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RINCE PREFERENCES*

RocER E. A. FARMER

This paper presents a class of preferences that yield closed-form solutions te
dynamic stochastic choice prohlems. These preferences are based on a set of axioms
that were proposed by Kreps and Porteus. The Krepa-Porteus axioms atlow one to
separate an agent’s attitudes to risk from his or her intertemporal elasticity of
substitution. RINCE preferences have the properties of Risk Neutrality and
Constant Elasticity of substitution.

I. INTRODUCTION

There are many instances of stochastic intertemporal choice
problems that one would like to be able to solve in closed form. But
it is generally recognized that, if one maintains the axioms of von
Neumann and Morgenstern (VINM), such problems quickly become
intractable. In this paper I show that a slight weakening of the
VINM axioms that were originally explored by Kreps and Porteus
[1978, 1979a, 1979b] (henceforth KP) allows one to find a conve-
nient parameterization of utility that may be explicitly solved to
vield closed-form decision rules. These decision rules determine
optimal actions as functions of current state variables and of the
expected values of certain functions of future state variables.

The parametric structure that I propose exploits the fact that
KP preferences are able to separate an agent's attitudes to risk from
his or her intertemporal elasticity of substitution. This separation
allows one to make the simplifying assumption that agents are
indifferent to income risk, while maintaining a nontrivial prefer-
ence for the time at which consumption occurs. A decision maker
with the preferences that I describe is risk neutral, in the above
sense, but he or she displays a constant elasticity of intertemporal
suthstitution in environments where there is no uncertainty. For this
reason, | refer to these preferences as Risk Neutral Constant
Elasticity, abbreviated as RINCE.

*An earlier version of this paper was circulated under the title “Closed Form
Solutions to Dynamic Stochastic Choice Problems,” in May 1987, An earlier version
with the current title was also circulated as University of Cambridge discussion
paper #121. The current version is considerably modified from both of these
previous incarnations, and it includes a substantial amount of new material as well as
some corrections in earlier errors. 1 wish to thank, without implicating, Larry
Epstein, Philippe Weil, and two anonymous referees—all of whom have provided
valuahle feedback. [ also wish to acknowledge the kind support of the Risk Project at
the University of Camhridge and the National Science Foundation under grant
number SES 87 2243.

@ 1990 by the President and Fellows of Harvard Callege and the Massachusetts Institute af
Technolagy.
The Quarterly Jaurnal of Econemies, February 1990
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The KP axioms take the basic space over which preferences are
defined to be a space of temporal lotteries. This space is more
complex than the space of lotteries over consumption sequences
since elements of the space are distinguished not only by probabil-
ity distributions over possible payoff sequences but also by the time
at which uncertainty resolves. This moere complicated structure
implies that individuals may express a preference or aversion for
the resolution of uncertainty even if knowledge of the future does
not yield a planning advantage. This structure may be contrasted to
the VINM approach under which the time when uncertainty resolves
does not directly influence one’s choices.

II. THE STANDARD APPROACH TO INTERTEMPORAL
STOCHASTIC CHOICE

Consider the problem faced by a mortal consumer who must
make a finite sequence of savings decisions when the future is
uncertain. In the standard representation of this problem, one
assumes that rational choice is characterized by the solution to a
dynamic programming problem of the following type:

{1) E@_’:u(coJ +E é Blulc,)

such that

(2) a; = Ryag + wo — Cq;

(3) A, =Ra, +& ~c¢; t=12,...,T
(4) Rya, ~ R,y

(5) ap,; = 0.

The function I/ = 7, g'u(c,) may be interpreted as VNM utility
function defined over the space of consumption sequences {c,}%,.
where the consumption set is taken to be R7*'. The tildes over the
variables R, and &, are used to denote the assumption that they are
random variables, and the interpretation of the sequence of con-
straints (3) is that the individual receives endowments {&}7., which
may be invested in a single risky asset. The asset a, is assumed to
pay a gross return B, and in general I shall allow for the possibility
that the sequences {&!7, and {R,|T_, are jointly distributed random
variables that may take values in R%”. The expectation operator
that appears in equation (1) has the interpretation of an expecta-
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tion taken over the joint probability distribution of {&,,R.};{:n
conditiocnal on the realizations of (&,,K,) forall s < £,

A solution to equation (1) is represented by a number &, and a
sequence of functions &: R¥ — R, t = 1,..., T, where &, is
interpreted as a contingent plan. It represents a list of actions, one
for every possible realization of past values of @ and R, that the
consumer proposes to undertake in period £.

Stated in this way, this problem is a direct application of
expected utility theory which has a distinguished history dating
back at least to Bernoulli. But the application of expected utility
theory to the choice of intertemporal consumption sequences makes
no reference to the temporal nature of the consumer’s problem. The
axioms of atemporal expected utility theory are typically justified
by an appeal to simple thought experiments in which it is suggested
that a violation of one or other of the VNM axioms would be
irrational; the discussion of the Allais paradox in Raiffa {1970, pp.
80 ff] is a good example of this approach. But. temporal versions of
such arguments are not as compelling as their atemporal counter-
parts. The KP framework provides a rationalization of a violation of
the VNM axioms that can be directly traced to the sequential
nature of decisions.

ITI. THE RELATIONSHIP OF THE KREPS-PORTEUS AXIOMS
TO THOSE OF VON NEUMANN AND MORGENSTERN

Kreps and Porteus provide two alternative axiomatizations of
their approach. One set of axioms views choice as a sequence of
decisions. At each stage in the sequence, the agent ranks alternative
pairs of payoffs; each such pair consists of a current consumption
bundle and a ticket to a lottery that will take place in the following
stage. The prizes in the lottery represent the maximum possible
utilities that the agent could hope to achieve in different states of
nature. In this formulation of the problem, preferences for one-
step-ahead lotteries obey the complete set of VINM axioms. The
sequence of one-step decision problems is knitted together with a
time consistency axiom. KP also provide a second formulation of
the agent’s preference ordering in which axioms are formulated
directly over a apace of temporal lotteries. For the sake of complete-
ness, a deseription of this second approach is provided below.

To describe the KP axioms, it is necessary to introduce some
notation. Let dy be a probability distribution over ¢, and let Dy be
the set of all such distributions. One may think of the individual, at
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the beginning of periocd T, expressing preferences over lotteries for
period T consumption; these lotteries are the elements of Dy Now
imagine the individual who stands at the beginning of period T — 1.
This person must express preferences over uncertain gambles which
may resolve partly in T — 1 and partly in peried 7. In the VNM
approach these preferences are defined by formulating axioms over
the set of lotteries that yield a compound prize of consumption
commodities, part of which is paid in period T — 1 and part of which
is paid in period T In the KP approach preferences are defined over
a maore complicated object; that is, the set of lotteries that yield an
uncertain consumption payoff in period T — 1 and a ticket to
another lottery that takes place in period T. In the absence of the
reduction of compound lotteries axiom, these approaches are not
identical.

To formalize this idea, one defines recursively the sets,
D121, of probability distributions over R, x D,,,. For example,
an element of Dy_, is a probability distribution, dy_,, which repre-
sents the probability of receiving consumption ¢p_; in conjunction
with the lottery ticket dr. The payoff to the lottery dr_, is the pair
(cr_o,dr_y) which is an element of B, x D;_,. Carrying this
recursion backwards, one arrives at the set of temporal lotteries Dy,
which is the basic space over which the KP axioms are defined.

An additional piece of notation is required in order to charac-
terize those subsets of I, that describe the possible positions at
which a decision maker may find him or herself at a given point in
time. Let h, = {¢o,¢,, .. ., c.| be a consumption history. Now define
the set P.h,) to consist of those lotteries in D, for which the
decision maker will receive the history h, with probability one. An
element of P,(h,), denoted p.(h,), will give the decision maker a
nonstochastic consumption sequence, h,, and a ticket to a lottery
d,,, £D,,,. Notice that if one denotes the first k elements of A, by
hy(h,), then Py(h,(h,)) O P.(h,). This follows since one of the
possible sequences of lotteries that leads from k to ¢ is the sequence
in which the decision maker receives the realizations {4, ,, ..., ¢/}
with probability one. It follows that P,_,(h,_,(k,)) D P,(h,) and, by
induction, that the sets {P,(h,}}L, are all contained in D,.

The key difference between the KP and VINM representations
of choice hinges on an agent’s attitude toward the timing of the
resolution of uncertainty. Imagine standing at the beginning of
period 0 and choosing between two elements of P,(h,) for some £ > 0.
Each of these lotteries contains the same nonstochastic consump-
tion sequence up to date ¢ but possibly different distributions over
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uncertain events that resolve beyond date t. Now think of mixing
two of these lotteries by flipping a coin that comes up heads with
probability « and tails with probability 1 — « but flip the coin at
date k « t. This new mixture is an element. of P,(h,), where h,=
hy(h,). Let the mixed distribution be represented by the quadruple
(k,a;p,p') where p and p’ are elements of P,(h,). A decision maker
whose preferences admit an expected utility representation over
consumption sequences must be indifferent to the timing of the
coin flip in the experiment described above. A KP individual may,
on the other hand, prefer either early or late resolution of uncer-
tainty. The following three axioms characterize KP choice.

Al. There exists a complete transitive ordering, =, over the
elements of D,

A2. The relation, =, is continuous on Dy,

A3. If p,p’ €P,(h,) satisfy p > p’, then (¢,0;p,p") > (t,a5p’,p") for all
a € [0,1)and p” & P.(h,).

The key axiom A3 is a temporal version of the independence of
irrelevant alternatives. Kreps and Porteus {1978, p. 195] present a
representation theorem based on axioms Al, A2, and A3. This
theorem asserts that one may represent choice by a sequence of
utility functions, (w,|%_;_,, each of which maps R* x R~ R. The
first argument of each function is consumption in period ¢, and the
second argument, denoted v, {, represents the solution to a pro-
gramming problem that takes place in period ¢t + 1. In general, KP
utility functions may be time dependent, and in addition, the
individual’s utility at date t may depend on his entire consumption
history.! In the special case in which preferences are history
independent and in which the utility function {iv,} is independent of
t, KP preferences admit the following representation:

tUep1 = max w(ct-f—l) E£+1Uz+2)-

€ig1

The value of consumption that may be chosen in each of the date ¢
programming problems is constrained by the sequence of budget
sets:

@ =Ra, + w, —c; t=T-1,...,0
In period T the consumer maximizes a function wy which is defined

1. Throughout this paper I shall maintain the assumption of histary indepen-
dence. Time independence is discussed in more detail in Section VIL
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over terminal consumption alone. Given the maximal value of
utility in period T, v, one can construct the sequence of value
functions, {o,}'.r_,, which represents the sequence of maximal
utilities attainable in each period. In contrast to the VNM approach
these value functions will not generally be linear in probabilities.
The relationship with VNM choice is given by the following axiom,
which, in conjunction with the other three axioms, implies the
existence of a single VNM utility function over the space of
intertemporal consumption sequences.

A4. For all ¢, hy; « & [0,1], and p,p' € P,(h,), (t,a;p,p") ~ (t — 1,
ap,p').

If axiom A4 holds, then agents are indifferent to the timing of the
resolution of uncertainty. In this case their preferences may be
reduced to lotteries over intertemporal consumption sequences and
KP preferences are identical to VNM. On the other hand—if axiom
A4 does not hold—KP preferences define a much bhroader class of
intertemporal stochastic decision rules. In this sense, axiom A4
implies that the difference between KP and VINM choice hinges
solely on the issue of preference for, or aversion to, the timing of the
resolution of uncertainty.

IV. THE VALUE FUNCTION

Stochastic intertemporal choice problems are usually solved
recursively by constructing a sequence of value functions. Begin-
ning with the last period of the problem, one finds the optimal
decision rule of a planner who enters period T with a given level of
wealth. Given this decision rule, one can proceed to find the optimal
allocative decision in period T' — 1 and, working backwards, one
constructs a sequence of decision rules and an associated sequence
of value functions. In the case of the expected utility example,
equation (1), the sequence of value functions {v,(a,)}!T, is defined by
the formulae:?

(6) vr = u(Rrar + wr);

(?) U:(az) = max {u(c:) + 6Ez[ﬁ£+l(a£+l)]};

2. It is worth pointing out that the value functions depend, not only on a,, hut.
also on the entire history of wages and interest rates. This dependence follows since
(i) this history conditions the expectation E,, and (ii) the relevant wealth variahle
depends on the current wage and the current interest rate.
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such that
{8) ., = Ra, + o, — ¢ t=01,...,T - 1L

A great deal is known about the properties of the functions {v,1,
and for special cases one may obtain closed-form solutions for the
optimal decision rules. By restricting attention to the case of
multiplicative uncertainty (random interest but deterministic
endowments), one may obtain closed-form solutions to the class of
preferences u(c,) = ¢4/p. On the other hand, with only additive
uncertainty (random endowment but deterministic interest rates)
one can solve the quadratic case. But the general case of random
interest and random endowments does not admit a closed-form
solution except in the trivial situation when w is an affine function.
In this case the agent’s preferences are linear, not only across states
of nature, but also through time.

If one is willing to drop the assumption of timing indifference,
then the weaker axiom set A1-A3 implies that the choice of
intertemporal consumption sequences admits a value function
representation where the value functions are defined as follows:

(9) U:(ac) = wplRrar + wrh

(10) ve,) = max w(c,E [0, (a,,)]);

such that

{11) A1 = Rty + @, — €4 t=01...,T-1.

Equation (10) differs from the VNM approach (equation (7))
in that v, is nonlinear in the expectation operator E,. This general-
ization would appear to complicate the problem and make things
more, rather than less, difficult. However, by choosing the function
w correctly, one can find a class of decision problems that yield
closed-form solutions in a wide variety of situations.

I shall return to the value function approach in Section VII in
which I define a class of preferences that admit closed-form repre-
sentations for the sequence of functions (v,]. Before taking up this
issue, however, I shall explore an alternative representation of
choice that permits a more direct comparison of the KP approach
with the expected utility framework. This representation is the KP
analogue of the expected utility index.

V. THE UTILITY INDEX

In this section I introduce the appropriate notion of the utility
index for KP choice. In the case of VNM preferences the utility
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index is a function that takes, as its domain, the cartesian product
of the real line with the space of probability distributions over RZ.
Current consumption is an element of £, and lotteries over future
consumption sequences are elements of the set of probability
distributions over R”. Decision making under uncertainty is fre-
quently represented as the choice of a set of contingent plans that
maximizes such an index subject to a sequence of constraints, that
is, in the form of equation ().

From the perspective of a decision maker at date 0, the utility
index for this problem is given by the function,

T
(12) Uy = ulco) + E, Z J@cu(c:)‘
t=1
Because this function is both separable through time and linear in
probabilities, one can ignore past choices if plans are reformulated
at a later date. That is to say, a decision maker at date 7 who uses
the index,

T
(13) U, =ule) + E, ) Bule),
t=r+1

will make decisions that are consistent with the plans that were
formed at date 0 to maximize the index U,. Linearity in probabili-
ties and separability through time are sufficient but not necesaary
conditions to guarantee consistent planning. KP preferences are
also time consistent, but the KP utility index is not linear in
probabilities; it is constructed recursively.

Recall the definition of the sequence of sets {D,)I, that was
introduced in Section IV. One may define a utility index
Ur:R, — R and a sequence of indices {IJ,}2.+_,, using the following
recursion:

(14) Up = wpler);
(15) U, -wie,ED,,), t=01,...,7~1.

The index U, maps from the space R, x D,,, to the real line, and it
is the KP analogue of the VNM index defined in equation (12). The
structure of this index is closely related to a class of preferences over
nonstochastic sequences that Lucas and Stokey [1984] refer to as
recursive. Koopmans [1960] was the first to study preferences in
this class, and in view of the similarity of equation (15) to the
Koopmans class I shall refer to w:R, x R — R as an aggregator
function. Recursive preferences are easy to study because they
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atlow one to construct a solution to a programming problem in steps
using Bellman’s principle of optimatlity.

One is entitled to ask why the theory of choice under uncer-
tainty should be complicated by introducing the concept of tempo-
ral lotteries. Why not stick to the more basic choice objects, that is,
to lotteries over consumption sequences? The answer is that the
concept of temporal lotteries allows one to separate risk from
intertemporal preferences while retaining the very useful property
of recursivity.

What would happen if the assumption of recursivity were to be
relaxed? A natural way of generating a change in an agent’s attitude
to risk without affecting his or her ordinal ranking of nonstochastic
sequences would be to apply the multicommodity analysis dis-
cussed in Kihlstrom and Mirman [1974] to the space of distribu-
tions over intertemporal consumption sequences. The Kihlstrom-
Mirman approach is to define a family of utility functions Up by
taking increasing, concave transformations Hp of a hbasic utility
function U/. In the intertemporal context the decision maker would
solve the problem,

(16) max EH[U{cg,cy, ..., cp)].

lede=0

By varying the curvature of Hy, one could make the individual more
or less risk averse without changing his or her preferences over
nonrandom sequences. But the cost of this approach is that an
agent's relative ranking of choices at date t necessarily depends on
the entire history of past consumptions and on all of the possible
choices that might be made in the future. KP preferences allow one
to break the link between risk and intertemporal substitution
without giving up on recursivity.

Recursive preferences are defined in the nonstochastic envi-
ronment by the assumption that the decision maker's ranking over
future consumption sequences is independent of his or her ranking
over current consumption bundles. The natural extension of this
property to choice over temporal lotteries leads to the sequence of
recursive indices defined by equations {14) and (15). It is the
property of independence of future decisions from events that have
occurred in the past that allows one to apply the maximum
principle of dynamic programming to choice problems with a
recursive structure.®

3. Note that the application of dynamic programming requires the assumption
of history independence, in addition to the hasic KP axioma.
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VI. A HoMOGENEQUS CLASS OF PREFERENCES

In this section I introduce a class of preferences for which the
utility index U, is homogeneous of degree « in current. consumption
and in the value of future state dependent consumption. This class,
which has heen proposed by Epstein and Zin [1989], has the
convenient property of allowing the intertemporal elasticity of
subatitution and the coefficient of relative risk aversion to he
represented by two separate parameters.® It is capable of capturing
the hehavior either of an individual who prefers early resolution of
uncertainty or of one who prefers late resolution. These preferences
are defined by choosing the functions wy and w in equations (14)
and (15) to be given by

17) Wy = 27
(18) w{x,y) = (& + By

The case in which v = 1 is the case that defines RINCE preferences,
and it is the only member of this class® for which one can obtain
closed-form solutions to intertemporal stochastic choice problems
when there is both rate of return and endowment uncertainty. For
the special case in which there is no uncertainty, the KP utility
index that is induced by equations (17) and (18) takes the degener-
ate form,

T +ia
(19) U, - (Z ﬂ‘cf) )
=0

The parameter v defines a family of utility functions, each member
of which has the same ordinal properties. The parameter p, on the
other hand, captures the intertemporal curvature of these func-
tions; p is related to the intertemporal elasticity of substitution n by
the relationship,

_ dlog (C;/CH[) 1
dlog R, o—1 ’

In situations for which uncertainty is nontrivial, the parameter

(20)

4. Philippe Weil [1990] has proposed a related class of preferences which is
generated by a nonhomogeneous aggregator. My initial work on RINCE preferences
was developed prior to the Epstein-Zin and Weil papers. However, since the
Epstein-Zin and Weil preferences contain RINCE as a subclass, they provide a
useful framework for explaining what: is apecial about RINCE if one is interested in

_closed-form solutions.

5. This i3 a conjecture. T do not have a proof of the nonexistence of some other

class that can he easily solved, but I have heen unable to find a counterexample.
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captures the decision maker’s attitude toward risk. Its effect follows
from the presence of terms of the form,

(Er x w’n) af‘r’

in the recursive equations that are used to construct the utility
index U, If there is no uncertainty, then these terms collapse. The
special case of ¥ = 1 corresponds to a type of risk neutrality, and it is
this property that enables one to generate closed-form solutions.
Kreps and Porteus show that the decision maker will prefer
early (late) resolution of uncertainty if the aggregator function
wix,y) is convex {(concave} in its second argument. For the class of
homaogeneous preferences described above, it follows that a prefer-
ence for early (late) resolution occurs if p > ¥{p < ). Since p is
bounded above by 1, it follows that the risk-neutral decision maker
must prefer late resolution.
What is going on here? A priori—it seems plausible that a
.risk-neutral agent could also prefer early resolution of uncertainty.
But our concept. of risk neutrality, in which the value function is
linear in the appropriate measure of expected human wealth,
excludes this possibility. What seems to be happening is that the
curvature of the period utility function, when preferences are von
Neumann-Morgenstern, provides a natural planning advantage to
early resolution. That is, VNM preferences generate value functions
in which an agent has a natural preference for early resolution of
income lotteries. In order to counteract this natural tendency for
prefering early resolution, the agent's preferences over consump-
tion lotteries must incorporate a hasic desire for late resotution.’

VII. THE PARAMETERIZATION OF RINCE PREFERENCES

In this section I describe the class of preferences that I call
RINCE, and in Section VIII I derive an exact solution for the
sequence of consumption decisions that would be taken by a
decision maker whose preferences were of this type. RINCE prefer-
ences are members of the homogeneous class described in Section

6. Although a preference for late resolution of uncertainty is not necessarily
unreasonable, it may have some counterintuitive implications. For example, a
referee has pointed out to me that, in the case in which T' = 1 (2 periods}), all wealth ia
nonhuman, p > %, and v = 1, it can he shown that an agent would strictly prefer not
to be told the realization of the rate of interest before making his or her consumption
decision for the first period. This preference occurs even though the information
would be used to alter the agent's decision if it were available. One must be careful,
when wsing RINCE preferences, to make sure that the context in which they are
applied makes economic sense.
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VI for which the homogeneity parameter v is equal to one. The
decision rule that describes optimal behavior in any period is
constructed by solving the sequence of value functions described in
equations (9), (10), and (11) when the functions wy and w are given
by

(21) welz) =z
(22) w(x, y) = (x* + By

where 8 €[0,») and p € [~,0) LU (0,1]7

When the joint distribution of {w,R}’., is degenerate (the case
of no uncertainty), this aggregator generates the following utility
function:

T 1/p
(23) U- (Z ,@‘cf) .

As p tends to 0, this function becomes infinite, To find the correct
parameterization for the case of p = 0, one must normalize the
coefficients of each element of {¢,|, by ZL, 8¢ and apply L’Hospi-
tal’s rule. The normalized utility function is given by

T
Zﬂ pes
“|'r
28
t=il

which, for the case of p = 0, hecomes
T

(25) U = [ e,

dwl)

1fa

(24) u

The aggregator that delivers this representation is the following
ane:

(26) wt(xsy) =[(1 - §)x* + 6:.3’“]1!‘};
where the coeflicient §, is defined by

1
(27) a,a(l—T )
Y4

—t
L]

7. The restriction to discount rates less than one is not necessary for the finite
horizon case.
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The time-dependent aggregator given by equation (26) generates a
sequence of utility indices, each of which is equivalent {up to a
linear transformation) to the sequence of indices that is generated
by the time-independent aggregator given in equation (22). When
there is no uncertainty, the date 0 values of these utility indices are
given by equations (24) and (23), respectively. Since the time-
independent parameterization is notationally mere compact, it
seems preferable to work with the time-independent aggregator,
equation (22), when describing preferences for which g # Q.

The Cobb-Douglas case is more complicated, however, since
one must use the time-dependent paramaterization in order to
apply L'Hospital’s rule.® For the case in which p — 0, the aggregator
function given in equation (26) reduces to

(28) w,(x,y) = x Wy

where §, is defined above. When there is no uncertainty, this
aggregator generates the utility function in equation (25) which is
ordinally equivalent to the familiar example of logarithmic prefer-
ences with exponentially declining weights; however, there does not
exist an aggregator function that is both linearly homogeneous and
time independent which generates an equivalent ordinal represen-
tation of utility. To preserve ordinal properties, one is restricted to
aggregators that generate increasing monotonic transformations of
(25). But. to maintain linear homogeneity of the aggregator, one is
further resiricted to linear transformations of (28). The unique (up
to a linear transformation) time-independent Cobh-Douglas aggre-
gator is of the form,

(29) wlzy) = 'y,

which generates the following utility function:
T-1

(30) U- (H cgl—m‘] A
ELL]

This is not ordinally equivalent, for any finite horizon, to the
familiar logarithmic representation; which takes the form, .

T
(31) U=) floge.
t=0

8. Recall that L'Hospital's rule applies to the limit of the ratio of two functions,
each of which converges to zera (or infinity). The coefficients on x and ¥ must sum to
unity in order for the numerator of the CES aggregator ta converge to zero as p
converges to (.



56 QUARTERLY JOURNAL OF ECONOMICS

The representation in equation (30) achieves time independence of
the aggregator by placing more weight (than the logarithmic repre-
sentation) on the final period of life.®

VIII. THE SOLUTION TO THE STOCHASTIC CHOICE PROBLEM
WHEN THE DecisioNn MAKER Has RINCE PREFERENCES

In this section I present a set of functional equations that
describes the solution to the general problem of choice under
uncertainty described in Section IV. These equations may be used
to compute recursively a sequence of value functions {v, 12 r and a
sequence of decision rules for consumption {c, }?_r as functions of the
assets of the decision maker and of the moments of the joint
distribution of the sequence of future endowments and future
intereat rates.

The solution presented below is parameterized separately for
the CES and Cobh-Douglas cases since, in the CES case, I have
exploited the existence of a time-invariant aggregator. Specifically,
I assume that the decision maker’s preferences are generated
recursively by the sequence of functions:

(32) wixy) = (x + 8y, t=T-1,...,0,

where p & [—=,0) | (0,1]. For the case p = 0 the aggregator is given
by

(33) w,{x,y) = x* M, t=T-1,...,0,
where
(34) 5,=1- 1

Tt :
26
a=0
For all values of p, the terminal condition sets wp{(z) = z.
Befare providing explicit functional forms for the decision

rules that determine {¢,I7q, it helps to define two new functions, F
and G:R,— R

(1 + ﬁlf{l—p)xpf(l—p))(l—n)fﬁ; ifp# 0

35 F{x) -
(35) e} {(1 — 8tk ifp =0

9. The same comment applies to the following time-independent CES apgrega-
tor [{1 — 8)x* + 3¥*]"* which generates a CES utility function with constantly
declining weights in all but the final period of life. It is this version of the CES
aggregator that converges ta equatian (29) as p converges to zero.
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(1 4 BYO-oyslll-ay-1, ifp# 0

(36) Gl = 1— 3, if p =0

where §, is the function of 3 defined in equation (34).

These functions appear repeatedly in the solution to the
agent’s decision problem. For the case of p # 0 they have been
derived from the time-independent CES aggregator, equation (32),
by sclving the problem explicitly, beginning with period T and
warking backwards. For the Cobb-Douglas case they are worked out
for the time-dependent formulation, equation (33). There is a
formulation of the CES case, using the time-dependent aggregator
(26), which involves functions that converge to the Cobb-Douglas
forms of F and G as p converges to zero. However, the time-
dependent CES formulation of the problem may be written, by
transforming variables, in a form that involves time-invariant
coefficients.'®

Using the above definitions, one may write the decision rule for
consumption in terms of two variables that resemble a compounded
interest rate and a human wealth term. However, this analogy is not
exact since these variables involve the parameters of the utility
index. More precisely, the sequences of interest terms {@,}", and
human wealth terms {k,}%, are defined recursively as follows:

(37) F(Qg) = 1;
(38) Qt = Et[Rht+lF(Qh£+l)}1 t = 01 ey T— 1;
(39) hr = wr;

(40) h: =w, + E:{EHIF(QH;)/Q:]; £=0,..., T-1

In the Cobb-Douglas case the functions F and G are time dependent.
since they depend on the parameter §,; this dependence has heen
suppressed in the above formulation which holds for all values of
in the interval { —e,1].

10. Specifically, this transformation takea the form,
Qr = Q1 ~ 8},

where the variable Q, is defined by (38) and (37). The functions F and &, for the
time-dependent case are given by

Fz) = [(1 ~ 5t)l!l-; + ﬁé“ﬂxﬂ'l—p](l—#'fp;

1 -4
[ — 607~ + 722"

Gz} =
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The variable Q. depends on the moments of the distribution of
all future interest rates and on the preference parameters @ and p.
Notice from equation (40) that the terms F (§),.,)/¢, act as stochas-
tic discount rates on the future endowment sequence {w,}. The term
h, may be thought of as “perceived human wealth” in view of the
analogous role that it plays to human wealth in the nonstochastic
case. One may then define total wealth W, as

(41) W, = Ra, + h,, t=01...,T.

W, consists of the market. value of physical agsets, plus the subjec-
tively discounted value of future endowments. Given these defini-
tions, the sequences of decision rules {¢,}7., and value functions
{v,}T_q are given by the following equations;

(42) ¢y = G(Qt)Wt) L= 0!1| R T;
(43) v, - FQ)W, t-01,...,T.

The system of equations (37)-(41) gives explicit rules for
determining the values of the variables ¢, and W, in terms of the
conditional moments of the joint endowment-return process
{17, 1. One may therefore summarize the hehavior of an indi-
vidual with preferences of this type hy keeping track of two rather
simple functional equations.

Some special cases of this model may prove helpful in estab-
lishing the relationship of these preferences to more familiar
examples of nonstochastic utility functions. Over nonstochastic
choice problems the RINCE decision maker will behave exactly like
a VNM individual whose preferences are described by the addi-
tively separable function,

T nte
(44) Uu-3% fei
-0 £
For prohlems of this kind the utility index of RINCE preferences
reduces to the function given in equation {19) when the parameter
i set equal to one. In situations of risky choice, however, it. follows
from equations (42), (41), and {40) that the decision rule of the
RINCE agent is linear in probabilities and that it is only the first
moment. of the one-step-ahead endowment that affects his or her
~ consumption choice. It is in this sense that RINCE preferences
display risk neutrality.

A second case that is of interest is that in which the sequences
{R7, and {&.)7, are independent of each other and in which each of
these sequences is independently distributed through time. In this
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case the variable h, is given by the expression,

Er[a’H‘L] Et{&£+2]

(45) h, = @, + ot —— -
* T T ElRol | EdR.JER.)

 E[a)
H;{-_lt t[R!-i—a}

If w, and R, are nonstochastic, then this expression reduces to the

familiar definition of human wealth. The expression for consump-

tion given hy equation (42) is, in this case, identical to the expres-

sion that is given by the “constant relative risk aversion” prefer-

ences described in equation (44). In the case of g = O and the

stochastic but. independent endowment-return processes, the con-
sumption function takes the form,

(46) ¢, =(1-8)W,

where W, is the sum of human and nonhuman wealth terms and
human wealth is obtained by discounting the first moments of the
endowment process by the first moments of the return process—
equation (45). In the case where interest rates are serially corre-
lated, the discount factor will no longer he equal to the mean of the
return process because interest rates contain information about the
future. Serial correlation will carry a “resolution premium” which
reflects the agent’s basic preferences over the timing of the revela-
tion of information.

As the agent’s horizon becomes longer, the time dependence
for the Cobb-Douglas case becomes less important and, as t — o,
the parameter §, converges to 3. This limiting case is of special
interest since it provides an exact representation of Friedman’s
permanent income hypothesis which is valid for partial-equilibrium
problems. By exploiting the separation between risk aversion and
intertemporal elasticity of substitution that is provided hy the KP
structure, RINCE preferences are able to incorporate the simplify-
ing assumption that agents are risk neutral without trivializing
intertempaoral choice.

APPENDIX

This appendix provides a sketch of the proof that the closed-
form solution to the value function described in the text is valid.
The proposed solution for v, is given by

(47) Uy = F(Q:)Wz
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Taking expectations of v, at ¢ — 1 using the identity {41) and the
asget accumulation rule, one obtains

(48) E, (¥, = Er—l[E:F(Q:)] [Re1@iq + @iy — €]

+ E, [~ F(Q)],
which simplifies, using definitions (38) and (40), to
(49) E, (D) =@ _«(W._, — ).

By substituting (49) into equation (10) and using the functionat
form (22) for w, one obtains the first-order conditions,

(50) Cf—_ll — @ 1B[Q (W, — C:—l)]p_l ={,

which may be rearranged to give the functional form (42), using the
definition of & given in equation (36). By substituting the solution
for ¢,_, at a maximum (equation (42)) into the function w, one
obtains the expression,

(51) Uiy = F(Q,_)W,_,.

This establishes that if (47) is a correct representation of the
value function at ¢, then it is also correct at t — 1. One completes the
proof by establishing that pp_, is described by (47) given the
definition of vy in equation (43).
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