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This paper reexamines the “cost of business cycle” calculations made by Lucas
(“Models of Business Cycles,” Basil Blackwell, New York, 1987) and Imrohoroglt
(J. Polit. Econ. 97 (1989), 1364—1383) under alternative specifications of individu-
als’ risk preferences and using alternative specifications of the stochastic process
for per capita consumption. | find that for a class of preferences used by Epstein
and Zin (J. Monetary Econom. 26 (1990), 387-407), in an analysis of the equity
premium puzzle, which display “first-order” risk aversion, the welfare cost of
business cycles is potentially much larger than previous estimates. Journal of
Economic Literature Classification Numbers: E32, D81.  © 1998 Academic Press

1. INTRODUCTION

In a simple and thought-provoking exercise, Lucas [8] estimated the
welfare cost of business cycle fluctuations, using the preferences of a
representative agent. By plugging hypothetical consumption streams into
the agent’s utility function, Lucas calculated the gain from eliminating
business cycles altogether as the minimum percentage increase in the level
of consumption in every period needed to render the agent indifferent
between a consumption stream with a realistic variance-about-trend and a
deterministic one with the same average growth rate. The striking conclu-
sion of Lucas’s analysis was that the gain from eliminating business cycles
was quite small—eliminating business cycles was equivalent, in Lucas’s
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Economic Association Meetings and the 1996 Western Economic Association Meetings, are
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most risk-averse agent’s eyes, to at most a 0.17% increase in the level of
consumption in all periods. Imrohoroglu [5] later performed a Lucas-type
experiment in an environment with many individual agents facing idiosyn-
cratic, imperfectly insurable income risk. While Imrohoroglu found costs
larger than those calculated by Lucas, her upper bound—for an economy
in which the only means of “self-insurance” available to agents is a storage
technology, and for the highest level of risk-aversion which she considers
—is a 1.3% increase in the average level of consumption needed to
compensate agents (in an ex ante sense) for living in an environment with
business cycles.

This paper extends Lucas’s analysis to the consideration of alternative
specifications of individuals’ preferences toward risk and intertemporal
substitution, as well as alternative specifications of the stochastic process
governing consumption growth.

Evidence on consumption growth and asset returns—e.g., the equity
premium puzzle—casts at least some doubt on whether the standard
isoelastic, expected-utility preference specification employed by both Lu-
cas and Imrohoroglu is the ‘“correct” one. Whether the quantitative
estimates obtained in those earlier exercises are robust to plausible devia-
tions from the standard specification is worth examining, particularly as
the earlier estimates, if correct, have rather strong policy implications. To
quote Lucas:

[The exercise] suggests that the main social gains from a deeper
understanding of business cycles, whatever form this deeper under-
standing may take, will be in helping us to see how to avoid large
mistakes with policies that have minimally inefficient side-effects, not
in devising ever more subtle policies to remove the residual amount
of business-cycle risk. (Lucas [8, p. 31])

The class of preferences | consider, employed by Epstein and Zin [2] in
a study of the equity premium puzzle, encompasses the standard isoelastic
specification as well as several ‘“non-expected-utility” specifications, in-
cluding preferences which allow a separation of the parameters governing
risk aversion and intertemporal substitution, and preferences which display
first-order risk aversion. “First-order risk aversion” means that the risk
premium associated with a small gamble is proportional to the standard
deviation of the gamble, rather than the variance; if the gamble is truly
small, the standard deviation will be larger than the variance.

In terms of consumption processes, | consider—in addition to the
deterministic-trend-plus-i.i.d.-disturbances specification used by Lucas—
processes which allow for a greater persistence of shocks to consumption.
In particular, | also calculate business cycle costs using consumption



648 JIM DOLMAS

processes in which business cycle fluctuations are represented by autocor-
related shocks about a deterministic trend or as stochastic fluctuations in
the growth rate of consumption itself. In the years since the work of
Nelson and Plosser [10], there has been no clear consensus on whether
business cycle fluctuations in macroeconomic aggregates such as consump-
tion are more adequately described as transitory fluctuations about deter-
ministic trends or as disturbances with more permanent consequences.
The experiments in this paper show that the costs associated with business
cycle fluctuations in consumption can, in fact, vary a great deal with
changes in the posited stochastic process for consumption. Moreover, the
experiments show that the preference parameters which matter most in
determining the cost of fluctuations depend crucially on the degree of
persistence of shocks to consumption.

Consistent with the results of Pemberton [11], I find that when one
allows preferences which display first-order risk aversion, the welfare cost
of business cycle fluctuations in consumption is _potentially much higher
than the estimates calculated by either Lucas or Imrohoroglu. However, |
find that the magnitude of the welfare cost is potentially much higher than
even Pemberton’s estimates, depending on whether business cycle fluctua-
tions in consumption are treated as i.i.d. disturbances around a linear
deterministic trend, autocorrelated disturbances around a linear trend, or
fluctuations in the growth rate of consumption. While adding persistence
to consumption shocks very naturally raises the welfare cost of business
cycles across all utility specifications, the experiments below show that for
first-order risk-averse preferences, the effect of adding persistence is
particularly dramatic. For the expected utility case considered by Lucas,
taking account of the persistence of shocks to consumption can raise the
cost estimates from 1/10% of initial consumption to roughly 0.5%. For
first-order risk-averse preferences, costs on the order of 1% in the i.i.d.
case can rise as high as 23% in the stochastic growth case, for extreme
amounts of risk aversion, with requisite consumption increases on the
order of 2-5% for even a moderate degree of risk aversion. In contrast,
the largest cost estimate reported in Pemberton is 1.09% of initial con-
sumption.!

The remainder of the paper is organized as follows. The next section
presents the preference specification which will be employed in the subse-

! This figure is also for a degree of risk aversion much greater than any which we consider
below. Pemberton also measures the cost of business cycles simply as the risk premium
associated with a timeless binary gamble between two consumption levels, calibrated to have
a variance equal to the variance of Hodrick—Prescott detrended per capita consumption. The
experiments | report on below solve for the stochastic process for a representative individual’s
lifetime utility, thus highlighting the interaction between aversion to risk and willingness to
substitute intertemporally. The cost of business cycles, as shown below, depends on both.
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guent analysis and discusses some of its key features. Section 3 describes
the experiment, which is “Lucas-like” in character. Section 4 presents the
results. Details of the solution methods are contained in an appendix.

2. INTERTEMPORAL RISK PREFERENCES

2.1. The General Intertemporal Framework

The preferences which | employ in this paper are recursive, with lifetime
utility at each date a function of known current consumption and a
“‘certainty equivalent” value of random lifetime utility from the next period
onward. A special case of this form is the standard intertemporal expected
utility specification. The treatment here is somewhat heuristic; more
details can be found in Epstein and Zin [2].

The most general specification of this class of preferences assumes that
lifetime utility from date ¢ onward is a function of known consumption at
date ¢ and a certainty equivalent of random future utility,

U =W(e, n(.1:7%)),

where u(-:.%) is a certainty equivalent operator, conditional on informa-
tion .7 available at date ¢, and W is, in the language of Koopmans [6], an
“aggregator.” The precise form for the aggregator W which | employ, as in
Epstein and Zin [2], has a constant elasticity of substitution between
current consumption and certainty-equivalent future utility,

W(c,m) =[c? + Bm*"]"".
Thus, lifetime utility evolves according to

U = [er+ pu(@in)]" ®)

The parameter p is assumed to satisfy p < 1, p # 0.
The properties of (1) for deterministic consumption streams are well
known. For deterministic streams, U, is ordinally equivalent to

8

u, = B'clii/p,
j=0

J

where u, = UP/p. Thus, for evaluating deterministic consumption streams,
the parameter B is simply the individual’s utility discount factor, while
1/(1 — p) corresponds to the individual’s elasticity of intertemporal substi-
tution.
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2.2. Risk Preferences

The individual’s attitudes toward risk depend on the precise form which
is assumed for the certainty equivalent w.? In all cases, u is assumed to be
linearly homogeneous in the sense that

M’(Al]t-%—l ‘jt) = Al-”(a+1 <]t)

for all constants A. As shown by Epstein and Zin [2], for appropriate
choices of p, the utility process (1) subsumes as special cases the standard,
isoelastic, expected-utility preferences used by Lucas and Imrohoroglu, the
non-expected-utility preferences used by Epstein and Zin [1], [3] in their
study of consumption and asset returns, as well as intertemporal exten-
sions of the sort of risk preferences formulated by Quiggin [12], Yaari [15],
and others.

To formulate the different cases precisely, though, requires concrete
assumptions about the nature of the stochastic consumption process. In
the experiments below, | consider consumption paths which consist of
stationary disturbances around a deterministic time trend and paths with
growth rates which follow first-order Markov processes, as in the equity
premium literature. To proceed immediately to these particular cases,
though, would tend to obscure the nature of the risk preferences implied
by different specifications of the certainty equivalent p.

For simplicity, then, suppose only that there is a “state” variable, s,,
which follows an n-state Markov chain—precisely, that s, € {s(i):i =
1,2,...,n} for all ¢, and there is given a matrix of transition probabilities,

P= [Pi,‘],-,/:l,z ..... n

= [Pr{s,,, =s(j):is, = S(i)}]i,jzl,z,...n-

Suppose, too, that current consumption c, is part of s,, and that lifetime
utility at each date ¢ can be expressed as a function of s,. In other words,
in terms of the utility process (1) above, the information .7 is precisely the
value of the current state s,, and lifetime utility evolves according to

U(s,) = [Ctp + IBM(U(E;+1) : St)n]l/P.

2 This statement is somewhat heuristic. In an intertemporal context, both u and p matter
for risk aversion, as will become apparent in the experiments below. However, for gambles
which are “timeless”—either static or one-shot gambles over constant consumption
paths—only the parameters of w matter in the measurement of risk aversion.
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Suppose also that the states are ordered so that U(s(1)) < U(s(2)) < --
< U(s(n)), and consider the following certainty equivalent of future utility,
conditional on today’s state being s = s(i):

) y -1 y 1/
M(U(E)iS(i))E{Zl ElPih - Ele U(S(j))a} . (2)

for y€[0,1] and « < 1. The notation above assumes, naturally, that
Y; ' P, = 0. When n = 2, for example, we have

w(U():s(i)) = [PRUGs() " + (1 - PDUGs2) ] (3)

If v =1, we obtain
w(U(3) (i) = [PaU(s(2)" + (1 — Py)U(s(2)) "]
= [P.U(s(1)* + P,U(s(2)"] "

for the n = 2 case; more generally, when y = 1, we have

(U :5(1)) = (E[u®":s()])""

and the resulting utility process is identical to that considered by Epstein
and Zin in their study of asset returns and consumption, [1], [3]—i.e.,

U = [c," + ,B(E[ﬁ,‘il:st])p/a]l/p.

For this specification, the parameter « governs risk aversion—which
increases as « shrinks—and the parameter p governs intertemporal
substitution for deterministic consumption streams.

If, in addition, a = p, the utility process (1) becomes ordinally equiva-
lent to the standard isoelastic, expected utility formulation,

u,=cf/p+ BEu,,,,
where u = U”/p, since y=1and a = p imply

U = [ef + BE[T11:5]] ",

or

Ur/p=ct/p+ BE[Uf 1 /ps,].
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If v <1, we have a “rank-dependent” certainty equivalent, which dis-
plays first-order risk aversion. The rank dependence is most easily seen in
(3)—in a sense, the probability of the worse outcome, s(1), is transformed
from P, to P73, while that of the better outcome becomes 1 — PJ. One
cannot “relabel” the states and their associated probabilities—taking state
one into state two and state two into state one—without affecting the
evaluation. Which outcome is worse matters for the evaluation.

When we also have o = 1, u is precisely the type of certainty equivalent
which derives from Yaari’s [15] “dual theory” of choice under uncertainty,

n(U(5) 1s(i)) = PIU(s(1)) + (1 = PY)U(s(J))

in the n = 2 case, and more generally,

WU®:s@) = B L] | T e 0.

Here, y measures risk aversion, with y = 1 corresponding to risk neutral-
ity, and risk aversion growing as vy declines. In contrast to expected utility,
the Yaari certainty equivalent is linear in payoffs—which are here the
values of U—and nonlinear in probabilities.

In the more general case, where neither y nor « is necessarily equal to
one, both parameters matter for risk aversion, which increases as either y
or « falls.

As noted by Epstein and Zin [2], when y < 1, the certainty equivalent wu
displays “first-order” risk aversion—that is, the risk premium it generates
for a small gamble is proportional to the standard deviation of the gamble,
rather than the variance.* As | discuss below, and as is discussed in Epstein
and Zin [2], this is an important feature which allows risk preferences of
this class to be calibrated so as to give plausible answers to questions
about a wide range of risks; it is also a feature which accounts for their
better performance with respect to the equity premium puzzle than the
standard isoelastic expected utility specification.

¥ It is worth noting that the axioms for Yaari’s dual theory are identical to those for the
expected utility theory, with the exception of the ‘independence axiom’ of the latter. Yaari’s
theory replaces this with a ‘dual independence axiom’ which, as Yaari notes, is equivalent to
requiring that the ranking of two lotteries with payoff vectors x and y is the same as the
ranking of lotteries with payoffs ax + (1 — a)z and ay + (1 — )z for all z’s which are not
hedges against either x or y.

* See Segal and Spivak [13] for a formal definition of first-order risk aversion.
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2.3. Which Specification Is More Plausible?

If one is willing to use the preferences of a representative agent to
gauge the costs associated with business cycles—or, as in Imrohoroglu, the
preferences of many identical agents—one has to be sensitive to the
guestion of whether these preferences are plausible descriptions of individ-
uals’ attitudes toward risk. The case for the standard, isoelastic, expected
utility specification, | suspect, rests largely on a combination of great
tractability and consistency with certain important long-run observations—
e.g., fairly constant consumption growth and a lack of any discernible trend
in the real return to capital. Yet, all of the specifications above—which
have, for deterministic paths of consumption, constant intertemporal elas-
ticities of substitution and fixed discount factors—are consistent with the
same long-run observations.

What we do know from the literature on the equity premium puzzle, is
that the standard isoelastic specification, when coupled with a frictionless
Arrow—Debreu environment, fails to rationalize the data on the variability
of consumption growth and the structure of asset returns, particularly the
level of the risk-free interest rate and the rate spread between risky and
riskless assets. Of course, this failure could be due to the presence in
reality of important trading frictions not captured in the Arrow—Debreu
framework. On the other hand, Epstein and Zin [2], while maintaining the
assumption of a frictionless trading environment, find that the preference
specifications above which are first-order risk averse—those with y <
1—can come closer to matching the equity premium data than the
standard specification.®

A key feature of both the standard isoelastic, expected utility class of
preferences, as well as the earlier Epstein and Zin specification—the two
“second-order” risk averse cases above, in which y = 1—is that plausible
risk premia for small gambles can only be obtained by setting the risk
aversion coefficient so large as to make it the case that an agent whose
preferences have been calibrated to give plausible answers to questions
about small gambles will almost certainly give implausible answers to
guestions about large gambles.

The “willingness to pay” calculations in Epstein and Zin [2] are instruc-
tive in this regard. Using the certainty equivalents above, they calculate
the amounts an individual with initial wealth of $75,000 would be willing to
pay to avoid timeless gambles which add or subtract, with equal probabili-
ties, sums ranging from $250 to $74,000. For cases with y =1, it is

> See Mehra and Prescott [9] for evidence on the standard specification. Weil [14] considers
‘“non-expected-utility” preferences of the sort formulated in Epstein and Zin in their earlier
work, [1], [3], and shows that the model’s ability to match the data on consumption growth
and asset returns is not enhanced. First-order risk aversion is important in this respect.
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necessary to drive the risk aversion parameter « down to o = —29 to
generate a willingness to pay even $12.48 to avoid the $250 gamble. The
problem, of course, is that an individual with a = —29 would be willing to
pay nearly $74,000—$73,975.81, to be exact—to avoid the gamble of size
$74,000. In the first-order risk-averse case, with a = 0.75 and y = 0.5,
these numbers are $103.64 for the $250 gamble and $43,809.83 for the
$74,000 gamble. I find both of these numbers—$103.64 and $43,809.83—a
bit large for my own tastes, but they are answers which one would not call
wildly risk averse, and they both seem about in the right general area.
Taking v = 0.87 and a = 0.75, say, yields numbers around $24 and $21,000
for the two gambles—which, if anything, would be called, at most, a
moderate aversion to risk. The essential point, though, is that the first-order
risk-averse certainty equivalent yields answers which are at least plausible
for a wider range of gambles than do the certainty equivalents with y = 1.

This feature derives from the fact, noted in Epstein and Zin [2], that
both specifications with y = 1 are “smooth at certainty.” To see what is
meant by this, in the context of the framework above, consider the
certainty equivalents of random future utility for the case where there are
two states, occurring with probabilities p and 1 — p. For certainty equiva-
lents with y = 1, the locus of payoffs (U,, U,) which are indifferent to some
u with certainty, i.e.,

(UL Uy : (pUF + (1 = p)Us)* = @),

forms a smooth indifference curve in the space of pairs (U;, U,), with slope
—p/(1 — p) at “certainty,” the 45° line. Loosely, one can visualize aver-
sion to a small gamble as the gap, near the 45° line, between this
indifference curve and the locus of pairs with expected value equal to
u—in other words, the set of pairs (U,, U,) satisfying

pUy + (L —p)U, =u,

which is tangent to the indifference curve at the certainty point, and
represents the indifference curve for a risk-neutral (« = 1) individual.
Generating any significant amount of risk aversion near the certainty point
requires a large amount of curvature—a« large in absolute value—since
the indifference curve is smooth at the certainty point. Certainty equiva-
lents with y = 1 are, in a sense, locally risk neutral. The upshot of taking
the risk aversion parameter o to be large enough in absolute value to
generate a plausible aversion to small gambles, though, is extreme aversion
for gambles with payoffs further away from the certainty point.
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When vy # 1, the indifference curve is kinked at the certainty point—a
consequence of the rank dependence which results when y < 1, that is, the
dependence of the evaluation on whether the state-one payoff is higher
than the state-two payoff or vice versa. If « = 1, the indifference curve is
in fact piecewise linear, with a slope of —p”/(1 — p”) above the 45°
line—outcomes where the state-one payoff is worse—and a slope of
—(1 - -p))/A - p)? below—outcomes where the state-two payoff
is worse.® When « < 1, the piecewise linearity is removed, but the kink at
certainty remains. The presence of the kink at certainty is the feature of
these risk preferences which makes it possible to generate plausible levels
of aversion to small gambles without generating implausible levels of
aversion to large gambles.’

Given that individuals do show some aversion to small gambles but are
not so averse to large gambles as to prefer practically nothing with
certainty to a gamble with a 50% chance of leaving them with practically
nothing, and given the obvious need to parsimoniously parameterize indi-
viduals’ risk preferences, the rank-dependent, first-order risk-averse cer-
tainty equivalents above would seem good candidates for the task of
modeling individuals’ risk preferences.

3. A LUCAS-TYPE EXPERIMENT

As in Lucas’s experiment, | consider a representative agent’s evaluation
of alternative hypothetical stochastic consumption streams. For each
posited consumption process, and using different specifications of the
agent’s intertemporal preferences, | calculate the minimum percentage
increase in initial consumption needed to compensate the agent for a
switch from a world of certainty—in which the disturbances to consump-
tion have a zero variance—to a world in which the disturbances to
consumption have a variance calibrated to be realistic. The subsections
below describe in turn the alternative consumption processes, solution
methods, and information about model calibration.

® See Fig. 1 in Epstein and Zin [2].

7 As Epstein and Zin [2] discuss, were « = 1—so that y alone determined the agent’s risk
aversion—then calibrating y to give a plausible degree of aversion to small gambles would
yield an agent who was not averse enough to large gambles. Thus, the role of « is in
generating sufficient aversion to large gambles in conjunction with a plausible aversion to
small gambles.
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3.1. Alternative Consumption Processes

I consider three different models for the consumption process. The first
follows Lucas in specifying ¢, = c,(1 + g)'exp( &), or

Inc,=Incy +tIn(l +g) + &, (4)

where {£} is an i.i.d. process with mean zero. Note, though, that while
Lucas assumes consumption paths of the form above, he takes the stan-
dard deviation of the disturbance from figures reported in Kydland and
Prescott [7], which are for Hodrick—Prescott filtered data.® The variance of
log U.S. per capita consumption about a linear trend is several times the
variance of the HP “cyclical’” component which Lucas uses. When | regress
the log of annual postwar per capita consumption on a constant and linear
time trend, the standard deviation of the residuals from that regression is
0.0271, about twice the standard deviation which Lucas takes from the HP
cyclical component of per capita consumption. The residuals are also, as
one would expect, highly serially correlated; a first-order autoregression on
them vyields a coefficient near unity.

The second model maintains the assumption of a linear deterministic
trend, but allows for serial correlation in the disturbances ¢,. That is, the
logarithm of consumption is assumed to follow (4), and

§=a&,_, +u, (5)

where {u,} is an i.i.d. process with mean zero. In the quantitative experi-
ments below, | set a = 0.9849, which is the value | obtain from a first-order
autoregression on the residuals from a least-squares-estimated version
of (4).

Finally, as in much of the equity premium literature, | consider con-
sumption streams with growth rates which follow autoregressive processes
—i.e., consumption processes with

Cre1/C = &ins

where { £} is a stationary autoregressive process—in particular,
&=DQ—-a)(l+g) +a&_, +u, (6)

® This is also the standard deviation used by Pemberton. Of course, there is a subtle issue
here as to what constitutes “business cycles”—or, put differently, if business cycles were
eliminated, what would be left? One may very well identify business cycle fluctuations in
consumption with the Hodrick—Prescott cyclical component, but, except in the case of
logarithmic utility, one cannot sensibly evaluate the “cyclical” component of consumption
streams separately from the trend component.
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where u, is i.i.d. with mean zero. This implies that innovations to the
growth rate of consumption have a permanent effect on the level of
consumption; in logarithms, consumption would follow a random walk with
serially correlated disturbances. This specification, | think, better captures
the features of U.S. per capita consumption than the linear time trend
specification used by Lucas, although the true data-generating process no
doubt lies somewhere between the two extremes.

3.2. Solving for the Agent’s Lifetime Utility

For computational purposes, | approximate the consumption processes
using finite-state Markov chains. In all cases, | derive a solution for the
stochastic process of lifetime utility, suitably normalized—either by ex-
tracting a deterministic trend in the cases where consumption obeys (4) or
by normalizing by the level of current consumption when the consumption
process is (6)—bhy iteratively solving an appropriate functional equation.
The normalized lifetime utility levels can then be expressed in terms of the
values of the disturbances ¢, which take on values in a finite set,
{66, &)

As discussed in the Appendix, when consumption follows the linear
trend specification (4), lifetime utility normalized by (1 + g)'c,—call it
v( &) in state é—obeys

1/p

0(£) = exp(€)" + B(1+8) u(v(E): )| (7)

Alternatively, when consumption follows (6), lifetime utility, normalized in
this case by the level of current consumption, obeys

o(€) = |1+ pu(Eu(B):6)]" (8)

Equations (7) and (8) are functional equations—or more precisely, given
the finite-state Markov chain assumption, systems of nonlinear equations
in n unknowns—which can be solved iteratively for the normalized life-
time utility functions v(¢) = (v( &), v(&,), ..., v(£,)) which satisfy them.

In each case, having solved for normalized lifetime utility in the n states,
I then calculate the certainty equivalent of normalized lifetime utility
according to w, using the Markov chain’s invariant probabilities over the
states, p = (py, p,,- .., p,)- Since we will be interested in variations in the
standard deviation of the disturbances, let V(o) denote the certainty
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equivalent of normalized lifetime utility obtained via the above procedure
for a given standard deviation o. That is,

1/«

U(fi)a )

Y Y

i
ij -
1

i=1 j=

V(o) - 2(

i-1
ij
j=1

where v(¢) is the solution for normalized lifetime utility when o is the
standard deviation of the disturbances ¢&.

Because of the linear homogeneity of the aggregator and certainty
equivalent, the proportionate increase in initial consumption needed to
render the agent indifferent between two environments with standard
deviations of ¢ and & > o is the value of A which satisfies

1+ M)V(d)=V(0o). (9)

Note also that in all cases, scaling up initial consumption by the factor
1 + A raises, in an expected sense, consumption in all future periods in the
proportion 1 + A as well—so A can also be thought of as a proportionate
increase, on average, in consumption in every period.

Using the “long run” certainty equivalent of lifetime utility, which uses
the Markov chain’s invariant probabilities, to make welfare comparisons
requires some justification. In all of the cases I consider, an individual’s
lifetime utility from today onward depends on which state the economy is
in today.® We could ask the agent how much he or she is willing to pay to
move from a particular state in one environment—i.e., a world with one o
—to a particular state in another environment—a world with another o.
Evaluating two consumption processes with different o’s according to
their “long run” certainty equivalents 1 amounts, as | see it, to asking the
agent to evaluate, in an ex ante sense, the choice of living in two different
environments. For that question, the proper probabilities to use—from
behind a “veil of ignorance,” so to speak—are the invariant probabilities
of the n states.

The experiments which | perform, as in Lucas, calculate A for switches
from a world of certainty to a world with a realistic o, other things
constant, for various values of the preference parameters p, y, and «.
Throughout the experiments, the discount factor g8 will be held constant.
The value | use for B is 1.037°2% which would imply a 3% steady-state
real interest rate.

® This is true even in the case of i.i.d. disturbances about a linear trend.
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3.3. Calibrating the Consumption Processes

To perform these experiments, we need to calibrate the parameters of
the consumption processes for the “realistic” environment. The data | use
are the Citibase quarterly series on consumption of nondurables and
services from first quarter 1947 to second quarter 1992. It is natural to
exclude durables: purchases of durables—which is what is measured—have
high variability, though we know that consumption of the services of
durables is probably much smoother. The population data used to obtain
per capita consumption are the U.S. Census monthly data on all citizens,
averaged over quarters.

An OLS regression of the logarithm of per capita consumption on a
constant and a linear time trend—for the cases where consumption
follows (4)—yields an estimate of the quarterly growth rate equal to 0.5%,
or about 2% annually. The standard deviation of the residuals from this
regression is 0.0271. A subsequent AR(1) fit to the residuals—for the case
of (5)—gives a coefficient of a = 0.9849.

In the case where consumption growth follows an autoregressive process
(6), fitting a simple AR(1) to per capita consumption growth yields esti-
mates of a = 0.2163 and (1 — a)(1 + g) = 0.7871, implying 1 + g = 1.0043
—a 0.43% quarterly growth rate, or a 1.73% annual growth rate of per
capita consumption. The standard deviation of the residuals from this
regression is 0.0056, implying that the unconditional standard deviation of
¢, is o = 0.0057.

| use standard n-state Markov chain representations which capture
unconditional means and standard deviations, as well as autocorrelation.®
In each case the invariant probabilities over the n states place approxi-
mately 70% of the mass of the distribution within +3/4th standard
deviations from the mean. Thirty percent of the mass is at or outside
+1.10 standard deviations.

4. RESULTS

I divide the results below into three cases corresponding to the three
stochastic processes governing consumption—that is, i.i.d. disturbances
about a linear trend (4), autocorrelated disturbances about a linear trend
(4 and 5), or the AR(1) process for consumption growth (6). For each
process, | then present welfare cost figures for each specification of risk
preferences. The specifications of risk preferences can be divided into two
cases, according to whether the certainty equivalent employed is “smooth

0 see the Appendix for more details.
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at certainty” (y = 1) or “kinked”—i.e., first-order risk averse (y < 1). The
first, “smooth” case encompasses both the standard isoelastic expected
utility specification (in which @ = p) and the generalization of the stan-
dard specification used by Epstein and Zin ([1], [3]) in their theoretical and
empirical analyses of the consumption-based CAPM. The first-order risk-
averse case can be divided into what one might call a pure “Yaari”
specification (in which « = 1) and a more general first-order risk-averse
specification (o < 1).

As will become clear below, for the experiments here, whether « is
equal to one or is slightly less than one does not make a great deal of
difference, much as in Epstein and Zin [2]. Intuitively, « would figure
more prominently if the “gambles” involved were larger. It is the kink at
certainty, which owes to the fact that y < 1, that matters most for small
gambles; taking o < 1 is important only for combining plausible aversion
to small gambles with plausible aversion to large gambles. Consequently,
we will make only one reference to the « < 1 case, in the first experiment,
with the remainder of the y < 1 results assuming « = 1.

4.1. Consumption: a Linear Trend Plus i.i.d. Disturbances

We begin, as in Lucas, with a consumption process which consists, in
logarithmic form, of a linear time trend plus i.i.d. disturbances—i.e., the
process given in (4).

4.1.1. Results for Smooth Certainty Equivalents

We initially set y = 1 and consider *“smooth” certainty equivalents of
the form

1/a
prjv(fj)al :

Of course, in the case where consumption obeys (4) and the disturbances
are i.i.d., P,; = p; for all i, and there is then no dependence ofu on the
current state.

The utility process—given in normalized form in (7)—corresponds to
that employed by Epstein and Zin ([1], [3]), with the parameter p govern-
ing attitudes toward intertemporal substitution for deterministic consump-
tion streams and « governing risk aversion for timeless gambles. In fact,
1 — « is the agent’s Arrow—Pratt coefficient of relative risk aversion for
timeless gambles, while 1 /(1 — p) is the agent’s elasticity of intertemporal
substitution for deterministic consumption streams. In this case, o =1
corresponds to risk neutrality, and risk aversion rises as « decreases. If
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a = p, these preferences correspond to the expected utility preferences
employed by Lucas.

The first case we will look at is, in fact, that of expected utility. In this
case, the coefficient of relative risk aversion for timeless gambles, 1 — «, is
equal to the inverse of the elasticity of intertemporal substitution, 1/(1 —
p). The welfare cost values are reported in Table I, for coefficients of
relative risk aversion equal to 2, 5, 10 and 20—i.e., for values of « (or p)
equal to —1, —4, —9, and —19. The entries in the table are the
percentage increases in consumption needed to compensate the agent for
a switch from a world of certainty to a world with a realistic variance of the
disturbances to consumption—i.e., the entries are 100 times the values of
A satisfying (9).

The welfare cost values range from just under a 0.04% increase in
consumption to just under a 0.70% increase in consumption for a switch
from certainty to a realistic variance. In per capita dollar terms—taking
U.S. annual per capita consumption to be about $20,000—these costs are
on the order of $7.34 to $139 per person per year.

The upper end of this range, which corresponds to avalue of 1 — p=1
— a = 20, is quite a bit larger than what Lucas obtained for the same risk
aversion coefficient; for a coefficient of relative risk aversion equal to 20,
Lucas obtained a value slightly less than 2,/10%. One would expect the
numbers reported here to be somewhat larger, however, since the “realis-
tic” standard deviation used in these calculations is the estimate o = 0.0271
rather than the o = 0.013 used by Lucas and Pemberton.

Allowing « to differ from p yields no cost value greater than the
0.6958% of Table I—at least for « and p taking on values in the same
range—though one interesting result does come out when we allow the
agent’s degree of risk aversion and willingness to substitute intertempo-
rally to vary independently. In particular, as Table Il below shows, the
proper interpretation of the numbers in Table | is not that the welfare cost
of business cycles rises as the agent becomes more risk averse—though
this is, of course, correct in a technical sense—but, rather, the welfare cost
of business cycles rises as the agent becomes less willing to substitute over
time.

TABLE |
Business Cycle Costs with Expected Utility,
¢, = co(l + gexp(§), & i.id.

Coefficient of relative risk aversion: 2 5 10 20

0.0367 0.1469 0.3306 0.6958




662 JIM DOLMAS

TABLE 11
Business Cycle Costs with “Smooth” Certainty Equivalents,
¢, = co(1 + g)exp(&), & i.id.

Elasticity of intertemporal substitution:

1/2 1/5 1/10 1/20

Degree of risk 2 0.0367 0.1440 0.3153 0.6270
aversion: 5 0.0381 0.1469 0.3210 0.6384
10 0.0403 0.1519 0.3306 0.6575

20 0.0449 0.1619 0.3497 0.6958

Table 1l shows the percentage increases in consumption needed to
compensate the agent for a switch from certainty to a realistic variance, for
various combinations of « and p. The “degree of risk aversion” values
shown in the table are values of 1 — « for a = —1, —4, =9, and —19.
The “elasticity of intertemporal substitution values are values of 1 /(1 — p)
as p= —1, —4, —9, or —19. Note that the main “‘diagonal” of the table
—entries where a = p—simply replicates the numbers in Table I.

As one can see, the largest cost value remains 0.6958, or a little less than
a 7/10% increase in initial consumption; this value occurs where the agent
is most risk averse and least willing to substitute over time. Looking across
the rows and down the columns of the table, one sees the ‘“interesting
result” mentioned above: at least for this consumption process, the agent’s
willingness to substitute intertemporally has a much larger impact on the
cost of fluctuations in consumption than does the agent’s aversion to risk.
In particular, for a given elasticity of intertemporal substitution, the
influence of the degree of risk aversion parameter on the cost values is
fairly negligible; on the other hand, for a given degree of risk aversion, the
costs vary substantially with the agent’s elasticity of intertemporal substitu-
tion.

4.1.2. Results for First-order Risk-averse Certainty Equivalents

We now turn to consider the first-order risk-averse preferences which
obtain when we take y < 1 in the certainty equivalent operator w. The
certainty equivalent of normalized future utility v(¢) then has the form

i\ (ict 7 e
p((€):&) = [Tl ZPu] | Z Pu] |0(&)"
i \\n=1 h=1

The utility process is again given by (7), and, in this case of i.i.d.
disturbances, there is no dependence of w on the current state. Setting
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a = 1 in this certainty equivalent corresponds to what | have called the
“Yaari” case. When «a = 1, y alone governs risk aversion—with smaller y
corresponding to greater aversion to risk—while p again governs intertem-
poral substitution for deterministic streams.

Table 111 below gives percentage increases in consumption needed to
compensate the agent for a switch from certainty to a realistic variance for
the “Yaari” case of @ = 1. The “degree of risk aversion” values in this
table are values of y—in particular, y ranging from 0.99 down to 0.70,
with risk aversion increasing as we move down the table, just as in Table
Il. The “elasticity of intertemporal substitution” values are again values of
1/(1 — p)for p= —1, —4, —9, and —19.

The maximum cost value in the table is roughly 1.6%. The maximum
occurs at y = 0.70—the highest level of risk aversion shown—and 1 /(1 —
p) = 1/20—the smallest elasticity of intertemporal substitution shown.
Even at y = 0.90, costs greater than 0.5% and even 0.9% are possible, if
the agent is relatively unwilling to substitute intertemporally. In per capita
annual dollar terms, costs of this size are in the rough range of $57 to $180
per person per year. If the representative agent is as risk averse as, say,
v = 0.87, the costs in dollar terms rise to between $74 and $198 per person
per year.

How risk averse is an individual with y = 0.87? The “degrees of risk
aversion” values in the table can be put into perspective by reconsidering
the “willingness to pay” calculations discussed in Section 2.3 above. For an
individual with initial wealth of $75,000, faced with a (timeless) gamble
which adds or subtracts, with equal probability, $250 from the individual’s
wealth, the individual’s willingness to pay to avoid the gamble, for the y
values used in Table 111, is presented in Table V. Thus, an individual with
risk preferences of the form used in this section, whose degree of risk
aversion was y = 0.87, would be willing to pay $23.57 to get out of the
$250 gamble. While there is certainly room for argument here, | would

TABLE 11
Business Cycle Costs with First-order Risk Aversion, @ = 1,
¢, = co(L + g)exp(§), & i.id.

Elasticity of intertemporal substitution:

1/2 1/5 1,/10 1/20
Degree of risk 0.9 0.0595 0.1662 0.3366 0.6460
aversion: 0.95 0.1575 0.2664 0.4402 0.7556
0.90 0.2873 0.3991 05774 0.9005
0.87 0.3695 0.4831 0.6642 0.9920

0.75 0.7355 0.8568 1.0494 1.3961

0.70 0.9084 1.0330 1.2305 1.5847
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TABLE IV
Willingness to Pay to Avoid a Small Gamble

Degree of risk
aversion: 0.99 0.95 0.90 0.87 0.75 0.70

$1.74 $8.82 $17.94 $23.57 $47.30 $57.79

suggest that such a person is not wildly risk averse. For this same
individual—depending on his or her elasticity of intertemporal substitu-
tion—Dbusiness cycle costs on the order of $74 per year to $198 per year
are possible.

To see that there is little consequence to whether « is equal to one or is
slightly less than one, as argued above, Table V replicates the experiment
in Table Il for a value of « = 0.75. As is clear, the results are virtually
identical. Consequently, in the experiments below, we will restrict our
attention to the case of a = 1.1

Finally, note that while the results in Tables Il and V show that with
first-order risk aversion there is a greater dependence of the cost of
fluctuations on the agent’s degree of risk aversion than in the “smooth”
case, much of the variation in the cost values even in the first-order
risk-averse case is still due to variation in the agent’s willingness to
substitute intertemporally. This is particularly true if one looks at the rows
of Tables 111 and V, which correspond to values of y other than the two

" one may wonder at the choice of a = 0.75 in the table. Again referring to the
willingness to pay calculations of Section 2.3, if an individual’'s y is in the range of values in
the table, then taking « much below 0.75 would result in an implausibly large aversion to
sizable gambles.

TABLE V
Business Cycle Costs with First-order Risk Aversion, a = 0.75,
¢, = co(l + gexp(§), & i.id.

Elasticity of intertemporal substitution:

1/2 1/5 1/10 1/20
Degree of risk 0.99 0.0597 0.1665 0.3371 0.6469
aversion: 0.95 0.1576 0.2666 0.4407 0.7565
0.90 0.2874 0.3994 05779 0.9015
0.87 0.3696 0.4834 0.6647 0.9930

0.75 0.7356 0.8571 1.0500 1.3972

0.70 0.9086 1.0333 1.2310 1.5857
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most extreme degrees of risk aversion, y = 0.75 and y = 0.70. If business
cycle fluctuations in consumption are really best described as i.i.d. shocks
around a linear deterministic trend, then it is not enough simply to get
individuals’ risk preferences “correct”—the accuracy of one’s measure of
the cost of those fluctuations will still depend crucially on the accuracy
with which one measures individuals’ willingness to substitute consumption
over time.

4.2. Consumption: A Linear Trend Plus
Autocorrelated Disturbances

In this section, we repeat the previous experiments for the case where
the log level of consumption consists of stationary disturbances about a
linear trend (4), as before, but with the disturbances following the first-
order autoregression described in (5) with coefficient given by the estimate
a = 0.9849 taken from the data. Normalized lifetime utility follows the
same recursion as in the previous section (given in Eq. 7), except that now
the certainty equivalent of normalized future utility depends on the
realization of today’s disturbance.

4.2.1. Results for Smooth Certainty Equivalents

We again begin by looking at the case where y = 1, so that the certainty
equivalent operator w is ‘‘smooth at certainty”’; again, 1 — « is the agent’s
risk aversion coefficient for timeless gambles, and 1/(1 — p) is the agent’s
elasticity of intertemporal substitution for deterministic consumption
streams. Rather than looking at the expected utility case (in which « = p)
and the more general smooth case separately—the former being encom-
passed by the latter—Table VI repeats the experiment from Table II,
giving requisite percentage increases in consumption, for various combina-
tions of the parameters « and p, for a switch from certainty to a realistic
variance of the disturbances to consumption. The results for the expected

TABLE VI
Business Cycle Costs with “‘Smooth” Certainty Equivalents,
¢, =col + g)exp(§), & =a&,_, +u,

Elasticity of intertemporal substitution:

1/2 1/5 1/10 1/20

Degree of risk 2 0.0367 0.0508 0.0517 0.0479
aversion: 5 0.1135 0.1469 0.1563 0.1563
10 0.2416 0.3072 0.3306 0.3369

20 0.4996 0.6269 0.6769 0.6958
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utility case can be seen by restricting attention to the diagonal elements of
the table.

While there is a change in the pattern of the resulting welfare costs as
the parameters governing intertemporal substitution and risk aversion
vary, the upper bound on the cost figures is essentially unchanged. The
maximum value again occurs at the highest degree of risk aversion and
smallest elasticity of intertemporal substitution, and is again roughly a
0.7% increase in initial consumption. On the diagonal of the table—where
1—a=1/(1 - p), and expected utility obtains—the costs with autocor-
related disturbances are indistinguishable from their counterparts in the
i.i.d. case.

What is significantly different in Table VI is that now, with a high
degree of autocorrelation in the disturbances, the cost values are less
sensitive to changes in the elasticity of intertemporal substitution, 1 /(1 —
p), and more sensitive to changes in the degree of risk aversion, 1 — a.
For a given value of the risk aversion coefficient, the costs rise only slightly
as the agent’s elasticity of intertemporal substitution falls from 1/2 to
1/20. In contrast, for a given value elasticity of the intertemporal substitu-
tion, the costs rise sharply as 1 — o« moves in the direction of greater risk
aversion. Furthermore, compared with the results in Table |1, costs “below
the diagonal”’—where the coefficient of relative risk aversion is greater
than the inverse of the elasticity of intertemporal substitution—are higher,
while those “above the diagonal”—where the risk aversion coefficient is
than the inverse of the elasticity of intertemporal substitution—are smaller.

4.2.2. Results for First-order Risk-averse Certainty Equivalents

For the first-order risk-averse specification, the effect of added persis-
tence in the disturbances is more dramatic than in the smooth certainty
equivalent specification. The results are reported in Table VII.

The maximum cost value is roughly 2.4% for a switch from certainty to a
realistic variance. This maximum occurs at the combination of parameters
where risk aversion is greatest (y = 0.70) and the elasticity of intertempo-
ral substitution is largest (1/(1 — p) = 1/2). Even for less extreme
amounts of risk aversion, though—vy = 0.87, for example—costs as high as
0.88%, or about $177 per person per year, are possible.*? Furthermore, as

12 By way of contrast, if we restricted attention to binary gambles with equally likely
outcomes, as in Pemberton [11], the value of the risk parameter, denoted B, for which
Pemberton calculates a cost of 1.09% in the linear-trend-plus-i.i.d.-disturbances case would
correspond to a value of y of roughly 0.125 here. Conversely, our extreme of risk aversion
(y = 0.7) would lie somewhere between risk neutrality (8 = 0) and the next smallest risk
parameter Pemberton considers ( 8 = 1). In Pemberton’s framework, values of the parameter
B > 0 “adjust” the probability of the worse outcome upward, much as y does here. A value
of B = 1 would increase the probability of the worse outcome from 1/2 to 2 /3.
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TABLE VII
Business Cycle Costs with First-order Risk Aversion, @ = 1,
¢, =co(l + g)exp(&), & =a&_, +u,

Elasticity of intertemporal substitution:

1/2 1/5 1/10 1,20
Degree of risk 0.99 0.0468 0.0349 0.0211 0.0080
aversion: 0.95 0.3045 0.2393 0.1869 0.1445
0.90 0.6565 05225 0.4176 0.3332

0.87 0.8842 0.7082 0.5699 0.4574

0.75 1.9214 1.5801 1.2988 1.0556

0.70 2.4104 2.0065 1.6658 1.3624

in the smooth case just considered, varying the elasticity of intertemporal
substitution, for a given value of y, now has relatively less effect on the
cost figures than in the i.i.d. case.

4.3. A Consumption Process with Permanent Innovations

Last, we turn to the case where the growth rate of consumption follows
an AR(1) process—i.e., consumption growth obeys (6), implying that in
levels, the logarithm of consumption follows a random walk with upward
drift. This is the form for per capita consumption used by Mehra and
Prescott [9] and Epstein and Zin [2] in their studies of the equity premium
puzzle. An implication of this specification is that disturbances to con-
sumption have permanent effects on the level of consumption. The experi-
ments in this section, as in the sections above, consider a change from a
world of certainty to a “realistic’” environment, within the framework of
the posited consumption process. In other words, we consider a switch
from a world in which the growth rate of consumption has a zero variance,
and is simply c,,,/c, = 1 + g, to one in which of the growth rate obeys
Ci41/¢, = &1, Where

§i41 = (1 _a)(l +g) +a, +u,

with the persistence parameter a and the variance of the i.i.d. distur-
bances u, set to mimic the first-order autocorrelation and unconditional
variance of per capita consumption growth observed in the U.S. data.

4.3.1. Results for Smooth Certainty Equivalents

We initially set v = 1, and examine the welfare cost of fluctuations in
consumption growth, using “smooth” certainty equivalents to describe the
agent’s risk preferences. Table VIII gives the requisite percentage in-



668 JIM DOLMAS

TABLE VIl
Business Cycle Costs with “Smooth” Certainty Equivalents,
Cr1/¢ =6 b =AU -l +g)+ag +u,

Elasticity of intertemporal substitution:

1/2 1/5 1/10 1/20
Degree of risk 2 0.3469 0.1626 0.0858 0.0444
aversion: 5 0.9847 0.4606 0.2412 0.1214
10 2.0675 0.9685 0.5064 0.2530

20 4.3151 2.0299 1.0628 0.5301

creases in consumption, for various combinations of the risk aversion
parameter « and the intertemporal substitution parameter p, needed to
compensate the agent for a switch from a world of certainty to a world
with a realistic variance of consumption growth.

Some of the resulting increases in consumption are, in fact, quite large.
The maximum value—a roughly 4.3% increases in consumption—occurs
at the highest degree of risk aversion, 1 — « = 20, and the largest elastic-
ity of intertemporal substitution, 1/(1 — p) = 1/2. In per capita dollar
terms, an increase in consumption of that magnitude corresponds to
roughly $863 per person per year. Even at the more moderate degrees of
risk aversion of 5 and 10, costs near 1% and 2% of per capita consumption
—or $200 to $400 per person—are possible with this consumption process,
even in this “smooth” case.

The expected utility case is once again had by looking at the diagonal
elements of the table. For this case, the costs are substantially smaller,
ranging from about 0.35% to 0.53% of consumption, or, in dollar terms,
from about $70 per person per year to about $106 per person per year.

While some of the costs in this experiment are certainly quite large
compared to their counterparts in the previous experiments with trend-sta-
tionary consumption—particularly the costs associated with parameter
combinations which correspond to higher risk aversion and greater willing-
ness to substitute intertemporally—it is worth noting that in Epstein and
Zin’s [3] empirical estimation of the parameters of this utility process, they
found in none of their estimations a value of 1 — « even as large as 1.40.
As the table shows, for a degree of risk aversion, 1 — «, equal even to two,
the maximum cost is less than 0.35% of initial consumption, or $70 per
person per year.

4.3.2. Results for First-order Risk-averse Certainty Equivalents

Some of the cost numbers obtained in the previous section are quite
large as far as welfare cost estimates go—compared, for example, to
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Harberger’s estimates of the gains from eliminating monopoly. In the
following experiments, we will see that costs of an even greater magnitude
are possible when first-order risk aversion combines with a consumption
process like (6), in which disturbances to consumption have permanent
effects.

Table IX gives the requisite percentage increase in consumption for a
switch from certainty to a realistic variance of consumption growth for
various values of the risk aversion parameter vy, ranging again from 0.99
down to 0.70, and values of the elasticity of intertemporal substitution
1/(1 — p) ranging from 1/2 to 1,/20.

The maximum cost value, which occurs at y = 0.70and 1 /(1 — p) = 1/2,
is 22.9162—a compensating increase in initial consumption of nearly 23%.
In dollar terms, this is about $4600 per person per year. Of course,
v = 0.70 might be considered a very extreme degree of risk aversion. But,
for even small departures from risk neutrality, the costs can become quite
large. For example, when y = 0.87, the costs, in percentage terms, range
from just under 1% at the lowest elasticity of intertemporal substitution to
about 7.6% at the highest. In per capita annual dollar terms, these costs
are in the rough range of $200-$1500 per person per year. For y = 0.75,
the costs range from 3.32% to 12.73% of initial consumption, or from
about $600 to $2500 per person per year.

If we think back to the “willingness to pay” calculations discussed above,
taking y = 0.87 and a = 0.75 implied a willingness to pay about $24 to
avoid the $250 gamble and about $21,000 to avoid the $74,000 gamble. For
those parameter values, depending on the agent’s elasticity of intertempo-
ral substitution, the welfare cost of fluctuations in the growth rate of
consumption of the magnitude experienced in the post-war United States
is in the range of 1% to 7% of consumption—by no means a negligible
cost.

TABLE IX
Business Cycle Costs with First-order Risk Aversion, o = 1,
/¢ =& i =Q -l +g) +a§ +u,

Elasticity of intertemporal substitution:

1/2 1/5 1/10 1/20
Degree of risk 0.99 0.4347 0.2050 0.1091 0.0570
aversion 0.95 2.5903 1.2214 0.6449 0.3279
0.90 5.5969 2.6551 1.4048 0.7135

0.87 7.5953 3.6194 1.9189 0.9756

0.75 17.5319 8.5784 4.6093 2.3645

0.70 22.9162 11.4067 6.1878 3.1957
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4.3.3. Business Cycles or Growth?

When shocks to consumption have permanent effects—as in the experi-
ments just performed—it is natural to wonder to what extent the large
cost figures obtained in this case can truly be ascribed to business cycles,
rather than to reduced growth. In this section | will present some evidence
that the welfare costs obtained in those experiments are in fact distinct
from “‘growth costs,” and—in line with one of Lucas’s basic points—those
costs are still smaller than the costs of reduced growth, despite their large
absolute size. In this sense, the results in this paper do not overturn
Lucas’s conclusion that the costs of reduced growth are large relative to
the cost of business cycles; only Lucas’s conclusion that the latter costs are
actually negligible in an absolute sense is in question.

To explore the cost of reduced growth vis-a-vis the cost of fluctuations, |
consider the following experiment: keeping the long-run variance of con-
sumption growth at its realistic level, I ask, what percentage increase in
consumption would be needed to compensate the agent for a one percent-
age point decrease in the long-run growth rate of consumption. For the
“smooth’ certainty equivalent case, the requisite percentage increases in
consumption are given in Table X.

As is clear from a comparison of Table X with Table VIII, the costs of
slower growth dwarf the costs associated with fluctuation for all combina-
tions of parameters. The costs of reduced growth are particularly large
where the agent’s elasticity of intertemporal substitution is high, and
decline as this elasticity falls. While there is some influence of risk
aversion, it is small.

Costs of a similar magnitude are obtained in the first-order risk-averse
case (with o = 1), the results for which are shown in Table XI.

In fact, except for the two most extreme degrees of risk aversion, 7y
equal to 0.75 and 0.70, the costs of slower growth shown in Table XI are
strikingly similar to those shown in Table X. Their pattern is dominated by
the agent’s elasticity of intertemporal substitution, with requisite consump-
tion increases in the rough neighborhoods of 28%, 15%, 8%, and 4% as

TABLE X
Costs of Slower Growth with “Smooth” Certainty Equivalents

Elasticity of intertemporal substitution:

1/2 1/5 1/10 1/20

Degree of risk 2 26.7965 13,5856 7.4503 3.8796
aversion: 5 27.0218 13.8237 7.6167 3.9788
10 27.4062 14.2404 7.9119 4.1563

20 28.2116 15.1588 8.5813 4.5669
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TABLE XI
Costs of Slower Growth with First-order Risk Aversion, a = 1

Elasticity of intertemporal substitution:

1/2 1/5 1/10 1/20
Degree of risk 0.99 26.8245 13.6160 7.4717 3.8924
aversion: 0.95 27.5767 14.4356 8.0530 4.2428
0.90 28.6410 15.6898 8.9838 4.8211
0.87 29.3583 16.6056 9.6980 5.2810
0.75 33.0472 22.5176 15.2693 9.5955
0.70 35.1355 27.1875 21.7311 20.3938

the agent’s substitution elasticity is either 1,/2, 1/5, 1/10, or 1/20,
respectively. Compared to the increases required to compensate for fluctu-
ations in the growth rate of consumption, the increases in consumption
required to compensate for a one percentage point slower long-run growth
rate range from roughly twice as large to 70 times as large.

Numbers of a similar magnitude and pattern obtain if one performs the
analogous experiment with either of the other two processes posited for
consumption, the one exception being that, for the two deterministic-trend
specifications, the costs of slower growth fall with greater risk aversion,
although the impact of variation in the risk aversion parameters is even
more negligible in those cases. Lucas’s conclusion that the welfare costs of
slower growth are large in an absolute sense is thus a very robust
one—even if individuals are relatively unwilling to substitute consumption
over time, whether or not they are not particularly risk averse, and for
several possible processes governing aggregate consumption, the welfare
costs of slower long-run consumption growth are enormous.

5. CONCLUSIONS

What conclusions can be drawn from these experiments? Like Lucas, |
do not intend these numbers to be taken as precise estimates of the cost of
business cycles. Rather, | want only to show that for what | believe are
plausible alternatives to the standard preference specification, and alterna-
tive processes for aggregate consumption, large costs are possible. One and
one-half percent of current consumption, or two percent—both large
numbers—are in the ballpark, in fact in the infield. If one allows that an
individual’s risk preferences may be better described by something other
than the standard, isoelastic expected utility framework, one must be open
to at least the possibility that business cycles do have large welfare
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consequences. More to the point, | think it would be premature to write
off stabilization as a possible goal of business cycle theory.

Not surprisingly, the results also show that what one means by “business
cycle fluctuations in consumption” has a large impact on the calculated
costs imposed by those fluctuations. Whether business cycle fluctuations
are essentially transitory disturbances to an otherwise smoothly growing
consumption path, or they have permanent effects on the level of con-
sumption, matters a great deal for the size of the welfare costs one obtains.
One lesson that might be drawn from this sensitivity of the results is that,
while there is clearly something attractive in the simplicity of the sort of
“back-of-the-envelope” calculations in Lucas [8] and (albeit on a larger
envelope) here, the question of the costliness of business cycles is perhaps
not well posed outside of a particular model of business cycles.

One final way of thinking about the results is to think simply in terms of
the range of numbers—the one *“safe” conclusion is that the cost of
business cycles lies somewhere between 1/10% and 23% of annual con-
sumption—which suggests that we need a better understanding of individ-
uals’ attitudes toward risk before we can safely draw conclusions about the
cost of business cycles. Whether deviations from the standard specification
of risk preferences have a significant impact on positive business cycle
theory is a question for further research.'®

6. APPENDIX

The solution technique which I employ—which involves normalizing
growing lifetime utility to render it stationary, then iteratively solving a
functional equation—is similar under any of the three alternative con-
sumption processes, although the normalizations differ, and the resulting
functional equations thus differ somewhat. In all cases the uncertainty is
“discretized” down to a finite-state Markov chain, and the functional
equations are solved via iterative techniques common in dynamic program-
ming problems.

When consumption obeys ¢, = ¢,(1 + y)'exp(£,), with ¢, either i.i.d. or
following a first-order autoregressive process, the stochastic process for
lifetime utility, which will be growing over time,** can be normalized in the

13 See [4] for a recent exploration along these lines.
¥ Note that “lifetime utility” at date ¢ is utility from date ¢ onward as of date r—i.e.,
undiscounted.
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following manner. Let U, denote lifetime utility from date ¢ onward, so
that

~ p1l/p
U = [CtP+Bl~L(Ut+1:‘/¢z) ] :

Given the homogeneity of u and the CES aggregator, lifetime utility at
each date ¢ can be “normalized” by c,(1 + g)". Let V,=U,/c,(1 + g)'
denote normalized lifetime utility; V, then evolves according to

_ P/
V,= exp(f,)”+B(1+g>”u(%+1:fr)] "

where the conditioning information .# is now simply the realization of ¢
at ¢. | treat this as a functional equation to be solved for a particular
function v(¢). A solution is a v(¢) such that {VJ7_, = {v( &), satisfies
the above stochastic difference equation. More simply, v is a solution if v
satisfies

1/p

v(€) = lexp(€)” + B(1 +g)pu(u(§):§)p]

for all &.

When consumption obeys ¢, ,/c, = &, With ¢, a stationary AR(1)
process, as in the equity premium literature, lifetime utility can be normal-
ized as follows. Given the nature of the posited consumption processes,
and the recursive formula (1) for lifetime utility, one can express lifetime
utility from a state with current consumption ¢ and current realization of
the growth rate ¢ as a function V(c, £), satisfying

~ o~ p11/p
Vie, &) = [C” + Bu(V (& &):c, ¢ ]
for each ¢ and &. In fact, given the homogeneity of the aggregator and

certainty equivalent in (1), V" will be linearly homogeneous in the level of
current consumption—i.e.,

V(c, &) =cv(€)

—so that lifetime utility normalized by the level of current consumption
will obey

o(&) = 1+ Bu(Eu(E) €)'

which is again a functional equation in v.
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For computational purposes, the processes for the disturbances ¢, are
approximated by finite-state Markov chains. That is, &, ; takes on one of
n values—

§i1€{é & 8)

with probabilities given by a transition matrix P,

P= [Pi,'],-,/zl,z ..... n

= [Pr{gt“ =¢&:&6= gi}]i,j=1,2 ..... n

| take n to be even, and fix probabilities with p, <p, < -+ <p, ,, and
Pns2y+1 > Pinjay+2 > ° > D,- The probabilities p = (py,..., p,) repre-
sent the invariant distribution of &. If m denotes the mean and o the
standard deviation of the invariant distribution of &, set

g

- Pi\/Z;': 1 (1/Pj)

&=m

fori=1,2,...,n/2 and

g
f=m+ ————
Py Xi-1(1/p))

fori=(n/2)+1,(n/2) +2,...,n. Then, & < ¢, < - <&, 5, p& =
m and ¥, p(& — m)? = a2 If the p;’s are symmetric—i.e., if p, =p,,
P> = P, _1, etc.—then the ¢;’s will also be symmetric about m.

The Markov transition probability matrix P is then specified as

P

ij = Pr{ix, ., =x;:x,=x}=(1- a)p; +ad;,

J
where §; =1 if i =j and zero otherwise, and a is an autocorrelation
parameter. When a = 0, the ¢ process is i.i.d., with P;; = P; = p;.

In principle, one would like to construct the Markov chain—which here
amounts to selecting n and the probabilities p,, p,,..., p,—S0 as to
capture a number of salient features of the distributions of the actual
variables whose behavior is being approximated. Given the standard for-
mulation which | have followed, taking n = 2, with p, =p, =1/2, is
sufficient to capture the unconditional mean and variance, and autocorre-
lation, in a parsimonious way. In this case, the realizations of ¢ are
restricted to being one standard deviation above or below the mean. To
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the extent that other features of the distribution seem relevant for risk
calculations—e.g., existence or nonexistence of “two-o " or greater events
or features of the cumulative distribution function—one would like to
incorporate that information. This seems particularly the case when con-
sidering, as we are here, a variant on Yaari certainty equivalents, which
are nonlinear in probabilities. In practice, though, given the forms speci-
fied above for the outcomes, it is difficult to select n and the p,’s so that
(&)!_, with probabilities (p;)!_; matches even a rough histogram of a
given distribution. For the distributions at hand, a good but by no means
perfect approximation was had with » = 8 and

p = {0.05,0.10,0.15, 0.20, 0.20, 0.15, 0.10, 0.05} .

Experiments with other possible combinations of n» and p—including
n =2and p = (3, $)—indicate that the results reported above are robust,
at least in terms of orders of magnitude. Given that our purpose here is
not so much to give a precise estimate of the cost of business cycles as it is
to provide rough indications of possible magnitudes, robustness to this
extent seems satisfactory.

Now, let G(P) = [G;(P)]; ;_1, ., be the matrix of **Yaari-adjusted”
probabilities, defined by

j Y j*l Y
Gij(P): ZPih - ZPih
h=1 h=1

Then, given the particular form of the certainty equivalent w which |
employ, and the n-state Markov chains for the & processes, the ““func-
tional equations” in v to be solved are

n /P
v( &) = [f,-ﬂ +B(1+g)" ; G,,(P)u(gj)“l 1 (i=1,2,...n)

for the case of a linear trend, and
p/a /P
: ] (i=1,2...n)

for the stochastic growth case. Both are simply systems of n equations in n
unknowns. Given the recursivity, however, the most efficient way to solve
these systems is iteratively, as in dynamic programming problems. | thus

v(§) = [1+B

éGi,-(P)[fjv(f,-)]
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begin in each case with an initial guess v, = (v,(£))?,, and update
according to either

p/a /P

v 1(E) =& +BL+8)"| ¥ Gy(P)o(&)"
j=1

or

p/a Y/ P

va( &) = [1+B .ilGif(P)[ ivs(gf)]a

The tolerance criterion | use stops the iterations when |lv,,, — v ll; <
1077,

10.

11

12.

13.

14.
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