)1−α

= βEt

(
1− st

1− st+1

)
α

1

st

This is an independent of Zt and thus a non-stochastic non-linear difference equation. It has a steady

state at αβ with a linearized explosive root 1
αβ
> 1. There is no initial condition for st so the only solution

is to jump immediately to the steady state. Thus, we can conclude that only st = αβ∀t is consistent
with the Euler equation.

The intratemporal FOC says

UL (Ct, Lt)

UC (Ct, Lt)
= wt ≡ ZtFN (Kt, 1− Lt)

v′ (Lt) =
Zt (1− α)Kα

t (1− Lt)−α

Ct

v′ (Lt) =
Zt (1− α)Kα

t (1− Lt)−α

sZtKα
t (1− Lt)1−α

=
1− α

(1− Lt) s

So, labor supply is constant. If, for example,v (Lt) = φ lnLt,we get Lt = φαβ
φαβ+1−α ∈ (0, 1). This is not

particularly useful, right?

What is happening here?

1. Log consumption utility implies that a shock tomorrow change returns and marginal utility in

opposite directions so they exactly cancel. Future does not matter for current consumption. Zt+1
cancels.

14



2. A shock today, Zt increases the wage and consumption proportionally. The ratio of wages and

marginal utility is thus not affected and marginal utility of leisure does not need to be changed.

2.3.2 Linearization

Let’s specify a Markov process for the productivity shock.

Ẑt = ρẐt−1 + εt

where

Ẑt ≡
Zt − EZ
EZ

,

εt, i.i.d.

Why first-order Markov? So that expectations about future realizations only depend on current shock.

At some cost of complication, this could be relaxed, but it doesn’t seem necessary empirically.

We first have to find the non-stochastic steady states. The Euler equation is 1 = βEt

(
Ct
Ct+1

)
Rt+1 so

in a non-stochastic steady state

1 = βR = β (Fk (Ks, 1− Ls) + 1− δ) .

With with Cobb-Douglas production

β

(
α

(
1− Ls
Ks

)1−α
+ 1− δ

)
= 1

and since in steady state

Cs = F (Ks, 1− Ls)− δKs

The intratemporal condition yields

UL(F (Ks, 1− Ls)− δKs, Ls)

UC (F (Ks, 1− Ls)− δKs)
= FN (Ks, 1− Ls) .
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With log-log utility, U = lnC + φ lnL, this is

φCs
Ls

= (1− α)

(
Ks

1− Ls

)α
φ
(
Kα
s (1− Ls)1−α − δKs

)
Ls

= (1− α)

(
Ks

1− Ls

)α
Giving

Ls = φ
−1 + β − βδ + βαδ

−1− φ+ β − βα + βαδ + α− βδ + φβ − φβδ + φδβα

Ks =(
(1 + φ) (1− β) + βα (1− δ)− α + βδ + φβδ (1− α)

(1− α) βα

) −1
1−α

•
(

α + β − βδ − 1 + βαδ − βα
−1− φ+ β − βα + βαδ + α− βδ + φβ − φβδ + φδβα

) −α
1−α

Now write the Euler equation (relaxing separability)

0 = βEtUC (Ct+1, Lt+1)Rt+1 − UC (Ct, Lt)

Using the fact that

Ct = ZtF (Kt,1− Lt) + (1− δ)Kt −Kt+1

Ct+1 = Zt+1F (Kt+1,1− Lt+1) + (1− δ)Kt+1 −Kt+2

we see that the the Euler equation depends on Kt+2, Kt+1, Kt, Zt+1 and Zt as without labor, but now also

on Lt+1 and Lt. WHY?

Writing it in an abstract way, we get

EtvK (Kt+2, Kt+1, Kt, Lt+1, Lt, Zt+1, Zt) = 0,
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and using a linear approximation around the steady state

EtvK (Kt+2, Kt+1, Kt, Lt+1, Lt, Zt+1, Zt)

≈ vK,1Et (Kt+2 −KS) + vK,2 (Kt+1 −KS) + vK,3 (Kt −KS)

+ vK,4Et (Lt+1 − LS) + vK,5 (Lt − LS)

+ vK,6Et (Zt+1 − 1) + vK,7 (Zt − 1)

The intratemporal condition is

0 = ZtFN (Kt,1− Lt)UC (Ct, Lt)− UL (Ct, Lt) .

which depends on Ct, Kt and Lt but since we know that Ct can be written in terms of Zt, Kt and Kt+1

we can write this condition as

0 = vL (Kt+1, Kt, Lt, Zt)

where we need no expectations operator. Linearizing yields

vL,1 (Kt+1 −KS) + vL,2 (Kt −KS)

+ vL,3 (Lt − LS) + vL,4 (Zt − 1)

Let us write the two choice variables (in log deviations) at t in vector form

Xt ≡
[
K̂t+1

L̂t

]
.

We can now write the two optimality conditions as

Et

[
α0Xt+1 + α1Xt + α2Xt−1 + β0Ẑt+1 + β1Ẑt

]
= 0 (7)
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where

α0 =

[
vK,1Ks vK,4Ls

0 0

]

α1 =

[
vK,2Ks vK,5Ls

vL,1Ks vL,3Ls

]

α2 =

[
vK,3Ks 0

vL,2Ks 0

]

β0 =

[
vK,6Z

0

]

β1 =

[
vK,7Z

vL,4Z

]

We postulate (approximate) a linear decision rule

Xt = AXt−1 +BẐt

Xt+1 = A2Xt−1 + ABẐt +BẐt+1

where

A =

[
a11 a12

a21 a22

]

B =

[
b1

b2

]

so [
K̂t+1

L̂t

]
=

[
a11 a12

a21 a22

][
K̂t

L̂t−1

]
+BẐt

Given this, and Ẑt+1 = ρẐt+1 + εt1, (7) becomes

Et

[
α0

(
A2Xt−1 + ABẐt +BẐt+1

)
+ α1

(
AXt−1 +BẐt

)
+ α2Xt−1 + β0Ẑt+1 + β1Ẑt

]
= 0

α0

(
A2Xt−1 + ABẐt +BρẐt

)
+ α1

(
AXt−1 +BẐt

)
+ α2Xt−1 + β0ρẐt + β1Ẑt = 0
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Collecting terms,

(
α0A

2 + α1A+ α2
)
Xt−1 + (α0AB + α0Bρ+ α1B + β0ρ+ β1) Ẑt = 0,

which must be true for all Xt−1 and Ẑt
So,

α0A
2 + α1A+ α2 = 0

α0AB + α0Bρ+ α1B + β0ρ+ β1 = 0

which pins down the unknown matrices A,B.

Writing out the first equation yields,[
vK,1Ks vK,4Ls

0 0

][
a211 + a12a21 a11a12 + a12a22

a21a11 + a22a21 a12a21 + a222

]

+

[
vK,2Ks vK,5Ls

vL,1Ks vL,3Ls

][
a11 a12

a21 a22

]
+

[
vK,3Ks 0

vL,2Ks 0

]

=

[
0

0

]

and changing notation [
x1 x2

0 0

][
a211 + a12a21 a11a12 + a12a22

a21a11 + a22a21 a12a21 + a222

]

+

[
x3 x4

x5 x6

][
a11 a12

a21 a22

]
+

[
x7 0

x8 0

]

=

[
0 0

0 0

]

Four equations and four unknowns.
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x1a
2
11 + x1a12a21 + x2a21a11 + x2a22a21 + x3a11 + x4a21 + x7 = 0

x1a11a12 + x1a12a22 + x2a12a21 + x2a
2
22 + x3a12 + x4a22 = 0

x5a11 + x6a21 + x8 = 0

x5a12 + x6a22 = 0

Solution is:
{
a22 = 0, a21 = ρ1, a12 = 0, a11 = −x6ρ1+x8

x5

}
,and{

a22 = x5
−x7x6+x4x8

x8(−x2x5+x1x6) , a11 = −x6x3x8−x5x6x7−x28x2
x8(−x2x5+x1x6) ,

a12 = − (−x7x6 + x4x8)
x6

x8(−x2x5+x1x6) , a21 = −x7x25+x1x
2
8−x3x5x8

x8(−x2x5+x1x6)

}
where ρ1 is a root of (x1x

2
6 − x2x5x6) Ẑ2+(2x1x6x8 + x25x4 − x2x5x8 − x3x6x5) Ẑ+x7x

2
5+x1x

2
8−x3x5x8.

Given parameters, we now know all the four solutions to A. Note that since Lt−1 is not a state variable,

we expect a22 = a12 = 0, so it should be the first set of roots that are relevant. We choose the stable

solution (hopefully there is one).

We must then solve for B in the same way. Given parameter values with now know that the stochastic

difference equation that Kt+1 and Lt must follow satisfies[
K̂t+1

L̂t

]
= A

[
K̂t

L̂t−1

]
+BẐt

Clearly, what we have done extends to larger systems with more choices and state variables, but then

one might not be able to solve things analytically.

2.4 Simulating the model

To test the model we need to calibrate it and provide some input shocks. The standard way of doing this

is (was) to use the production function

Yt = ZtF (Kt, 1− Lt)
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taking logs of the Cobb-Douglas specification, we have

lnYt = lnZt + α lnKt + (1− α) ln (1− Lt)
lnZt = lnYt − α lnKt − (1− α) ln (1− Lt)

This is the Solow-residual.

With a more general production function, Yt = ZtF (Kt, Nt), we can write

dYt = FdZt + ZtFKdKt + ZtFNdNt

dYt
Yt

=
ZtF

Yt

dZt
Zt

+
ZtFKKt

Yt

dKt

Kt

+
ZtFNNt

Yt

dNt

Nt

Assuming competitive factor markets, factor prices are equal to marginal products,

ZtFN = Wt

ZtFK = Rt.

If in addition, product markets are competitive,

ZtFKKt

Yt
=
RtKt

Yt
≡ αK,t,

ZtFNNt

Yt
=
WtNt

Yt
≡ αN,t,

are then the time varying capital and labor shares of value added. So

dZt
Zt

=
dYt
Yt
− αK,t

dKt

Kt

− αN,t
dNt

Nt

From this we can estimate the process for the technology shocks, in particular ρ. For the other

parameters, we use α = income share of capital ≈ 1
3
, δ we can take from other sources and β we calibrate

to get some reasonable rate of return in steady state. θ we can calibrate from the share of hours spent

working, something like 20%. Then, we are done and have a numerical model and we can run it to see

how well it replicates business cycles. That is, we use the representation[
K̂t+1

L̂t

]
= A

[
K̂t

L̂t−1

]
+BẐt
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and plug in our shocks.

The model does reasonably well, perhaps surprisingly well. It can account for a large share of the

variation in Y and I. But there is much too little volatility in C and N in the model. Wages and

productivity much too procyclical (but remember, we have only one shock.)

To drive the fluctuations in the model, we need very strong productivity shocks. They are also required

to be negative often in order to cause recessions. Many argue that these negative shocks are unreasonable.

One way out is to have capacity utilization and effort. Another way is to have noncompetitive markets.

In this case, shocks with smaller amplitudes are required and shocks of negative values can be very rare.

The model in itself, does not produce much of a transmission mechanism. Shocks have fairly short

lasting effects. To generate business cycles, the technology shocks Z, must have a high degree of auto-

correlation.

Problems

1. Noncompetitive labor markets.

2. Adjustment costs.

3. Noncompetitive product markets.

4. Unobserved movements in N and K, capacity utilization and effort.
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3 c) Asset pricing

The Euler equation is an equilibrium relation between prices and consumption. We can use it to derive

optimal consumption and investment decisions given a prices. We may, however, also use the Euler

relation in the other direction. Taking the path consumption as given and derive what the prices have to

be. In very simple economies, like endowment economies without storage, we might actually know the

path of what consumption. In that environment we may introduce markets for bonds and capital and

study equilibrium prices. This is the setup in the seminal Lucas (Econometrica, 1978) paper.

Assumptions:

• Large number of identical agents, maximizing
∑∞

t=0 β
tu (ct) s.t. at+1 = (at − rr)Rt+1

• Output comes from an apple tree with stochastic crop dt, .with a distribution that is Markov.

F (dt|dt−1) known to all agents.

• Purpose: find pt —the price of the tree (after current period harvest) as a function of the state of
the economy (dt).

• Perfect market in ownership of (shares in) the tree. All equal so no trade in equilibrium.

• No storage or foreign trade so consumption ct = dt.

• No bonds.

The Euler equation is

u′ (ct) = Et (βu′ (ct+1)Rt+1) . (8)

The return on investing in the tree is

Rt+1 =
pt+1 + dt+1

pt
.
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Substituting into (8) gives

pt = Et

(
β
u′ (dt+1)

u′ (dt)
(pt+1 + dt+1)

)
(9)

= Et

(
β
u′ (dt+1)

u′ (dt)
(pt+1 + dt+1)

)
pt = p (dt) =

∫ ∞
0

β
p (dt+1)

u′ (dt)
(pt+1 + dt+1) dF (dt+1|dt)

This is a functional equation that we sometimes can solve analytically if we specify u and F. Before

trying that, let’s substitute forward

pt = Et

(
β
u′ (dt+1)

u′ (dt)
(pt+1 + dt+1)

)
= Et

(
β
u′ (dt+1)

u′ (dt)

(
Et+1

(
β
u′ (dt+2)

u′ (dt+1)
(pt+2 + dt+2)

)
+ dt+1

))
= Et

(
β
u′ (dt+1)

u′ (dt)
dt+1 + β2

u′ (dt+2)

u′ (dt)
dt+2 + β2

u′ (dt+2)

u′ (dt)
pt+2

)
Continuing we find that

pt = Et

∞∑
s=1

βs
u′ (dt+s)

u′ (dt)
dt+s + Et lim

s→∞
βs
u′ (dt+s)

u′ (dt)
pt+s

If the last term is zero, pt is the discounted value of the dividend —the fundamental solution.

Consider the log utility case.u′ (dt) = 1
dt

pt = Et

(
β
dt
dt+1

(pt+1 + dt+1)

)
pt
dt

= Et

(
β

(
pt+1
dt+1

+ 1

))
Denote the price-dividend ratio pt

dt
by ωt, then we have

ωt = β + βEtωt+1

Etωt+1 =
1

β
ωt − 1
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This is an explosive difference equation in the price earnings ratio provided β < 1. It has a steady

state at

ωt =
β

1− β∀t

This is the solution that is consistent with the fundamental value. Why is it a constant? Other

solutions are bubbles. Can we rule out them out?

Using the fundamental value with a general utility but assuming i.i.d. output, then Etu′ (dt+s) dt+s =

Eu′ (d) d is a constant for all s. Thus,

pt = Et

∞∑
s=1

βs
u′ (dt+s)

u′ (dt)
dt+s (10)

ptu
′ (dt) =

β

1− βEu
′ (d) d

where we note that the RHS is a constant.

Suppose u is CRRA, then u′ (c) = c−σ and

pt = dσt
β

1− βEd
1−σ
t+1

Since σ > 0 for risk averse individuals, the price increases in dt. Suppose ln dt is normal with mean µ

and standard deviation ξ. Then Ed1−σt = e(1−σ)µ+
ξ2(1−σ)2

2 ,then

pt = dσt
β

1− β e
(1−σ)µ+ ξ2(1−σ)2

2

Doing comparative statics on this, we see that the price increases in risk unless we have log utility. It

increases in µ iff σ < 1 (high elasticity if intertemporal substitution).

Suppose there is a positive autorcorrelation in dt. Then a high value of dt implies high values of dt+s.

However, the value u′ (dt+s) dt+s depends on on substitution (u′) and income effects (d). With log utility,

we have seen that they cancel. With a general CRRA, u′ (dt+s) dt+s = d1−σt+s which is increasing in dt+s if

σ is smaller than 1 and decreasing otherwise. What is the explanation?

CAPM
Now, let us add a market for a safe asset. Individuals maximize utility subject to

at+1 = (at − ct) (rt+1 (1− ωt) +Rt+1ωt)
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where ωt is the period t share of wealth held in the risky asset and rt+1 is the return on the safe bond.

Recall that Rt+1 is a risky return.

The Bellman equation is

Vt (at) = max
ct,ωt
{u (ct) + EtβVt+1 ((at − ct) (rt+1 (1− ωt) +Rt+1ωt))} .

Using envelope conditions to substitute for V ′, FOC’s are

ct;u
′ (ct) = Et [βu′ (ct+1) ((rt+1 (1− ωt) +Rt+1ωt))]

= Et [βu′ (ct+1) ((rt+1 + ωt (Rt+1 − rt+1)))]
ωt;Etβu

′ (ct+1) (Rt+1 − rt+1) (at − ct)
⇒ Etu

′ (ct+1) (Rt+1 − rt+1) = 0

or Etu′ (ct+1) rt+1 = Etu
′ (ct+1)Rt+1

Substituting this into the FOC for ct gives

u′ (ct) = Etβu
′ (ct+1) rt+1 = Etβu

′ (ct+1)Rt+1

where we note that

Etu
′ (ct+1)Rt+1 6= Etu

′ (ct+1)EtRt+1

but

Etu
′ (ct+1) rt+1 = rt+1Etu

′ (ct+1) .

With n different risky assets, with returns Rit, it is straightforward to show that (provided the FOC

holds),

rt+1Etu
′ (ct+1) = Etu

′ (ct+1)Rit+1

for all i. By using the definition of a covariance, we then have that

rt+1Etu
′ (ct+1) = Etu

′ (ct+1)EtRit+1 + covt (u′ (ct+1) , Rit+1) .

Implying

EtRit+1 = rt+1 −
covt (u′ (ct+1) , Rit+1)

Etu′ (ct+1)
(11)
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This a variant of the Consumption CAPM, providing the equilibrium expected return on all assets

held by agents not constrained by portfolio constraints.

Furtmermore, using CRRA, we have

EtRit+1 = rt+1 −
covt

(
(ct+1/ct)

−σ , Rit+1

)
Etu′

(
c−σt+1/c

−σ
t

) .

Using the linear approximation f (x) ≈ f (x̄)+f ′ (x̄) (x− x̄) , we have cov (f (x) , y) ≈ f ′ (x̄) cov (x, y) , .

this can be further simplified. Making the approximation around ct+1/ct = 1 we have

EtRit+1 = rt+1 + σ
covt (ct+1/ct, Rit+1)

Etu′
(
c−σt+1/c

−σ
t

) (12)

Finally, assume there is an asset m that has a return that is perfectly correlated with consumption

growth. Using (12) for asset m,

EtRmt+1 = rt+1 + σ
covt (Rmt+1, Rmt+1)

Etu′
(
c−σt+1/c

−σ
t

) = rt+1 + σ
vart (Rmt+1)

Etu′
(
c−σt+1/c

−σ
t

)
Etu

′ (c−σt+1/c−σt ) = σ
vart (Rmt+1)

EtRmt+1 − rt+1

Using this in (12) we get

EtRit+1 = rt+1 + σ
covt (Rmt+1, Rit+1)

σ vart(Rmt+1)
EtRmt+1−rt+1

= rt+1 +
covt (Rmt+1, Rit+1)

vart (Rmt+1)
(EtRmt+1 − rt+1)

Where we note that covt(Rmt+1,Rit+1)
vart(Rmt+1)

≡ βi,t can be interpreted as a regression coeffi cient in a regression

of the returns of asset 6 i on asset m provided returns are stationary.

The Mehra-Prescott Puzzle
One of the most important puzzles in macroeconomics is the Mehra-Prescott equity premium puzzle.

Within a strikingly simple model, Mehra and Prescott argues that the excess return on equity over a safe

return should be much smaller than what we see in the data. This result has turned out to be surprisingly

robust and a large literature has followed trying to explain the puzzle.

Let’s derive the original result in a way very close to the original paper.
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Consider a representative household living on a Lucas type island with preferences

Ut = Et

∞∑
s=0

βs
c1−σt+1

1− σ .

Suppose output growth λt follows a Markov chain with n different possible realizations {λ1, ..., λn}.
The Markov assumption implies that

Pr {λt = λj|λt−1 = λi} = φij,

Assume there is a Lucas tree-type asset being a claim to aggregate (non-starable) output dt. Using

(9), the price of this is

pt = Et

(
β
u′ (dt+1)

u′ (dt)
(pt+1 + dt+1)

)
Conjecturing that the utility function and the Markov assumption implies that price-dividend ratios

ω take n different values depending on the current realization of λt, denoted ωi

pt
dt

= Et

(
β
u′ (dt+1)

u′ (dt)

(
pt+1
dt

+
dt+1
dt

))
pt
dt

= Et

(
β
u′ (dt+1)

u′ (dt)

(
pt+1
dt+1

dt+1
dt

+
dt+1
dt

))
ωi = Et

(
βλ1−σt+1 (ωj + 1)

)
= β

n∑
j=1

φij
(
λ1−σj (ωj + 1)

)
This is a linear equation in n unknowns that we can solve for the price-dividend ratio in all states.

The return going from state i to j is

Rij =
ωjλjdt + λjdt

ωidt
=
λj (ωj + 1)

ωi

And expected returns

Re
i =

n∑
j=1

φij
λj (ωj + 1)

ωj
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If we introduce a market for a safe one-period bond in zero aggregate supply, the price of this bond is

pft = Etβ
u′ (dt+1)

u′ (dt)

= βEtλ
−σ
t+1 = β

n∑
j=1

φijλ
−σ
j

Let us know simplify and assume only two states, λ1 and λ2 with a symmetric transition probability

φ. Furthermore, let

λ1 = 1 + µ+ δ

λ2 = 1 + µ− δ

and calibrate the model to the mean US growth rate (µ) and standard deviation (δ). The autocorre-

lation of output growth is 2φ− 1

Consider first the case when φ = 1
2
, implying no autocorrelation in growth rates. Then, ωi = ωj ≡ ω

and

ωi = Et
(
βλ1−σt+1 (ωj + 1)

)

ω = β

(
λ1−σ1 (ω + 1) + λ1−σ2 (ω + 1)

)
2

ω = (ω + 1) β
(1 + µ+ δ)1−σ + (1 + µ− δ)1−σ

2

and

pf = β

(
(1 + µ+ δ)−σ + (1 + µ− δ)−σ

2

)
The expected return on the risky asset is

Re
i =

n∑
j=1

φij
λj (ωj + 1)

ωj
=
ω + 1

ω

n∑
j=1

φijλ

=
ω + 1

ω
(1 + µ)

=
2 (1 + µ)

β
(
(1 + µ+ δ)1−σ + (1 + µ− δ)1−σ

)
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The return on the bond is

1

pf
=

2

β
(
(1 + µ+ δ)−σ + (1 + µ− δ)−σ

)
Let us now calibrate µ to the average yearly growth rate and δ to the standard deviation of output

(1.8 and 3.6% respectively). Setting the average return on the stock market to 8% per year and the

average return on the bondmarket to 1% per year, we get two equations in the two unknowns σ and β.

[
1.08 =

2 (1 + µ)

β
(
(1 + µ+ δ)1−σ + (1 + µ− δ)1−σ

)]
µ=0.018,δ=0.036[

1.01 =
2

β
(
(1 + µ+ δ)−σ + (1 + µ− δ)−σ

)]
µ=0.018,δ=0.036

In the following graph, I plot the two curves. They are both upwardsloping. The reason for this is that

as we increase β, the incentive to save increases. To counteract that, a lower elasticity of substitution is

required.(a higher σ).
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A solution is the crossing —the problem is only that there is no crossing. Suppose for example that

we set, β = 0.98. To motivate a return on equity of 8%, we then need σ = 3.5. But then, the return on

bonds should be 7.6%, leaving a equity premium of of only 0.4%. This is the Mehra-Prescott Puzzle.
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We can also look at a measure of the (adjusted) riskpremium.

Re

Rf (1 + µ)
=

(1 + µ+ δ)−σ + (1 + µ− δ)−σ

(1 + µ+ δ)1−σ + (1 + µ− δ)1−σ

In reality this is
1.08

1.01 (1.018)
≈ 1.05

Plotting the RHS against σ we get

0.985

0.99

0.995

1

1.005

1.01

1.015

0 20 40 60 80 100

which as we see, increases, but is bounded. In fact,

lim
σ→∞

(
(1 + µ+ δ)−σ + (1 + µ− δ)−σ

(1 + µ+ δ)1−σ + (1 + µ− δ)1−σ
)

= lim
σ→∞

(
(1 + µ− δ)−σ

(1 + µ− δ)1−σ
)

=
1

1 + µ− δ ≈ 1.0183.

1756

40000

: 0.043 9

(2)α (3)1−α =
12

5
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, Solution is:
{
α = − ln 4

5

ln 3
2

=
ln 4

5

ln 2
3

}
is true, Solution is: {α = 0.550 3}, Solution is: {α = 0.5503}

: 2. 449
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