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Acts are functions from states of nature into finite-support distributions over a set of 
‘deterministic outcomes’. e characterize preference relations over acts which have a numerical 

by the functional J(f) = min (l u o f dP 1 PE C) where f is an act, u is a von 
orgenstern utility over outcomes, and C is a closed and convex set of finitely 

additive probability measures on the states of nature. In addition to the usual assumptions on 
the preference relation as transitivity, completeness, continuity and monotonicity, we assume 
uncertainty aversion and certainty-independence. The last condition is a new one and is a 
weakening of the classical independence axiom: It requires that an act f is preferred to an act g 
if and only if the mixture off and any constant act h is preferred to the same mixture of g and 
h. If non-degeneracy of the preference relation is also assumed, the convex set of priors C is 
uniquely determined. Finally, a concept of independence in case of a non-unique prior is 
introduced. 
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ne conceivable ex 

ce, one may cons 
into account all 

is $0, so that the obse 

are not new. 

ber and Strassen (1973) use the Choquet Integr-:: in testing hypotheses 
regarding the choice between two disjoint sets of measures. Schmeidler (1982, 
1984, 1986) axiomatizes the preferences sentable via the Choquet 
ntegral of the utility with respect tive probability measure. He 

used a framework including both A es’ and ‘Roulette Lotteries’, a 
la Anscombe and Aumann (1963). 
tation in the original fr 

In Schmeidler (1986) it has been shown, 
non-additive probaOity v on S is convex 

l-valued function, say u, with respect to v 
1 P is in the core of v}. The core of v, by 

definition, consists of all fin itive probability measures that majorize v 
pointwise (i.e., event-wise). 

set of priors C is given, 
t be convex, though it is 

s. [See examples in 



expected utility theory, s model extends classical 

coincide in the case 

refer here to the minimax loss criterion, wtuch 

criterion. 
The detailed exposition of the model and the main result are stated in the 

next section. The proof is in section 3 and section 4 is devoted to an 
extension and several concluding remark cially, we deal there with the 
definition of the concept of independence case of a non-unique prior. 

Finally we would like to note that digerent approaches to 
non of a non-unique prior appear in Lindfey, Tversky and 
Vardennan and new (1985), Cenest and Schervish (1985), 
Bewley (1936) and others. 

Let X be a set and let Y be the set of distributions over X with finite 
supports 

Y = 
1 

y: X+[O, 1] 1 y(x) #0 for only finitely many x’s in X 

and 

For notational simplicity we i 

bra of subsets of 
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t L be a convex subset of Ys 

cansidered as a 

elements of 4, are acts (or horse lotteries). ements of S are states (of nature) 
and elements of C are events. 

The primitive of a neobaycsian decision model is a binary (preference) 
relation over L to be denoted by 2. Next are stated several properties 
(axioms) of the preference relation, which will be used in the sequel. 

k.1. We& order. (a) For all f and g in L: f zg or gl$ 

(b) Forallf,gandhinL:Iffzgandghhthenf2h. 

The relation 2 on L induces a relation also denoted by 2 on Y: 
y&iffy* 29 where x*(s) =x for all x E Y and SEX hen no confusion is 
likely to arise, we shall not distinguish between y* and y. As usual, > and 2 
denote the asymmetric and symmetric parts, respectively, of 2. 

A.2 Certainty-Independence (C-independence for short). For all f, g in L 
and h in L, and for all a in IO, l[: f >giff cxf +(l -ar)h>ag+(l -a)h. 

A.3. Continuity. For all J g and h in L: if f >g and g> h then there are a 
and B in IO, I[ such that af +(1-a)h>g and g>#?f +(l+)h. 

A.4. onotonicity. For all f and g in L: if f(s) zg(s) on S then f 2 g. 

Uncertainty Aversion. For all J gEL and aE]O,l[: f =g im 
-a)gIf. 

A.6 No;z-degeneracy. ot for all f and g in L, f Sg. 

: a decision ma 
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the weak* topology in 
this topology the set of finitely-additive probability measures on Z is 
compact. 

Theorem 1. Let 2 be a binary relation on L,,. Then the following conditions 
are equivalent: 

(I) >= satisfies assumptions A.10A.5 for L = LO. 

(2) There exist an afine function u: Y4t and a non-empty, closed and convex 
set C offinitely aklitivs probability measures on C such that: 

(*) f zg i#’ minp&o f dP>,min,&ogdP (for cl.! J gEL,). 

Furthermore: 

(a) The function u in (2) is unique up to a positive linear transformation; 

(b) The set C in (2) is unique iff assumption A.6 is added to (1). 

The crucial part of the proof is !k_zt (1) implies (2). If A.6 fails to hold, then 
a constant function u and any closed and convex subset C will satisfy (Z?), 
hence for the next several lemmata we suppose assumptions A.l-A.6. 

Lemma 3.1. There exists an afine u: Y-4 such that for all y, z E Y: yz z ifl 
U(Y) 2 u(z). 

Furthermore, u is unique up to a positive limear transformation. 

Proof. This is an immediate consequence of the von 
theorem, since th independence assum 
independence. [See shburn (1970, ch. S)]. 

Lemma 3.2. Given a u: Y- ma 3.1, there exists a ld 
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(0 f 28 iff J(f 12 J(g) (for all ..6 g&J; 
(ii) for f =y*eLc, J(f:=u(y), 

shall henceforth choose a specific u: Y- such that there are yl,y2 E Y 
for which u(yl) < - 1 and u(y2)> 1. (Such oice of a utility u is possible in 
view of the non-degeneracy assu denote by B the space of all 

ed C-measurable real valu ns on S [which is denoted B(S, 
nford and Schwartz $957)]. will denote the space of functions in 

which assume fi tely many values. Let K = , and let B,(K) be the subset 
of functions in with values in K. For let Y*E B0 be the constant 
function on S the value of which is y. 

Lemma 3.3. There exists a functfonal I: Bo+R such that: 

(i) For all f ELO, I(uof)=J(f) (hence Z(l*)=l). 

(ii) I is monotonic (i.e., for a, b E B9: a 2 b*I(a) 2 Z(b)). 

(iii) I is superlinear (that is, superadditive and homogeneow of degree 1). 

(iv) I is C-independent: for any a E ,, and y E R, I(a + y*) = I(a) + I(y*). 

first define I on B0 by condition (i). (Le .2 and the 
to y assumption assure t I is thus well-define now show 

that I is homogeneous on 

have to show that 

isfy J(z) =0 and define f = ag+( 1 -a) 

ote that 2 is monotone 
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uof =2a and let y, ZE satisfy 
C-independence of 2 implies that ff +tz z$y + 

and I is C-independent. 
t is l&t to show that I is su eaadditive. Let t 

again, by homogeneity we may assume without loss 
bE B,(K). Furthermore, for the same reason it su 
I($a + $6) 2 $1(a) +$1(b). Suppose that 5 g E Lo are su 
u og= b. If I(a) = Z(b), then f *g and by uncertainty 
A. , if +jgzf, which, in turn, implies I($a+$b)>=I(u) 

ssume, then, I(a)>l(b), and let 7=1(a)-I(b). Set c=b 
Z(c) = I(b) +7=1(a) by C-independence of I. Using the C-independence of I 
twice more and its superadditivity for the case proven above, one obtains: 

I(& + fb) + $y = @a + ic) 2 iI + I(c) = $(a) + $1(b) + $p, 

which completes the proof of the lemma. q 

Recall that the space B is a anach space with the sup norm \Ia 11, and 
a norm-dense subspace of B. The next lemma will also be used in an 
extension of the Theorem. 

Lemma 3.4. There exists a unique continuous extension of I to 
Furthermore, this extension is monotonic, superlinear and C-independent. 

ProoJ We first show that for each a, b E I?*, (l(a) - l(b)1 s lia-bll. Indeed, 
a=b+a-bsb+ la-bll*. 

Z(a)S(b+/a-bl *)=~(b)+Ila--b() or I 

onotonicity and C-inde mdence of I imply that 
I(a)-l(b)s(la-bl(. The same argu- 

ment implies I(b) - I(a)s lib-alI. Thus there exists a unique continuous 
extension of I. Obviously, it is superlinear, monotonic and 
C-independent. [1 

In the next lemma the convex set of finitely additive probability measures 
C of Theorem 1 will be constructed via a separation theorem. 

Lemma 3.5. If I is a monotonic superlinear and C-ind 
with I( I*) = 1, there exists a closed and convex s 
probability measures on z such that: for all be 
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e now show that 

2 has an interior ‘nt and that they are 
ration theorem [see unford and Schwartz 

(1957, v.2.8)] there exists a non-zero continuous linear functional pb and an 
CER such that: 

for all dl E& and d2e 23 &,(dl)~a2Pb(d2). (1) 

Since the unit ball o is included in D2, a > 0. ( therwise pb would have 
been identically zero). may therefore assume without loss of generality 
that a= 1. 

. Since 1” is a limit point of &, pb( I*) 2 1 is also true, 
he e now show that pb is non-negative, or, more specifically, 
that &,( lE) 20 whenever 1, is the indicatmr function of some EE E. 

the inequality follows. 
al representation theorem there exists a finitely additive 

t &,(a) =jad&, for all a 
with equality for a=b: 

it is again a simple i 

e proof of Thewem I 
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A does not hold, the range is a singleton, and C 
ty closed and con all now show that if 
hold, C is unique. ntrary, i.e., that there 

are C1 $ C2, both non-empty, closed and convex, such that the two functions 
on LO: 

JI(f)=min lu(f)dPIPEC, , 
> 

Jz(f)=min ju(f)d 1 
both represent z. 

thout loss of 
separation th 

a E B such that 

one may assume that there exists P, E Cl\&. 
nford and Schwartz (1957, KUO)], there exists 

ithout loss of generality we may assume that ws 
E LO such that Jl(f) < Jz(f). Now let ye Y satisfy 

ence there exists 
get 

JAY) = Jdf) < J2(f) = J2(Yb 

a contradiction. 
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for all YE Y the sets {s 1 f(s) v y} a 
(or, more precisely, & -b 

zy2 for all s E S. The set of all 
t is obvious tha 

Proposition 4.1. Sup 2 over LO satisfies 
assumptions A J-AS. n it has a unique ex 1) which satisfies 
the same assumptions [over 

se of monotonicity, the proposition is obvious in case that 
.6 does not hold. Therefore we assume it does, and we may 

e then define the extensi of 2 (also to be 
fls 3-r m(fkmo)* is obvious that 2 

that 2 on L(z) is the unique monotonic extension of 
2 on LO. 0 

pose that 2 satisfies A.1 .5 over L, which is convex and 
contains LO. Then, in view of roposition 4.1, 2 may be represented as in 
Theorem 1 on L n L( 2). 

e now introduce the concepts of independence of acts and products of 
binary relations. 

Suppose that a given ;lireference relation 2 satisfies A&A.6 over LO. 
reposition 4.1 we extend it PQ L- L( 2) and let ip and C be as in Theorem 

1. Two acts f, g E L are said to bc independent if the following two conditions 
hold: 

here exists PC E C such that 

juof d&,=min{juof dPIP&}, and 

(2) u 0 f and u og are two stochastically independent random variables with 
ny extreme point of C [for short: Ext(C)]. 

d, this notion of independence be closely related to 
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such that the restrictions of 2 1 and 2 ’ to Y coincide. As before, we suppose 
that each 2’ satisfies A.l-A.6 and we consider its extension to Li=Li( 2 ‘). 
For the product acts space Lot Ysl Xs2 we define the product preference 
relation 2 = 2 ‘8 1 2 as derrved from u and C. It is obvious that 2 also 
satisfies A.l-A.6, and it has a unique extension to L=L(B). Given fin L’, it 
has a unique trivial extension FE L. 

Now we formulate the result which justifies our definition of independence: 

Proposition 4.2. Given L’, 2 ‘, L2, 2 2 and L as above, 2 is the unique 
preference relation over L satisfying: 

(I) assumptions A. I-A .6; 

(2) for all f’, g’EL’, f’l’g’ fl Jl’zg’ (i= 1,2); 

(3) for a11 f~ L’ and gE L2, f and g are independent. 

Proof. It is trivial to see that 2 indeed satisfies (l)-(3). To see that it is 
unique, let 2’ also satisfy (l)-(3). By (1) and our main result, 2’ is 
representable by a utility U’ and a convex and closed set of finitely additive 
measures c’. y 3.1 we assume without loss of generality that u=u’. 

We now wish to show that C’ = C. 

Step 1. c’c C. 

Proof of Step 1. As C is convex, it suffices to show that Ext (C)c C. Let, 
then P,EExt(C’). Define Pi to be the restriction of PO to Zi (i= 1,2). Choose 
AEC, and BEZ~, and let f EL1 and gEL2 satisfy uof =fA, uog=l,. Since 
$ and g are independent, they are independent with respect to P,,. Hence 
P,(Ax B)=Po(AxS2)P,-,(S1 x B)=P,(A)P,( . This implies PO = PI @P2 E 6. 

Step 2. C e c’. 

Proof of Step 2. We begin with 

Step 2a. If Cl and C2 are finite, then Cc C’. 

Proof of Step 2a. y a theorem of Straszewicz (1935), it suffices to show 
that Pl@P2~C all P, E Exp(CJ and P2 E Exp (C,), where Exp(C) 
denotes the set of exposed points in C, i.e., the points at which there exists a 
supporting byperplane which does not pass through any other point of C. 
Let there be given, then, P1 EEx~(C~) and P,EEx 
gE L2 be such that 

and 

JMath- C 
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is proved. 

e will now complete the proof of step 2. ssume that, by way of 
negation, C\C #@, i.e., 2 # f of the Theorem, there exists 

and y~ysuch that f>y onsider the finite sub-algebra, 
of C generated by J: are Ci finite sub-algebras of Zi (I = 1,2), 

hat &c’=&@&. consider the restrictions of & to the 
e functions, and the restrictions 2, 2’ to C’-measurable 
bviously, both 2 and 2’ satisfy quirements (I)-(3) of the 

ugh they differ on the set o ‘-measurable functions (to 
belong.) This contradicts st 2a, and the proof of the 

proposition is thus completed. 0 
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