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UNCERTAINTY AVERSION, RISK AVERSION, AND THE OPTIMAL
CHOICE OF PORTFOLIO

By James Dow anp 8ErGI0 RIBEIRO DA CosTA WERLANG !

1. INTRODUCTION

In THIS pPAPER we describe some implications for economic analysis of a model of
decision making under uncertainty which generalizes the expected-utility model accepted
by most economists as a representation of rational behavior. The model we use is the
madel of expected utility under a nonadditive probability measure, which seeks to
distinguish between quantifiable “risks™ and unknown “uncertainties.” An axiomatic
treatment of the model may be found in Schmeidler (1982, 1989), Gilboa (1987}, and
Gilboa and Schmeidler {1989).

The focus of this paper is the prablem of optimal investment decisions. Under the
standard theary of expected utility, an agent who must allocate his or her wealth between
a safe and a risky asset will buy some of the asset if the price is less than the expected
(present} value. Conversely the agent will sell the asset short when the price is greater
than the expected value. Our main theorem is a generalization of this result to the case
of uncertainty. We also provide a definition of an increase in perceived uncertainty, and
analyze the effects of an increase on the investment decision.

The problem of making decisions under uncertainty has been of central importance to
ecanomics and statistics throughout the development of these disciplines. The expected-
utility theory, which owes its axiomatic development to von Neumann and Morgenstern
(1947), initiates from the work of Bernoulli (1730). Savage (1954) has made a persuasive
case that rational behavior necessarily entails actions represented by such a utility
function and by a prior subjective probability distribution over possible events. For
example, an agent gambling on the toss of a coin about which he knows nothing may
behave qualitatively differently from when he knows whether the coin is biased and if so
by how much. According to Savage, this distinction would be unreasonable: in the first
case the agent should behave exactly as if he knew that the bias was equal to some value
(of course, this value need not be the “true” wvalue since the agent does not have
sufficient information). :

Nevertheless, for both theoretical and empirical reasons economists have developed
madels which generalize the expected-utility model. One group of these models is based
on a distinction between risk and uncertainty: the idea was proposed by Knight (1921)
and has been further explored by Ellsberg (1961) and Bewley (1986) among others. In the
series of papers referred to above, Schmeidler and Gilboa have given an axiomatic
development of a model which incorporates this distinction. Based on a weakening of the
independence axiom, the model entails maximizing expected utility with a nonadditive
probability measure. With a nonadditive probability measure, the “probability” that
either of two mutually exclusive events will occur is not necessarily equal to the sum of
their two “probabilities.” If it is less than the sum, then expected-utility calculations
using this probability measure will reflect uncertainty aversion as well as (passibly} risk
aversion. The reader may be disturbed by “probabilities” that do not sum to one. It
should be stressed that the probabilities, together with the utility function, provide a
representation of behavior. They are not objective probabilities.

Although the expected-utility madel has been questioned, there is one factor which is
strongly in its favor, While the theory of consumer behavior under certainty has only the
- rmost pedestrian empirical implications (homogeneity of degree zero and continuity of
the demand function, and symmetry and negative semi-definiteness of the Slutsky matrix
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where demand is differentiable), the theory of expected utility yields some strong
predictions, in particular the results on local risk neutrality and on complete [nsurance
with actuarially fair policies. A generalization of the theory which eliminated the
independence axiom completely would also lead to the loss of these useful predictions.
The purpose of this paper is to show that the model of expected-utility maximization
with nonadditive probabilities reflecting uncertainty aversion preserves strong results
which are analogous to these. We focus on the local risk-neutrality theorem (Arrow
{1963)).

According to this result, an agent who starts from a position of certainty will invest in
an asset if, and only if, the expected value of the asset exceeds the price. The amount of
the asset that is bought depends on the agent’s attitude to risk. This result holds in the
absence of transactions costs whenever it 1s possible to buy small quantities of an asset.
Conversely, if the expected value is lower than the price of the asset the agent will wish
to sell the asset short. Consequently an agent’s demand for an asset should be positive
below a certain price, negative above that price, and zero at exactly that price. In case
there are many risky assets, this price will not necessarily be the expected value.

With a nonadditive subjective probability distribution over returns on the asset, we
show that this result has a straightforward analog which is intuitively plausible and is
compatible with observed investment behavior. There is an interval of prices within
which the agent neither buys nor sells short the asset. At prices below the lower limit of
this interval, the agent is willing to buy this asset. At prices abave the upper end of this
interval, the agent is willing to sell the asset short. The highest price at which the agent
will buy the asset is the expected value of the asset under the nonadditive probability
measure. The lowest price at which the agent sells the asset is the expected value of
selling the asset short. This reservation price i1s larger than the other one if the beliefs
reflect uncertainty aversion: with a nanadditive probability measure, the expectation of a
random variable is less than the negative of the expectation of the negative of the
random variable. The computation of expected values with nonadditive probability
measures s explained below.

These two reservation prices, then, depend only on the beliefs and aversion to
uncertainty incorporated in the agent’s prior, and not on attitudes to risk. This result is
the nonadditive analog of the local risk-neutrality result.

The local risk-neutrality result has a counterpart in the analysis of insurance. An agent
who can buy actuarially fair insurance in any amount will choose ta be fully insured. It
follows from the results presented here that there will be a range of premium costs at
which the agent buys full insurance (the model, like Savage’s model, has no objective
probabilities and hence actuarial fairness is not defined).

We suggest that a reasonable person may not act according to Savage's model.
Maximizing utility with a nonadditive prior may be a reasonable model of rational
behavior in some circumstances. However, we do nat argue that this model is the anly
way, nor necessarily the best way, to represent genuine uncertainty. What we show here
is that it provides a tractable framework for economic analysis of the types of problems
for which expected-utility theory itself is useful.

In terms of empirical implications of the Schmeidler-Gilboa model, broadly similar
types of behavior could be caused by transactions costs or asymmetric information, or by
the preferences in Bewley's (1986} madel. The main difference is that in each of those
three cases there is a tendency not to trade, whereas in Schmeidler-Gilboa there is a
tendency not to hold & position. In other words the agent’s frame of reference here is the
safe allocation, rather than the stats guo.

In this paper we have set out the simplest investment decision to analyze, namely
where there is only one uncertain asset. In case there are several assets the analysis
becomes more complex because one must consider statistical dependence of the risks
and uncertainties of the different asset returns. We hope to pursue this issue in the
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future. We have also refrained here from describing equilibrium interaction among many
uncertainty averse traders. Dow, Madrigal, and Werlang (1989) discuss this in relation to
the no-trade thearem.

The organization of the rest of the paper is as follows. In Section 2 we present a
simple example which illustrates the basic features of the model. In Section 3 we present
a definition of an increase in uncertainty aversion and results on expectation of a random
variable with a nonadditive distribution. In Section 4 we give our main theorem on asset
choice under uncertainty. The Appendix contains mathematical results for reference.
Several of the proofs are omitted for brevity, and are available on request from the
authors.

2. AN EXAMPLE

In this section we present an example which illustrates the portfolio decisions of an
agent whose preferences are represented by a nonadditive probability measure, The
example is based on a risk-neutral agent and an asset which can take only twa passible
values. The agent has wealth W and the (present) value of the asset will be either high,
H, or low, L. The probabilities of these two outcomes are = and o' respectively. If
m+ o' < 1 the agent’s decisions reflect uncertainty aversion. We stress that the nonaddi-
tive prior represents both the presence of uncertainty and the agent’s aversion to it. For
instance, in this example we could have 7= 7' =1,/2, which does not necessarily mean
that the agent “knows” the risk with certainty. It could be that the agent thinks both
outcomes are equally likely and is not averse to uncertainty.

Consider the expected return from buying one unit of the asset at price p. The value
will be at worst (L — p) net of the price, but with probability = it will be (H — p), that is,
an improvement of (H — L) over the worst autcome. The assessment of this paossible
improvement reflects its uncertainty: the expected payoff from buying one unit of the
asset is [L + @w(H — L) —p. If the price p is less than [L + =(H — L)), a risk neutral
investor will buy the asset.

Now cansider the return from selling one unit of the asset short. The payoff will be
(p — HYif the asset is worth H, which is the worst autcome. With probability #' it will

Payaff
Expected qain Expected qain
fram buying fram shart sale
L+a {H-L)—p p=H+ax'{H-t)
.
\\
N
\\\
o | \.\\ : T
L y H Price
Long position //' Shart position

FiGure 1.—Expected gains from buying and selling short one unit of the asset.
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increase ta (p — L). The expected payoff is therefore p— H+#'(H - L). Thus if p
exceeds H— «'(H — L), the investor will sell the asset short, Because w+ o' <,
H-r'(H-L)> L +7(H—-L). At prices in between these two numbets the investor
will not hold the asset. Figure 1 shows the expected payoff from buying and selling the
asset as a function of p.

This example illustrates how the expected value is computed under a nonadditive
distribution. In this case, F(X) =L + w(H — L) (the details are given in the Appendix}.
It should be clear from the discussion that adding a constant to a random variable or
multiplying it by a positive constant has the same effect on its expectation. On the other
hand, this property does not hold for negative constants: —£(—-X)=H + 7 (H - L), so
that —E£(—X) > E(X). It is this inequality which gives rise to the interval of prices with
na asset holdings.

A closely related representation of decisions is to suppose that the agent evaluates
expected utility for a set of prior (additive) probability distributions and acts to maximize
the minimum of expected utility over these priors (see Gilboa and Schmeidler (1989)). At
one extreme, the agent considers only one prior—a “known” distribution—and acts
according to the standard theory of expected utility., At the ather extreme, if all prior
distributions over outcomes are considered, the agent considers only the worst possible
outcome. In the above example we would cansider a set of additive priors where the
chance of a high return lies between  (at least) and 1 — #' (at most). The payoff from
buying a unit of the asset is then

Min{L+MH-L)-plre[r1-7'}=L+a(H-L)—p,
and from selling it short,

Min{p-H+xH-LYre{r1-nl)l=p-H+w(H-L).

3. UNCERTAINTY AVERSION

We define a measure of uncertainty aversion, following an idea of Schmeidler {(1989)
for the case of two states of nature. The reader should refer as necessary to the
Appendix for the notation, the definition of nonadditive probabilities, and a summary of
their mathematical properties. '

3.1. DermiTion: Let £ be a probability and A <2 an event. The uncertainty aversion
of P at A is defined by

(P, A)=1—-P(A)— P(A).

This number measures the amount of probability “lost” by the presence of uncertainty
aversion. It gives the deviation of P from additivity at A. Natice that ¢(P, A) = (P, A°),
which is natural.

3.2, LemMa: e(P, A) =0 for all'events A C 81 if, and only if, P is additive.
The proof is omitted.

3.3. ExampLe: Constant Uncertainty Aversion. Let 2 be finite with # elements and let
the event space be the power set of £2, 27 For all @ €42, set P({e}) = (1 — ¢)/n, where
ce[0,1]. For Ac), A=1, define P(AY=E,. ;Po)). Tt is easy to verify that
c(P, Ay =¢, YA # 1, @. In other words this is a distribution with constant uncertainty
aversion. In general a nonadditive probability need not be so simple.
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3.4. Exampie:  Maximin Behavior. A person with extreme uncertainty aversion who is
campletely uninformed maximizes the payoff of the worst passible outcome. Suppose
(P, A)=1 for all events A =13, & Then P(A)=0forall A+2 Let ' B — R, be
the utility function of the agent. Then:

Eu=fﬂudp=fﬂ P(uza)dea.
Let u=inf, cqu(x). Then Pluzu)=1and P(u »u +¢e)=0 ¥Ye > 0. Therefore
b .
Eu=f0 1da=g=x12%u(x).

This “maximin” rule was proposed by Wald (1950) for situations of complete uncertainty,
and Ellsberg (1961) and Rawls (1971) also suggest that this rule should be considered in
such circumstances. Simonsen (1986) is a recent application to the theory of inflationary
inertia.

We now proceed to extend this “local” measure of uncertainty aversion to the whale
range of two nonadditive probabilities.

3.5. DepmviTion:  Given two nonadditive probabilities P and ¢ defined on the same
space of events, we say that P is at least as uncertainty querse as ( if for all events A C 1,
c(P, AY = (0, A).

The terminology is clumsy, but shorter than alternatives such as “P reflects at least as
much perceived uncertainty as ,” ete. This definition allows us to formalize the
statement that the gap between buying and selling prices increases as the uncertajnty
aversion increases.

3.6. Tueorem: The following statements are equivalent:
(i) P is at least as uncertainty averse as O,
(it} For all random variables X for which the integrals are finite,

—Ep(~X) - EpX> ~Eg(—X) — E X,
Proor: (i) = (ii): Let Aa) = {w € 2|X(w) > a). Then
EPX=IL[P(A(&)) ~1]de +f0mP(A(o:))da.
Notice that {a € 2| - X(w) > a} = A(=a)". Thus
Eo(~X) = [* [P(A(=0)) = 1] da+ ["P(A(=0)") da

=fﬂ°°[P(A(a)‘)— 1} da+ [° P(A(a))de.

Hence

~Ep(~X)~Ep(X) = [~ [1-P(A(a)) - P(A(a)")] d.
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By the same argument,
—Eg(~X) - Eg(X) =[_m[1 — Q(A(a)) — 0(A(a))] da.
Since P is at least as uncertainty averse as @, the result follows immediately.
(i) = (i) For all events A4 € X, define the random variable X = 1, (the characteristic

function of the set A). Then E, X =P(A), Ep(—X)=P(A) -1, E,X =0(A), and
Eg(—X)=00A%) — 1. Applying (ii) to X, we get (i). O.E.D,

The next example illustrates the effect of uncertainty aversion on the difference
between —E{—X}and E(X).

3.7. Exampie: Let X be a random variable with X = inf, ., X(w)z0 and X =
sup, . X{w) <. Let P be an additive probability, and fix ¢ €[9,1]. We define a
nonadditive probability which is obtained by uniformly increasing the uncertainty aver-
sion from P: let P,(2} =1, and PLA) ={1 —c)P(A) far A # {2 It is easy to verify that
(P, A)=c for all A=+, &, and that

EpX=cX+(1—-¢)EpX and
—Ep(—X)=cX+(1-c)EpX.

Thus —Ep(—X}— Ep X = (X — X), which is increasing in the uncertainty aversion ¢ in
accardance with Theorem 3.6. Here we have taken an additive distribution and squeezed
it uniformly. A risk-neutral agent whose behavior is represented by this distribution will
maximize a weighted average of the worst possible outcome and the expectation of the
additive distribution. Ellsberg (1961) suggested this as an ad hor decision rule; this
example provides some tationale for the rule,

4. PORTFOLIO CHOICE

In this section we derive our main result, namely that there will be a range of prices,
from E(X) to —E(-X), at which the investor has no position in the asset. At prices
below these, the investor holds a positive amount of the asset, and at higher prices he
holds a short position. Notice that this range of prices depends anly on the beliefs and
attitudes to uncertainty incorporated in the agent’s prior, and not on the attitudes
towards risk captured by the utility function.

Let W= { be the investors’ initial wealth, & = 0 the utility function, and X a random
variable with nonadditive distribution P. We assume that u is €2, ' > 0, and v < 0.

4.1. LeMMa: Suppose EX <o and —F(—X?) <= For A€R define f(A)= Eu(W +
A X). Then: (i} f is right-differentiable ar A = 0; (ij) fL@) = (W}IEX.

The proof is omitted. We now proceed to the main result, namely the behavior of the
risk-averse or risk-neutral agent under uncertainty aversion. Suppose the investor is
faced with the problem of choosing the sum of money S he will invest in an asset. The
present value of one unit of the asset next period is a random amount X with
nonadditive probability distribution P. We characterize the demand for the asset as a
function of the price.

4.2. TueoreM: A risk averse or risk neutral investor with certain wealth W, who is faced
with an asset which yields X per unit, whose price is p > 0 per unit, will buy the asser if
p <EX and only if p < EX. He will sell the asset if p> —E(—X) and only if p » —E(—X).
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Proos: By Jensen’s inequality (see the Appendix):
Eu(W-S+(S/p)X)<u(E[W-S5S+(S/p)X]).

If EX<p, then E[W—-S+(S/p)X]|<W (by property (iv) of the integral in the
Appendix). Thus the investar is at least as well off not holding the asset, giving expected
utility 2(W), as buying any positive amount. Similarly if EX <p, va holding js strictly
better than investing in the asset,

We now show that if p < EX the investor will buy some of the asset., The investor's
cbjective is ta maximize g(§}=Eu{W - $ +(5/p)X). By Lemma 4.1,

8.(0) =’ (W)E[(X -p)/p] >0,

since EX > p. Thus the investar will buy a strictly positive amount of the asset.
Similar arguments give the corresponding results for short sales. Q.ED.

Natice that if u is not differentiable at some point W, then there is a range of prices
with no trade even with an additive measure (if & is concave, the set of such points has
measure zero).

London Business School, Sussex Place, Regent's Park, London NW1 454, England
and
EPGE-Fundacao Getulio Vargas, 10-Andar, Praia de Botafogo 190, Botafogo CEP
22250, Rio de Janeiro, RT Brasil

Manuscript received January, 1989; final revision recelved Auguse, 1990.

APPENDIX

The mathematical treatment of nonadditive probabilities may be found in Schmeidler (1982,
1986, 1989), Choquet (1955), Dellacherie (1970), Gilboa (1987), Gilboa and Schmeidler {1989),
Shafer (1976), and Dempster (1967). The reader is referred to these sources. In particular,
Schmeidler (1986) contains only material related to the mathematical aspects of the theory.

Let £} be a set, and X an algebra, ie. a set of subsets of 2 such that (i) 2€3,
(i) A, BeX=AuUBeX and(iii) A €3 = A= 5 (here A° means the set of elements of £2 not
in A). £ is the set of stares af nature and the elements of X are called ewenrs. A function P:
X —[0,1] is a nonadditive probabifity if (i) P(Z) =0, i) PUD = 1, and (i} P(A) < P(B)if ACB.
We impose an additional restriction (see Gilboa and Schmeidler (1989), Schmeidler (1986), and
Shafer (1976)): (iv) YA, B i), P(AUB) + P(A N BY 2 P(A) + P(R). In Section 3 of the paper we
show that this corresponds to uncertainty aversior.

A real valued function X: £2 » R is said to be a random variable if for all open sets O of R,
X~HO) € . The expected value of a random variable X is defined as:

EX:IHX@=.{?”(P(X3“)_ l)dﬂ"f'f:P(Xgo:)da,

whenever these integrals exist (in the improper Riermnann sense) and are finite. Notice that since
P{Xza)=P(X>a) ae., the expression for the expected value may also be written with strict
inequalities. When it is necessary to distinguish between P and other distributions, we write EpX.

The fallowing properties of the integral are either praved in the papers referred to above, or else
can be proved immedijately:

(i) XzY=FEXzFEY:

(i) E(X+Y)zEX +EY;

(i) - E(-X)=EX;

(iv} Yaz0 and beR, E(aX +b)=aEX +b;

() For all concave functions u: R — R, Eu( X) < u(EX) (Tensen’s inequality).
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