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Appendix 2
Filters and frequency domain statistics

This appendix presents and discusses more formally the filters we apply in order to extract
cyclical components of the raw data series, and discusses in some detail how we estimate

the frequency domain statistics.

A2.1 The transfer function and phase
In this section we will define and analyze filters in terms of their effect on cyclical behavior.

A univariate time invariant linear filter transforms the time series z (input) to the new

series y (output) by forming a weighted moving average using the weights v :

@©

(A2.1) = Z Vg Tgos.

§% -0

The transfer function for the filter is the Fourier transform of the weights

co

(A2.2) Bw) = 27)5 exp(—iws),

§% -0
where exp(—ius) = cos(ws) — i*sin(vs) is the complex exponential function (this is like
replacing 2.5 with exp(—iws) in (A2.1)). The frequency we[-r,7], but spectra are
symmetric around zero.

The reason why the transfer function is interesting is that the spectrum for y, Sy(w),

is given by
(A2.3) $Y(0) = | B(v) |2 5%(u),
where §%(v) is the spectrum for z and | | denotes the modulus of the complex function

B(w), that is, if B(v) = ¢ + ip then |B(v)|2 = g2 + p2.
The transfer function can equivalently be expressed as
(A2.4) B() = | B(0)| expl~iP"¥(a))],
where P%¥(u) is the phase and the magnitude |B(w)] is often called the gain. The phase is
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defined by

(A2.5) P*Y(w) = argB(v) = tan-{In[B(v)] [Re[B(4)]},

where Im and Ee are operators that pick out the imaginary and real part of the complex
number, respectively. One way of interpreting the phase is to note that

(A2.6) 7(0) =P*¥()/u

is a measure of the phase shift at frequency v in terms of time (which is measured in years
in the present paper). The convention is that when 7(#)< 0, then on average y (output)

is lagged relative to z (input).

A2.2 Definitions of the filters
This subsection provides formal definitions for the three filters that we use in the paper.
The computational procedures are described in a subsequent section.

The Band—pass filter (denoted BA) operates in the frequency domain. We use a
filter with the transfer function

A, v [1if 27/32|w] and |w]>2%/8
(A2.7) o) = { Ootherwisel ’

which means that cycles with a period between 3 and 8 years passes through the filter
untouched, but all other cycles are completely removed.

The Fhittaker—Henderson filter type A, introduced to economists by Hodrick and
Prescott (1980) and described in some detail by Danthine and Girardin (1989), is given by
the solution to the following optimjzatibn proble:m:

Split the series z into a cyclical component y and a trend g (where, of course, z;

= y¢ + gt) 50 as to minimize

n

(A2.8) Zy% + AZ[(yrg:-l) + (gs-r-ge-2)*
t= t=3

Hence, the trend’s tracking of the z series (giving small y?) is traded off against the
smoothness of the trend (giving small [(g¢—gs-1)+(ge-1—9:-2)]2). We have chosen A=10,
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which implies that the trend tracks the original series fairly closely, in order to get an
average cycle length of approximately 5 years for the cyclical component (y) of the GDP
series.

The first difference filter is simply y; = z; — 2., which corresponds

approximately to growth rates for all series that are expressed in logarithms.

- A2.3 Computational procedures for the filters

This section describes the actual computational procedures that we apply. All calculations
are made in the GAUSS programming language. Let us assume that we have 1
observations of the time series z (input) zo,21,...,Zn-1.

The band—pass filter is implemented in four steps. First, in order to reduce the
wrap—around effect (see below) the z series is prefiltered with a Whittaker—Henderson
filter with 1=2500 and padded with zeros to four times its original length. If needed, it is
further padded with zeros to get a number of elements T equal to a power of 2. Second, a

Fast (finite) Fourier Transform (FFT) is applied, to form the random spectral measure
-1

(A2.9) Ha;) = (1/7) ZZ[; exp(—itw;), w=277/7 where §=0,1,2,...,7-1.
=0

The frequency runs from 0 to 24(7~1)/7, but since the spectral measure is periodic with a
period of 27, the values for 7¢u<27 equals the values for —7<w<0. Third, the spectral
measure is multiplied with the transfer function BBA(u) from (A2.7), with the definition

changed in accordance with the frequency domain of the FFT

A _ [ 1 if 2x/8¢ws2x/3 or 2z(1-1/3)<u<2x(1-1/8
(A2.10) P (0) ‘{0 otherw{se / (1-1/3) - ).

Fourth, the inverse FFT is calculated as
T-1

(Az11)  p= ZZ(wj)BBA(Nj) exp(itu;), where o=215/T,
j=0

and the n first observations are picked out. The result of these operations constitutes our
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filtered series.
The Whittaker—Henderson type A filter operates in the time domain and is simple
to use. Danthine and Girardin (1989) shows that the filter can be computed as

(A2.112) ge= 1= (AP0,

where Iis the nxn identity matrix and I the nxn toeplitz matrix
1-2100..000
01-2 10..000

(A2.11b) I= 0 0 1—2 1 . 0 oc? '
00000..1-21

The first—difference filter is simply
(A2.12) Yt = Tt — Tp-1 te [1,ﬂ-1] ,

which of course means that one observation at the beginning of the sample is lost.

A2.4 Characteristics of the filters
This section discusses the characteristics of the filters in terms of their transfer and phase
functions. Special attention is paid to the effect of the finite sample length.

Figure A2.1a—c shows in the upper panel the the gain functions (]|8(v)|) of the
three filters, and in the lower panel the phase functions. The x—axis is expressed in
frequencies (v) which run from zero to 7. For convenience, cycle lengths of 16, 8, 3, and
2 years are marked with vertical dotted lines. Note that the cycle length in years and the
frequencies (v) are related according to
(A2.13) years/cycle = 27/u.

In Figure A2.1a the gain for the ideal (asymptotic) band pass filter (A2.7) is plotted
as the thick solid curve. This filter obviously keeps all cycles between 3 and 8 years but
shuts out all others cycles. Unfortunately, this filter is not realizable for a finite sample.
The reason is easy to see if the band pass filter is transformed to the time domain by
applying the inverse Fourier Transform. It can be to shown that the theoretical

(asymptotic) weights in the time domain v in (A2.1) for the band pass filter (A2.7) are
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These weights decline fairly slowly as |s| increases, which is at the root of the problem.
With a finite sample, some of the v; are disregarded implying that the cycles to some
extent are blurred with each other, a phenomenon usually called leakage. How does the the
gain function actually look like for our sample length? In order to understand that, we
have to deal with the question about how the FFT that we use for calculations treats a
time series. As a matter of fact, it treats the series as periodic and assumes the the last
observation is identical to the observation preceding the first observation. This
"wrap—around" can seriously distort the time series. Therefore, we try to eliminate the
wrap—around by padding the time series with a lot of zeros. All this means that the finite
sample problem is indeed present.

In Figure A2.1a we have plotted, along with the ideal gain function discussed above,
the actual gain function for observation =64 (thin solid line) and ¢=1 (dotted line) in a
sample of length 128. Obviously, for {=64, the finite sample problem is insignificant, but
for ¢=1 (and also for {=128 which is identical to ¢=1) the leakage is considerable. It can
be shown that for ¢=>5, the leakage is dramatically smaller than for ¢=1. Furthermore, for
the observations at the beginning (end) of the sample, only weights vs for s<0 (s>0) has
any effect. This will introduce a phase shift for these observations. Even if the ideal
band—pass filter, and the actual band pass—filter for {=64 has no phase, as illustrated in
the lower panel of Figure A2.1a, this is not universally true. For #=1, the phase shift is
negative for longer cycles, around zero for the pass band, and positive for shorter cycles
(the pattern for =128 is exactly the opposite). Again, for {=5, the phase shift is
dramatically smaller than for ¢=1.

Similar problems arise in applying the Whittaker~Henderson filter. The upper
panel of Figure A2.1b shows the gain of the Whittaker—Henderson filter for a sample with

128 observations, for observation 1 and 64. The value A=10 has been used. Since the
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sample is finite, the actual filter (the v values) will differ between observations. The gain
function for the first ({=1) and last (#=128) coincide, but differs from the gain for an
observation in the middle of the sample (¢=64). It is worth noting that while the former
seems to keep more of the longer cycles than the latter, the opposite is true for shorter
cycles. The lower panel of Figure A2.1b illustrates the obvious phase shifts at the
beginning of the sample: at ¢=1 the phase is negative, that is, output lags input. This is
natural, since at ¢=1 only contemporaneous and leaded values of the input series are
available. For the seven year cycle, the lag is about one year. Analogously, the filter for
=128 gives a positive phase. But, in the middle of the sample the filter is symmetric in
the time domain, which gives a zero phase. According to Figure A2.1b, the phase vanishes
fairly quickly as one moves into the interior of the sample. The phase for ¢=5 is fairly
unimportant.

Figure A2.1c shows the gain and the phase for the first—difference filter. From the
upper panel it is clear that the filter keeps a great deal of the long cycles and actually
magnifies the short cycles. The phase for the first—difference filter is positive. At seven
year cycles the lead is about 1.25 year and at three year cycles it is about 0.25 year.

Figure A2.2 brings together the gain functions for the three different filters in order
to highlight the differences. It is clear that the Whittaker—Henderson filter differs from the
band pass filler by keeping more of the long cycles and all the short cycles. The

first—difference filter is even more extreme in both these respects.

A2.5 Estimation of spectra and coherencies

This section summarizes the procedures for estimating spectra and coherencies. Most of
the material is adapted from Koopmans (1974).

The estimation of spectra proceeds in three steps. First, the random spectral
measure Z(u;) of the time series z is calculated by applying the FFT in (A2.9). Second, the

periodogram is constructed by
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(A2.14) I(0y) = 7/(27) | 2(o3) ]2
Third, the weighted average over =k frequencies of the periodogram is our estimate of the
spectrum
k
(A2.15a) 3’2(uj) = Z Wil(w;-),

j=-k
where ¥; is a tent shaped sequence of weights which fulfill

Xk
(A2.15b) Z ¥i=1.
=k
The equivalent degrees of freedomis given by

X
(A2.16a) r= 2/2 7,
i=-k
and a 100(1—e)% confidence interval is given by
(A2.16b) %)/ < S(u;) < r8%(w5)/s,

where @ and b are given by Prob(a < y2 < b) = 1-a.

The estimation of the coherencies of two series z and y goes in a similar way. First,
the spectrum of each series is estimated. Second, using the random spectral measures of
each series, 7°(v;) and Z¥(v;), the multivariate periodogram for the two series is calculated
as
(A2.17) V(uy) = 1/(26) (o) P(wy),
where the star (*) denotes the complex conjugate. Third, weighting I°¥(u;) as in (A2.15),
gives the estimated cross spectrum E’Zy(uj). Finally, the coherence is obtained by
(A2.18) E%¥(w5) = [3%(p)/(5%0)8 ().

An approximate 100(1—a)% confidence interval is given by
%Y(u)nin = tanh{ arctanh(P¥(u)) — Critx(2(2k-1))3 — (2(2k-1))" }
0% (0;)ax = tank{ arctanh(0°Y(w;)) + Crit<(2(2k—1))F — (2(26-1))" }

where (rit denotes the critical value for /2 in the standard normal distribution.
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Appendix 3
Statistical inference on filtered data

This appendix discusses some problems of statistical inference on filtered data.

A3.1 Bandpass filtered data
Statistical inference on band-pass filtered time-series turns out to be a little less

straightforward than might be expected. This is due to the following theorem?2:

A process is purely lineerly non—deterministic iff

?log fwdw>—-o
-

where f is the spectral densily of the process. Otherwise it is linearly deterministic,

so that T, can be predicted without error using o linear prediction function given the

history of = up until t—1.
Since a pure band-pass filter is constructed to nullify the spectrum over a band of
frequencies with an asymptotically pésitive measure, it follows that a filtered process
becomes deterministic. Inference based on asymptotic properties of non—deterministic
processes is thus invalid. Another important implication is that no band-pass filtered
process can be Granger—caused by another process: since a deterministic process is
perfectly linearly predictable from its own history, no other process can help predict it.

In the following, we discuss two ways of computing significance levels for band-pass
filtered series. The first way appears more appealing but has problems for tests on
sub—samples and also seems to have lower power. The second way is therefore used in this

paper.
Method 1. Fizst we note that zero correlation between the two filtered series y 't and %

2 Seee.g. Whittle (1983) p. 26.

73

ig equivalent t0 a z€ro regression coefficient f in the bivariate regression:
(A3.1) yp = zfﬂ +e.
Here, however, both yf and zf as well as ¢ are deterministic.

et no subscript denote an unfiltered series and let the subscript r denote the
Iemaiﬁder after filtering so that, for example, y=y f+ Yy If we then run the regression:
(A3.2) y=zb+e,
we will have deterministic regressors, but y and thus the regression will be
non—deterministic. Fortunately, regressions (A3.1) and (A3.2) will both yield the same
estimate b This is because the space spanned by Yy is orthogonal to the space spanned
by = ' Letting F represent the band—pass filter in the time domain and noting that F' is
symmetric and idempotent?3 we have that:

P

(afsp) o'
(zf’zf)—lz’F’Fy

I

(A3.3)

(zf’zf)_lz’F’y
(zf’zf)_lzf’y

But since zf and z, are also orthogonal we may include Zf in the regression and run:
(A3.4) y = zfﬂ+ T+,

This will reduce the residual vgﬁance if there is some correlation between y and zf and
hence increase the power of the test. To test whether the correlation between filtered series
is zero, we test if [ in A3.4 is significantly different from zero. To account for
non—spherical residuals we use a Newey—West estimator for the variance of B.“

In our case we are interested in statistics for the sub—samples as well as for the

a3 Following Engle (1974) the basic baud—pass filter can be written W*AW where W' = [W,

ifk 2ifk T—1)i
W1 WT-J.]’ where Wy = (Le e ' ) o c( )lgk),gk = 2xk/T, W* is the complex conjugate of

the transpose of . W and A is a diagonal matrix with a symmetric diagonal of ones and zeros such that
a one represent included frequencies. Using this and the fact that W'W = WW? = I, it is easy to show
that F iz symmetric and idempotent.

L We use four lags in the computation of var (B) See Newey—West (1987).
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whole period. In this case the method is less well suited. The problem arises because the
orthogonality, which gives us an equal B in (A3.1) and (A3.2), does not hold if we filter
the series over the full sample period but run the regression for a sub-sample. In practice,
this will cause unreasonable results in small samples. For instance, correlation coefficient
between two filtered series which is close to zero for a sub-sample may be spuriously
significant. The remedy is obviously to use one filter for every sub—sample that we study.
This, however, leaves us with too small samples.

Another problem is that in practice we don't use the basic filter described in

Footnote 23. Among other things, we are padding the series with zeros to reduce some
finite sample problems with band—pass filters.?s This procedure will also produce
non-—orthogonality between Tf and z. We have therefore chosen another method to
compute significance levels.
Method 2. Our second method relies on the fact that it is only when the filter sets the
spectral power for some frequencies (with strictly positive measure) ezactly t0 zero that the
series becomes deterministic. if we use a filter that reduce the spectral power of
non—business cycle frequencies to some constant x bounded away from zero, we may, by
choosing & small enough, get filtered series arbitrary close to the band—pass filtered series.
In this case, our filiered process 5tays non—deterministic allowing the use of standard
asymptotic results.

Instead of specifying & to some arbitrary constant strictly bigger than zero, we
have actually set it to exactly zero. Thié is purely for convenience since there exists some
& strictly bigger than zero for which all results would be close (e.g- within the numeric
accuracy of GAUSS) to the reported résults.

Significance levels for the reported correlations have thus been computed by running

regression A3.1 and testing for [ being different from zero using the consistent

25 See Appendix 2 for a description of the filter.
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Newey—West estimator of the variance of Ei The Newey—West estimator is used since; the
residuals are not assumed to be spherical. In addition to the likely presence of
non—spherical disturbances before filtering, the filtering procedure will introduce
autocorrelation even if the original residual covariance matrix is diagonal.

‘We have compared the two methods of computing significance levels. The first
method sometimes gives unreasonable results for sub—samples. We also find that the first
method on average rejects zero correlation less frequently. For the full sample the first
method rejects 165 of 840 contemporaneous correlations being zero on the 10% level
Reassuringly, all of these where also significantly different from zero according to the.
second method. But the second method yields another 240 significant correlations, totaling
405 (Table 4.2). Since the first method includes more noise than the second, ,it seems
reasonable that its power is lower.

Given the discussion above, it is obvious that the reported significance levels must
be interpreted with caution. This point is further strengthened by the fact that we don’t

o .
ow the small-sample behavior of the Newey—West covariance estimator in this case

A3.2 Whittaker—Henderson filtered data

A Whittaker—Henderson filtered series includes spectral power at all frequencies
Therefore the problem of deterministic processes discussed above does not arise'
Granger—causality tests between Whittaker—Henderson filtered series are still problematic
however, for the reason discussed in Section 5.2. ,

By filtering out virtually all of the lowest frequencies the Whittaker—Henderson
filter typically introduces autocorrelation in the filtered series. All significance tests

involving these series in the paper therefore rely on covariance matrices that have been

recomputed with the Newey—West method.
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