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Econometrica, Vol 28, 2 (April 18601
STATIONARY ORDINAL UTILITY AND IMPATIENCE!
By Tratrineg C. KoopmaNns?

This paper investigates Bshm-Bawerk's idea of a preference for advancing
the timing of future satisfactions from a somewhat different point of view.
It is shown that simple postulates about the utility function of a consumption
program for an iufinite future logically imply impatience at least for certain
broad classes of programs. The postulates assert continuity, sensitivity,
stationarity of the utility function, the absence of intertemporal complemen-
tarity, and the existence of a best and a worst program. The more technical
parts of the proof are set off in starred sections.

l. INTRODUCTION

EveR siNCE the appearance of Béhm-Bawerk's Positive Theovie des Kapitals,
the idea of a preference for advancing the timing of future satisfaction has
been widely used in economic theory. The question of how to define this
idea precisely has, however, been given insufficient attention. If the idea
of preference for early timing is to be applicable also to a world of changing
prices, money expenditure on consumption is not a suitable measure of
“satisfaction level,” and money expenditure divided by a consumers’ goods
price index is at best an approximate measure, useful for econometric work
but not providing the sharp distinctions that theory cequires. [t seems better,
therefore, to try to define preference for advanced timing entirely in terms
of a utilily function. Moreaver, if the idea of preference for early timing is to
be expressed independently of assumptions that have made the construction
of cardinal utility possible? (such as choice between uncertain prospects, or
stochastic choice, or independence of commodity groups in the preference
structure) it will be necessary to express it in terms of an ordiunal utility
function, that is, a function that retains its meaning under a monatonic
(increasing) transformation. It would seem that this can be done only if ane
postulates a certain persistency over time in the structure of preference.
This study started out as an attempt to formulate postulates permitting
a sharp definition of dmpatience, the short term [rving Fisher has introduc-
ed for preference for advanced timing of satisfaction. To avoid complica-
tions connected with the advancing age and finite life span of the individual
consumer, these postulates were set up for a (continuous) utility function of
a consumption program extending over an infinite future period. The

* This study was carried out in part under a grant from the National Science
Foundation.

2 ] am indebted to Gerard Debreu and Herbert Scarf for extremely valuable com-
ments and suggestions on the subject and methods of this paper.

3 For a recent discussion, see Debreu [2].
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288 TJALLING C. KOOPMANS

surprising result was that only a slight strengthening of the continul
postulate (incorporated in Postulate 1 below) permits one to conclude fro
the existence of a utility function satisfying the postulates, that impatien
prevails at least in certain areas of the program space. In other worc
conditions hardly stronger than those that appear needed to define impatien
in a meaningful way are sufficient to prove that there are zones of i
patience. Intuitively, the reason is that if there is in all circumstances
preference for postponing satisfaction—or even neutrality toward timing
then there is not enough room in the set of real numbers to accommoda
and label numerically all the different satisfaction levels that may occur
relation to consumption programs for an infinite future.

This paper thus has become a study of some implications of a continuo
and stationary (see Postulate 3) ordering of infinite programs. Flexibili
of interpretation remains as to whether this ordering may serve as a fis
approximation to the preferences of an individual consumer, or may perha
be an “impersonal” result of the aggregation of somewhat similar individy
preferences (interpreting “‘consumption’ as “consumption per head” in t
case of a growing population), or finally may guide choices in a centra’
planned economy. In each of these interpretations further modificatic
and refinements may be called for.

The first paper in the literature basing the study of utility on a set
behavior axioms (or postulates), known to this author, was by Profess
Frisch [3]. Since then this method has been widely applied to establi
utility concepts appropriate to a variety of choice problems. In most cases t
postulates have been in terms of preferences rather than of a utility fu
tion. To limit the mathematical difficulties, the postulates of the prese
study are in terms of a utility function, with the understanding that
alternative with higher utility is always preferred over one with lov
utility, and indifference exists between alternatives of equal utility. Stud
deriving the existence of an ordinal utility function from postulates abe
preferences have been made by Wold [10] and by Debreu [3].

Two levels of discussion are separated in what follows. The contel
and findings of each section are first stated in general terms. Then, wh
needed, the more technical stipulations, proofs and discussions are giv
in a starred section bearing the same number. The starred sections can
passed up by readers interested primarily in the results and in the ]
technical phases of the reasoning.

2. THE PROGRAM SPACE — NOTATION

A program for an infinite future will be denoted

(1 1 = (%1, Xz, X, . . ., %, .. ) = {21, o3} = etc.
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Each symbal x, £ = 1, 2, . . ., represents a vector (bundle)
(2) Xe = (%1, %oz, . ., Kipn)

of the nonnegative amounts of # listed commodities to be consumed in the
period {. Subvectors of (1) consisting of several consecutive vectars (2} will
be denoted

(3) (232 (x:, Xty . ooy xc') s

where omission of the right subscript ¢ of «. indicates that £ = o0.The
subscript ¢ of x. is called the fiming of the consumption vector x:, the
subscript s of & — (%, %411, . . .) the fime of choice between x and its
alternatives sx', ¢x’, . . .. A constant program is denoted

(4) con® = (x, X, X, .. ) .

Finally, = denotes equality by definition.

2* Each consumption vector x. is to be selected from a connected subset X
of the n-dimensional commodity space, which we take to be the same for all ¢,
Hence o = (x4, x¢+1, . . .) belongs to the cartesian product 1 X of an infinite sequence
of identical sets X. Expressions such as ““for some x." “for all .2, etc., will in
what follows always mean “for some x € X,” “for all % € 1X,” etc., and all
functions of x. or :x are to be thought of as defined on X or on X, respectively.

3. EXISTENCE OF A CONTINUQUS UTILITY FUNCTION

Before stating the basic postulate asserting this existence, the meaning
of continuity needs to be clarified. Continuity of a function f{y) of a vector
y means that, for every v, cne can make the absclute difference |f{y’) —
f(3)| as small as desired by making the distance d{y’, ¥) between ¥’ and y
sufficiently small, regardless of the direction of approach of y' to y. For
vectors ¥ = (v, ..., va) with a finite number »# of components there is a
wide choice of definitions of the distance function 4(y’, ¥), all of which
establish the same continuity concept, and the maximum absolute difference
for any component,

(3) dly’, v) = [y" — y| = max |y, — yi|
Is as suitable as any of a large class of alternatives. But in an infinite-
dimensional space the continuity concept is sensitive to the choice of the

distance function used. In what follows we shall employ as a ““distance”
between two programs 1¥’, 1%, the function

(6) d1x', 1%) = Slélp |x; — %]

This is the maximum distance in the sense of (5) between any two correspond-
ing one-period consumption vectors x;, x: whenever such a maximum
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exists.4 This definition treats all future periods alike, and, if anything, has
a bias toward neutrality with regard to the timing of satisfaction.

PosTULATE 1. There exists a ubility funciion Ulix), which is deftued for
all 1x = (%1, xa, . . .) such that, for all {, x. is a point of a connected subset X of
the n-dimensional commodity space. The function U(ix) has the continuily
property that, if U is any of the values assumed by that function, and of U’
and U'" ave numbers such that U’ < U < U, then theve exists a posittve
number & such that the utility U(x") of every program 1% having a distance
alix', 1x) < 8 from some program 1x with utility Ulix) = U saiisfies U' <
Uhxy < U

Comparison with the above definition of continuity of a function f{y)
will show that we are here making a slightly stronger requirement (which
obviously implies ordinary continuity). For any U7 and U bracketing the
given U, we want fhe same maximum distance § between 11" and 1x to
guarantee that U < U(x) < U regardless of which is the member 1x of
the class of all programs with utility equal to U, to which the program ¥’
has a distance < 4.

Xp, Xy

){[‘XII

Ficure 1

Figure | shows a simplified case where 1x has only two scalar components
x1 and x2. We then require that there be a band consisting of all points no
further than d away from some point of the indifference curve U{x, x9) = U,

4 If no largest |4 —x,] exists, but if there is 2 number exceeding |x;, — x,| for all ¢,
then there exists a smallest number with that property, and syp |#; — x,| denotes that

number. If no number exceeding |¥; — £ | for all £exists, sup |x; —x,| = 0.

‘|
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which band is to fall entirely within the zone U’ < U(x, x5) < U”. Essen-~
tially, then, we are requiring that the utility function not be infinitely more
sensitive to changes in the quantities of one program than it is to any such
changes in another equivalent program.

3*. If we call the set {ix € (X | Uf1x) = U} the equivalence class defined by U,
then the continuity property defined by Postulate | may be called unzform
condinuily on each equivalence class®

Since U{1x) is continuous on a connected set 1.X, the set of values assumed by
Ulix) is an interval Iy,

4. SENSITIVITY

There would not be much interest in a utility function that assumes the
same value for all programs. Such a utility function would not discriminate
among any alternatives. In fact, we shall need a somewhat stronger sen-
sitivity postulate than just a statement that the utility function is not a
constant. We shall require that utility can be changed by changing the
consumption vector in some designated period. The use of the first period for
this purpose in the following postulate is a matter of convenience, not of
necessity.

PosturLaTE 2. Theve exist fivsi-period consumption vectors x, %1 and a
program ox from-the-second-peviod-on, such that

U(%[, zx) T U(Jﬁ{, 217) .

4*  The need for placing the pregram change for which sensitivity is postulated
in a designated period can be illustrated by an example suggested by Scarf. Let
there be only one commodity (hence x: is a scalar, amount of bread, say} and
consider

Ufie) = lim  sop .
TH00  LET

This function satisfies all the postulates except Postulate 2. A decision-maker
guided by it has a heroic unconcern for any (upward or downward} changes
in the program that affect only a finite number of periods, no matter how many.
His eyes are only on the highest consumption level that is repeated or approximat-

5 It has been pointed out to me by Debreu that the postulates of this paper do not
precisely fit those of his study [3] of the existence of a utility function cited above.
Since in the topology generated by the distance function (6) the space X is not
separable, Debreu’s theorems do not apply to the present case. Neither can we say,
in the topology generated by {6), that, if we specify that X is a compact set, mere
continuity of Uf1x] implies the stronger continuity of Postulate 1. Both statements
would become valid if the so-called product topalagy were substituted for that used
here. For a definition of the product topology, see, for instance, Taylor [9, § 2.5,
p. 791,
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ed infinitely often, no matter how long the wait for the first occurrence of a
level close to that top, or the waits between successive occurrences. Postulate 2
excludes him.

5. AGGREGATION BY PERIODS

Having rejected expenditure on consumption as a measure for the satis-
faction levels reached in particular periods, we must find another means
of labeling such levels. This can be done if we are willing to postulate that
the particular bundle of commodities to be consumed in the first period
has no effect on the preference between alternative sequences of bundles in
the remaining future, and conversely. One cannot claim a high degree of
realism for such a postulate, because there is no clear reason why comple-
mentarity of goods could not extend over more than one time period.
It may be surmised, however, that weaker forms of this postulate would
still allow similar results to be reached. The purpose of the present form is
to set the simplest possible stage for a study of the effect of timing alone on
preference.

POSTULATE 3 (3a and 3b). For all xy, x1, 2%, 2%,
(3a) U(x1, 2x) = Ulxy, 2x) smplies Uz, gxf) = U(x{, 2t ),
(3b) Ulxy, o) = Uy, ox ) implies Ulxa, 9x) = Ulxy, 2% ) .

We shall show that, as a consequence of Postulate 3, the utility function
can be written in the form

(7) UGx) = Viu(x), Uslex)},

where V(u1, Us) is a continuous and increasing function of its two variables
uy, Us, and where both #:(x) and Uslax) have the stronger continuity
property attributed to U{,x) in Postulate 1. We shall call u(x1) tmumediate
utiltty or ome-period wutility {at time ¢ = 1), interpreting it as a numerical
indicator of the satisfaction level associated with the consumption vector
%1 in period 1. Ua(ex) will be called prospective utility (as from time £ = 2),
with a similar interpretation with regard to the remaining future. Whereas
this suggests calling U{1x) prospective utility as from time 1, we shall for
contrast call it aggregate wutility (aggregated, that is, over all future time
periods). Finally, the function V{u,, Us), to be called the aggregator, indicates
how any given pair of utility levels, immediate (x;) and prospective (Uj)
stacks up against any other pair in making choices for the entire future.

5% Since x; and %1 as well as »x and 2% can be interchanged in Postulate 3a,
and since “>"" means ‘= and not £" and “=""means ' z and =,"” Postulate 3a
implies that, for all x4, i, =%, 2",
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(8) Ufxy, o) > Ulxl, 2x) implies Uy, o) > Ulwr, 2x),

(8= Ufxy, o) = Ulx1, 22} implies U, o) = Ulxi, 22}

We assign to =x a particular value 2x¢ for which the statement made in Postulate
2 is valid, and define

(9} (%) = Ulxa, 229 .

We then read from (8=) that
twx) = wxl) implies Ufxy, ox’) = Ufxy, 2x') forall ox’
Again writing »x for 2%’ this means that
Ulxa, 22} = Flaa(x), ox) .
Applying a similar argument to Postulate 3b and defining
(15 Uafax) = U(x?, 2x)

we obtain for U(ix) the form (7). It follows from the definitions (9) and (10}
that u:(x1) and Usfax) have the same continuity property as Ulx),

Since u1(x;) is defined on a connected set X, its continuity implies that the set
of values assumed by u:;{x:) on X is an interval I,,. By Postulate 2, 7. has
more than one point. By (8>) and (9) we see that V{uy, Us) 1s increasing in
on fa,, for all Ua. Moreaver, since for any ax € 1X the function U(xi, 2x)is con-
tinuons with regard to %1 on X, the set of values assumed by V{wu, U,) for all 4,
in I,, and any given U: is also an interval. Since an increasing function that
assumes all values in an interval must be continuous, it follows that (w1, Us)
is continuous with regard to wu,, for all U.

By similar reasoning, the set of values assumed by Usf=x) on 1 X is an interval
Iy, and if I, contains more than ene point, F{u:, Ui} is increasing and contin-
uous with regard to Us on Iy, for all 1,. Tt is easily seen that, in this case, I7{s, Us)
is continuous in (a;, U») jointly on s, % Lo,

It may be anticipated here that Postulate 4 of the next section will ensure that
[ v, contains more than one point. To see this, let xs, x4, 3% be vectors satisfying

Pastulate 2, hence .
U(xz, 396} o= U(xz, 3.‘21) .

We insert =x = (%1, 3%}, 28’ = {¥2, ax) in the implication,
Ulax) = Ulex) implies Ulx, ox) > Ul 237,
of Pastulate 4, and find that
V(us(n), Usfer)) > Vim(m), Usax))

which is possible only if Us({zx) assumes more than one value.

6. STATIONARITY

Postulate 3b says that the preference ordering within a class of programs
% with a common first-period consumption vector x1 does not depend on
what that vector x1is. We now go a step further and require that that preference
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ordering be the same as the ordering of corresponding programs obtained
by advancing the timing of each future consumption vector by one period
(and, of course, forgetting about the common first-period vector originally
stipulated}. This expresses the idea that the passage of time does not have
an effect on preferences.

PosTULATE 4. For some x) and all ox, 2%,
Ulxa, ax) = Ulx, ax'} if and only if Ulax) = Ulax') .

In the light of (7) and the fact that V{w;, Us) increases with Us, this is equiv-
alent to
Ualax) 2 Us{ex') if and only if Ulex) = Ulax") .

By reasoning similar to that in Section 5%, it follows that
Ualex) = G{U(})

where G(U) s a continuous increasing function of U. If U = G-LU,)
denotes its inverse,f the monotonic transformation

U hx) = UlQx), 4l (1) = wi(x) ,
Us'(ax) = G-1 (Usalax)), V‘(uf‘, U;) = V(uf, G(Us (2x)))

preserves the preference ordering defined by U{1x), and makes the functions
Us(sx) and U*(3x) identical. We can therefore hereafter drop the time
subscripts from the symbols uf', «f*( ), UZ, US( ). I, now that the reasoning
has been completed, we also drop all the asterisks, we have, instead of (7),
the simpler relation

(1) Ulix) = Viuln), Ulex)) .

This relation will be the point of departure for all further reasoning.
It says that the ordering of pairs of utility levels—immediate, #(x;), and
prospective, U(sx)—defined by the aggregator V{x, U) is such as to produce
an ordering of programs for all future time, identical but for a shift in time
with the ordering of programs that start with the second period. Of course,
2% can again be substituted for v in (11), giving Ufex) = V{u(xs), Ulax))
and so on. The function V{x, U) is again continuous and increasing in its
arguments #«, U.

Since both #(x;) and U(sx) are continucus, the arguments #, IJ of V{u, U)
can take any value in an interval Iy, Iy, respectively, and the values
attained by V{u, U) fill the interval Iy. Since we are dealing with ordinal
utility, there is still freedem to apply separate increasing transformations
to #(x,} and to Ulsx}, with corresponding transformations of V{u, U), so as
to make both 7, and Iy coincide with the unit interval extending from

8 Thatis, a function such that G{(G-1(I)) = U, for all I,.
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0 to 1. The aggregator V{x, U) can then be represented, though incomplete-
ly, by its niveau lines in the unit square, which are descending to the
right, as shown in Figure 2.

U
!

L~V (u,U)=constant

O

FicurEg 2

The representation is incomplete in that one still has to associate with each
niveau line a4 numerical value of the function, which is to be referred to the
vertical scale. Tt is also somewhat arbitrary in that separate increasing
transformations of # and U that preserve the common end points 0, [ of
I, and Iy are still permitted. The information conveyed by V{u, U} is
therefore as yet somewhat hidden in those interrelations between the
niveau lines, the wverticals, the horizontals, and the numerical niveaus
themselves, which are invariant under such transformations.

6*. The question whether I, or Ju or both include one or both end points,
0 and 1, of the unit interval, still left apen by the preceding postulates, will be
answered by the next postulate.

7. EXTREME PROGRAMS

In order to sidestep a mathematical complication, we shall only consider
the case in which there exist a best program 1% and a worst program .

PosTULATE 5. There exist 1x, 1% stuch that

Ulx) < Ulx) < U(1%) for all 1x.

As a result of the transiormations already applied, we must then have
{12} Uhg) =0, UGe)=1.
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Furthermore, if 1% = (%1, %, . . .}, we must also have
(%) = 1 for all ¢,

because, if we had %(%,) < 1 for some 7, there would exist a program £’
with #(%',) > #(%,) and % = &, for all £ s 7, which would be a better cne,
in view of {11) and the menctonicity of Vs, U). From this and similar
reasoning for the worst program 1x¥ we have

(13 0=u(x) < ulx) Lulm) =1 forallx

It follows that in the present case the intervals /4 = Iy contain both end
points 0, 1. Finally, if 1% is a best (1% a warst) program, it follows from (11)
and the monotonicity of V(u, U} that o (or sz} is likewise a best (worst)
program. Hence, by inserting 1x and 1% succes sively into (11) and using
{(12) and (13}, we find that

(14) V(0,00 =0, V({,1)=1.

8. A DEFINITION OF IMPATIENCE

Now that we have succeeded in associating with each period’s consump-
tion vector x, a utility level u, = wu(x.) devived from the same funciion u( )
for each period, weare in a position to define impatience as an attribute of
a program 1.

DEFINITION |, A program 1x with first- and second-peviod wubility levels
w) = ulx1), #y = ulxs) and prospective wiility Us = Uf(sx) from-the-thivd-
period-on will be said to meet the impatience condifion if

V(wr, V{vz, Us)) [%} V(ua, V(wy, Us) when ul[%} “s .

Obviously, any program with #, — #s meets this condition. 1f wy = s,
the condition says that interchange of the first-period consumption vector
x, with the less desirable second-period vector xy decreases aggregate utility.
Clearly, if 1x = (1, %2, ax) meets this condition with w4, > us, then 12" =
(xa, %1, 3x) meets the condition with ) = u(xs) < w2 = u(x).

Although impatience is here defined as an attribute of a program x,
we shall also say that impatience prevails in the point (u;, u#s, Us) in a
three-dimensional utility space if the above condition is met.

[n Sections 9—12 we shall study some preliminary problems in order to
turn in Section 13 to the main problem of finding areas in the program space
(or in the utility space of w1, u2, Us) where impatience prevails.

9. CORRESPONDING LEVELS OF IMMEDIATE AND PROSPECTIVE UTILITY

In this section we contrast only the first period with the remaining future.
Again omitting time subscripts from the corresponding utility variables
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#1 and U,, we shall study the question whether, if one of the two utilities,
immediate (#) or prospective (UJ) is given, one can find for the other one
a value that equates prospective and aggregate utility,

(15 Vie, Uy = U .

A pair (u, U) that satisfies this candition will be called a pair of corresponding
(immediate and prospective) utility levels. One interpretation of this corre-
spondence is that the immediate utility level # just compensates for the
postponement of a program with aggregate utility U by one period. Another
still simpler interpretation will be given in Section 10.

The existence of a prospective utility U corresponding to a given immediate
utility « is readily established. Let u be a point of 7,. Then there exists
a ane-period consumption vector x such that #(x}) = #. The aggregate utility
Ulconx) of the constant program in which % is repeated indefinitely then
satisfies, by (11},

(16) Ufeonx) = V{u(x), Ulcon®)) ,

because a shift in time does not modify the program. Hence U = Ul{con¥)
meets the condition (13) in conjunction with the given .

We shall now prave that for each % there is only one corresponding U,
which represents a continuous increasing function

(17) U = W(u), with W(0) = 0, W(l) = I,
of u, to be called the correspondence function. It follows from this that,

conversely, to each U there is ane and only one corresponding «. Figure 3
ilustrates the connection between Vi, U) and Wiu).

U
|
AN
T V(u,U)=U
UO —————————————
//V(U‘U): Uo
O 1]
0 1

Figure 3
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9*, We proceed by a sequence of lemmas. With a view to passible later study
of the case where no best or worst program exists, Postulate 5 is not assumed in
this section 9* (unless otherwise stated).

LEMMA la. Let w € I, U € Iy satisfy (18) with u < 1. Then there exisis no U € 1y
such that U’ > U and

Viw, Uy —U" z Qforall U’ such that U = U = U”.

Proor, Suppose there were such a U’ There exist a vector x and a program 1x
such that

u(x) = «, UQx)=TU.
Since # < 1, and since u(z) is continuous on the connected set X, we can in

particular choose x in sich a way that every neighborhood of x in X contains
points x’ with #{x") > w. Consider the programs

T Companents
———

18) [ T = {x, % ..., % 1%),
( XM= (2, %, ..., x5, 1% .
Because of (18},
U = U™ 1) = .., = Ulix) = U for all z.
_‘L%JEUIZU‘I):U"
U' .._\
U Qﬂzk Ut re
NN T U

™~
\ <
Um P ~ U+3e

N il+2e
fzo __

N
\ U+e
N

u u
FIGURE 4
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Choasing U, UV such that U « U™ < U!v « U, we can therefore, because of
Postulate 1, choose & = 0 such that, for all 7,

Errl

sup | g — PN implies U(lx’) =U
£

Choosing next x’ such that |’ — %j = é and ' = #4{x") > u, we have in particular
(19) Ulx'™) = U for all 7.

Since #* = # the function V{u’, U™} — Vi, U") is positive. As it is also con-
tinuous, we have
= min (Viw, U")— Viu, U")) = 0,
U Ut U
and
e=min {&, U — Ut¥} » 0,

Using, with regard to any program i, the notation

20 [ 1 = u{1x) = (u{x1), ulxs), ...} = (21, #2, .. )
(20) Vs Uy = Vin, Vs, . . ., Vin,, U) .. ),
we then have, aslongasze = U’ — U, and if eonit’ = (1, %', . . ),

Uhe'™) = Vrlentt’; U) = Via(eontt’; V', U)) 2 Vecslewts'; Vin, U) + g
= V'f—l(conu’; U+ E) == V-r—i!(conﬁ’; V(ﬁ,. U + E)] = Vy—z(cquu'; V(M, u —!—5) + 5}
2 Vealeantt', U+2e) 2 ... 2V, U4 (z— 1)) =2 U4 ze.

But then we can choose £ such that U 4 ¢ < U’ but
Uty =2 U -1z = Uty
a contradiction of (19) which thereby proves Lemma 1. The reasoning is illus-
trated in Figure 4, where the locus {{»”, U*) | V{u", U") = U’} is drawn in a
manner proved impossible in Lemma 1.
Symmetrically, we have

LEMMa 1b. Let w e o, U € Ty satisty (15) with u > 0, Then theye exists no U’ € I'p
sch that U < U and

Viw, U — U £0forall U” such that U = U” < U,

We can now prove, if 7, denotes the closure of I.,

Levma 2. Letwe I, U € Iy satisfy (15) withQ < u < 1. Then
21y V(' , U)—U < Oforallwel, Ueclpwithu = u, U = U, except
)=

@, U) = U).
(22) Viw U)—U >0fovallwe L, U eclpwithu = u U < U, except
(', U) = (u, U}.

Proor (see Figure 5). We first prove (21) with ' = % by considering its nega-
tion. This says that there exists U’ € I'y with U” > U such that V (x, U") — U*
z 0. But this implies by Lemma la that there exists U with U < U « U
such that Viu, U} — U <« 0, and by the continuity of V(sw, U) — U’ with
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respect to U’ that there exists a UV with U < Urv = U’ such that V{u, U!¥)
— U =0and Vi{u, U) — U’ < 0tor U = U’ « Utv, Inserting U’V for U
and U for U’ in Lemma Ib we find these statements in contradiction with
Lemma 1b. This proves (21) with #’ = u. The remaining cases with #' < u,
U’ z U follow from the increasing property of V{u’, U*) with respect to #’. The
proof of (22) is symmetric to that of (21).

fu v, Uh=U"

Ficure 5

Since we know already that there exists for each u € I, at least one carre-
spending U, it follows from Lemma 2 that if ¢ < # < 1 there exists precisely
one, to be denoted Wiu), and that W) increases with «. Moreover, iffor0 <o =« |
we had

W) < lim W)= W+ 0
w —yutd
the continuity of V(x, U} would entail the existence of two different prospective
utility levels, W(x) and Wi« + 0}, corresponding to the immediate utility level z,
contrary to Lemma 2. Hence Wf{u) is continuous for 0 < # <« 1, and, since
0 = W(u) £ 1, can be extended by
W) = lim W(u), W(l)= lim W(u)

w0 U=

80 as to make W(x) continuocus and increasing for 0 = # = 1,

Now if 0 € I'y and hence 0 € I, we must have W(0) = 0, because W({0) = 0
would create a contradiction hetween (14) and Lemma la (with 0 substituted for
U, and W{0) for U*), since V{0, U’y — U** « 0 for any U* such that 0 < U” =
W(0) is precluded by Lemma 2 and the continuity of V(u, U") with respect to u.

Similar reasoning for the case 1 € I, completes the proof of (17).
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10. EQUIVALENT CONSTANT PROGRAM

Now that the correspondence of utility levels #, I/ has been shown to
be one-to-one and reversible, another interpretation is available. Given an
aggregate utility level U, find the corresponding immediate utility %, and
a one-period consumption vector x for which it is attained, u(x) = u.
Then we can reinterpret {16) to mean that the program conx cbtained by
indefinite repetition of the vector x again has the given aggregate utility
Uleonx) = U. The correspondence (17} therefore gives us a means to asso-
ciate with any program a constant program of the same aggregate utility.

10*, If Postulate 5 is not assumed, the possibility exists of a program 1x with
successive one-period utility levels «(x.;) increasing (or decreasing) with £ in such
a way that no equivalent constant program and no compensation for a postpone-
ment of 1% by one period exist.

11. EQUATING CORRESPONDING UTILITY LEVELS

The correspondence function W} can be used to change the scale of one
of the two utility types, for instance of u, in such a way as to equate corre-
sponding utility levels. The appropriate increasing transformation is defined
by

2 u*(x) = Wiulz)), U*(x)=U(x),
(23) Vru*U*) = V(W-1{u*}, U*),
where u = W-1(»*} is the inverse of #* = W(u). If now #* and U* represent
corresponding utility levels on the new scales, we have
0= VHux, Usx) — U* = V(W-u*), U)—U,
and hence, by the definition of W{x),
Ut = U = W{W-1u*)) = u*.

Hence the new correspondence function U* = W#*(%¥) is simply the identity
U* = u*, represented in the new form of Figure 3 by the diagonal connect-
ing (0,0) with (1,[). Although this change of scale is not essential for any
of the reasoning that follows, we shall make it in order to simplify formulae
and diagrams. Dropping asterisks again, the correspendence relation (15)
now takes the form

(24) Vi, Uy =U.
12. REPEATING PROGRAMS

A program in which a given sequence 1% of v one-period vectors x1, xs, . . .,
x, is repeated indefinitely will be called a repeating program, to be denoted

repiy = (11?-_-, 1%, o4 ) .
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The sequence 1%, will be called the pattern of the repeating program, t its
span, provided no ' < T exists permitting the same form. We shall use the
notation
replr = (184, 18, . . .},
137 = tr (lx‘f) = (u(xl}r T “(x‘r)) = (“l) S u'?)

for the corresponding sequences of one-period utility levels, and call ;#, the
utility paitern corresponding to 1x,. The function

(25) Voliter; Uy = Vi, Viua, . .., Viw, Uy .. )

then indicates how the utility level U of any program is modified if that pro-
gram is postponed by t periods and a pattern with the corresponding utility
pattern 1z, is inserted to precede it.

Given a utility pattern %, = #.{(1%,), we can now ask whether there
is a utility level IJ which is not affected by such a postponement,

(26) Vet Uy = U
Obviously, the utility level
(27} U = Ulrepts)

meets this requirement, because the program rep%, itself is not modified by
such postponement. By an analysis entirely analogous to that already given
for the case T = [, one ¢an show that this utility level is unique and hence
is a function

(28) U = W)

of the utility pattern. This function is a generalized covvespondence function.
One can interpret it either as the aggregate utility of any program, the
postponement of which by z periods can just be compensated by insertion
of a sequence 1x, with #.(1%,) = ju,, or asthe aggregate utility of the repeat-
ing program rep(1%.), where again #.(1x,) = 1%,. As before, one can show
that W{in,) is continuous and increasing with respect to each of the varia-
bles 2, . . ., #,. Finally, as before in the case t = 1,

(29) U[é} Velsser; U) {%} W, () it U [%] Wo(y26r).

12*. The uniqueness of the solution of (26) and the first set of inequalities in
(29) are proved by having an arbitrary one of the variables u,, . . ., #, play the
role performed by #« in Section 9*. To prove continuity and monotonicity of
W-(12,}, that role is assigned successively te each of these variables, The second
set of inequalities in (29) then follows from (26), (28) and the fact that V {n ; U}
increases with U,

To obtain one further interesting result we revert to the notation (20). By
repeated application of (29) we have, forn = 1,2, ..

U« U= W,(in;) < U implies

(30) Vﬂ.f(repﬁ'f; U”) < Vﬂ.r(l’epu'{; U) - U < Vn‘r(rel)ur; U’),
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where Var(reptts, U'"') is increasing with » if U*" < U, decreasing if U > U.
It follows that

(31) im Viarleeptts; U7

H—r D

exists for all U € Iy. But for any such U’ insertion of (31) for U in (26} satisfies
that condition, which we know to be satisfied by U only. Hence, by (28),

(32) Im Verleetts; U") = Veplrapttr) = Wolwi,) forall U eln.

n— 0
13. ALTERNATING PROGRAMS AND ITMFPATIENCE

A repeating program with a span =2 will be called an alternating
program. Its one-period utility sequence alternates between two different
levels, " and %", say, which we shall always choose such that

(33) w >,
If we write w’ = (', 4"}, w" = (4", w') for the two possible utility patterns,
the two possible alternating programs have the respective utility sequences
(34) [ (34) rep?®’ = (o', u'', w4, .. ),
{34") rep’ = (0", u', uw uw', ).
The implications of the preceding analysis for this type of program are
illustrated in Figure 6. The aggregate utility level U’ corresponding to {341,

(35) U= W=,

satisfies the condition

(36) Uy =V', Vi, U)—U =0.
U

Fraunre 6
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Hence U’ can be read off, as indicated in Figure 6, from a quadrilateral
consisting of two horizontals and two niveau lines {drawn solid), with
two vertices on the diagonal of the unit square, the other two vertices on
the verticals at # = u' and # = #'’, respectively. Enlarging on (36), we
also have from (29)

(37) o{g} o(U) = Vi, Viu’, U) — U[%}U’ Uit U@} U
Hence, for any program with an aggregate utility U 2= U, postponement by
two periods with insertion of the utility pattern (', %’} in the first two periods
thereby vacated will bring the aggregate utility claser to U’, without over-
shooting. By {32), indefinite repetition of this operation will make the
aggregate utility approach U’ as a limit (see dotted lines for a case with
U < U7}, Symmetrically to (37), we have

< L J— L ’ _ S L . E e
(38) o[g}qs (U) = V', Vi, U) UIS}U U1fUIS}U :
with similar interpretations, and where U’ is related to U’, #’* and #' by
(39) w < U=V, U) < U =V, U’ <u,

as indicated in Figure 6, and proved in detail helow.

We are now ready to draw inferences about the presence of impatience
in certain parts of the utility space. The functions ¢'{U) and &"'(U) in-
troduced in (37) and {38) are related to the criterion of impatience by
(40) o =¢(U)— @' (U) =V, V', U) —Viu', Vi, U)).

Since #' > ', impatience is present whenever @(U) = 0. Reference to
(37) and {38), or to Figure 7 in which the implications of (37) and (38)

Ficure 7

are exhibited, shows that, since @' (U) > 0for0 < U < U’ and @"(U) < 0
for U" < U £ 1, we have

(41) H(U) >0for U < U < U,

This proves the presence of impatience in a central zone of the space of the
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atility triples (', #”, U), as illustrated in Figure 8. It is to be noted that the
result (41) is obtained as long as the two marked points do not fall on the
same side of the horizontal at U. This is the case precisely if U < U < U,

U
A i e EER RN D
Vw Vi) 'I(g([,') ‘‘‘‘‘‘ I
WV (wVew Lh) -[3-= - 1->c--- _
| W )
/ u
u" ul
Ficure 8

Two other zones can be added to this one, on the basis of the monotonicity
of V(u, U) with respect to U. If we define U, U by

(42) Vi, U) =u", V', 0)=uw,

if solutions of these equations exist, and by U =0, and/or U = 1 otherwise,
Figure 9 suggests that

(43) DU) >0for UL UL wandforw <UL .
A detailed proof is given below.
U
|
0
U |-

c_
1]
1
|
1
|
1
]
i
1
]
I
I
lI
I !_,
L,
S
\f
i \

i S V' V', Un
it ittt -V Vid,Un

o u y' |
FIcURE 9
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There are indications that in the intermediate zones, 4" << U < U’ and
U’ < U < «, impatience is the general rule, neutrality toward timing a con-
ceivable exception. The behavior of ®(IJ) in these zones will not be analyzed
further in thispaper, in the hope that an argument simpler than that which
has furnished these indications may still be found.

For the sake of generality of expression, we shall state the present re-
sults in a form that does not presuppose the, convenient but inessential,
transformation introduced in Section 11 to equate corresponding utility

levels.

TuEOREM 1. If Postulates 1, 2, 3, 4, and 5 ave satisfied, a program 1x with
first- and second-period utilities w1 = u(x)) and us = w(xa) such that ) > ita
and with prospective utility as-from-the-thivd-period Us = Ulax) meets the
condition (40) of emputience in each of the following three zones:

(a) If Us equals or exceeds the utility of a constant program indefinitely
repeating the vector x1, provided Ua ts not so high (if that should be possible)
that the utility of the program (xs, ax) exceeds thal of the constant program
(%1, %1, &1, .- ),

() If U equals the utility of either of the alternating programs

(%1, %o, X1, X3, . . .)
{xa, X1, %2, %1, . . )

or falls between these two ubility levels,

(c) It Ua equals or falls below the utility of the constant program (xs, X3,
X9, . . .}, provided Us is not sa low (if that should be possible) that the utility
of the program (x,, ax) falls below that of the constant program (%, Xs, %, . . ).

This is, in a way, a surprising result. The phenomenon of impatience was
introduced by Bohm-Bawerk as a psychological characteristic of human
economic preference in decisions concerning (presumably) a finsle time
horizon. It now appears that impatience, at least in one central and two
outlying zones of the space of programs, is also a necessary logical conse-
quence of more elementary properties of a utility function of programs
with an infinife time horizon: continuity (uniform on each equivalence
class), sensitivity, aggregation by periods, independence of calendar time
(stationarity), and the existence of extreme programs.

13*. ProoF. In order to prove relations (39) and (43) on which Theorem |
depends, without reference to a diagram, we lift from the already proved state-
ments (37) and (38) the defining relations
(44") and (44") Viu’, Vi, U") =U", Vi, Vi, UY) =1,

of U” and U, respectively. Fram (44"} we read that V(2" V{x’, V(" U’)]) =
Viu”, U, showing that V(x", U’) satisfies the defining relation (44”) of U".
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This, and an argument symmetric to it, establish the equalities in (39).
Now assume first that U* < U’. In that case, because F(x, U) increases with U,

0=V, Uy—U <« Vi, U)—U",
whence U’ < w’ by Lemma 2, since V{w', &) — u’ — 0. By similar reasoning,
U = u”, establishing the inequalities in {39) for the present case. But the same
reasoning applied to the assumption U” 2 U’ would entail u” =z U” = U’ =z «/,
which is contradicted by the datum that 2’ = #%". This completes the proof of (39}.
To prove (43) we note that, glven &', «” with «’ > u”,

U=u = = <

if [u’ < U < U} then V{w’, U}[{} U,and Vin", Vin, U)) [<] Viw”, U) {{}u’.
U=0 < < -

using in succession (24), Lemma 2, the monotonicity of F(x, U} with respect to

U, and (42). But then also

=
Vi, Vin", Uy [}]V(u”, Uy,

using again (24) and Lemma 2. A comparison of these results establishes (43).

The forms here given to the proofs of (39) and {43) have. been chosen so that
they may carry over by mere reinterpretation to a more general case to be con-
sidered in a later paper.

14. PERIOD INDEPENDENCE

It might seem only a small additional step if to Postulate 3 we add?

f ¢
PosTurLATE 3' (3'a and 3'b). For all xy, xs, ax, 21, %g, 3%,

(3'a)  Ulxy, %2, ax) = U(xz, xa, ax) tmplies U(xy, xg, 3x’) = U(xll, xa, 3.“6‘),

(30)  Ulxy, %o, a6} = Ulxr, 22, 3%) implies Ulxy, xa, 32) = Ulm, %2, 3% ) .

In fact, it follows from a result of Debreu [2], that this would have quite
drastic implications. Postulates 1—5 and 3’ together satisfy the premises of a
theorem#® which, translated in our notation and terminoclogy, says that one
can find a monotonic transformation of U{1x) such that

(46) U(ix) = wa(x1) + walxa) + Ualsx) .

Taken in combination with the stationarity Postulate 4, this would leave
only the possibility that

(28]
(47} Uhx) =2 u(x), 0<a<],
t=1
? A postulate very similar to Postulate 3’ is contained in an unpublished memeo-
randum, kindly made available to me by Robert Strotz in 1958.
2 | ¢, Section 3.
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that is, aggregate utility is a discounted sum of all future one-period utilities,
with a constant discount factor a. This form has been used extensively in
the literature.? Since the form (47) is destroyed by any other transformations
than increasing linear ones, one can look on Postulate 3' {as Debreu does)
as a basis (in conjunction with the other postulates) for defining a cardinal
utility function (47). While this in itself is not objectionable, the constant
discount rate seems too rigid to describe important aspects of choice over
time. If for the sake of argument we assume that the aggregator function
I7{u, U) is differentiable, it is shown below that the discound factor

2 R,

Is invariant for differentiable monotonic transformations. Obvionsly, it
can take different values for different common values of IJ = #%. The main
purpase of the system of postulates of this paper therefore is to clarify
behavior assumptions that will permit the relative weight given to the future
as against the present to vary with the level of all-over satisfaction attained
—a consideration which can already be found in the work of Irving Fisher

[4].

14*, To prove the invariance of (48), we abserve that the increasing trans-
formations of ¥, u, U that preserve (24} are of the type

whm) = flulx), U*(x) = {UGx), H0)=0, f(I}=T1,
V*u*, U*) = {V(F-2(w*), 1T™) .

But then, for so related values of u*, U*, w, U7,

WH U (df (U

W (z, U) (df—l(U*}
2U* :

ar- )U‘—V{u,U}' 2 dU* )U“‘-—ﬂm

If « = U, then, U’ = U, and the first and third factors of the right hand member
are reciprocals, hence cancel,

It should finally be noted that Postulates 3'a and 3'h are not counterparts
to each other in the way in which Postulates 3a and 3b are counterparts. The
respective counterparts, in that sense, to Postulates 3'a and 3'b are implied in
Postulates 1—35, and hence do not need restatement.

Cowles Foundation for Research in Economics at Yale University

8 See, for instance, Ramsay (6], Samuelson and Solow [7], Strotz [8]. The first two
publications find a way to make ¢ = [.
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