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1 Topic 1 Optimal taxation —the Ramsey approach

1.1 Optimal taxation under commitment —the Ramsey problem

One of the more famous results in Public Finance is the Chamely-Judd result (Chamley 1986,

Judd 1985).This results states that in a steady state of an economy with an infinite horizon,

there should be no wedge between the marginal rate of transformation (market interest rate)

and the intertemporal rate of substitution also if there is a wedge between the marginal rate

of transformation between leisure and labor and the corresponding rate of substitution. In

the decentralized equilibrium, this means that there should be no taxes on capital income

also if labor taxes are need to provide income to the government.

To provide some intuition already before stating the result more formally, consider the

following simple model.

Preferences
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The representative agent has an additively separable utility function in consumption and

leisure,

U =
∞∑
t=0

βtu (ct, 1− nt) . (1)

satisfying the usual Inada conditions so first-order conditions are suffi cient.

Technology

Output is produced by labor only on a competitive labor market. One unit of labor

produces w units of the consumption good. Individuals have one unit of labor each period

to split between work and leisure l = 1−n. There is a perfect market for government bonds.

Budget constraints

The government needs to finance an exogenous stream of consumption by tax revenues.

For simplicity, we have already assumed that its consumption does not interfere with the

individuals private problem. We will assumed that the government cannot finance its con-

sumption by lump-sum taxation. We do this without providing an explicit reason within

the model. Instead, the government has at its disposal, a linear labor income tax τn,t, a

consumption tax τc,t and a capital income tax, τk.Wages are for simplicity exogenous at rate

wt.

The representative individual’s budget constraint period t is

ct (1 + τc,t) + bt+1 = (1− τn,t)wtnt + (1− τk,t) (1 + rt) bt

where b is government bonds yielding an interest rate rt.
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Substituting forward yields,

∞∑
t=0

ct

t∏
s=0

(
1

1 + rs

) t∏
s=0

Wi,s + lim
t→∞

t∏
s=0

(
1

1 + rs

) t∏
s=0

Wi,sbt (2)

=
∞∑
t=0

wtntWn,t

t∏
s=0

(
1

1 + rs

) t∏
s=0

Wi,s +
(1− τk,0)

(1 + τc,0)
(1 + r0) b0

where

Wi,t ≡
1 + τc,t

(1 + τc,t−1) (1− τk,t)
,

Wi,0 = 1,

and

Wn,t ≡
1− τn,t
1 + τc,t

.

We call Wi,t the intertemporal wedge between t − 1 and t and Wn,t the intratemporal

wedge. In addition, there is an aggregate resource constraint,

gt + ct = wtnt. (3)

We now make the following definitions:

Definition 1 A feasible allocation is a sequence {ct, nt, gt}∞t=0 that satisfies the aggregate

resource constraint (3).

Definition 2 A price system is a sequence of interest rates {rt}∞t=1 that is bounded and such

that 1 + rt ≥ 0∀t.
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Definition 3 A government policy is a sequence {τc,t, τk,t, τn,t, bt}∞t=0 .

Definition 4 A competitive equilibrium is a feasible allocation, a price system and a gov-

ernment policy such that

1. Given the price system and the government policy, the allocation solves the maximiza-

tion problem of the individual.

2. The aggregate resource constraint is satisfied.

The problem of the consumer is to maximize (1) subject to (2).

First order conditions are

βtuc (ct, 1− nt) = λ
t∏

s=0

(
1

1 + rs

) t∏
s=0

Wi,s

βtul (ct, 1− nt) = λwtWn,t

t∏
s=0

(
1

1 + rs

) t∏
s=0

Wi,s

which we can write

ul (ct, 1− nt)
uc (ct, 1− nt)wt

= Wn,t (4)

uc (ct, 1− nt)
uc (c0, 1− n0)

βt
t∏

s=0

(1 + rs) =

t∏
s=0

Wi,s

Result A sequence of consumption and labor supply satisfying (4), the budget constraint

(2) and the resource constraint (3) is a competitive equilibrium.

Note: the governments budget constraint is redundant.
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The Ramsey Problem

Maximizing (1) over the set of allocations that can be implemented as a competitive

equilibrium is called the Ramsey problem.

Result

As we see, in the equations determining the competitive equilibrium, no other policy

instruments than the wedges and τk,0 and τc,0 appear. The latter two affects the value of

the initial government debt. Therefore, the government has an over-supply of instruments

in the sense that many sequences of taxes {τc,t, τk,t, τn,t}∞t=0 can imply the same allocation.

Result Over any t + 1 periods starting from period 0, there are 3 (t+ 1) independent

tax rates but the budget constraint of individual is determined by 2t+ 3 instruments given

by t intertemporal wedges (Wi,1, ...Wi,t), t + 1 intratemporal wedges (Wl,0, ...Wn,t) and two

initial tax-rates τs,0 and τc,0.

Result Any sequence of taxes can be replicated using only labor and consumption taxes

plus an initial capital income tax.

Proof: Using labor and consumption taxes gives 2 (t+ 1) independent instruments that

together with an initial capital income tax can construct any sequence of wedges.

Result Consider a sequence of taxes such that consumption taxes are constant and

capital income tax rates are constant at τκ. Given an initial consumption tax τc,0,an identical

intertemporal wedge can be constructed with zero capital income taxes and a sequence of
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consumption taxes satisfying

1 + τc,1
1 + τc,0

=
1

1− τk
1 + τc,t

1 + τc,t−1

=
1

1− τk
,

implying

1 + τc,t =
1 + τc,0

(1− τk)t

Note that if τk > 0, this sequence is increasing geometrically without bounds. It is perhaps

intuitive that a sequence of consumption taxes that increases geometrically without bounds

is suboptimal. Similarly, τk < 0,the consumption tax approaches -100%. That neither of

this is optimal is really the Chamley-Judd result.

Before proceeding, we note that using the (4) in the private budget constraint, we get

∞∑
t=0

βt (ctuc (ct, 1− nt)− ntul (ct, 1− nt)) = uc (c0, 1− n0)
(1− τk,0)

(1 + τc,0)
(1 + r0) b0 (5)

An allocation that satisfies (5) the private budget constraint and is privately optimal

for some sequences of taxes. If it also satisfies the aggregate budget constraint it is also

implementable as a competitive equilibrium. Note, that there is no taxes or prices here

except the two initial taxes on pre-existing capital.
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Nevertheless we can reformulate the Ramsey problem as max

maxU =

∞∑
t=0

βtu (ct, 1− nt)

s.t.

∞∑
t=0

βt (ctuc (ct, 1− nt)− ntul (ct, 1− nt)) = uc (c0, 1− n0)
(1− τk,0)

(1 + τc,0)
(1 + r0) b0

gt + ct = wtnt

Sometimes, it is easier to work with this direct or primal approach. Here, it is then straight-

forward to construct the wedges and then taxes that implement the Ramsey optimal alloca-

tion.

1.2 The Chamley-Judd result

Now, we only add a production technology using capital.1 There is an infinitely lived repre-

sentative agent with preferences
∞∑
t=0

βtu (ct, lt) .

The household has one unit of labor per period, to be split between leisure l and work

n.The aggregate resource constraint is

ct + gt + kt+1 = F (kt, nt) + (1− δ) kt (6)

The production function is constant returns to scale and factor markets are competitive.

1The exposition follows Ljungqvist & Sargent, Recursive Macroeconomic Theory.
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Profit maximization of the representative firm implies

wt = Fn (kt, nt)

rt = Fk (kt, nt)

The government needs to finance an exogenous stream of expenditures {gt}∞t using taxes

on labor and capital and can smooth taxes by using a bond. Following the literature, we let

the interest rate on bonds be tax-free.2 Thus,

gt + bt = τk,trtkt + τn,twtnt +
bt+1

Rt

= F (kt, nt)− (1− τk,t) rtkt − (1− τn,t)wtnt +
bt+1

Rt

where bt is government borrowing and Rt is the interest rate on government bonds.

Households have budget constraints

ct + kt+1 +
bt+1

Rt

= (1− τn,t)wtnt + (1− τk,t) ktrt + (1− δ) kt + bt

2Furthermore, we now let the value of bonds at maturity be unity, rather than as above let one bond be
worth 1 + rt. This is only a change of the notation.
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First order conditions are:

ct;uc (ct, lt) = λt

lt;ul (ct, lt) = λt (1− τn,t)wt

kt+1;λt = βλt+1 ((1− τk,t) rt+1 + (1− δ))

bt+1;λt
1

Rt

= βλt+1

Clearly, the first three implies

ul (ct, lt)

uc (ct, lt)
= (1− τn,t)wt

uc (ct, lt) = βuc (ct+1, lt+1) ((1− τk,t) rt+1 + (1− δ))

and the last two the no arbitrage condition

Rt = (1− τk,t) rt+1 + (1− δ)

Transversality conditions are

lim
T→∞

(
T−1∏
i=0

R−1
i

)
kT+1 = 0

lim
T→∞

(
T−1∏
i=0

R−1
i

)
bT+1

RT

= 0

We can now make the following definitions:

Definition 5 A feasible allocation is a sequence {kt, ct, lt, gt}∞t=0 that satisfies the aggregate
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resource constraint (6).

Definition 6 A price system is a sequence of prices {wt, rt, Rt}∞t=0 that is bounded and non-

negative.

Definition 7 A government policy is a sequence {τn,t, τk,t, bt}∞t=0 and perhaps {gt}
∞
t=0 if that

can be chosen.

Definition 8 A competitive equilibrium is a feasible allocation, a price system and a gov-

ernment policy such that

1. Given the price system and the government policy, the allocation solves the maximiza-

tion problem of the individual and of the firm.

2. The government budget constraints are satisfied.

Definition 9 The Ramsey problem is to choose a competitive equilibrium (i.e.,pick a par-

ticular government policy) that maximizes the welfare of the representative individual.

Let’s now use the formulation of Chamley, and without loss of generality let the govern-

ment choose after tax returns on capital and after tax wages. Therefore, we define

r̃t ≡ (1− τk,t) rt,

w̃t = (1− τn,t)wt.

Rather than chosing taxes, we let the government choose the net rates r̃t and w̃t given the

market determined values rt and wt.

10



The Lagrangian of the Ramsey problem can be written

L =
∞∑
t=0

βt{u (ct, 1− nt)

+ ψt (F (kt, nt)− r̃tkt − w̃tnt − bt − gt + bt+1/Rt)

+ θt (F (kt, nt) + (1− δ) kt − ct − gt − kt+1)

+ µ1,t (ul (ct, lt)− uc (ct, lt) w̃t)

+µ2,t (uc (ct, lt)− βuc (ct+1, lt+1) r̃t+1 + (1− δ))}

Now, the first order condition for kt+1 is3

θt = βψt+1 (Fk (kt+1, nt+1)− r̃t+1) + βθt+1 (Fk (kt+1, nt+1) + (1− δ)) .

The interpretation is that the RHS is the discounted value of investing one more unit at

t. This value comes from having Fk (kt+1, nt+1) + (1− δ) more aggregate resources available

next periods with a value per unit of θt+1 and that government revenues are larger by an

amount Fk (kt+1, nt+1)− r̃t+1 with a value per unit of ψt+1. All is discounted with a factor β.

Suppose there is a steady state of the model, then

θ = βψ (r − r̃) + βθ (r + (1− δ))

3Although a change in kt+1 affects rt+1 and wt+1 the effects on these variables need to to be taken into
account since r̃t+1 and w̃t+1 are choice variables.
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where we used thet Fk = r. Private optimality (the Euler equation), implies in steady state

uc = βuc (r̃ + (1− δ))

1 = β (r̃ + (1− δ))

1− βr̃
β

= 1− δ

giving

θ = βψ (r − r̃) + βθ

(
r +

1− βr̃
β

)
= βψ (r − r̃) + βθ (r − r̃) + θ

0 = β (ψ + θ) (r − r̃)

requiring r − r̃ = 0 and thus τk = 0.

1.3 Discussion

We have shown that also in this simple economy, tax smoothing implies that the intertem-

poral margin should not be distorted. We have also found an equivalence between constant

consumption taxes and an investment tax. In an infinite horizon model, a positive invest-

ment tax in steady state has implications identical to ever increasing consumption taxes.

This can thus provide some intuition for Chamley & Judd’s result that investment taxes

should not be used in the long run. These results have led to a large amount of research,

showing that the results are robust to important modifications of the model.
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Judd (1982, 1985) studied a similar problem but more from the point of view of tax

incidence and redistribution. As in the Ramsey problem, saving is done privately optimally

and individuals live for ever. Judd allows two types of agents (either workers, who do not

save, and capitalists) or in the more influential variant of the model, two type of agents that

in a long-run steady state of the model may have different shares of the capital stock. The

latter can be due to, e.g., different subjective discount rates. The government´s problem

is to maximize a weighted sum of the welfare of two groups. Judd shows that if there is a

steady state in this model, the optimal tax rate on capital income is zero.

Some important work has increased the understanding of the zero tax result by noting

its limitations. Jones et al (1997) note that it is the assumption that capital is accumulated

using a CRS production technology such that no profits arise that is key behind the zero tax

result. If also human capital is accumulated without profits being generated, the zero tax

rate results extend to human capital. In contrast, if profits arise due to decreasing returns

to scale, the result does not necessarily hold. Correia (1997) shows that if there are some

factors of production that cannot be taxed, capital income taxes are positive (negative) if

capital is a complement (substitute) to the untaxed factor. Zhu (1992).

Two other key assumptions for the zero tax results are that i.) markets are complete and

ii.) that government can implement time inconsistent policies. Aiyagari (1995) shows that if

markets are incomplete, in particular if individuals face uninsurable idiosyncratic risk, there

is a tendency of over-saving for precautionary motives that should be corrected by a positive

capital income tax. This paper is very famous, but perhaps more for the nice way the result

is demonstrated, rather than the result in itself. Regarding time inconsistency, it is clear
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that if a government or a benevolent planner can re-optimize unexpectedly, this is as if the

initial period occurs again, leading to a new period of high capital income taxes. Without

the ability to resist the temptation to re-optimize, a benevolent planner/government would

set quite high taxes permanently (Klein & Ríos Rull, 2003). We will study this result below.

The result also extends to the stochastic case, in which case expected taxes should be

zero and not distort savings.

An interesting case is if government spendings are stochastic. With complete markets,

the government should then commit to a tax system that insures them against this (Chari

et al. 1994). If spending needs are large, taxes on capital should be high and vice versa.

The zero capital income tax result does not go through in some cases:

1. If there are untaxed factors of production that generate profits and these factors are

strict complements to capital. Then capital should be taxed (negatively if they are

substitutes).

2. If market incompleteness makes people save too much for precautionary reasons.

In the short run, capital income taxes also collect revenue from sunk investments. Then,

the tax is partly lump sum, which provides an argument for such taxes early in the planning

horizon. But when is that zero? Has it already occurred a long time ago? In any case, we

see a time consistency problem here.

Not also that the long-run maybe quite far out and people alive today might loose by a

policy that maximizes the welfare of a constructed infinitely lived.
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1.4 Time consistent taxation

1.4.1 A numerical approach

Here we follow Klein and Rios-Rull 2003. Consider a stochastic economy productivity is

z (st) and government consumption is g (st) where st is the history of a shock that in every

period belongs to a finite element set S. The shock follows a Markov chain with transition

matrix Γ. The representative individuals has utility given by

E
∞∑
t

βtu (ct, ht)

and the aggregate resource constraint is

F
(
K
(
st−1

)
, H
(
st
)
, z
(
st
))

+ (1− δ)K
(
st−1

)
= C

(
st
)

+K
(
st
)

+ g
(
st
)

Individual budget constraints are

ct + kt+1 = (1− τt)wtht + (1 + rt (1− θt)) kt

where lower case variables denoted individual and a balanced budget constraint is imposed

on the government

θtktrt + τtwtht = gt

If the government could set θt at t, this would be an ex-post lump-sum tax. Klein and

Rios-Rull assume a limited commitment, i.e., that taxes are set for the next period. To find
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a time consistent solution, we require that the policy the government follows is of Markov

type, i.e., it is a function of the set of state variables only. These are

{g, z,K, θ} ≡ x

Using budget balance, a policy rule is then

θt+1 = ψ (xt)

We then define a recursive competitive equilibrium in the standard way, noting that the

value function v depends on the policy rule

v (x, k;ψ) .

Assuming the government is benevolent, it assesses welfare according to

V (x;ψ) = v (x, k;ψ) .

We can also define the competitive equilibrium and its value function in case the government

decides next periods tax to θ′ and following government follow ψ (x) . The value function is

then

v̂ (x, θ′, k;ψ)
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The associated welfare of the government is

V̂ (x, θ′;ψ)

Now define the current maximizing policy as

Ψ (x;ψ) = arg max
θ′

V̂ (x, θ′;ψ)

A Markov perfect optimal tax policy then satisfies the fixed-point requirement

Ψ (x;ψ (x)) = ψ (x) ,

i.e., if the government expects coming government to use ψ it is optimal for itself to use ψ.

Klein and Rios-Rull use log utility and assume government consumption and productivity

can each take on two different values respectively. They calibrate the model to US, data.

Average g is 20%, varying 1.6% points up or down and an autocorrelation of .66. Productivity

has a standard deviation of 2.4% with autocorrelation .88.

Comparing the commitment and no commitment they find that in commitment expected

capital income tax rates are (almost) zero but with a standard deviation of 18%. having a

strong positive correlation with g and a strong negative with z. Labor income taxes are 31%

and almost fixed.

With 1 years commitment only, the average capital income tax rate is 65%with a standard

deviation of 11%. It is positively correlated with g, but less than with full commitment.
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Labor income tax rates are 12% on average with a standard deviation of 3%. Output is 14%

lower than under commitment and somewhat less volatile.

Also 4 years commitment produce high average tax rates on capital income 36%.

1.4.2 A time-consistent taxation problem with an analytical solution

The model economy is populated by a continuum one of dynasties of two-period lived agents.

In the first period of their lives, agents undertake an investment in human capital. The cost of

investment to each individual is e2, and the return is spread over two periods. In particular,

the individual earn labor earning equal to e · w in the first period of her life, and e · w · z

in the second period. z ≤ 1 captures the fact that agents retire within the second period of

their life.

Dynasties derive utility from the consumption of a private and a public good. The public

good is financed with a linear age-independent tax on income, denoted τt.

Each period’s felicity depends on the total consumption (net of the investment cost)

of the dynasty’s member, irrespective of the split of consumption between the old and the

young agent. The preferences of the dynasty which is alive at t are described by the following

linear-quadratic utility functions

Ut = ct + Agt − e2
t + βUt+1,

where β ∈ [0, 1) is the discount factor, gt denotes the public good available at t and A is

a parameter describing the marginal utility of the public good. The marginal cost of the

public good is unity and we focus on the case where A ≥ 1, that will imply that the public
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good is socially valuable. Furthermore, we assume that the discount rate, (1− β) /β, equals

the market interest rate. Given our assumptions, the savings decisions can be abstracted

from, and the welfare of a dynasty is simply given by the present discounted value of their

income net of investment costs;

Ut = Σ∞j=0β
j
(
(1− τt+j) yt+j + Agt+j − e2

t+j

)
,

where:

yt+j = (zet+j−1 + et+j)w, (7)

i.e., the gross income accruing to the dynasty at t+ j, given by the sum of the labor incomes

generated by the parent born at t+j−1 and her offspring born at t+j. The parent’s human

capital depends on her investment at t + j − 1 (et+j−1) while the offspring’s human capital

depends on her investment at t + j (et+j). Since agents live for two periods, and the effect

of the human capital investment dies with them, yt only depends on the realization of two

subsequent investments.

Due to a standard free-riding problem, there is not private provision of the public good.

This is instead provided by an agency that will be called "government" that has access to

a technology to turn one unit of revenue into one unit of public good. The government

revenue is collected by taxing agents’labor income at the flat rate τ, subject to a balanced

budget constraint. More formally, the government budget constraint requires that gt ≤

τt (zet−1 + et)w, where, at time t, et−1 is predetermined. et,instead is determined after τt is

set and in addition depends on expectations about the future tax rate. In particular, the
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optimal investment of a young agent at t is given by

e∗t = e (τt, τt+1) ≡ max
[
0,

1 + βz − (τt + βzτt+1)

2
w

]
. (8)

This equation shows the distortionary. effect of taxation on investment. Note that taxation

at t + j distorts the investment of two generations: that born at t + j − 1, as e∗t+j−1 =

e (τt+j−1, τt+j), and that born at t+ j, as e∗t+j = e (τt+j, τt+j+1)).

Letting et = e (τt, τt+1) and substituting it in into the government budget constraint,

allows us to express the provision of public good at t as a function of current and future (one

period ahead) taxes plus the level of investments sunk at t− 1. More formally:

gt = τt (zet−1 + e (τt, τt+1))w = g (τt, τt+1, et−1) . (9)

Finally, we restrict τt ∈ [0, 1]∀t, which implies that investments, public good provision

and private net income (e∗t , gt and (1− τt) yt) all are non-negative.

Before discussing the Markov equilibrium, let us state the solution to the full commitment

equilibrium4

Proposition 10 The optimal solution to the planner program is

τt+1 = max {0, τ ∗ − z (τt − τ ∗)} < 1, (10)

4See Hassler et al (JME 2005).
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for t ≥ 0 and

τ0 =


τ0 =

(
1 + 2ze−1

w(1−βz)

)
τ ∗ if e−1 ≤ w(1−βz)

2z2

min
{

1,
(
1 + βz + 2ze−1

w

)
τ ∗
}

else.

,

where

τ ∗ =
A− 1

2A− 1
∈ [0,

1

2
).

is the steady-state tax rate. If z < 1, the Ramsey tax sequence converges asymptotically in

an oscillatory fashion to τ ∗. If z = 1, the Ramsey tax sequence is a 2-period cycle such that,

τt =


τ0 if t is even

max {0, 2τ ∗ − τ0} if t is odd.

Note that if e−1 = 0,the optimal tax is at the steady state immediately. With positive

e−1, the planner wants to tax the pre-installed tax-base but this implies that also period 0

investments are hurt. To partly offset this, the planner promises taxes lower than steady

state for period 1. But, there is then incentive to tax investments e1 in period 1 a little

higher by setting τ2 above the steady state tax. Oscillating taxes therefore tends to smooth

distortions over time.

The Markov allocation (Ramsey allocation without commitment) Let us now

characterize the optimal time consistent allocation, namely, the allocation that is chosen by

a benevolent planner without access to a commitment technology. Clearly, the oscillating

path described above is not time-consistent.
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We will use the recursive formulation of the problem, now assuming that period t taxes

are set in the beginning of period t, and observed before period t investments are decided.

The period t felicity of the planner is given by

F (et−1, τt, τt+1) = (1− τt) yt − e (τt, τt+1)2 + Agt

= (zet−1 + e (τt, τt+1)) (1 + (A− 1) τt)w − e (τt, τt+1)2 ,

where et−1 is pre-determined.

Without commitment, the game between the government and the public is not degener-

ate. We characterize the equilibrium where et−1 is the only state variable in period t and

reputation is not used as a means to compensate for commitment. Thus, taxes are set ac-

cording to a time-invariant function τt = T (et−1) .Given this function, individuals rationally

believe that τt+1 = T (et) and individually rational investment choices must therefore satisfy

et =
1 + βz − (τt + βzT (et))

2
w.

We can now define the equilibrium;

Definition 11 A time-consistent (Markov) allocation without commitment is defined as a

pair of functions 〈T, I〉, where T : [0,∞) → [0, 1] is a public policy rule, τt = T (et−1) , and

I : [0, 1]→ [0,∞) is a private investment rule, et = I (τt) such that the following functional

equations are satisfied,

1. T (et−1) = arg maxτt {F (et−1, τt, τt+1) + βW (et)} subject to et = I (τt) , τt+1 = T (I (τt)) ,
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2. I (τt) = (1 + β − (τt + βT (I (τt))))w/2,

3. W (et−1) = maxτt {F (et−1, τt, τt+1) + βW (et)} subject to et = I (τt) , τt+1 = T (I (τt)) .

The following Proposition can then be established.

Proposition 12 Assume that either5 A ≤ z(z+1)
(1+β)z2−1

or (1 + β) z2 ≤ 1. Then, the time-

consistent allocation is characterized as follows:

T (et−1) = min {τ̄ + α1 (et−1 − ē) , 1}

I (τt) = ē− w

2 + βzα1w
(τt − τ̄) ,

where

ē =
w (1 + βz) (1− α0)

2 + α1w (1 + βz)
≤ e∗

τ̄ =
2α0 + α1w (1 + βz)

2 + α1w (1 + βz)
≥ τ ∗

with equalities iff A = 1,and

α1 =

√
1 + 4A (A− 1) (1− βz2)− (1 + 2 (1− βz2) (A− 1))

βz (A− 1) (1− βz2)w
≥ 0

α0 =
2 (A− 1)− βzα1w

2 + (A− 1) (4 + βzα1w)
≥ 0

∂α1

∂A
≥ 0,

∂α0

∂A
≥ 0,

∂τ̄

∂A
≥ 0,

∂ē

∂A
≤ 0.

5This assumption ensures that the constraint τt+1 ≤ 1 never binds for t ≥ 0. Without this constraint, the
analysis would be substantially more complicated, involving non-continuos policy functions.
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For all t, the equilibrium law of motion is

et+1 = ē− zd (et − ē) , (11)

τt+1 = τ̄ − zd (τt − τ̄) . (12)

where

zd ≡
α1w

2 + βα1w
∈ (0, z) .

Given any e−1, the economy converges to a unique steady state such that τ = τ̄ and e = ē

following an oscillating path and the constraint τt ≤ 1 iff t=0 and e−1 >
1−α0
α1
, while τt ≥ 0

never binds.

The parameter restriction under which the Proposition is stated is a suffi cient condition

for the constraint τt+1 ≤ 1 never to bind for t ≥ 0. When this constraint is violated, the

equilibrium policy functions may be non-continuous, making the analysis substantially more

involved.

The main findings are that

1. the Markov allocation implies higher steady-state taxation (τ̄ > τ ∗) and lower output

and investment (ē < e∗) than the Ramsey allocation.

2. the Markov allocation implies less oscillations (i.e., a smoother tax sequence) than the

Ramsey allocation: zd < z.

It is interesting to note that the steady-state tax rate, τ̄ , can exceed 1/2, i.e., it can
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be larger than the constant value of taxes that maximizes tax revenues. Specifically, this

happens if A > 1 + 2+z(1−βz)
z(2+z(1+β))

, as threshold that decreases in β and z. I may seem counter

intuitive that a benevolent planner would choose a tax rate that in steady state is on the

wrong side of the Laffer curve. The fact that it can happen is due to lack of commitment; if

τ̄ > 1/2, the planner would clearly want to reduce the steady state tax rate. However, the

planner can only control current tax rate and reducing that leads to higher taxes the next

period and the overall effect of this is to reduce current welfare.

Here follows a sketch of the proof. The idea of the proof is as follows; Guess that the

optimal policy function is linear in the state variable

τt+1 = T (et) = α0 + α1et, (13)

for the undetermined coeffi cients α0 and α1. Use the guess to derive the investment rule.

Substitute these to into the Bellman equation for period t. Derive the first-order condition

for period t and verify that it is linear in et−1. Find a0 and α1 such that the FOC in period

t is satisfied.

The planner felicity in period t is

F (et−1, τt, τt+1) = (zet−1 + e (τt, τt+1)) (1 + (A− 1) τt)w − e (τt, τt+1)2 ,

Given the guess, the investment decision is et = (1 + βz − (τt + βz (α0 + α1et)))w/2,

implying

et = I (τt) =
(1 + βz (1− α0))w

2 + βzα1w
− w

2 + βzα1w
τt
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and

τt+1 = T (I (τt)) = τ̄ + zd (τt − τ̄) ,

et+1 = I (T (I (et))) = ē+ zd (et − ē) ,

where

τ̄ =
2α0 + α1w (1 + βz)

2 + α1w (1 + βz)
, (14)

ē =
w (1 + βz) (1− α0)

2 + α1w (1 + βz)
, (15)

zd = − wα1

2 + βzα1w
(16)

The problem then admits the following recursive formulation:

W (et−1) = max
τt
{F (et−1, τt, τt+1) + βW (et)} , (17)

s.t. τt+1 = α0 + α1et,

et =
(1 + βz (1− α0))w

2 + βzα1w
− w

2 + βzα1w
τt.

Given the guess, the first-order condition for maximizing the RHS of the Bellman equation

is

∂F

∂τt
+

∂F

∂τt+1

dτt+1

dτt
+ β

dW (et)

det

det
dτt

= 0,
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where

∂F

∂τt
= (zet−1 + e (τt, τt+1)) (A− 1)w − ((1 + (A− 1) τt)w − 2e (τt, τt+1))

w

2
,

∂F

∂τt+1

= −βz ((1 + (A− 1) τt)w − 2e (τt, τt+1))
w

2

where we have used the fact that

∂et
∂τt

= −w
2
,
∂et
∂τt+1

= −βzw
2
,

Using the envelope condition, we obtain

W ′ (et) =
∂F (et, τt+1, τt+2)

∂et
= (1 + (A− 1) τt+1)wz.

which can be expressed in terms of τt using the constraints in (17). We can then can write

the first-order condition as

0 =
∂F

∂τt
+

∂F

∂τt+1

dτt+1

dτt
+ βW ′ (et)

det
dτt

0 =

(
A− βzα1w

2 + βzα1w

)
et −

2 (A− 1)w

(2 + βzα1w)2 τt + z (A− 1) et−1

− w (1 + βz) (2 + Aβzα1w) + 2βzα0 (A− 1)

(2 + βzα1w)2

Using the fact that, et = (1+βz(1−α0))w
2+βzα1w

− w
2+βzα1w

τt and the guess τt = α0 +α1et−1, dividing
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by w and collecting terms, this yields

0 =

(
z (A− 1)−

(
2A

(2 + βzα1w)
+ (A− 1)

)
wα1

(2 + βzα1w)

)
et−1

+
w (1 + βz)

2 + βzα1w

(
2A (1− α0)

2 + βzα1w
− (1 + α0 (A− 1))

)

In order for this condition to be satisfied for all et−1 we need,

z (A− 1)−
(

2A

(2 + βzα1w)
+ (A− 1)

)
wα1

2 + βzα1w
= 0 (18)

2A (1− α0)

2 + βzα1w
− (1 + α0 (A− 1)) = 0 (19)

A solution for these equations (ignoring the roots that would generate instability) is: :

α1 =

√
1 + 4A (A− 1) (1− βz2)− (1 + 2 (1− βz2) (A− 1))

βz (A− 1) (1− βz2)w
≥ 0

α0 =
2 (A− 1)− βzα1w

2 + (A− 1) (4 + βzα1w)

=
2A (A− 1) (1− βz2)−

(√
1 + 4A (A− 1) (1− βz2)− 1

)
(A− 1)

(
2A (1− βz2) +

(√
1 + 4A (A− 1) (1− βz2)− 1

)) ≥ 0

The non-negativity of α0 and α1 are established by standard algebra, since, in both the

expressions, the numerator and denominators are both positive.
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2 Optimal unemployment insurance (UI)

There is a large literature of optimal unemployment insurance. The basic issue is how to

provide the most effi cient unemployment insurance when there is a moral hazard problem.

This is arising from an assumption that unemployed individuals can affect the probability

they find (and accept) a job offer. However, it is costly for the worker to increase this

probability, e.g., because of effort costs, reduced reservation wages or opportunity costs of

time.

2.1 The semi-static approach to optimal UI

The basic idea in Baily and Chetty is to simplify the dynamic problem into a static one. This

makes the model simple and tractable also when savings is allowed. An important lesson is

that when savings is allowed, we can use the drop in consumption at unemployment as a

measure of the welfare loss associated with unemployment. In a dynamic model, this does

not work when there is no market for savings. Why? The trade-off faced by the planner is

to balance the loss of welfare associated with unemployment against the negative effect on

search induced by UI.

2.1.1 The simplest model following Baily

• In the first period, the individual works and chooses how much to consume of the

income, normalized to unity, and how much to save.

• In the beginning of the second period, the individual becomes unemployed with prob-

ability 1− α and otherwise keeps his job.
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• During the second period, the individual can determine how long it takes to find a job

by choosing the reservation wage yn and costly search effort c. A share β = β (c, yn)

of the second period is spent working in the new job.

• While unemployed, the individual gets UI-benefits b.These are paid by taxes on workers.

• Agents have access to a market for precautionary (buffer stock) savings.

• Both the unemployment duration and the wage upon rehiring is non-stochastic.

Total disposable income in second period if laid off is therefore the non-stochastic value

(1− β) (b− c) + βyn (1− τ) ≡ yl.

In first periods, individuals decide how much to save, s. Interest rate and subjective

discount rate is normalized to zero. If an individual gets laid off, he consumes his resources,

i.e., his disposable income plus savings.

6

V = u (1− τ − s) + αu (1− τ + s) + (1− α) (u (yl + s)) .

Government budget constraint is

(1 + α + (1− α) βyn) τ = (1− α) (1− β) b.

=⇒ b =
(1 + α + (1− α) βyn)

(1− α) (1− β)
τ ≡ µτ

6by individual
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Denoting the endogenous total income by Y ≡ 1 + α + (1− α) βyn, this implies

b =
Y

(1− α) (1− β)
τ

≡ µτ,

where we note that µ is not a constant, but depends on individual choices of yn and c and

thus indirectly on taxes and benefits. Given the budget constraint and individual choices,

we can therefore write µ = µ (τ) (provided there is a solution, which is not necessarily true

for all τ.Explain!)

Note that in first best, c should be chosen to satisfy

(yn + c) βc = 1− β

since social income is

− (1− β (yn, c)) c+ β (yn, c) yn

implying that the marginal gain of a marginal unit of effort is βc (yn + c) and the cost is

1− β.

The individual instead gains,

βc (yn (1− τ) + c− b)

so the private value of search is lower while the private and social cost is the same. Sim-

ilarly, an increase in yn has benefits β and costs − (yn + c) βyn . While private benefits are
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(1− τ) β and private costs − (yn (1− τ) + c− b) βyn . The wedges between private and social

costs/benefits imply that both choices will be distorted in second best.

We can now write

V = u (1− τ − s) + αu (1− τ + s) + (1− α) (u ((1− β) (µ (τ) τ − c) + βyn (1− τ) + s))

V = V (c, yn, s, µ, τ)

The optimal UI system maximizes solves

max
τ

V (c, yn, s, µ (τ) , τ)

Although, c, yn, s are affected by τ, these effects need not be taken into account since by

individual optimality,

Vc = Vyn = Vs = 0.

This is the envelope theorem. Therefore, the first order condition for maximizing V by

choosing τ is

dV

dτ
= Vµ

dµ

dτ
+ Vτ = 0,

where

Vµ = (1− α)u′ (cu) (1− β) τ

Vτ = −u′ (c1)− αu′ (c2)− (1− α)u′ (cu) βyn + (1− α)u′ (cu) (1− β)µ,
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where c1 = 1− τ −s is first period consumption, c2 = 1− τ +s is second period consumption

if the job is retained and cu = (1− β) (µτ − c)+βyn (1− τ)+s is second period consumption

if the individual lost his job.

Note that by individual savings optimization (the Euler equation)

u′ (c1) = αu′ (c2) + (1− α)u′ (cu)

u′ (c1)− (1− α)u′ (cu) = αu′ (c2)

implying

Vτ = −u′ (c1)− (u′ (c1)− (1− α)u′ (cu))− (1− α)u′ (cu) βyn + (1− α)u′ (cu) (1− β)µ

= −2u′ (c1) + (1− α) (1− βyn + (1− β)µ)u′ (cu) .

Approximating

u′ (c1) ≈ u′ (cu) + u′′ (cu) ∆c
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where ∆c ≡ c1 − cu is the fall in consumption if becoming unemployed. The first order

condition is then

0 = (1− α)u′ (cu) (1− β) τ
dµ

dτ
− 2 (u′ (cu) + u′′ (cu) ∆c)

+ (1− α) (1− βyn + (1− β)µ)u′ (cu)

2

(
1 +

u′′

u′
∆c

)
= (1− α) (1− β) τ

dµ

dτ
+ (1− α) (1− βyn + (1− β)µ)

2

(
1 +

u′′

u′
∆c

)
= (1− α) (1− β) τ

dµ

dτ
+ (1− α)

(
1− βyn + (1− β)

Y

(1− α) (1− β)

)
2

(
1 +

u′′

u′
∆c

)
= (1− α) (1− β) τ

dµ

dτ
+ (1− α)

(
1− βyn +

Y

1− α

)
2

(
1 +

u′′

u′
∆c

)
= (1− α) (1− β) τ

dµ

dτ
+ (1− α)

(
1− βyn +

1 + α + (1− α) βyn
(1− α)

)
2

(
1 +

u′′

u′
∆c

)
= (1− α) (1− β) τ

dµ

dτ
+ 2

u′′

u′
∆c =

(1− α) (1− β) τ

2

dµ

dτ

Using the definition

µ ≡ b

τ
=

Y

(1− α) (1− β)

we get

u′′

u′
∆c =

τ

µ

dµ

dτ

Y

2

−Rr
∆c

c
= Eµ,t

Y

2

Where Eµ,t is the elasticity of µ with respect to taxes and Rr the relative risk aversion

coeffi cient. Recall that µ is the ratio between benefits and taxes should be interpreted as
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the ratio between employment and unemployment.

Note, finally, that 1 + α + (1− α) βyn ≈ 1, giving

Rr
∆c

c
≈ −Eµ,t

The interpretation is that the welfare loss (the LHS) should optimally be given by how

elastic the ratio of employment to unemployment is with respect to taxes.

Without moral hazard, dµ
dτ

= 0 = Eµ,t, in which case optimality requires ∆c = 0. With

moral hazard, higher taxes tends to reduce µ since the employment to unemployment falls

in in taxes, i.e., τ
µ
dµ
dτ

= Eµ,t is negative. Therefore, ∆c
c
> 0. We see that ∆c

c
increases if τ

µ
dµ
dτ

is large in absolute terms and falls if risk aversion is large. Baily claims that Eµ,t is in the

order 0.15− 0.4. With log utility, this is also how much consumption should fall on entering

unemployment.

This approach has been generalized by Chetty showing that we can have repeated spells

of unemployment, uncertain spells of unemployment, value of leisure, private insurance and

borrowing constraints. The model can therefore be extended to evaluate UI reforms. With a

more dynamic model, and in particular if capital markets are imperfect, it should be noted

that one needs to know how the whole consumption profile is affected by unemployment.

The drop at entering unemployment may not be enough. Shimer and Werning (2007), shows

that the reservation wage can be used as a summary measure of how bad unemployment is.

In any case, this the model is not suitable to analyze

1. General equilibrium effects like impacts on wages, search spillovers and job creation.
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2. Interaction with other taxes-fiscal spillovers.

3. Time varying benefits.

2.2 The dynamic approach with observable savings

The seminal paper by Shavel & Weiss (1979) focuses on the optimal time profile of benefits.

It is a simple infinite horizon discrete time model where the aim is to maximize utility of a

representative unemployed subject to a government budget constraint. Utility is given by

∞∑
t=0

(
1

1 + r

)t
(u (ct)− et)

where ct is period t consumption and et is a privately chosen unobservable effort associated

with job search. The subjective discount rate is r, which is assumed to coincide with an

exogenous interest rate.

It is assumed that the individual has no access to capital markets so ct = bt when the

individual is unemployed. After regaining employment, the wage is w forever.

When the individual becomes employed he stays employed for ever for simplicity. Agents

have no access to credit markets (or equivalently, savings is perfectly monitored and benefits

can be made contingent on them) so the planner can perfectly control the consumption of

the individual. The moral hazard problem is that individuals can affect the probability of

finding a job. As in Baily (1978), the individual controls both the search effort (here called

et) and the reservation wage (here w∗t ).

Given an effort level et, the individual receives one job offer per period with an associated
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wage drawn from a distribution with a time invariant probability density f (wt, et) . The

probability of finding an acceptable job in period t is thus

p (w∗t , et) =

∫ ∞
w∗t

f (wt, et) dwt

with

pw (w∗t , et) = −f (wt, et) ≤ 0 and

pe (w∗t , et) > 0

where the latter is by assumption.

Let Et be the expected utility of an unemployed individual that choose optimally a

sequence
{
et+s, w

∗
t+s

}∞
s=0

. Define

ut = ũ (w∗t , et) ≡
1 + r

r

∫ ∞
w∗t

u (wt)
f (wt, et)

p (w∗t , et)
dwt

This is the expected utility from next period, conditional on finding a job this period, which

starts next period. We note that

ũw (w∗t , et) ≥ 0

ũe (w∗t , et) ≥ 0.

The first inequality follows from the fact that conditional on finding a job, wages are
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higher for higher reservation wages. The second inequality is by assumption, higher search

effort leads to no worse distribution of acceptable job offers.

Et satisfies the standard Bellman equation

Et = max
et,w∗t

u (bt)− et +
1

1 + r
(p (w∗t , et) ũ (w∗t , et) + (1− p (w∗t , et))Et+1)

The first-order conditions are

et;
1

1 + r
(pe (w∗t , et) (ũ (w∗t , et)− Et+1) + p (w∗t , et) ũe (w∗t , et)) = 1

w∗t ;−pw (w∗t , et) (ũ (w∗t , et)− Et+1) = p (w∗t , et) ũw (w∗t , et) .

In the first equation, the LHS is the marginal benefit of higher search effort, coming

from a higher probability of finding a job and better jobs if found. These balances the cost

which is 1. In the second equation, the LHS is the marginal cost of higher reservation wages,

coming from a lower probability of finding a job. The RHS is the gain, coming from better

jobs if accepted.

By the envelope theorem

dEt
dEt+1

=
∂Et
∂Et+1

=
1− p (w∗t , et)

1 + r

Now, we will show the important results that anything that reduces next periods unemploy-

ment value Et+1 will reduce 1 − p (w∗t , et) , i.e., make hiring more likely. To see this, note
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that if Et+1 falls,

pe (w∗t , et) (ũ (w∗t , et)− Et+1) + p (w∗t , et) ũe (w∗t , et) , and

− pw (w∗t , et) (u (w∗t , et)− Et+1)

both becomes larger if choices are unchanged. In words, the marginal benefit of searching

harder and the marginal cost of setting higher reservation wages both increase. Thus, a

reduction in Et+1 increase search effort and reduce the reservation wage increasing p.

Now, we can use this to show the key result that benefits should have a decreasing profile.

Proof:

Suppose contrary that bt = bt+1. Then consider an infinitessimal increase in bt financed

by an actuarially fair reduction in bt+1, that is

dbt = −1− p
1 + r

dbt+1 > 0

where p (w∗t , et) is calculated at the initial (constant) benefit levels. The direct effect on

felicitity levels (period utilities) is

u′ (bt) dbt +
1− p
1 + r

u′ (bt+1) dbt+1

− u′ (bt)
1− p
1 + r

dbt+1 +
1− p
1 + r

u′ (bt+1) dbt+1

= 0

since u′ (bt) = u′ (bt+1) .By the envelope theorem, we need not take into account changes in
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endogenous variables when calculating welfare. Therefore, Et is unchanged. Since u (bt) has

increased, Et+1 must have fallen. When calculating the budgetary effects we need to into

account the endogenous changes on p.

Let

Bt = bt +
1− p
1 + r

bt+1

Then,

dBt = dbt +
1− p
1 + r

dbt+1 −
dp

1 + r
bt+1

= − dp

1 + r
bt+1

Since Et+1 has fallen, dp > 0. Thus dBt < 0. I.e., the cost of providing utility Et has

fallen. Equivalently, the insurance is more effi cient than the starting point bt = bt+1.

2.2.1 Extensions

Hopenhayn and Nicolini extend the model by Shavel & Weiss in an important dimension —it

enriches the policy space of the government by allowing taxation of workers to be contingent

on their unemployment history. It is shown that the government should use this extra

way of "punishing" unemployment. The intuition is that relative to the first best, which

is a constant unemployment benefit, the government must "punish" unemployment. Doing

this by only reducing unemployment benefits is suboptimal, by spreading the punishment

of unsuccessful search over the entire future of the individual, a more effi cient insurance

can be achieved. I.e., lower cost of providing a given utility level. It is shown that this
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may be quantitatively important. Another contribution is to show that the problem can be

formulated in a recursive way with the promised utility as state variable.

Using H&N’s notation, we assume that individuals can choose an unobservable effort

level at that positively affects the hiring probability. In H&N 1997, it is assumed that p (at)

is an concave and increasing function and hiring is an absorbing state with a wage w forever.

In H&N 2005, it is instead assumed that spells are repeated, with an exogenous separation

probability s and

p (a) =


p if a = 1

0 otherwise

which is the assumption we make here.

The individual has a utility function

E
∞∑
t=0

(
1

1 + r

)t
(u (ct)− at) .

Let θt ∈ {0, 1} be the employment status of the individual in period t, where θt = 1

represents employment. Let θt = (θ0, θ1, ...θt) be the history of the agent up until period t.

The history of a person that is unemployed in period t is therefore θt−1×0 = (θ0, θ1, ...θt, 0) ≡

θtu, and similarly, θ
t−1 × 1 ≡ θte).

An allocation is now defined as a rule that assigns consumption and effort as a function

of θt at every point in time and for every possible history, ct = c (θt) .We focus on allocations

where at = 1. Individuals must be induced to voluntarily choose at = 1. Allocations that

satisfies this are called incentive compatible allocations.

Given an allocation we can compute the expected discounted utility at every point in
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time for every possible history, Vt = V (θt) . The problem is now to choose the allocation

that minimizes the cost of giving some fixed initial utility level to the representative indi-

vidual. This problem can be written in a recursive way. In period zero, the planner gives a

consumption level c0, prescribes an effort level a0 (=1) and promised continuation utilities

V e
1 ≡ V (θ1

e) and V
u

1 = V (θ1
u) . The problem of the planner in period zero is to minimize

costs of providing a given expected utility level V0 subject to the incentive constraint the in-

dividual voluntarily chooses a0. The problem is recursive and at any node, costs of providing

promised utilities are minimized given incentive constraints

The problem of the unemployed individual is also recursive. —as unemployed, maximized

utility is (the agent only controls at)

V
(
θtu
)

= u (ct)− 1 +
1

1 + r

(
pV
(
θtu × 1

)
+ (1− p)V

(
θtu × 0

))

with the incentive constraint

1

1 + r
p
(
V
(
θt+1
e

)
− V

(
θt+1
u

))
≥ 1.

Define W (Vt) as the minimum cost for the planner to provide a given amount of utility

Vt to an employed. Similarly, let C (Vt) denote the minimal cost of providing utility V to an

unemployed (are these function changing over time?). W satisfies

W (Vt) = min
ct,V et+1,V

u
t+1

ct − w +
1

1 + r

(
(1− s)W

(
V e
t+1

)
+ sC

(
V u
t+1

))
s.t.Vt = u (ct) +

1

1 + r

(
(1− s)V e

t+1 + sV u
t+1

)
,
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whereVt = V (θte) , ct = c (θte) , V
e
t+1 = V (θte × 1) and V u

t+1 = V (θte × 0) .

The constraint can be called promise keeping constraint and has a Lagrange multiplier

δet .

C satisfies

C (Vt) = min
ct,V et+1,V

u
t+1

ct +
1

1 + r

(
pW

(
V e
t+1

)
+ (1− p)C

(
V u
t+1

))
s.t.

1

1 + r
p
(
V e
t+1 − V u

t+1

)
≥ 1,

Vt = u (ct)− 1 +
1

1 + r

(
pV e

t+1 + (1− p)V u
t+1

)
.

where Vt = V (θtu) , ct = c (θtu) , V
e
t+1 = V (θtu × 1) and V u

t+1 = V (θtu × 0) .

The first constraint is the incentive constraint, with an associated Lagrange multiplier

γt and the second is the promised utility with Lagrange multiplier δut .
7 Given that u (ct) is

concave and u−1 (Vt) therefore is convex, it is straightforward to show that C and W are

convex functions.

First order conditions when the agent is employed are

1 = δetu
′ (ct) (20)

W ′ (V e
t+1

)
= δet

C ′
(
V u
t+1

)
= δet .

7Note that the Lagrange multipliers depends on the history θt.
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The envelope condition is

W ′ (Vt) = δet =
1

u′ (ct)
= W ′ (V e

t+1

)
= C ′

(
V u
t+1

)
.

The fact that W ′ (Vt) = W ′ (V e
t+1

)
implies that nothing change for the employed indi-

vidual as long as his remains employed. Since W ′ (Vt) = C ′
(
V u
t+1

)
,marginal marginal utility

does not change if the person becomes unemployed, i.e., consumption does not change upon

loosing his job either. This is due to the fact that there is no moral hazard problem on the

job and full insurance is therefore optimal.8

When the agent is unemployed, the FOC and envelope conditions are

1 = δut u
′ (ct)

W ′ (V e
t+1

)
= γt + δut

(1− p)C ′
(
V u
t+1

)
= −γtp+ δut (1− p)

C ′ (Vt) = δut .

Giving

C ′ (Vt) =
1

u′ (ct)
(21)

W ′ (V e
t+1

)
=

1

u′ (ct)
+ γt

C ′
(
V u
t+1

)
=

1

u′ (ct)
− γt

p

1− p

8From now, I will mostly skip writing out the explicit dependence on history, hopefully without creating
confusion.
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Results

Since the incentive constraint will bind9, γt > 0 and therefore

W ′ (V e
t+1

)
> C ′ (Vt) > C ′

(
V u
t+1

)
,

1

u′ (c (θtu × 1))
>

1

u′ (c (θtu))
>

1

u′ (c (θtu × 1))

c
(
θtu × 1

)
> c

(
θtu
)
> c

(
θtu × 0

)

The result C ′ (Vt) > C ′
(
V u
t+1

)
and the convexity of C implies that the unemployed

should be made successively worse off (V u
t+1 < Vt) as long as he remains unemployed. Since

C ′ (Vt) = 1
u′(ct)

this means that consumption must fall. Furthermore, as the IC-constraint

1
1+r

p
(
V e
t+1 − V u

t+1

)
≥ 1 binds, if V u

t+1 keeps falling as long as the unemployed remains un-

employed, so must V e
t+1 implying that consumption when becoming employed is lower the

longer the agent has been unemployed.

2.2.2 The inverse Euler equation.

Multiplying the second line of (21) by p and the third by (1− p) and adding them yields,

1

u′ (ct)
= pW ′ (V e

t+1

)
+ (1− p)C ′

(
V u
t+1

)
. (22)

Recall that V e
t+1 is the utility next period if the agent becomes employed, in which case,

by (20), W ′ (V e
t+1

)
= 1

u′(ct+1)
, where ct+1 = c

(
θet+1

)
denotes consumption in period t + 1

conditional on the getting a job in t + 1 (and the history that led to consumption in t

9Prove that it must by assuming that it doesn’t and derive the implications of that.
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being ct = c (θt)). Similarly, V u
t+1 is next periods utility if the agent remains unemployed.

By (21), C ′
(
V e
t+1

)
= 1

u′(c(θtu×0))
, where c (θtu × 0) denotes consumption if the agent remains

unemployed. Equation (22) can therefore be written

1

u′ (c (θtu))
= p

1

u′ (c (θtu × 1))
+ (1− p) 1

u′ (c (θtu × 0))

1

u′ (ct)
= Et

1

u′ (ct+1)
.

This is the famous "Inverse Euler Equation" (Rogerson, -85 Econometrica)10. Note the

difference between this and the standard Euler equation.

u′ (ct) = Etu
′ (ct+1) .

The inverse Euler equation has an important implication. To see this, first note that

Jensen’s inequality,

Et
1

u′ (ct+1)
>

1

Etu′ (ct+1)
⇒ 1

Et
1

u′(ct+1)

< Etu
′ (ct+1)

since the inverse function is convex. Using this with the Inverse Euler equation gives,

u′ (ct) =
1

Et
1

u′(ct+1)

< Etu
′ (ct+1) .

10With a difference between subjective and market discount rates (ρ and r, respectively), we would get

1

u′ (ct)

1 + r

1 + ρ
= Et

1

u′ (ct+1)
.
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The fact that u′ (ct) < Etu
′ (ct+1) in the optimal allocation means that the agent would

like to save more if he had access to a capital market with interest rate r, i.e., he is savings

constrained. The incentive constraint implies that it is optimal to prevent the individual to

save as much as he would like to. Suppose, for example, that utility is logarithmic, then we

have

1

ct
=

1

Etct+1

⇒ ct = Etct+1,

while the Euler equation, guiding private preferences, implies the privately optimal consump-

tion c∗t given future consumption is

c∗t =
1

Et

(
1

ct+1

) < Etct+1.

The intuition is that with more wealth and higher consumption, it is more costly to

implement the incentive constraint. Thus, the benevolent planner want to prevent some

wealth accumulation. The standard interpretation of this is that when there are incentive

constraints, it may be optimal to tax the returns to savings. However, it may turn out

that this tax is nevertheless zero in expectation, thus not creating any revenue for the

planner/government (Kocherlakota 2005, Econometrica). How can such a tax discourage

savings? Hint: risk premium depends on covariance with marginal utility. Explain!

In the logarithmic example, suppose individuals can save and borrow a gross interest

rate r. Consider a marginal tax rate that depends on employment status and last period

individual asset holdings, τ et+1 = τ e (at) and τut+1 = τu (at) . Then, to have the individual
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Euler equation satisfied, we need

u′ (ct) = βEtu
′ (ct+1) (1 + r) (1− τ (at)) (23)

1

ct
=

(
p

1

cet+1

(
1− τ et+1

)
+ (1− p) 1

cut+1

(
1− τut+1

))

The inverse Euler equation requires

ct = pcet+1 + (1− p) cut+1 (24)

Suppose we consider a zero expected tax rate, i.e., pτ et+1 = − (1− p) τut+1.Then,

τ et+1 =
− (1− p)

p
τut+1. (25)

Using (24) to replace ct in (23) together with (25) yields

τut+1 =
p
(
cet+1 − cut+1

)
pcet+1 + cut+1 (1− p) =

p∆ct+1

Etct+1

τ et+1 = −
(1− p)

(
cet+1 − cut+1

)
pcet+1 + cut+1 (1− p) = −(1− p) ∆ct+1

Etct+1

These tax rates leads to both the Euler and the inverse Euler equation being satisfied.

Note that the tax is negative in case the agent becomes employed, while positive if he

remains unemployed. That is, it creates a net return that is negatively correlated with

marginal utility.

Result: Rendahl (2007)
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Figure 1: From Pontus Rendahl 2007 (Job market paper)

Consider the repeated H&N economy but where individuals have access to a safe observ-

able bond. It turns out that a tax/transfer that only depends on last period asset holdings

and employment status can implement the second-best allocation as the private choices of

individuals. Unemployment benefits falls in the asset position of the agent. Over an unem-

ployment spell, unemployment benefits increase but consumption falls.

2.3 The Dynamic approach with unobservable saving

An key assumption in the previous subsection was that the planner can control the consump-

tion level of the individual at all times, the only unobservable is search effort. In reality this

assumption seems questionable, given the existence of alternative means of income, capital

markets, insurance within an extended family and durable goods.
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In this subsection, we assume that the planner cannot control the consumption of the

individual —she has access to a perfect market for lending and borrowing at a fixed interest

rate and her wealth is unobservable. Of course, this extreme is perhaps equally unrealistic

and the truth might be somewhere in between.

An immediate problem is that search decisions in this setting might depend on the un-

observable wealth level. Making sure that there is always an incentive to search might then

be unfeasible in general. In one special case, the search decision is not dependent on wealth,

when individuals have CARA utility. This is the way we go here. Furthermore, we simplify

by assuming that search is either one or zero.

Individuals maximize their intertemporal utility, given by

E

∫ ∞
0

e−rtU (ct) dt,

where

U (ct) ≡ −e−γct .

The purpose of the planner is to maximize time zero welfare of an employed agent subject

to

1. budget balance expressed as actuarial fairness, i.e., that the expected discounted value

of tax payments equals that of benefits (note that this is not the same as a budget

balance in a pay-as-you-go system) and to

2. the constraint that agents voluntarily search.

Without loss of generality, we let individuals pay lump-sum taxes, denoted τ , implying
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that

Ȧt = rAt + y − ct − τ, (26)

where y = w if the individual is employed, y = b − s, if the individual is unemployed and

search and y = b if the individual is unemployed without searching. An individual who

searches, finds a job with an exogenous instantaneous probability h and a person with a

job loses it with probability q. Define the average discounted probabilities (ADP’s) of being

unemployed (in state 2) as

Π2 ≡ r

∫ ∞
0

e−rtµ2,tdt

It is straightforward to calculate that

Π2 ≡
q

r + h+ q
.

where µ2,t is the probabilities of being unemployed at time t, respectively, conditional on

being employed at time zero, provided that unemployed search for a job.

To see this, note that

µ2,t+dt = qdt (1− µ2,t) + (1− hdt)µ2,t

or

µ2,t+dt − µ2,t = qdt (1− µ2,t)− hdtµ2,t (27)

µ2,t+dt − µ2,t

dt
= q − (h+ q)µ2,t (28)
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taking the limit as dt→ 0 yields

µ̇2,t = − (h+ q)µ2,t + q, (29)

with root − (h+ q) . The steady state is a particular solution, i.e.,

µ̄2 =
q

h+ q

The solution to the system is then

µ2,t = (µ2,0 − µ̄2) e−(h+q)t + µ̄2.

Solving for the ex-ante case when individuals are born employed (µ2,0 = 0) yields µ2,t =

µ̄2

(
1− e−(h+q)t

)
.

Then,

Π2 = r

∫ ∞
0

e−rtµ̄2

(
1− e−(h+q)t

)
dt

= rµ̄2

∫ ∞
0

e−rt
(
1− e−(h+q)t

)
dt

= r
q

h+ q

(
1

r
− 1

r + q + h

)
=

q

r + h+ q

Actuarial fairness the UI system is now a simple linear function of the benefits

τ = Π2b (30)
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Under constant absolute risk aversion and stationary income uncertainty, the value func-

tions for the two states j ∈ {1, 2} can be separated

V (At, j) = W (At) Ṽj (τ, b) , (31)

where

W (At) ≡
e−γAt

r
(32)

Ṽj ≡ −e−γcj ,

and σj are state-dependent consumption constants such that the state dependent consump-

tion functions are

cj (At) = rAt + σj. (33)

The consumption constants σj are nonlinear functions of income in all states and thus,

depend on the planner choice variables τ, and b. The constants are found as the unique

solutions to the Bellman equations for each state:

σ1 = w − τ −
q
(
eγ∆2 − 1

)
γr

, (34)

σ2 = b− s− τ +
h
(
1− e−γ∆2

)
γr

,

where q is the exogenous hiring rate, h is the hiring rate if the agent search actively and

∆2 ≡ σ1 − σ2.
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Let us derive these results;

Conjecturing that the value functions are −1
r
e−γ(rAt+σj), we can write the Bellman equa-

tions for the employed as

−1

r
e−γ(rAt+σ1) = max

σ
−e−γ(rAt+σ)dt− (1− rdt) (1− qdt) 1

r
e−γ(rAt+dt+σ1)

− (1− rdt) qdt1
r

[
e−γ(rAt+dt+σ2)

]
.

Using the budget constraint, At+dt = At + r (w − τ − σ) dt, and dividing by e−γrAt , this

becomes

−1

r
e−γσ1 = max

σ
−e−γσdt− (1− rdt) (1− qdt) 1

r
e−γ(r(w−τ−σ)dt+σ1)

− (1− rdt) qdt1
r

[
e−γ(r(w−τ−σ)dt+σ2)

]
.

Using the first-order linear approximation, e−γ(r(w−τ−σ)dt+σ1) ≈ e−γσ1−γr (w − τ − σ) dte−γσ1 ,

adding 1
r
e−γσ1 to both sides, dividing by dt and letting dt approach zero, yields

0 = max
σ

{
−re−γ(σ−σ1) + r + γr (w − τ − σ)

}
(35)

+ q
(
1− e−γ(σ2−σ1)

)

Similarly, for the unemployed, we obtain

0 = max
σ

{
−re−γ(σ−σ2) + γr (b2 − s− τ − σ)

}
(36)

+ r + h− he−γ(σ1−σ2)
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The right hand sides of (35) and (36) are maximized at σ = σj, implying that these

values maximize the RHS’s of the Bellman equations.

Substituting σ1 and σ2 respectively for σ in (35) and (36) solves the maxima. Finally,

solving for gives the σsj gives (34), which by construction then solves the Bellman equations.

Clearly, the objective of the planner is now to maximize σ1, from which also follows time

consistency —the welfare of employed at all times is maximized.

The first step is now to derive an expression for σ1 in terms of ∆2 where the budget

constraint (30) is used to replace the tax rate. For this purpose, we subtract the second line

of (34) from the first and solve for b. Then, we use this expression in the budget constraint

τ = Π2b and substitute for τ in the first line of (34). This yields

σ1 = κ+ Π2

(
∆2 −

he−γ∆2

γr

)
− (1− Π2) q

eγ∆2

γr
, (37)

where κ is a constant, independent of the choice variables. Straightforward calculus shows

that (37) defines σ1 as a concave function of ∆2 with a unique maximum at 0. The reason

for σ1 being maximized at ∆2 = 0 is obvious —when actuarial insurance is available, full

insurance maximizes utility. However, ∆2 = 0 is not incentive compatible. Searching moving

will not occur voluntarily. Now, as in Baily approach, we can use the consumption fall upon

separation, ∆2, to evaluate the gain by finding employment.

If the unemployed agent shirks she is unemployed for ever, getting an income b− τ and

a utility

−1

r
e−γrAte−γ(b−τ).
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The utility if the individual instead searches is

−1

r
e−γrAte−γσ2 .

To induce search, we clearly need

σ2 ≥ b− τ.

Note that the consumption of the unemployed who search is rAt + σ2. Furthermore, her

total income net of search costs is rAt + b − τ − s. Therefore, the search condition implies

consumption to be strictly higher than income. Over time, the unemployed depletes her

assets and consumption therefore falls, despite the benefits being constant. The celebrated

result by Shawell-Weiss and Hopenhayn-Nicolini that consumption should optimally fall over

the unemployment spell when the insurer can fully control consumption (no hidden savings)

is therefore mimicked in this case, where hidden savings are allowed.

The final part is now to express the search constraint in terms of the consumption dif-

ference ∆2. Using the second line of (34), the search constraint can be written

∆2 ≥ −
ln
(
1− γr s

h

)
γ

, (38)

which we label the IC2-condition. We depict this in Figure 2,

A higher r and s and lower h reduce the value of searching, and shifts the constraint to

the right.
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∆ 2

σ1

0

IC2

γ
γ )/1ln( hrs−−

Figure 1

Finally, we can solve for the value of b that makes the IC2 condition bind exactly. Take

the difference between the equations in (34) set it to − ln(1−γr s
h)

γ
and solve for b, which gives

−
ln
(
1− γr s

h

)
γ

= w − τ −
q
(
e− ln(1−γr s

h) − 1
)

γr
−

b− s− τ +
h
(

1− eln(1−γr s
h)
)

γr


b = w + s+

ln
(
1− γr s

h

)
γ

−
q
(
− h
−h+γrs

− 1
)

γr
−
h
(
1−−−h+γrs

h

)
γr

= w +
ln
(
1− γr s

h

)
γ

− sq

h− γrs

In Hassler&Rodriguez (2008), we extend this model and show that it is useful to analyze

multiple incentive constraints. It is immediate to show that benefits should optimally be

constant over time. This since the incentive constraint does not change over time. We also
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introduce multiple incentive constraints, showing that if there is also a need to induce some

individuals to move to find a job, this is optimally done with an initial period of low benefits.
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3 New Public Finance —the Mirrlees approach

3.1 The static Mirrlees model

Consider now a simple two type variant of the model above. Furthermore disregard public

good provision. Suppose a share π of the population has high productivity θh and the

remaining share has productivity θl ≤ θh. Consider first the first best allocation if the social

welfare function is utilitarian

maxπ (u (ch) + v (nh)) + (1− π) (u (cl) + v (nl)) (39)

s.t.0 ≤ πθhnh + (1− π) θlnl − πch − (1− π) cl

where subscripts denote the type, so ch, for example, denoted consumption of the high

productivity types.

Denoting the shadow value on the resource constraint by λ, we have the first order

conditions

πu′(ch)− λπ = 0

(1− π)u′(cl)− (1− π)λ = 0

πv′(nh) + λπθh = 0

(1− π) v′(nl) + (1− π)λθl = 0

λ (πθhnh + (1− π) θlnl − πch − (1− π) cl) ≥ 0
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Clearly the two first constraints imply that

ch = cl

while the next two implies

v′(nh)

v′(nl)
=
θh
θl
≥ 1

that is the marginal disutility of work is higher for the able individuals, i.e., they work

more. Clearly this poses a problem if the planner cannot observe individual productivity

and the effort h the individual puts in. The planner is assumed to only observe income and

consumption.

Furthermore,

θh =
−v′(nh)
u′(ch)

θl =
−v′(nl)
u′(cl)

with a well-known interpretation.

Consider now the problem of maximizing the utilitarian welfare function subject to the

resource constraints and the incentive constraints, i.e., that individuals themselves choose

labor supply and savings. A way of finding the second best allocation is to let the planner

provide consumption and tell the individual to provide a given amount of income conditional

on the ability an individual claims to have. So let’s consider a situation where each individual

reports her type and the planner then tells her how much income to provide yi and how much
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to consume ci. Let’s call the report ir. The incentive constraint is then that individuals

voluntarily report their true ability. According to the revelation principle, any incentive

compatible allocation can be achieved in this way. Thus we can restrict ourselves to look

within the class of allocations that satisfy incentive constraints. Later, we will discuss how

to decentralize that, i.e., construct a tax-transfer system such that the optimal incentive-

compatible allocation is chosen by the individuals.

The problem is now to solve (39) subject to the truth-telling constraint

u (ci) + v

(
yi
θi

)
≥ u (cir) + v

(
yir
θi

)
,∀ir, i ∈ {h, l}

where we have substituted for n by y/θ. Note that we always divide by the true ability.

Why?

We will not have both truth-telling constraints binding in the optimal allocation. We

conjecture that truth-telling for the more able person binds. Why? Let’s call the shadow

value on that constraint by λI and the resource constraint λr. The problem is then

maxπ

(
u (ch) + v

(
yh
θh

))
+ (1− π)

(
u (cl) + v

(
yl
θl

))
(40)

s.t.0 ≤ πyh + (1− π) yl − πch − (1− π) cl

0 = u (ch) + v

(
yh
θh

)
− u (cl)− v

(
yl
θh

)
(41)

61



First order conditions are

πu′ (ch)− λrπ + λIu
′ (ch) = 0

(1− π)u′ (cl)− λr (1− π)− λIu′ (cl) = 0

πv′
(
yh
θh

)
1

θh
+ πλr + λIv

′
(
yh
θh

)
1

θh
= 0

(1− π) v′
(
yl
θl

)
1

θl
+ (1− π)λr − λIv′

(
yl
θh

)
1

θh
= 0

These implies

u′ (ch)

u′ (cl)
=

1− λI
1−π

1 + λI
π

Thus, the higher is the λI , the larger is the spread in marginal utilities.

Note also that

u′ (ch)

(
1 +

λI
π

)
= −v′

(
yh
θh

)
1

θh

(
1 +

λI
π

)

implying

θh =
−v′ (nh)
u′ (ch)

while

−
v′
(
yl
θl

)
u′ (cl)

=
1− λI

1−π

1− λI
(1−π)

v′
(
yl
θh

)
v′
(
yl
θl

) θl
θh

θl < θl

since 1 >
v′
(
yl
θh

)
v′
(
yl
θl

) θl
θh
. Thus the labor leisure choice is distorted for the low ability types but

not for the high ability types. The no distortion at the top is a quite general result when

the distribution of abilities is bounded.

Take a simple example where u (c) = ln c and v (n) = −n2

2
. Set π = 1/2 and θh = 2, θl = 1.
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Then, we have

1

2
c−1
h − λr

1

2
+ λIc

−1
h = 0

1

2
c−1
l − λr

1

2
− λIc−1

l = 0

−1

2
nh

1

2
+

1

2
λr − λInh

1

2
= 0

−1

2
nl +

1

2
λr + λInl

1

4
= 0

2nh + nl − ch − cl = 0

ln ch −
n2
h

2
−
(

ln (cl)−
(
nl
2

)2

2

)
= 0

The solution is: nl = 0.73338, λr = 0.68609, λI = 0.12896, ch = 1.8334, cl = 1.0816, nh =

1.0908

Note that chnh = 2 = θh, while clnl < 1 = θl.

In first best, we instead have

1

2
c−1
h − λr

1

2
= 0

1

2
c−1
l − λr

1

2
= 0

−1

2
nh

1

2
+

1

2
λr = 0

−1

2
nl +

1

2
λr = 0

2nh + nl − ch − cl = 0

with the solution is: {λr = 0.632 46, ch = 1. 581 1, cl = 1. 581 1, nh = 1. 264 9, nl = 0.632 46} ,
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in which case chnh = θh and clnl = θl.

3.1.1 Implementation

In the simple case discussed above, we can implement the allocation with a menu of marginal

tax rates and transfers. Since the labor-leisure trade-off is distorted (not distorted) for the

low (high) ability individuals, we need a tax on labor for only the low ability type. For

the low ability type to accept this, we need to give him a larger lump-sum transfer. Thus,

individuals are asked to choose either a positive marginal tax and a high transfer or a zero

marginal tax and a smaller transfer (typically negative). Think of the intuition for why this

is optimal.

Given that the truth telling constraint is satisfied, individuals solve

max (u (ci) + v (ni))

s.t.ci = θini (1− τi) + Ti

Implying

θi (1− τi) =
−v′ (ni)
u′ (ci)

In the example, we then have the two private first-order conditions and two budget

constraints.
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Plugging in the numbers and solving yields

[chnh = θh (1− τh)]nh=1.0908,cl=1.081 6,nl=0.733 38,ch=1.8334,θh=2,θl=1

[clnl = θl (1− τl)]nh=1.0908,cl=1.081 6,nl=0.733 38,ch=1.8334,θh=2,θl=1

[ch = θhnh (1− τh) + Th]nh=1.0908,cl=1.081 6,nl=0.733 38,ch=1.8334,θh=2,θl=1

[cl = θlnl (1− τl) + Tl]nh=1.0908,cl=1.081 6,nl=0.733 38,ch=1.8334,θh=2,θl=1

The solution is: {Th = −0.348 06, Tl = 0.499 87, τl = 0.206 78, τh = 0}

Finally, we need to check whether it is necessary to add some non-linearities in the tax

system. Consider the utility if the high transfer, high marginal tax is chosen by the high

ability type. The choice then satisfies

[chnh = θh (1− τl)]θh=2,τl=0.20678,Th=−0.34806,Tl=0.49987

[ch = θhnh (1− τl) + Tl]θh=2,τl=0.20678,Th=−0.34806,Tl=0.49987

with the solution {chdev = 1.8559, nhdev = 0.85479} . Clearly, this gives higher utility and we

need to prevent this deviation. This can be done by having another bracket in the tax

system. The following tax system could then implement the optimal second-best allocation.

The individuals choose from the following menu;

1. A lump sum tax −Th = 0.348. No marginal income tax.

2. A lump sum transfer Tl = 0.500. A marginal income tax of τl = 20.7% up to income

nl = 0.733. Above that, a suffi ciently high tax rate to deter any benefit claimant to
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earn more, e.g., 100%.

3.2 Uniform commodity taxation

An important assumption in the previous subsection was that there is just one good. In re-

ality, there are many goods, both intermediaries and final goods. Then, a key issue becomes;

Should different goods be taxed at different rates, i.e., should we use differentiated VAT’s?

If not, we have seen that it does not matter whether we use a flat consumption tax or a

proportional income tax.

One of the most celebrated results in public finance is the Atkinson-Stiglitz uniform com-

modity taxation result (Atkinson & Stiglitz, 1972). This states that under some conditions,

most importantly that utility is separable in leisure and an aggregate of market consump-

tion goods, a uniform tax rate should be used. Then, it can, as we have discussed above

be replaced by a uniform tax rate on labor income. Loosely speaking, separability means

that utility can be written as a function of a consumption aggregate g(c),where c is a vector

[c1, ..., cn] of consumption goods bought in the market, and labor n (equivalently, leisure)

Thus

ū (c1, ...cn, l) = u (g (c) , n) .

As above, productivity is unobserved by the planner and he only observes total income, not

wages. Due to separability, we can separate the consumers problem in two steps. The last is

to maximize g (c) over the different consumption goods, given disposable income ω and the

prices qi (including taxes).
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max
c
g (c1, ..., cn) (42)

s.t.
∑
i

qici ≤ ω

This generates demand functions di(q, ω) and an associated value function h (q, ω) ≡

g (d(q, ω)) . The latter function h, can be thought of has the optimal consumption aggregate,

given prices and income.

The first step is then to choose labor supply by solving

max
y
u
(
h (q, ω(y)) ,

y

θ

)
,

where ω (y) i disposable income given gross income y.

Let’s follow Boadway and Pestieau (2002) and consider the case were there are two types,

i ∈ {h, l} with different planner unobserved productivities (wages), θh > θl.We assume that

there are two consumption goods, c1 and c2 and normalize their relative market price before

taxes to unity. Without loss of generality, we assume the policy instrument in terms of

consumption taxes is the tax on good 2 and set the other consumption tax to zero. This is

w.o.l.g. since a common tax is equivalent to a labor income tax. The price on good 2 faced

by consumers is 1 + τ ≡ q implying that the budget constraint of the agent of type i is

ωi = c1 + qc2.
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The second step problem (42) can now be written

h (q, ω) = max
c2

g (ω − qc2, c2) (43)

giving

g2

g1

= q

and using the envelope theorem, we have

hω = g1, (44)

hq = −g1c2 = −hwc2

We can now write the planner Lagrangian

L =
∑
i=h,l

πiu

(
h (q, ωi) ,

yi
θi

)
+ λr

∑
i=h,l

πi
(
yi + τci2 − ωi

)
+ λI

(
u

(
h (q, ωh) ,

yh
θh

)
− u

((
h (q, ωl) ,

yl
θh

)))

The first constraint is the budget constraint of the government and the second is the

incentive constraint. We conjecture as above that the high productivity type must be induced

not to falsely report that he is a low productivity type.

Now, we focus on the FOC for the disposable incomes ωi and the the consumer price q.

To not have to write out the arguments of all functions, we use superscript on functions to

denote type and hat’s on functions denote for an h type who pretends to be of type l. We
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then get

ωl; πlu
l
hh

l
ω − λrπl

(
1− τ ∂c

l
2

∂ωl

)
− λI ûhhĥhω = 0

ωh; πhu
h
hh

h
ω − λrπh

(
1− τ ∂c

h
2

∂ωh

)
+ λIu

h
hh

h
ω = 0

q;
∑
i=h,l

πiu
i
hh

i
q + λr

∑
i=h,l

πi

(
ci2 + τ

∂ci2
∂q

)
+ λI

(
uhhh

h
q − ûhhĥhq

)
= 0

Now, multiply the first equation by cl2 and the second by c
h
2 and use (44). Giving

ωl;−πlulhhlq − λrπl
(

1− τ ∂c
l
2

∂ωl

)
cl2 − λI ûhhĥhωcl2 = 0

ωh;−πhuhhhhq − λrπh
(

1− τ ∂c
h
2

∂ωh

)
ch2 − λIuhhhhq = 0

Add these two to the FOC for q; This gives

λrτ
∑
i=h,l

πi

(
∂ci2
∂q

+
∂ci2
∂ωi

ci2

)
− λI ûhh

(
ĥhωc

l
2 + ĥhq

)
= 0.

Now, consider the parenthesis in the second term, ĥhωc
l
2 + ĥhq . Spelling out the arguments,

we write this

hω (q, ωl) c
l
2 + hq ((q, ωl)) .

From (44) we know this is zero. Recall that this term comes from the cheating high

productivity types, but since he consumes as much of good 2 as the the low productivity

types, the same envelope condition holds. This would not be the case if also leisure entered

in this expression, since the two types consume different amounts of leisure. We thus end up
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with

λrτ
∑
i=h,l

πi

(
∂ci2
∂q

+
∂ci2
∂ωi

ci2

)
= 0

Note that ∂ci2
∂q

+
∂ci2
∂ωi
ci2 is the derivative of the compensated demand function for c2, i.e.,

the effect on demand of a marginal increase in the price dq together with an income transfer

of dqc2. Provided this is not zero, the tax must be zero.

The intuition for the result is that the planner wants to distort only margins that can help

him identify the low productivity individuals (equivalently, the cheaters). If the marginal

rate of substitution is the same for low and high productivity individuals for some pair of

goods, there is no point in distorting it. One can, of course think of cases where this is not

the case. For example, a cheating high productivity individual consumes a lot of leisure.

Suppose there is one good that is a complement to leisure, like vacation trips. Such a good

should then be taxed higher because it reduces the value of cheating for the high productivity

individual.

A related result to the A-S is the Diamond-Mirrlees production effi ciency result (Diamond

& Mirrlees, 1972). This result states that production, in the sense the use of different inputs

in production, should not be distorted. This result builds on a similar separability. If

consumers care of the final product, not of how it is produced, distorting production cannot

help the planner doing anything good.

3.3 The direct approach

An alternative to the Mirrleesian approach is to work directly with the tax system and

derive optimal properties of that. Saez (2001) show that this can be done using observed

70



characteristics as labor supply elasticities and the actual income distribution. To understand

the intuition behind the fairly complicated formulas, consider a tax system T (y) where y is

gross income and T (y) is the tax payment. Define τ (y) ≡ T ′ (y) and let H (z) be the share

of individuals with income at or below z, with a density denoted h (z) .

Consider the effects of a small increase in the marginal tax rate dτ over the small interval

y∗ to y∗ + dy∗. This change is illustrated in the figure below. Clearly, individuals with

income below y∗ are not affected by the change. Individuals in the interval [y∗, y∗ + dy∗] face

a change in their marginal tax τ, but the average tax is not changed. Thus, there is only

a substitution effect and the change in labor supply depends on the compensated income

elasticity. Thus, an increase in that tax rate reduces labor supply. This is a negative effect

seen from the point of view of a benevolent planner and the importance of it depends on the

density of individuals h (y∗).

Above y∗ + dy∗, the marginal income tax rate τ is unchanged but the average income

is increased by dy∗dτ. This has a mechanic direct effect on revenues and an endogenous

on labor supply that depends on the income elasticity of labor supply. Assuming leisure

is a normal good, the higher tax increases labor supply. Provided the value of government

revenue is higher than the value of private spending for individuals with income above y∗,both

these effects are positive for the planner. The strength of them depends positively (loosely

speaking) on total income above y∗ + dy∗ and therefore on (1−H (y∗ + dy∗).

We have now defined positive and a negative effects of increasing the slope at y∗. If T (y)

is optimal, these effects should balance each other exactly. Furthermore, this should be true

at all income levels y. Letting dy∗ → 0, this then defines a differential equation that must
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be satisfied. Together with, e.g., a financing requirement or any other condition that pins

down the total tax requirements, this defines the optimal tax. We note that the marginal

tax τ (y), tends to be high;

• if the compensated elasticity at y is low,

• if h (y) is low,

• if total income above y, i.e.,
∫∞
z
yh (y) dz, is high.

• if income elasticity above y is high.

• if the planner’s value of money is high relative to the value the planner attach to

marginal income of individuals with income above y.

Let us now consider the dynamic Mirrlees approach to optimal taxation. Here, individuals

are assumed to be different. These differences can be either in their productivity or in
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their value of leisure. Such differences imply that there is differences between individuals

in their trade-off between leisure and work. It is assumed that the government cannot

directly observe this differences, only observe the individuals market choices. For example,

governments observe income, but not the effort exerted to get this income.

Consider a simple two-period example.

Individual preferences are:

E (u (c1) + v (n1) + β (u (c2) + v (n2)))

where ct is consumption and nt is labor supply/work effort. u is increasing and concave and

v decreasing and concave. Individuals differ in their ability, denoted θ. It is assumed that

there is a finite number i ∈ {1, 2, ..., N} of ability levels and ability might change over time.

We will interchangeably use type and ability to denote θ. Output is produced in competitive

firms using a linear technology where each individual i produces

yt (i) = θ (i)nt (i) .

There is a continuum of individuals of a unitary total mass. In the first period, individuals

are given abilities by nature according to a probability function π1 (i). The ability can then

change to the second period. Second period ability is denoted θ (i, j) and the transition

probability is π2 (j|i) .

There is a storage technology with return R. Finally, the government needs to finance

some spendings G1 and G2. At first, we analyze the case of no aggregate uncertainty.
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The aggregate resource constraint is

∑
i

(
y1 (i)− c1 (i) +

∑
j

y2 (i, j)− c2 (i, j)

R
π2 (j|i)

)
π1 (i) +K1 = G1 +

G2

R
(45)

where K1 is an aggregate initial endowment.

The problem is now to maximize the utilitarian welfare function subject to the resource

constraints and the incentive constraints, i.e., that individuals themselves choose labor sup-

ply and savings. A way of finding the second best allocation is to let the planner provide

consumption and work conditional on the ability an individual claims to have (and if rel-

evant, the aggregate state). Here this is in the first period c1 (i) , y1 (i) and in the second,

c2 (i, j) , y1 (i, j) . Individuals then report their abilities to the planner. The strategy of an

individual is his first period report and then a reporting plan as a function of the realized

period 2 ability. Let’s call the report ir and jr (j) , where the latter is the report as a function

of the true ability. The incentive constraint is then that individuals voluntarily report their

true ability. According to the revelation principle, this always yields the best incentive

compatible allocation. The truth-telling constraint is then that

u (c1 (i)) + v

(
y1 (i)

θ1 (i)

)
+ β

∑
j

(
u (c2 (i, j)) + v

(
y2 (i, j)

θ2 (i, j)

))
π2 (j|i) (46)

≥ u (c1 (ir)) + v

(
y1 (ir)

θ1 (i)

)
+ β

∑
j

(
u (c2 (ir, jr (j))) + v

(
y2 (ir, jr (j))

θ2 (i, j)

))
π2 (j|i)

for any possible reporting strategy ir, jr (j). Note that the θs are the true ones in both sides
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of the inequality. Note also that truth-telling implies that

u (c2 (i, j)) + v

(
y2 (i, j)

θ2 (i, j)

)
≥ u (c2 (ir, jr (j))) + v

(
y2 (ir, jr (j))

θ2 (i, j)

)
∀j, (47)

otherwise utility could be increased by reporting jr if the second period ability is j. The

planning problem is to maximize

∑
i

(
u (c1 (i)) + v

(
y1 (i)

θ1 (i)

)
+ β

∑
j

(
u (c2 (i, j)) + v

(
y2 (i, j)

θ2 (i, j)

))
π2 (j|i)

)
π (i)

subject to (45) and (46).

Letting stars ∗ denote optimal allocations. We can now define three wedges (distortions)

that the informational friction may cause. These are the consumption-leisure (intratemporal)

wedges

τy1 (i) ≡ 1 +
v′
(
y∗1(i)

θ1(i)

)
θ1 (i)u′ (c∗1 (i))

,

τy2 (i, j) ≡ 1 +
v′
(
y∗2(i,j)

θ2(i,j)

)
θ2 (i, j)u′ (c∗2 (i, j))

,

and the intertemporal wedge

τk (i) ≡ 1− u′ (c∗1 (i))∑
j

βRu′ (c2 (i, j))π2 (j|i)
.

Clearly, in absence of government interventions, these wedges would be zero by perfect

competition and the first-order conditions of private optimization.
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Atkinson Stiglitz

3.4 The inverse Euler equation

We will now show that if individual productivities are not always constant over time, the

intertemporal wedge will not be zero. The logic is as follows and similar to what we have done

above. In an optimal allocation, the resource cost (expected present value of consumption)

of providing the equilibrium utility to each type, must be minimized. Consider the following

perturbation around the optimal allocation for a given first period ability type i. Increase

utility by a marginal amount ∆ for all possible second period types {i, j} the agent could

become. To compensate, decrease utility by β∆ in the first period.

First, note that expected utility is not changed.

Second, since utility is changed in parallel for all ability levels the individual could have

in the second period, their relative ranking cannot change. In other words, if we add ∆ to

both sides of (47) it must still be satisfied.

Thus, the incentive constraint is unchanged. However, the resource constraint is not

necessarily invariant to this peturbation. Let

c̃1 (i; ∆) = u−1 (u (c∗1 (i))− β∆) ,

c̃2 (i, j; ∆) = u−1 (u (c∗2 (i, j)) + ∆)
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denote the perturbed consumption levels. The resource expected resource cost of these are

c̃1 (i; ∆) +
∑
j

1

R
c̃2 (i, j; ∆)π2 (j|i)

= u−1 (u (c∗1 (i))− β∆) +
∑
j

1

R
u−1 (u (c∗2 (i, j)) + ∆) π2 (j|i) .

The first-order condition for minimizing the resource cost over ∆ must be satisfied at

∆ = 0, for the ∗ consumption levels to be optimal. Recall that the inverse function theorem

says that if

u = u (c) and

c = u−1 (u) ,

then

∂u−1 (u)

∂u
=

1

u′ (c)
=

1

u′ (u−1 (u))
.

Thus,

0 =

=
−β

u′ (c∗1 (i))
+
∑
j

1

R

1

u′ (c∗2 (i, j))
π2 (j|i)

⇒ 1

u′ (c∗1 (i))
= E1

1

βRu′ (c∗2 (i, .))
,

which we note is an example of the inverse Euler equation.
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From Jensen’s inequality, we find that

u′ (c∗1 (i)) < EβRu′ (c∗2 (i, .))

⇒ τk (i) > 0,

if and only if there is some uncertainty in c∗2. Note that this uncertainty would come from

second period ability being random and the allocation implying that second period con-

sumption depends on the realization of ability. If second period ability is non-random, i.e.,

π2 (j|i) = 1 for some j, then τk (i) = 0.

3.5 A simple logarithmic example: insurance against low ability.

Suppose in the first period, ability is unity and in the second θ > 1 or 1
θ
with equal

probability.Disregard government consumption —set G1 = G2 = 0, although non-zero spend-

ing is quite easily handled. The problem is therefore to provide a good insurance against a

low-ability shock when this is not observed.

The first best allocation is the solution to

max
c1,y1,ch,cl,yh,yl

u (c1) + v (y1) + β

u (ch) + v
(
yh
θ

)
2

+
u (cl) + v

(
yl
1
θ

)
2


s.t.0 = y1 +

yh + yl
2R

− c1 −
ch + cl

2R
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First order conditions are

u′ (c1) = λ, v′ (y1) = −λ

βu′ (ch) =
λ

R
, βu′ (cl) =

λ

R

βv′
(yh
θ

) 1

θ
= − λ

R
, βv′ (θyl) θ = − λ

R

3.5.1 A simple example

Suppose for example that u (c) = ln (c) and v (n) = −n2

2
and β = R = 1. Then, we get

1

c1

= λ,
1

ch
= λ

1

cl
= λ, y1 = λ

yh
θ2

= λ, ylθ
2 = λ

c1 +
ch + cl

2
− y1 −

yh + yl
2

= 0

We see immediately that c1 = ch = cl while yh = θ2y1 and yl = y1
θ2
and y1 =

√
2

(1+ 1
2

(θ2+θ−2))
=

n1. Therefore, nh = yh
θ

= θn1 and nl = ylθ = n1
θ
. Thus, if the individual becomes of high

ability in the second period, he should work more but don’t get any higher consumption. Is

this incentive compatible?

We conjecture that the binding incentive constraint is for the high ability type. High has

to be given suffi cient consumption to make him voluntarily choose not to report being low
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ability. If he misreports, he gets cl and is asked to produce yl. The constraint is therefore

u (c1) + v (y1) + β

(
u (ch) + v

(
yh
θ

)
2

+
u (cl) + v (θyl)

2

)

≥ u (c1) + v (y1) + β

(
u (cl) + v

(
yl
θ

)
2

+
u (cl) + v (θyl)

2

)

u (ch) + v
(yh
θ

)
≥ u (cl) + v

(yl
θ

)
ln ch − ln cl ≥

y2
h − y2

l

2θ2

We conjecture this is binding. The problem is then

max
c1,y1,ch,cl,yh,yl

ln (c1)− y2
1

2
+

 ln ch −
( yhθ )

2

2

2
+

ln cl − (θyl)
2

2

2


s.t.0 = y1 +

yh + yl
2

− c1 −
ch + cl

2

0 = ln ch − ln cl −
y2
h − y2

l

2θ2
.

Denoting the shadow values by λr and λI the FOCs for the consumption levels are

c1 =
1

λr

ch =
1 + 2λI
λr

cl =
1− 2λI
λr
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from which we see

c∗h
c∗1

= 1 + 2λI ,
c∗l
c∗1

= 1− 2λI

implying a positive intertemporal wedge if the IC constraint binds.

The intratemporal wedges are found by analyzing the FOC’s for the labor supplies

y∗1 = λr

y∗h =
λr

1 + 2λI
θ2

y∗l =
λr

θ4 − 2λI
θ2

τy1 = 1 +
v′ (y∗1)

u′ (c∗1)
= 1− y∗1

1
c∗1

= 1− λr
1
1
λr

= 0,

τy2 (h) = 1 +
v′
(
y∗h
θ

)
θu′ (c∗h)

= 1 +
−y∗h

θ

θ 1
c∗h

= 1 +
−

λr
1+2λI

θ2

θ

θ 1
1+2λI
λr

= 0

and
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τy2 (l) = 1 +
v′ (θy∗l )
1
θ
u′ (c∗l )

= 1 +
−θy∗l

1
θ

1
c∗h

= 1 +
−θ λr

θ4−2λI
θ2

1
θ

1
1−2λI
λr

= 2λI
θ4 − 1

θ4 − 2λI
> 0

As we see, the wedge for the high ability types is zero, but positive for the low ability

type.11 For later use, we note that

y∗1c
∗
1 = 1 (48)

y∗hc
∗
h =

λr
1 + 2λI

θ2 1 + 2λI
λr

= θ2

y∗l c
∗
l =

λr
θ4 − 2λI

θ2 1− 2λI
λr

=
1− 2λI

θ2 (1− 2λIθ−4)

Before going to the implementation, note that if we eliminate the shadow value on the

resource constraint, we have 7 equations and seven unknowns; Geting rid of the shadow

11The wedge, asymptotes to infinity as λI approach θ4

2 . Can you explain?
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value on resources, we have 7 conditions and 7 unknowns

c1 =
1

y1

, ch =
1 + 2λI
y1

cl =
1− 2λI
y1

, yh =
y1

1 + 2λI
θ2

yl =
y1

θ4 − 2λI
θ2,

0 = y1 +
yh + yl

2
− c1 −

ch + cl
2

0 = ln ch − ln cl −
y2
h − y2

l

2θ2

This does not have a nice closed form solution. However, setting θ = 1.1,I numerically

found the solution as c1 = 0.998 71, y1 = 1.001 3, yh = 1.108 9, yl = 0.88337, ch = 1.091 2, cl =

0.906 26, λI = 4.628 6× 10−2.

As we see, high ability types consume more than low ability types. However, the former

consumes less than their income and the latter more, i.e., there is redistribution.

3.6 Implementation

It is tempting to interpret the wedges as taxes and subsidies. However, this is not entirely

correct since the wedges in general are functions of all taxes. Furthermore, while there

is typically a unique set of wedges this is generically not true for the taxes. As we have

discussed above, many different tax systems might implement the optimal allocation. One

example is the draconian, use 100% taxation for every choice except the optimal ones.

Only by putting additional restrictions is the implementing tax system found. Let us

consider a combination if linear labor taxes and savings taxes that together with type spe-
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cific transfers implement the allocation in the example. To do this, consider the individual

problem,

max
c1,y1,s,yh,yl,ch,cl

ln (c1)− y2
1

2
+

 ln ch −
( yhθ )

2

2

2
+

ln cl − (θyl)
2

2

2


s.t.0 = y1 (1− τ1)− c1 − s+ T

0 = yh (1− τh) + s (1− τs,h)− ch + Th

0 = yl (1− τh) + s (1− τs,l)− cl + Tl

with Lagrange multipliers λ1, λh and λr.

First order conditions for the individuals are;

1

c1

= λ1, y1 = λ1 (1− τ1)

λ1 = λh (1− τs,h) + λl (1− τs,l)

yh
2θ2

= λh (1− τh) ,
θ2yl

2
= λl (1− τl) (49)

1

2ch
= λh,

1

2cl
= λl

Using this, we see that

1

c1

=
1

2ch
(1− τs,h) +

1

2cl
(1− τs,l)
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Setting,

τs,h = −2λI

τs,l = 2λI .

this gives

1

c1

=
1

2ch
(1 + 2λI) +

1

2cl
(1− 2λI)

which is satisfied if we plug in the optimal allocation c∗h = c∗1 (1 + 2λI) and c∗l = c∗1 (1− 2λI)

1

c∗1
=

1 + 2λI
2c∗1 (1 + 2λI)

+
1− 2λI

2c∗11− 2λI

Note that the expected capital income tax rate is zero, but it will make savings lower

than without any taxes. Why?

Similarly, by noting from (48) that in the optimal second best allocation, we want

y1c1 = y∗1c
∗
1 = 1,

which is implemented by τ1 = 0. For the high ability type, the second best allocation in (48)

is that y∗hc
∗
h = θ2, which is implemented by τh = 0 since (51) implies that yhch = θ2 (1− τh) .

For the low ability type, we want y∗l c
∗
l = 1−2λI

θ2(1−2λIθ−4)
. From (51), we know ylcl = 1−τl

θ2
,so
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we solve

1− τl
θ2

=
1− 2λI

θ2 (1− 2λIθ−4)

⇒ τl = 2λI
θ4 − 1

θ4 − 2λI
.

Note that if λI = 1
2
, τl = 1. I.e., the tax rate is 100%. There is no point going higher

than that, so λI cannot be higher than 1
2
.

Finally, to find the complete allocation, we use the budget constraints. We do not need

to use any transfers in the first period. Thus

Th = ch − yh − (y1 − c1) (1− τs,h)

Tl = cl − yl − (y1 − c1) (1− τs,l)

We should note that Tl > Th is consistent with incentive compatibility. Why? Because

if you claim to be a low ability type you will have to may a high labor income tax which is

bad if you are high ability and earn a high income. Thus, by taxing high income lower, we

can have a transfer system that transfers more to the low ability types.

To find expressions for the transfers I need to use numerical methods. Using the results
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for θ = 1.1, we have

Th = 1.0912− 1.1089− (1.0013− 0.99871)
(
1 + 2 ∗ 4.628 6× 10−2

)
= −0.0205

Tl = 0.906 26− 0.88337− (1.0013− 0.99871)
(
1− 2 ∗ 4.628 6× 10−2

)
= 0.0205

3.6.1 Third best —laissez faire.

The allocation in without any government involvements is easily found by setting all taxes

to zero.

1

c1

= λ1, y1 = λ1

λ1 = λh + λl

yh
2θ2

= λh,
θ2yl

2
= λl (50)

1

2ch
= λh,

1

2cl
= λl
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Using these and the budget constraints, we get

y1 =
1

c1

1

c1

=
1

2ch
+

1

2cl

yh
2θ2

=
1

2ch

θ2yl
2

=
1

2cl

y1 = c1 + s

yh + s = ch

yl + s = cl

which implies

c1 + s =
1

c1

1

c1

=
1

2ch
+

1

2cl

ch =
1

2
s+

1

2

√
s2 + 4θ2

cl =
1
2
sθ + 1

2

√
s2θ2 + 4

θ

I did not find an analytical solution to this, but setting θ = 1.1 I found the solution

c1 = 0.997 75, ch = 1.102 3, s = 4. 504 5 × 10−3, cl = 0.911 35, y1 = 1.0023, yh = 1.106 8, yl =

0.915 85.

As we see, consumption is lower in the first period and labor supply is higher than in
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second best. Consumption of high ability types is higher and labor supply lower than in

second best. For low ability types, consumption is actually higher in laissez faire but also

labor supply. The second period welfare of low ability types is higher in second best (−0.285

vs. −0.300 15).

3.6.2 Means tested system

Suppose now we want to implement the optimal allocation without a savings-tax but using

an asset tested disability transfer instead. That is we set

Tl =


Tl if s ≤ s̄

−T̄ else.

where T̄ is suffi ciently large to deter savings above s̄.We set s̄ equal to the first best y∗1 − c∗1.

Without a savings tax, the cap on savings will clearly bind due to the inverse Euler equation.

The problem of the individual is therefore

max
c1,y1,s,yh,yl,ch,cl

ln (c1)− y2
1

2
+

 ln ch −
( yhθ )

2

2

2
+

ln cl − (θyl)
2

2

2


s.t.0 = y1 (1− τ1)− c1 − s̄+ T

0 = yh (1− τh) + s̄− ch + Th

0 = yl (1− τl) + s̄− cl + Tl
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First order conditions for the individuals are;

c1;
1

c1

= λ1

y1; y1 = λ1 (1− τ1)

yh;
yh
2θ2

= λh (1− τh) (51)

yl;
θ2yl

2
= λl (1− τl)

ch;
1

2ch
= λh

cl;
1

2cl
= λl

giving

1− τ1 = c1y1 (52)

θ2 (1− τh) = chyh (53)

(1− τl)
θ2

= clyl

We want

1 = c1y1 ⇒ τ1 = 0.

We also want

chyh = θ2,

clyl =
1− 2λI

θ2 (1− 2λIθ−4)
(54)
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requiring

τh = 0,

τl = 2λI
θ4 − 1

θ4 − 2λI
,

mimicing the results above.

Golosow and Tsyvinski (2006), extend this model and calibrate it to the US. They assume

people live until 75 years and start working at 25. The calibrate the probability of becoming

permanently disabled for each age group. The problem is substantially simplified by the

assumption that disability is permanent. They find the second best allocation in the same

way as we have done here working backwards from the last period. As here, they show that

the optimal allocation is implementable with transfers with asset limits and taxes on working

people. The able should have zero marginal income taxes as in our example. In contrast

to our example, the low ability types here have zero labor income and thus face no labor

income tax.

An important finding is that asset limits are age dependent and increasing over (most

of) the working life.

3.7 Time consistency

Under the Mirrlees approach, the government announces a menu of taxes or of consumption

baskets. People then make choices that in equilibrium reveal their true types (abilities) to

the government. Suppose the government could then re-optimize. Would it like to do this?
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Figure 2: Figure from Golosov & Tsyvinski (2006)

The problem is more severe in a dynamic setting provided abilities are persistent. Why?

In a finite horizon economy, there might only be very bad equilibria (Roberts, 84). But

better equilibria might arise in infinite horizon.
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