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Abstract

We embed a simple linear model of the carbon cycle in a standard neoclassical
growth model where one input to the production function, oil, is non-renewable. The
use of oil generates carbon emission, the key input in the carbon cycle. Changes in
the amount of carbon in the atmosphere drive the greenhouse effect and thereby the
climate. Climate change is modeled as a global damage to production and is a pure
externality.
We solve the model for both the decentralized equilibrium with taxes on oil and

for the optimal allocation. The model is then used to find optimal tax and subsidy
polices. A robust model finding is that constant taxes on oil have no effect on the
allocation: only time-varying taxes do. A key finding is that optimal ad valorem taxes
on oil consumption should fall over time. In the simplified version of the model, optimal
taxes per unit of oil should be indexed to GDP. A calibrated, less simplified model also
generates declining, and initially rather substantial, taxes on oil.

1 Introduction

In this note we propose a global economy-climate model where taxes, or some other form of
government policy, are called for in order to limit the negative impacts of the economy on
our climate. The main goal of the note is to show how a reasonable climate externality can
be introduced into a growth model yielding a quantatative and transparent characterization
of optimal carbon taxes. The background for the work and for our particular approach is
that there now is widespread consensus that human activity is an important driver of climate
change. First, when fossil fuel is burned, carbon (dioxide) is emitted, and through the carbon
cycle this carbon leads to increasing atmospherical carbon concentrations. Second, these
higher concentrations influence the global temperature, which in turn is a key determinant
of our climate. Third, the direct and indirect damages to humans are largely caused not
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by higher average temperature but by extreme weather outcomes, such as droughts, floods,
and storms, but these extreme outcomes are much more frequent at higher average global
temperatures. Of course, some of these damages then in turn influence production and
thus energy use: there is two-way economy-climate feedback. However, in typical climate
projections like those issued by the IPCC, the two-way feedback is not taken into account;
there, one takes a “scenario” for energy use as given without asking how it in turn would
influence the economy. In the climate-economy model used here, both energy use and climate
outcomes are endogenous, and thus any energy projections coming out of the model are
consistent with the model simulation of climate damages.
Any emission of carbon adds to a global stock of carbon in the atmosphere and it is the

global concentration that determines global temperature. Local climates around the world,
on the other hand, are a function of geophysical characteristics, i.e., primarily economy-
independent factors, and of global temperature. This means that when someone burns oil
in Uleåborg, to the extent there is an externality, it is global in nature. Thus, a study of
the effect of the economy on the climate must involve a study of the global system with a
pure externality. The global economy-climate model that we construct in this paper is a
natural extension of non-renewable resource models along the lines of ? to include a climate
externality and a carbon cycle. Quite importantly, our model is also an extension in that we
study a global competitive equilibrium with an externality, allowing us to discuss explicitly,
with standard welfare analysis, how economic policy could and should be used to correct this
externality. The prime purpose of the note is indeed to characterize optimal energy taxes in
the global decentralized equilibrium economy. We also show that for the case when utility is
logaritmic, depreciation is complete and production is Cobb-Douglas, so that consumption
is proportional to output net of damages, a very simple closed form solution exists for the
optimal tax.
Section 2 describes the model and characterizes the solution to the planning problem.

Section 3 then looks at a decentralized world economy and derives the optimal-tax formula.
In Section 4 we then use particular functional forms and calibrate the model to obtain
our main quantitative conclusions. We discuss some obvious limitations of our work in the
concluding Section ??.

2 The economy and the climate: the planner’s perspective

In this section, we describe the central planning problem. This will later be compared to
the decentralized solution in order to establish the existence of a policy that replicates the
solution to the planning problem as a decentralized equilibrium.
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Let us define the planning problem as

max
{Ct,Kt+1,Et,Rt+1}∞t=0

IE0

∞∑
t=0

βtU (Ct) (1)

Ct +Kt+1 = F̂ (At, Kt, Nt, Et, A
e
t , St) + (1− δ)Kt

Rt+1 =Rt − Et, R0 given,

Rt≥ 0∀t,
Nt = 1∀t,
St =L(∆Rt).

The function U is a standard concave utility function, C is consumption, and β ∈ (0, 1)
is the discount factor. The second line of (1) is the aggregate resource constraint. The
left-hand side is resource use– consumption and next period’s capital stock. The first term
on the right-hand side is output produced by an aggregate production function F̂ . The
arguments of F̂ include the standard inputs Kt and Nt (capital and labor) and At: an
aggregate measure of technology. In addition, aggregate output depends on the energy input
(fossil fuel) Et, with an associated energy effi ciency level Aet . We assume throughout that
fossil fuel is essential in the sense that the production function satisfies the standard Inada
conditions. Finally, we allow a climate variable St to affect output. This effect could in
principle be both positive and negative, though here the focus is on various sorts of damages
that are all captured in the production function. We will specify later how F̂ depends on S,
but note that we view climate to be suffi ciently well represented by one variable, which we
take to be the global concentration of carbon in the atmosphere in excess of preindustrial
levels. We argue this is reasonable given medium-complexity climate models from natural
science; these imply that the climate is quite well described by current carbon concentrations
in the atmosphere (e.g., lags due to ocean heating are not so important).
The variable Rt denotes remaining fossil fuel at the beginning of period t and its negative

increment is fossil fuel use Et = ∆Rt+1. Finally, we let the climate itself depend on previous
use of fossil fuel through the history ∆Rt ≡ {R1 − R0 . . . , Rt − Rt−1, Rt+1 − Rt} via the
function L. Later, we will give L (∆Rt) a simple structure that we argue reasonably well
approximate more complicated models of global carbon circulation. When we consider the
decentralized equilibrium, the effect of emissions on climate damages will be assumed to be
a pure externality, not taken into account by any private agent. The parameter δ measures
capital depreciation and finally we note that we disregard extraction costs for simplicity1.

2.1 Damages
We assume that the climate damage affects output proportionally:

Yt = S (St; γt)F (At, Kt, Nt, Et, A
e
t ) ≡ F̂ (.) .

1See our other work where we include extraction costs.
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The potentially varying and stochastic parameter γt measures the strength of damages
given St.We will later consider some specific functional forms but here it suffi cies to note
that the damage function2 satisfies

S (St) > 0, S ′ (St) < 0.

Thus, we summarize all damages, including direct utility damages or damages to the
capital stock, as well as technical change that reduces the damages (adaptation), in the
function S.

2.2 Carbon circulation
Carbon emitted into the atmosphere by burning fossil fuel enters the global carbon circulation
system, where carbon is exchanged between various reservoirs, like the atmosphere, the
terrestial biosphere and different layers of the ocean. Analyzing climate change driven by
the greenhouse effect, the concentration of CO2 in the atmosphere is the key driver and we
therefore need to specify how emissions dynamically affect atmospheric CO2 concentration.
A seemingly natural way of doing this would be to set up system of linear difference equations
in the amount of carbon in each reservoir. This approach is taken by Nordhaus (1999,2003
and 2007) who specifies three reservoirs; i. the atmospehere, ii. the biosphere/upper layers
of the ocean, and iii. the deep oceans. The parameters are calibrated so that the two
first reservoirs are quite quickly mixed in a partial equilibrium. Biomass production reacts
positively to more atmospheric carbon and the exchange between the surface water of the
oceans and the atmosphere also reach a partial equilibrium quickly. The exchange with the
third reservoir is, however, much slower. Only a few percent of the excess carbon in the first
two reservoirs trickles down to the deep oceans every decade.
An important property of such a linear system is that the steady state shares of carbon

in the different reservoairs is independent of the aggregate stock of carbon. The stock of
carbon in the deep oceans is very large compared to the amount in the atmosphere and also
relative to the total amount of fossil fuel yet to be extracted. Thus, the linear model predicts
that also heavy use of fossil fuel will not lead to high rates of atmospheric CO2 concentration
in the long run.
The linear model sketched above abstracts from important mechanisms, in particular

regarding the exchange of carbon with the deep oceans. Arguably the most important
problem with the linear specification (see, Archer, 2005 and Archer et al., 2009) is due to the
so called Revelle buffer factor (Revelle and Suez, 1957). As CO2 is accumulated in the oceans
the water is acidified. This limits its capacity to absorb more CO2 dramatically making the
effective "size" of the oceans as a carbon reservoir decrease by a factor 15, approximately
(Archer, 2005). Very slowly, the acidity decreases and the pre-industrial equilibrium can
be restored. This process is so slow, however, that we can igore it in economic models.
The IPCC 2007 report concludes that "About half of a CO2 pulse to the atmosphere is

2The function S is normally called a damage function despite the fact that (proportional) damages are
given by 1− S.
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removed over a timescale of 30 years; a further 30% is removed within a few centuries;
and the remaining 20% will typically stay in the atmosphere for many thousands of years”
and the conclusion of Archer (2005) is that a good approximation is that 75% of an excess
atmospheric carbon concentration has a mean lifetime of 300 year and the remaining 25%
stays forever.
A simple, yet reasonable representation of the carbon cycle is that a share ϕL of car-

bon emitted into the atmosphere stays there forever. Within a decade, a share 1 − ϕ0 of
the remainder has exited the atmosphere into the biosphere and the surface oceans. The
remaining part (1− ϕL)ϕ0 decays at a geometric rate ϕ. Formally, we can then define a car-
bon depreciation factor d (s) representing the amount of carbon remaining in the atmoshere
s periods into the future as

d (s) = ϕL + (1− ϕL)ϕ0 (1− ϕ)s .

Baseline calibration of the carbon cycle
Using discrete time interal of a decade, we use the approximation of Archer (2005) to

calibrate ϕ = 1/30. ϕL is set to 20% as in the IPCC report (Archer’s value of 25% will be
included in the sensitivity analysis). The remaining parameter ϕ0 is set so that d (2) = 1

2
.

This yields,

ϕ= 1/30,

ϕL = 0.2,

ϕ0 = 0.4013.

It should be noted that this paramerization is consistent with a quick mixing between
the atmosphere, the biosphere and surface oceans. Within the period, a share (1− d (0)) =
47.9% of emitted carbon has left the atmosphere.
Having defined the depreciation structure of atmospheric carbon, the law-of-motion of

atmospheric carbon follows

St =

t∑
s=0

(
ϕL + (1− ϕL)ϕ0 (1− ϕ)t−s

)
Es.

2.3 Solving the planning problem
The planner problem is now

max
{Kt+1,Rt+1,Ct,St}∞t=0

IE

∞∑
t=0

βtU (Ct)

Ct =S (St)F (At, Kt, Nt, Rt −Rt+1, A
e
t )

+ (1− δ)Kt −Kt+1,

subject to the additional constraints St = L(∆Rt), and Rt being a non-increasing non-
negative sequence.
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The first order condition for Kt+1 yields the standard Euler condition

U ′ (Ct) = IEtβU
′ (Ct+1)

(
∂Yt+1
∂Kt+1

+ 1− δ
)
. (2)

Let us also now convenience define

εt =
∂Yt
∂Et

implying that εt is the private value measured in units of the consumption good of a marginal
unit of fossil fuel.
After dividing by βt, the first order condition with respect to Rt+1 can be now be written

U ′ (Ct) εt + IEt

∞∑
j=0

βjU ′ (Ct+j)
∂Yt+j
∂St+j

∂St+j
∂Et

(3)

= IEtβ

(
U ′ (Ct+1) εt+1 +

∞∑
j=0

βjU ′ (Ct+1+j)
∂Yt+1+j
∂St+1+j

∂St+1+j
∂Et+1

)
The first row of the equation is the expected marginal social value of a unit of fossil fuel at
time t. The first term is the private value, consisting of the marginal product of fossil fue,
valued at current marginal utility. The second term is weigthed sum of current and future
expected marginal damages caused by marginal unit of carbon emitted in period t with
weights given by discounted marginal utilities. The second term is the dynamic marginal
externality of fossil fuel emitted in period t. The second row is the expected marginal3 social
value in period t+1 discounted with the factor β. The optimality condition thus simply says
that the marginal value of using fossil fuel should be the same in period t and t + 1 when
evaluated from period t.
Let us now consider the externality term. From the equation for the law-of-motion for St

we find that ∂St+1+j
∂Et+1

=
(
ϕL + (1− ϕL)ϕ0

(
(1− ϕ)j

))
. Using the definition of Yt and dividing

by current marginal utility, we define

Λt ≡ −IEt

∞∑
j=0

βj
(
ϕL + (1− ϕL)ϕ0 (1− ϕ)j

) U ′ (Ct+j)
U ′ (Ct)

S ′ (St+j)Yt+j
S (St+j)

. (4)

Λs
t measures the marginal cost of a unit of carbon emitted into the atmosphere in terms

of the consumption good. Thus, it measures the present discounted value of the production
damages created by a marginal unit of extra carbon in the atmosphere.
We can now write the optimality condition as

εt − Λt = βIEt
U ′ (Ct+1)

U ′ (Ct)
(εt+1 − Λt+1) . (5)

3Note that we here use the extraction cost of the first unit extracted in period t+ 1. This is the relevant
unit since we are holding Rt+2 constant in this exersize.
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Together with the transversality condition, this uniquely defines the optimal alloaction.
In the case with no uncertainty, (5) simplifies to

εt+1 − Λt+1

εt − Λt

=
U ′ (Ct)

βU ′ (Ct+1)
=
∂Yt+1
∂Kt+1

+ 1− δ.

This expression is a variant of the famous Hotelling rule4, stating that the return on capital
should be set equal to the return to postponing extraction of a marginal unit of fossil fuel to
the next period. We can think of this as a portfolio choice problem: how should the wealth
we are accumulating for ourselves and for future generations be split into capital, on the one
hand, and, on the other, oil resources left in the ground? They should be accumulated in
such as way as to equalize returns.5

Already at this point, let us point to some important features of Hotelling’s formula.
First, abstract from the climate externality so that we can think of this formula immediately
in terms of market outcomes. Then the formula says that the price of oil, which through
proper market pricing must equal ε, should rise over time at a rate equal to the real rate of
interest. Second, a special case of some interest is that where we allow a constant extraction
costs q and where real interest rate is constant. In such a case, it is easy to show that
εt = ∂Yt

∂Et
− q. Then, the gross price of oil must grow at a declining rate over time (and then

converge to a rate of the real rate of interest): postponing extraction now has the benefit of
spending the extraction cost later, so the price increase does not have to be so large for the
producer to be indifferent.

2.3.1 Backstop technology

Suppose now that we consider the case of a backstop technology such that as in ?, an alter-
native non-exhaustable, energy source becomes available at time T . From this point in time,
energy is produced with a clean technology. Specifically, we assume that energy is produced
with a specific capital good good Ke

t . For simplicity, we assume that the introduction of the
clean technolgy is drastic so that fossil fuel is no longer used. Even though ET+s = 0 for all
s ≥ 0, ST+s remains positive if ST > 0 and ϕ < 1.
The necessary conditions above remain valid for t < T, but we now get an end-condition

for RT , namely (
εT−1 − Λs

T−1
)
RT = 0.

This condition says that either all remaining fossil fuel is used in period T − 1, i.e.,
RT = 0, or εT−1 − Λs

T−1 = 0. In the latter case, the marginal social value of the last unit
of fossil fuel used should be set to zero, i.e., the private value (the marginal product of fuel
minus any marginal extraction cost) should be set equal to the present discounted value of
the damage caused by a marginal unit of fossil fuel burning.

4The original Hotelling rule, derived in ?, applied to a monopolistic resource owner. ? and ? derive an
analogous condition for the case of perfect markets and no externalities, in which case the market implements
the optimal extraction path. Finally, ? shows how to include an externality in the condition, arguing that
this naturally leads to slower extraction than in laissez-faire.

5See Sinn (2008) for a derivation of the Hotelling rule above and for the portfolio-choice interpretation.
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Consider the case, when RT > 0, implying εT−1 = ΛT−1, using this in equation (5) for
RT−1 we get

εT−2 − ΛT−2 = 0. (6)

This expression has a clear intution; if the last unit of fossil fuel extracted in period T −1
optimally has zero social value, this should apply also to a marginal unit in the next to last
period. Iterating backward we find that in all periods, the social value should be set to zero.

3 A decentralized economy and implementation of the optimum

A representative individual maximizes

IE
∞∑
t=0

βtU (Ct)

s.t. Ct +Kt+1 = ρtKt + Πf
t + Πe

t + Tt,

where ρt is the rental rate of capital, Πf
t and Πe

t are profits from final goods production and
resource extraction and Tt are government transfers that we assume are equal to the tax
revenues in present value. Here, in equilibrium Πf

t will be zero, due to perfect competition,
but Πe

t will be positive, essentially delivering the stock value of the oil in the ground.
The first-order condition of interest here, i.e., that for Kt+1, delivers the usual

U ′ (Ct) = βIEtρt+1U
′ (Ct+1) . (7)

Goods production takes place in perfect competition, implying that the price of the
resource– the oil price, pet– is given by its marginal product

pet =
∂Yt
∂Et

. (8)

Competitive goods production also implies that the competitive rental of capital satisfies

ρt =
∂Yt
∂Kt

+ 1− δ. (9)

This implies that (7) coincides with the planner solution.
Now consider a representative atomistic resource extraction firm owning a share of fossil

fuel resources of all remaining extraction-cost levels. Let us introduce a per-unit fossil fuel tax
θt. The problem of a representative resource extraction firm is to maximize the discounted
value of its profits

IE

∞∑
t=0

βt
U ′ (Ct)

U ′ (C0)
((pet − θt) (rt − rt+1))

s.t. rt+1≥ 0∀t.
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where rt is the remaining amount of resources for the representative resource extracting firm.
The fact that we assume the oil extracting firms to be atomistic implies that they take all
prices and the sequence of capital as exogenous.
Using (8), the first-order condition with respect to rt+1 can be written

εt − θt = IEtβ
U ′ (Ct+1)

U ′ (Ct)
(εt+1 − θt+1) (10)

where we have assumed that there is a unit mass of representative resource extractors imply-
ing that rt = Rt. Together with the transversality condition, this defines a profit maximizing
extraction path. Clearly, setting θt = Λt, implements the optimal allocation. This is straight-
forward to understand and is a an old lession due to Pigou — if there is an externality, a
tax equal in value to the externality makes agents internalize the externality implying an
optimal market allocation.
In the case of a backstop-technology arriving at some known date T, the transversality

condition is (εT−1 − θT−1) rT = 0. Using this implies that if rT optimally is larger than zero,
we can write (10) for t = T − 2 as

εT−2 − θT−2 = 0

and
εt − θt = 0.

Thus rents (profits), at t are equal to zero for all periods.

4 An analytical example with a calibration

We know that with log utility, full depreciation and Cobb-Douglas production, there is
a closed form solution to the neoclassical growth model. Let us therefore use the same
assumptions in the case of a non-renewable resource with externalities, since this model as
well has a closed-form solution so long as extraction costs are zero. Key in this analytical
derivation is a proportionality result: marginal utility is inversely proportional to output at
any time. As we will see, this implies that the model’s implications for fossil fuel use, and
for optimal fossil fuel taxes, are invariant to the key driver of output growth: improvements
in total-factor productivity (TFP) and population growth. Thus, we can shut down TFP
growth here since it does not alter any of our results.6

More importantly, however, one can argue that these functional-form assumptions are not
wildly at odds with what would seem to be quantitatively reasonable assumptions. First,
logarithmic curvature for utility is in line with most applied macroeconomic studies. Second,
full depreciation is not on short horizons, but with the 10-year periods we will use here, it
is not too far from a reasonable rate. Third, though one would have trouble over shorter
time horizons with the assumption that energy enters like capital and labor in a Cobb-
Douglas production function– since it seems reasonable to assume that installed equipment

6To be clear, higher TFP increases the demand for energy, but with Cobb-Douglas production it will
simply increase the price of energy one-for-one, and the time path for energy will be unaffected.
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and structures have rather fixed energy requirements– but on a longer horizon, since the
style of capital can be adjusted in response to energy prices, it is not so unreasonable with a
Cobb-Douglas technology. In fact, it is also what Nordhaus uses in his RICE model, which
is entirely quantitative in nature. Fourth, zero extraction costs is obviously an exaggeration
but the purpose of setting them to zero is only to make consumption proportional to output.
With extraction costs, consumption is not exactly proportional to output but since extraction
costs are and are likely to remain small relative to aggregate output, we can trust that our
results regarding optimal policy are not sensitive to our assumption.
Production is thus assumed to be

Yt = S (St; γt)F (Kt, Et, At) = S (St, γt)AtK
α
t E

ν
t .

This together with logarithmic utility implies an Euler equation for physical capital invest-
ment that reads

1 = IEtβ
CtαYt+1
Ct+1Kt+1

(11)

Now it is straightforward to see that Ct = (1− αβ)Yt implying Kt+1 = αβYt solves (11).
Thus, in every period

U ′ (Ct+j)Yt+j =
1

1− αβ .

Using this in the definition of the marginal externality cost (4) yields

Λt = −YtIEt

∞∑
j=0

βj
(
ϕL + (1− ϕL)ϕ0 (1− ϕ)j

) S ′ (St+j, γt+j)
S
(
St+j, γt+j

) . (12)

The key insight here is that with full depreciation, log utility and Cobb-Douglas produc-
tion, the shadow value on the damage externality is completly determined by current output
and the expectation of a a weighted sum of current ant future marginal proportional dam-
ages. Future values of consumption and output are irrelevant, regardless of whether they are
stochastic or not. Furthermore, the formula implies a certain form of certainty equivalence.
The expected value of future marginal damages determines the the value of Λt and thus the
optimal tax —the degree of uncertainty is irrelevant.

4.1 An exponential damage function

Since the optimal tax is determined by the expected values
S′(St+j ,γt+j)
S(St+j ,γt+j)

it is natural to analyze

the case of exponential damage functions, since in that case, this ratio is independent of St+j.
Therefore, suppose that

S (St; γt) = e−γtSt ,

implying that
S ′ (St; γt)

S (St; γt)
= −γt.
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This paper is not about the estimation of damage functions, but we of course want to
compare this specification with current state-of-the art damage function. We take this to
be Nordhaus (DICE, 2007) who uses a proportional damage function driven by the global
mean temperature T specified as

SN (Tt) =
1

1 + θ2T 2t

with θ2 = 0.0028388. A standard climate sensitity of 3.0 degrees Celcius per doubling of the
atmosheric carbon content gives

T (St) = 3
ln St

S0

ln (2)

where S0 is the amount of carbon in the atmosphere before industrialization started.
In the Figure 2, we show Nordhaus damage function SN (T (St)) (dashed) together with

an exponential damage function with parameter γt = 5.3 × 10−5. The range of the X-axis
is large, 600 gigagtons corresponds to preindustrial levels while 3000 Gigatons of carbon
corresponds to the case when most of predicted stocks of fossil fuel are burned over fairly a
short period of time. Still, we see that the two curves are close indicating that the exponential
case may be worth considering.

0.88

0.9

0.92

0.94

0.96

0.98

1

D(S)

600 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000S

Figure 1. Nordhaus DICE 2007 damage function
(dashed) and exponential damages.

Given expectations about the path of γt, we can now easily find an expression for the
optimal tax. Consider, for example, the case when the the expected value of γt is constant
at γ̄. Applying (12) yields,

Λt = Ytγ̄

(
ϕL

1− β +
(1− ϕL)ϕ0

1− β (1− ϕ)

)
(13)

Thus, the optimal tax per unit of fossil fuel should be proportional to output in every
period, with a proportionaly factor given by the expected value of the parameter of the
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damage function, subjective discounting and the parameters determining the depreciation of
atmospheric carbon. The formula lends itself very easily to calibration, as we will demon-
strate below.
Obviously, (13) is expressed in terms of current output which is endogeneous and itself

dependent on the tax. For practical purposes, this is not very important since at least
moderate variations in the tax has quite limited effects on output. Specifically, the elasticity
of output with respect to fossil fuel use is equal to the fossil fuel income share, which is in the
order of a few percent. Thus, we may take current output as exogeneous when calculating
the optimal tax as long as the resulting tax change does not influence current output much.
However, we can easily go further and calculate the optimal tax in terms of predetermined

variables by deriving expressions for the endogeneous value of Et. Consider the case when
we expect that the optimal use of fossil fuel implies that some fuel will be left unused
forever.7Under the maintained assumption that extraction costs are small enough to be
disregarded, there is then no scarcity rent of fossil fuel in the optimal allocation and the
social value of fossil fuel should therefore be zero in every period. Formally,

∂Yt
∂Et

= Λt.

Using the assumptions in this section, this yields,

νYt
Et

= Ytγ̄

(
ϕL

1− β +
(1− ϕL)ϕ0

1− β (1− ϕ)

)
⇒ E∗t =

ν

γ̄
(
ϕL
1−β + (1−ϕL)ϕ0

1−β(1−ϕ)

) (14)

Note that this implies that fossil fuel use should be constant and inversely proportional
to the expected value of the damage parameter. Using this in the production function, we
have

Yt = e−γ(St−1+E
∗
t )AtK

α
t (E∗t )

ν

which together with (13) determines the optimal tax in terms of the predetermined variables
St−1, Kt, the exogeneous At and parameters.

4.2 Calibration with uncertainty
Previous work has not treated uncertainty explicitly in the model. As we have seen, however,
uncertainty poses no particular problem to our analysis. As an illustrative example, we will
assume that there is uncertainty with respect to the strength of the externality. Using the
exponential damage function, this means that there is uncertainty regarding future values of
γt. Specifically, we assume that until some random future date there is uncertainty regarding
the long-run value of γ. At that date, uncertainty is resolved and either it turns out that γ
will be equal to γH or equal to γL, with γH > γL. The ex−ante probability of the high value
is denoted p. For simplicity, but not necessity, we assume that until the long-run value of γ
is learned, the current value γt = pγH + (1− p) γL ≡ γ̄.

7The calibrations below will suggest that this is the most realistic case. IPCC also strongly argues that
burning all fossil fuel is suboptimal.
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We will use the work of Nordhaus (2000) to calibrate damage parameters. In line with
standard assumptions (reference), we assume the there is a log-linear relation between the at-
mospheric CO2 concentration and the global mean temperature in excess of the pre-industrial
level, T, such that

Tt = T (St) = λ ln

(
1 +

St
S̄

)
/ ln 2, (15)

where S̄ = 581 GtC is the pre-industrial atmospheric CO2 concentration.
When calibrating the damage function, Nordhaus (2000), uses a bottom-up approach by

collecting a large number of studies on various effects of global warming. By adding them
up he arrives at an estimate that a 2.5 degree Celsius heating yields an global (output-
weighted) loss of .48% of GDP. Furthermore, he argues based on survey evidence that with
a probability 6.8% the damages at a 6 degree Celsius heating are catastrophically large at
30% of GDP. Nordhaus calculates the willingness to pay for such a risk and adds it to the
damage function. Instead, we directly use his numbers to calibrate γH and γL. Specifically,
we take the 0.48% loss at 3 degrees heating to calibrate γL (moderate damages) and the the
30% loss at 6 degrees to calibrate γH (catastrophic damages). Using (15) we find that a 2.5
and a 6 degree heating occurs if St equals 1035 and 2324, respectively. We thus calibrate γL

to solve
e−γ

L(1035−581) = 0.9952

and
e−γ

H(2324−581) = 0.70

yielding γL = 1.060 × 10−5 and γH = 2.046 × 10−4. Using p = 0.068,we calculate γ̄ =
2.379× 10−5

We can now calculate the optimal taxes before and after we have learnt the long run
value γ. We use (13) and express the tax per ton of carbon at a yearly output of 70 trillion
dollars. In figure 3, we plot the three tax rates against the yearly subjective discount rate.
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Two important policy proposals have been made so far, Nordhaus (2000) and in the Stern
report (reference). They propose a tax of $30 and $250 dollar per ton coal. A key difference
between the two proposals is that they use very different subjective discount rates. Nordhaus
uses a rate of 1.5% per year and Stern 0.1% per year. For these two values of the discount
rate, the optimal taxes using our analysis are $55.7/ton and $459/ton respectively. Thus,
our calculations suggest a substantially larger optimal tax. The conseqences of learning are
dramatic. With a discount rate of 1.5%, the optimal tax rates if damages turns out to be
moderate is $24.8/ton but $479/ton if they are catastrophic. For the low discount rate, the
corresponding values are $205/ton and $3950/ton.
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