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Acts are functions from states of nature into finite-support distributions over a set of
‘deterministic outcomes’. We characterize preference relations over acts which have a numerical

representation by the functional J(f)=min{fucfdP|PeC} where f is an aci, u is a von

Neumann-Morgenstern utility over outcomes, and C is a closed and convex set of finitely
additive probability measures on the states of nature. In addition to the usual assumptions on
the preference relation as transitivity, completeness, continuity and monotonicity, we assume
uncertainty aversion and certainiy-independence. The last condition is a new one and is a
weakening of the classical independence axiom: It requires that an act f is preferred to an act g
if and only if the mixture of f and any constant act h is preferred to the same mixture of g and
h. If non-degeneracy of the preference relation is also assumed, the convex set of priors C is
uniquely determined. Finally, a concept of independence in case of a non-unique prior is
introduced.

1. Introduction

One of the first objections to Savage’s paradigm was raised by Ellsberg
(1961). He suggssted the following mind experiment challenging the expected
utility hypotheses: Subject is asked to preference rank four bets. (S)he is
shown two urns, each containing 100 balls each one either red or black. Urn
A contains 50 black balls and 50 red onmes, while there is no additional
information about urn B. One ball is drawn at random from each urn. Bet 1
is ‘the ball drawn from urn A is black’, and will be denoted by AB. Bet 2 is
‘the ball drawn from urn A is red’, and will be denoted by AR, and similarly
we have BB and BR. Winning a bet entitles the subject $100. The following
preferences have been observed empirically: AB~AR>BB~BR. It is easy to
see that there is no probability measure supporting these preferences through
expected utility maximization.

*The authors acknowledge partial financial support by the Foerder Institute for Economic
Research and by The Keren Rauch Fund at Tel-Aviv University.

0304-4068/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland).



142 1. Gilboa and D. Schmeidler, Maxmin expected utility

One conceivable explanation of this phenomenon which we adopt here is
as follows: In case of urn B, the subject has too little information to form a
prior. Hence (s)he considers a set of priors as possible. Being uncertainty
averse, (s)he takes into account the minimal expected utility (over all priors in
the set) while evaluating a bet.

For instance, one may consider the extreme case in which our decision
maker takes into account all possible priors over urn B. In this case the
minimal utility of each one of the bets AB, AR is $50, while that of bets BB
and BR is $0, so that the observed preferences are compatible with the
maxmin expected utility decision rule.

These ideas are not new. Hurwicz (1951) showed an example of statistical
analysis where the statistician is too ignorant to have a unique ‘Bayecsian’
prior, but ‘not quite as ignorant’ to apply Wald’s decision rule with respect
to all priors. Smith (1961) suggested considering an interval of priors in such
situations. He tried to axiomatize this behavior pattern using the ‘Odds’
concept. Other works utilize the Choquet Integration with respect to
capacities [Choquet (1955)] to deal with the problem of a non-unique prior.
Huber and Strassen (1973) use the Choquet Integr-. in testing hypotheses
regarding the choice between two disjoint sets of measures. Schmeidler (1982,
1984, 1986) axiomatizes the prefcrences representable via the Choquet
Integral of the utility with respect to a non-additive probability measure. He
used a framework including both ‘Horse Lotteries’ and ‘Roulette Lotteries’, 4
la Anscombe and Aumann (1963). Gilboa (1987) obtains the same represen-
tation in the original framework of Savage (1954). [See also Wakker (1986)].

In Schmeidler (1986) it has been shown, roughly speaking, that when the
non-additive probab’lity v on S is convex [i.e., v(4 U B)+v(4 N B)=v(4)+
v(B)], the Choquet Int.gral of a real-valued function, say a, with respect to v
is equal to the minimum of {fadP|P is in the core of v}. The core of v, by
definition, consists of all finitely additive probability measures that majorize v
pointwise (ie., event-wise). That is to say, the non-additive expected utility
theory coincides with the decision rule we propose here, where the set of
possible priors is the core of v.

However, when an arbitrary (closed and convex) set of priors C is given,
and one defines v(A4)=min {P(A)|Pe C}, v need not be convex, though it is
exact, i.e., pointwise minimum of additive set functions. [See examples in
Schmeidler (1972) and Huber and Strassen (1973).]

Furthermore, even if v happens to be convex C does not have to be its
core. It is not hard to construct an example in which C is a proper subset of
the core of v.

This paper proposes an axiomatic foundztion of the maxmin expected
utility decision rule. As in Schmeidler (1984), some of which notations we
repeat, we use the framework of Anscombe and Aumann (1963).

The main difference among the models of Anscombe and Aumann (1963),
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Schu.. adler (1984) and the present one lies in the phrasing of the indepen-
dence axiom (Sure Thing Principle). Unlike in the other two works, we also
use .2re an axiom of uncertainty aversion. Similarly to the non-additive
expected utility theory, this model extends classical expected utility. In
general, the theories differ from each other; as mentioned above, iney
coincide in the case of a convex v.

The straightforward interpretation of our result is an exteasion of the
neobayesian paradigm which leads to a set of priors instead of a unique one.
However, with a different interpretation, in which the set C is the set of
possible probability distributions in a statistical decision prcblem, our result
sheds light on Wald’s minimax criterion and on its relation to personalistic
probability. [We refer here to the minimax loss criterion, which is equivalent
t> maximin utility, and not to the minimax regret criterion suggested by
Savage (1954, ch. 9).]

In Wald (1950, section 14.2), we find: ‘A minimav solution scems, in
general, to be a reasonable solution of the decision problem when an a priori
distribution in 2 does not exist or is unknown to the experimenter.” Hence
our main result can be considered as an axiomatic foundation of Wald’s
criterion.

The detailed exposition of the model and the main result are stated in the
next section. The proof is in section 3 and section 4 is devoted to an
extension and several concluding remarks. Especially, we deal there with the
definition of the concept of independence in the case of a non-unique prior.

Finally we would like to note that different approaches to the phenome-
non of a non-unique prior appear in Lindiey, Tversky and Brown (1979),
Vardennan and Meeden (1983), Agnew (1985), Genest and Schervish (1985),
Bewley (1986) and others.

2. Statement of the main result

Let X be a set and let Y be the sct of distributions over X with finite
supports

Y= {y: X —[0,1]| y(x) #0 for only finitely many x’s in X

and Y y(x)= 1}.

xeX

For notational simplicity we identify X with the subset {ye Y| y(x)=1 for
some x in X} of Y.

Let S be a set and let £ be an algebra of subsets of S. Botb sets, X and §
are assumed to be non-empty. Denote by L, the set of ail Z-measurabie
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finite step functions from S to Y and denote by L. the constant functions in
L,. Let L be a convex subset of Y5 which includes L. Note that Y can be
considered a subset of some linear space, and YS, in turn, can then b
considered as a subspace of the linear space of all functions from S to the
first linear space. Whereas it is obvious how to perform convex combinations
in Y it should be stressed that convex combinations in Y5 are performed
pointwise. Le., for f and g in Y5 and « in [0,1], af +(1—a)g=h where
h(s)=af(s)+(1 —a)g(s) for seS.

In the neobayesian nomenclature elements of X are (deterministic) out-
comes, elements of Y are random outcomes or (roulette) lotteries and
elements of L are acts (or horse lotteries). Elements of S are states (of nature)
and elements of 2 are events.

The primitive of a neobayesian decision model is a binary (preference)
relation over L to be denoted by =. Next are stated several properties
(axioms) of the preference relation, which will be used in the sequel.

A.l. Weak order. (3) Forall fandginL: f=gorg>f
(b) Forall fgand hin L: If f=g and g=h then f2h.

The relation = on L induces a relation also denoted by = on Y:
y2ziffy* 2z* where x*(s)=x for all xeY and seS. When no confusion is
likely to arise, we shall not distinguish between y* and y. As usual, > and ~

denote the asymmetric and symmetric parts, respectively, of 2.

A.2.  Certainty-Independence (C-independence for short). For all f, g in L
and hin L, and for all a in JO, 1[: f>giffef +(1 —a)h>ag+(1 —a)h.

A.3. Continuity. For all f, g and h in L: if f>g and g>h then there are «
and f in 10, 1] such that af +(1—a)h>g and g> B f +(1—f)h.

A4. Morotonicity. For all f and g in L: if f(s)=g(s) on S then f>g.

A.5. Uncertainty Aversion. For all f, geL and a€]0,1[: f~g implies
af +(1-a)g2f.

A.6. Non-degeneracy. Notforall fandginL, f2g.

All the assumptions except for A.2 and A.5 are quite common. The
standard independence axiom is stronger than C-independence as it allows h
to be any act in L rather than restricting it to constant acts. This axiom
seems l.euristically more appealing: a decision maker who prefers f to g can
more easily visualize the mixtures of f and g with a constant h than with an
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arbitrary one, hence he is less likely to reverse his preferences. An intuitive
objection to the standard independence axiom is that it ignores the
phenomenon of hedging. Like comonotonic independence [Schmeidler
(1984)], C-independence does not exclude hedging. However, C-independence
is much simpler than and implied by comonotonic independence. Uncer-
tainty aversion [which was introduced in Schmeidler (1984)] captures the
phenomenon of hedging, especially when the preference is strict. Thus this
assumption complements C-independence.

Before stating the main result we mention that the topology to be used on
th~ space of finitely additive set functions on X is the product topology, ie.,
the weak* topology in Dunford and Schwartz (1957) terms. Recall that in
this topology the set of finitely-additive probability measures on X is
compact.

Theorem 1. Le* = be a binary relation on L. Then the following conditions
are equivaleni:

(1) 2 satisfies assumptions A.1-A.5 for L=L,.

(2} There exist an affine function w: Y= R and a non-empty, closed and convex
set C of finitely additive probability measures on X such that:

(*) f=giff minp.cfuofdPzminp.cfuogdP (for cll f, geLy).
Furthermore:

(@) The function u in (2) is unique up to a positive linear transformation;
(b) The set C in (2) is unique iff assumption A.6 is added to (I).

3. Proof of Theorem 1

The crucial part of the proof is that (1) implies (2). If A.6 fails to hold, then
a constant function u and any closed and convex subset C will satisfy (2),
hence for the next several lemmata we suppose assumptions A.1-A.6.

Lemma 3.1. There exists an affine u: Y—R such that for all y, zeY:y2z iff
u(y) 2u(2). .
Furthermore, u is unique up to a positive linear transformation.

Proof. This is an immediate consequence of the von Neumann-Morgenstern
theorem, since the independence assumption for L. is implied by C-
independence. [See Fishburn (1970, ch. §)]. O

Lemma 3.2. Given a wY—R from Lemma 3.1, there exists a unique J: Ly—R
such that:
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@ f2gif J(N)2J(g) (for all f, geLo);
(id) for f=y*ELc9 J(f\’=u(y)

Proof. On L, J is uniquely determined by (ii). We extend J to L, as follows:
Given f e Ly, there are y, ye Y such that y<, ' <y.

By the continuity assum_:tion and other assumptions, there exists a unique
ae[0,1] such that f~ay+(1—a)y. Define J(f)=J(ag+(l—a)}). By con-
struction. J satisfies (i), hence it is also wnique. a

We shall henceforth choose a specific u: Y- R such that there are y,,y,€Y
for which u(y,)< —1 and u(y,)> 1. (Such a choice of a utility u is possible in
view of the non-degeneracy assumption.) We denote by B the space of all
bounded Z-measurable real valued functions on S [which is denoted B(S,ZX)
in Dunford and Schwartz {1957)]. B, will denote the space of functions in B
which assume finitely many values. Let K=u(Y), and let By(K) be the subset
of functions in B, with values in K. For yeR, let y*e€B, be the constant
function on S the value of which is y.

Lemma 3.3. There exists a functional I: By—R such that:

(i) Forall feLy, I(uof)=J(f) (hence I(1¥)=1).

(ii) I is monotonic (i.e, for a, be By: a=b=>I(a) 2 I(b)).

(iii) I is superlinear (that is, superadditive and homogeneons of degree 1).
(iv) I is C-independent: for any ae B, and ye R, I{(a+7y*)=I1(a)+ I(y%).

Proof. We first define I on By(K) by condition (i). (Lemma 3.2 and the
monotonicity assumption assure that I is thus well-defined). We now show
that I is homogeneous on By(K).

Assume a=ab where a, be B(K) and 0<a<1. We have to show that
I(a)=al(b). (This will imply the equality for a>1.) Let ge L, satisfy uog=b.
Let zeY satisfy J(z)=0 and define f=0g+(1—a)z. Hence uof=auog+
(1—ojuoz=ab=a, so I{a)=J(f). Let yeY satisfy y~g (hence J(y)=
J(g=I(b)). By C-independence, ay+(1—a)z~ag+(1—a)z=f Hence
J(f)=J(ay+(1-a)2)=aJ(y)+(1 -a)J(2)=aJ(y). Whence I(a)=J(f)=
aJ(3)=al(b).

We now extend I by homogeneity to all of B,. Note that I is monotone
and homogeneous of degree 1 on B,,.

Next we show that I is C-independent [part (iv) of the lemma]. Let there
be given ae B, and ye R. By homogeneity we may assume without loss of
generality that 2a, 2y* € By(K). Now define f=1(2a)=2I(a). Let f € L, satisfy
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uof=2a and let y, zeY satisfy uoy=p* and uoz=2y* Since f=jy,
C-independence of = implies that 3 f +1z~1y+1z. Hence

I@+y*)=1(3B*+y*) =1 +y=1(a)+,

and I is C-independent.

It is lest to show that I is superadditive. Let there be given a, be B,. Once
again, by homogeneity we may assume without loss of generality that a,
beBy(X). Furthermore, for the same reason it suffices to prove that
I3a+4b)=4I(a)+11(b). Suppose that f, geL, are such that uof=a and
uog=>h. If I(a)=I(b), then f~g and by uncertainty aversion (assumption
A.5), 1f +1g= f, which, in turn, implies I({a+1ib)2 I(a) =1I(a) +1I(D).

Assume, then, I{a)> I(b), and let y=1I1(a)—I(b). Set c=b+y* and note that
I(c)=1I(b)+y=1(a) by C-independence of I. Using the C-independence of I
twice more and its superadditivity for the case proven above, one obtains:

IGa+1b)+3y=1Ga+30) 23(a) +1(c)=31(a) + 31(b) + By,
which completes the proof of the lemma. O

Recall that the space B is a Banach space with the sup norm ||-||, and B, is
a norm-dense subspace of B. The next lemma will also be used in an
extension of the Theorem.

Lemma 3.4. There exists a unique continuous exiension of I to B.
Furthermore, this extension is monotonic, superlinear and C-independent.

Proof. We first show that for each a, be By, |I(a)—i(b)|<|la—b||. Indeed,
a=b+a—b=<b+|la—b|*. Monotonicity and C-independence of I imply that
K@) <I(b+|la—b|[*) =I(b)+|la—b|| or I(a)—I(b)<|la—b|. The same argu-
ment implies I(b)—I(a)<||b—a| Thus there exists a unique continuous
extension of [I. Obviously, it is superlinear, monotoric and
C-independent. O

In the next lemma the convex set of finitely additive probability measures
C of Theorem 1 will be constructed via a separation theorem.

Lemma 3.5. If I is a monotonic superlinear and C-independent functional on B
with I(i*)=1, there exists a closed and convex set C of finitely additive
probability measures on X such that: for all be B, I(b)=min {fde|PeC}.

Proof. Let beB with I(b)>0 be given. We will construct a finitely additive
probability measure P, such that I(b)={bdP, and I(a) £ fadP, for all aeB.
To this end we define
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D,={aeB|l(a)>1},
D,=conv({aeB|a<1*} U {aeB|a<b/I(b)}).

We now show that D, nD,=0. Let d,eD, satisfy d,=wa, +(1 —a)a, where
a; £1*, a,<(b/I(b)) and «€[0,1]. By monotonicity, homogeneity and C-
independence of I,

Idy)=sa+(1—-a)l(a)=1.

Note that each of the sets D,, D, has an interior point and that they are
both convex. Thus, by a separation theorem [see Dunford and Schwartz
(1957, V.2.8)] there exists a non-zero continuous linear functional p, and an
o€ R such that:

foralld,eD, and d,eD,, py(d,)=a=pyd,) (1)

Since the unit ball of B is included in D,, a>0. (Otherwise p, would have
been identically zero). We may therefore assume without loss of generality
that a=1.

By (1), p,(1*)<1. Since 1* is a limit point of D,, p,(1*)=1 is also true,
hence p,(1*)=1. We now show that p, is non-negative, or, more specifically,
that p,(1g) =20 whenever 1; is the indicat~r function of some E € Z. Since

py(1g) +py(1* — 1) =py(1¥) =1,

and 1*— 1€ D,, the inequality follows.

By the classical representation theorem there exists a finitely additive
probability measure P, on X such that p,(a)=[adP, for all ac B. We will
now show that p,(a)=I(a) for all ae B, with equality for a=b: First assume
I(a)>0. It is easily seen that a/I(a)+(1/n)*€D,, so the continuity of p, and
(1) imply py(a)=1I(a). For the case I(a)<0 the inequality follows from
C-independence. Since b/I(b)e D,, we obtain the converse inequality for b,
thus py(b) =I(b).

We now define the set C as the closure of the convex hull of {P,|1(b)>0}
(which, of course, is convex). It is easy to see that I(a) <min {jadP|PeC}.
For a such that I(a)>0 we have shown the converse inequality to hold as

well. For a such that I(@)<0, it is again a simple implication of
C-independence. O

Conclusion of the proof of Thecrem 1
Lemmata 3.1-3.5 prove that (1) implies (2). Assuming (2) define I on B by
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I(b)=min {{bdP|PeC}, C compact and convex. It is easy to see that I is
monotonic, superlinear, C-independent and continuous. So, in turn, the
preference relation defined on L, by (2) satisfies A.1-A.5.

We now turn to prove the uniqueness properties of ¥ and C. The
uniqueness of u up to positive linear transformation is implied by Lemma
3.1

If assumption A.6 does not hold, the range of u, K, is a singleton, and C
can be any non-empty closed and convex set. We shall now show that if
assumption A.6 does hold, C is unique. Assume the contrary, i.e., that there
are C, #C,, both non-empty, closed and convex, such that the two functions
on L,:

Jl(f)=min{j u(f)dPIPECl},

Jz(f)=min{ju(f)dP|PeC2},

both represent =.

Without loss of generality one may assume that there exists P, eC,\C,.
By a separation theorem [Dunford and Schwartz (1957, V.2.10)], there exists
ae B such that

fadP, <min{_fadPlPe Cz}.

Without loss of generality we may assume that ae By(K). Hence there exists
feLq such that J,(f)<J,(f). Now let ye Y satisfy y~ f. We get

J10)=J41(f)<J(f)=J20y),

a contradiction.

4. Extension and concluding remarks

A natural question arising in view of Theorem 1 is whether it holds when
the set of acts L, on which the preference relation is given, is a convex
superset of Lo. A partial answer is presented in the sequel. It will be shown
that, for a certain superset of Lo, the preference relation on it is completely
determined by its restriction to Lo, should it satisfy the assumptions
introduced in section 2.

Given a weak order = on L, an act f:S—Y is said to be X -measurable if
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for all ye Y the sets {s| f(s)>y} and {s| f(s)2y} belong to Z. It is said to be
bounded (or, more precisely, =-bounded) if there are y,, y,€Y such that

y1 2 f(s)=y, for all seS. The set of all Z-measurable bounded acts in Y° is
denoted by L(). It is obvious that L(2) is convex and contains L,.

Proposition 4.1. Suppose that a preference relation Z over L, satisfies
assumptions A.1-A.5. Then it has a unique extension to L(2) which satisfies
the same assumptions [over L(2)].

Proof. Because of monotonicity, the proposition is obvious in case that
assumption A.6 does not hold. Therefore we assume it does, and we may
apply Lemmata 3.1-3.4. We then define the extension of = (also to be
denoted by ) as follows: f=g iff I(u(f)=1I(u(g)). It is obvious that 2
satisfies A.1-A.5 and that = on L(2) is the unique monotonic extension of
= on L,. O

Remark. Suppose that > satisfies A.1-A.5 over L, which is convex and

contains L,. Then, in view of Proposition 4.1, = may be represented as in
Theorem 1 on L n L(2).

We now introduce the concepts of independence of acts and products of
binary relations.

Suppose that a given preference relation> satisfies A.1-A.6 over L,. By
Proposition 4.1 we extend it (o0 L=L(2) and let ¥ and C be as in Theorem

1. Two acts f, ge L are said to bc independent if the following two conditions
hold:

(1) There exisis Pge C such that
fuofdPy=min{fuofdP|PeC}, and

fuogdPy=min{fuogdP|PeC};

(2) uof and uog are two stochastically independent random variables with
respect to any extreme point of C [for short: Ext(C)].

As experted, this notion of independence turns out to be closely related to
that of product spaces, once the latter is defined. We will refer to a triple
(5,Z,C) as a non-unique probability space. Given two non-unique prob-
ability spaces (S;,Z;,C) i=1,2, we define their product (S, %, C) as follows:
§=8;x8;, Z=2,®%Z, and C is the closed convex hull of {P1®P2|
PyeCy,P,eC,}.

Suppose that for a given set of outcomes X, there are given two acts
spaces Lo Y™, i=1,2, and two preference relations =’ correspondingly,
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such that the restrictions of 2! and =2 to Y coincide. As before, we suppose
that each =' satisfies A.1-A.6 and we consider its extension to L‘=L{(>).
For the product acts space Loc Y51*5: we define the product preference
relation == ='® =2 as dertved from u and C. It is obvious that = also
satisfies A.1-A.6, and it has a unique extension to L=L(Z). Given fieL’ it
has a unique trivial extension fie L.

Now we formulate the result which justifies our definition of independence:

Proposition 4.2. Given L', 2!, L?>, 2? and L as above, Z is the unique
preference relation over L satisfying:

(1) assumptions A.1-A.6;
(2) forall f',g'eLl, f'2'% iff f'28 (i=1,2);
(3) for all feL! and ge L%, f and g are independent.

Proof. 1t is trivial to see that = indeed satisfies (1)(3). To see that it is
unique, let =’ also satisfy (1)+(3). By (1) and our main result, =’ is
representable by a utility 4" and a convex and closed set of finitely additive
measures C'. By 3.1 we assume without loss of generality that u=u".

We now wish to show that C'=C.

Step 1. C'cC.

Proof of Step 1. As C is convex, it suffices to show that Ext(C')<=C. Let,
then P,eExt(C’). Define P; to be the restriction of P, to Z; (i=1,2). Choose
AeZX, and BeZ,, and let feL! and geL? satisfy uo f=1,, uog=15. Since
f and g are independent, they are independent with respect to P,. Hence
Py(A x B)=Py(A x S,)Py(S, x By=P,(A)P(B). This implies P,=P,®@P,€C.

Step 2. Cc=C..
Proof of Step 2. We begin with

Step 2a. If Z, and Z, are finite, then CcC'.

Proof of Step 2a. By a theorem of Straszewicz (1935), it suffices to show
that P,®P,eC’ for all P,eExp(C,) and P,€Exp(C,), where Exp(C)
denotes the set of exposed points in C, i.e., the points at which there exists a
supporting hyperplane which does not pass through any other point of C.
Let there be given, then, P,eExp(C,) and P,eExp(C,). Let f eL! and
ge L? be such that

fuofdP,=min{{ucfdP|PeC,}

and

JMath— C
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juogsz =min {juogdPI PeC,}.

By the independence of f and g, there exists Poe C' for which uofdP
and [uogdP are minimized simultaneously. By step 1, PoeC, hence there
are PieC, and P,eC, such that P,=P;®P,. However, [uocfdPy=
fuofdP} and fuogdPy={uogdP,. By the uniqueness property of Exp(C)
{i=1,2), we obtain P, =P, and P,=P). Hence P{®@P,=P,€C, and step 2a
is proved.

We will now complete the proof of step 2. Assume that, by way of
negation, C'\C #0, i.., = # ='. As in the proof of the Theorem, there exists
feL, and ye Y such that f>y* and y*>'f. Consider the finite sub-algebra,
say £, of = generated by f. There are X! finite sub-algebras of Z; (I=1,2),
such that £c2'=X,®Z;. Next consider the restrictions of =; to the
Z-measurable functions, and the restrictions of =, =’ to Z’'-measurable
functions. Obviously, both = and =’ satisfy requirements (1)«3) of the
proposition, although they differ on the set of X’-measurable functions (to
which f and y* belong) This contradicts step 2a, and the proof of the
proposition is thus completed. O
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