
NBER WORKING PAPER SERIES

RENEWABLE ENERGY POLICIES AND TECHNOLOGICAL INNOVATION:
EVIDENCE BASED ON PATENT COUNTS

Nick Johnstone
Ivan Hascic
David Popp

Working Paper 13760
http://www.nber.org/papers/w13760

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
January 2008

The authors wish to thank Laurent Clavel and François Marical for valuable inputs to a previous version
of this paper.  Thanks also to Helene Dernis, Dominique Guellec and Piotr Tulej for provision of the
data used in this study.  This report is an output from the OECD project on “Environmental Policy
and Technological Innovation” (www.oecd.org/env/cpe/firms/innovation). The views contained in
this article are those of the authors and may not reflect those of the OECD, its member countries, or
the National Bureau of Economic Research.

© 2008 by Nick Johnstone, Ivan Hascic, and David Popp. All rights reserved. Short sections of text,
not to exceed two paragraphs, may be quoted without explicit permission provided that full credit,
including © notice, is given to the source.



Renewable Energy Policies And Technological Innovation: Evidence Based On Patent Counts
Nick Johnstone, Ivan Hascic, and David Popp
NBER Working Paper No. 13760
January 2008
JEL No. O34,O38,Q55,Q58

ABSTRACT

This paper examines the effect of environmental policies on technological innovation in the specific
case of renewable energy. The analysis is conducted using patent data on a panel of 25 countries over
the period 1978-2003. It is found that public policy plays a significant role in determining patent applications.
Different types of policy instruments are effective for different renewable energy sources.

Nick Johnstone
Empirical Policy Analysis Unit
OECD Environment Directorate
2 rue Andre Pascal
75775 Paris Cedex 16
France
nick.johnstone@oecd.org

Ivan Hascic
Empirical Policy Analysis Unit
OECD Environment Directorate
2 rue André Pascale
75775 Paris Cedex 16
France
Ivan.Hascic@oecd.org

David Popp
Associate Professor of Public Administration
Syracuse University
The Maxwell School
426 Eggers
Syracuse, NY 13244-1020
and NBER
dcpopp@maxwell.syr.edu



Renewable Energy Policies and Technological Innovation:  

Evidence Based on Patent Counts 

 

I. Introduction 

Investment in renewable energy sources – wind, solar, geothermal, ocean, biomass, and waste – can 

significantly contribute to the realization of public environmental objectives. In addition, it is 

sometimes argued that increased shares of renewable energy contribute to other public policy 

objectives, such as greater energy security in the face of uncertain markets for fossil fuels. 

 Currently, the penetration of renewables, although increasing, remains limited. In the absence 

of public intervention favoring their development, production costs remain higher than for substitute 

fossil fuels. Various government policies have been introduced in an effort to reduce costs and 

accelerate market penetration, such as feed-in tariffs, production quotas, and tax credits.  While it is 

hoped that these policies will stimulate innovation in renewable energy, the relative effectiveness of 

alternative policies for encouraging innovation has yet to be tested empirically. As such, renewable 

energy is an interesting context in which to assess the effect of different types of policy measures on 

technological innovation. 

 According to the International Energy Agency (IEA 2006a) three generations of renewable 

energy technologies can be distinguished: (i) First-generation technologies which have already 

reached maturity, such as hydropower, biomass combustion, and geothermal energy; (ii) Second-

generation technologies which are undergoing rapid development such as solar energy, wind power, 

and modern forms of bio-energy; and (iii) Third-generation technologies which are presently in 

developmental stages such as concentrating solar power, ocean energy, improved geothermal, and 

integrated bio-energy systems. 

The contribution of different renewable energy sources to total energy supply remains limited. 

In 2004, among the three main regions of the OECD, Europe had the highest share of renewable use 

in total energy production (6.9%). In North America (Canada, United States and Mexico) the figure is 

5.7% and for OECD Pacific (Japan, Korea, Australia and New Zealand) it is 3.4% (IEA 2006b). Solid 

biomass is the single largest source of renewable energy supply (44.6%) followed by hydropower 
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(34.6%). The rate of growth of renewable energy supply amongst the OECD countries between 1990 

and 2004 has been particularly strong for wind power (23.9% annually, on average), combustible 

renewables and waste excluding solid biomass (i.e. renewable municipal waste, biogas, liquid 

biomass) (12.3%), and solar energy (incl. solar thermal and solar photovoltaic) (5.7%) (IEA 2006b). 

However, the relative importance of slow-growing renewables, such as solid biomass (1.6%), 

hydropower (0.6%) and geothermal (0.2%), means that the overall rate of growth of renewables 

(1.3%) is marginally below the growth rate of total primary energy supply (TPES) (1.4%).  

 In order to increase the share of renewable sources in total energy supply, many governments 

have sought to encourage further development and adoption of renewable energy technologies (see 

IEA 2004). For instance, a European Union Directive of 2001 (Directive 2001/77/EC) provides a 

framework for the development of renewable energies in Europe. In March 2007 EU heads of state 

have agreed to set a binding target for renewable energy use at 20 percent of the EU's total energy 

needs by 2020. In the United States, federal tax credits for renewable energy were extended in 2006, 

granting production tax credits for bio-energy, geothermal, wind, solar, and other renewable energy 

sources (US DOE 2007). 

 In addition to production tax credits, other measures introduced in different countries include 

mandatory production quotas, differentiated tariff systems, and tradable certificates.
1
 With the 

exception of support for research and development, most policies which have been introduced do not 

provide explicit support for technological innovation. However, by either decreasing the relative price 

of the use of renewable energy relative to fossil fuels, or by increasing demand for electricity 

generated from renewable sources, such policy measures will provide increased returns on the 

identification of more efficient forms of electricity generation using renewable energy sources. 

 There is some limited empirical evidence to support the more general finding that 

environmental policies lead to innovation, as reflected in increased patent activity (see Jaffe, Newell 

and Stavins (2002) for a review of the empirical literature). For instance, Lanjouw and Mody (1996) 

                                                 
1
 For details see the IEA 'Renewable Energy Policies and Measures Database' (IEA 2007). 
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examined the relationship between the number of patents granted and environmental policy 

stringency, measured in terms of pollution abatement expenditures at the macroeconomic level for 

Japan, US, and Germany. They found that pollution abatement cost affects the number of patents 

successfully granted with 1- to 2-year lag. Using US industry-level data, Jaffe and Palmer (1997) 

extended Lanjouw and Mody‟s study by incorporating various factors that potentially affect 

environmental innovation.  The study did not support the hypothesis that the number of patents 

increased in response to environmental regulation. Brunnermeier and Cohen (2003) used US 

manufacturing industry data and empirically analyzed factors that determined environmental 

technological innovation. They found that counts of environment-related patents increase as pollution 

abatement expenditures increase. Moreover, they found that international competition stimulates 

environmental innovation. 

Very few studies have examined the role of policy instrument choice. Using patent data, Popp 

(2003) examined the effects of the introduction of the tradable permit system for SO2 emissions as 

part of US Clean Air Act Amendments. Comparing patent applications following the introduction of 

the tradable permit scheme with those submitted under the previous technology-based regulatory 

system, he found evidence of the improved removal efficiency of scrubbers. A later paper by Popp 

(2006) looks at the experience of the US, Japan and Germany with respect to patents for SO2 and NOx 

abatement technologies. He found: (a) a strong influence of „home bias‟ in the effect of domestic 

environmental regulations on patenting; but, also (b) an important role played by foreign innovation in 

the development of such patents.  

 In one of the few cross-country studies, De Vries and Withagen (2005) investigated the 

relationship between environmental policy regarding SO2 and patent applications in relevant patent 

classifications. Applying three different models which vary according to the manner in which policy 

stringency is modeled, they found some evidence that strict environmental policies lead to more 

innovation. However, they recognize that the modeling of environmental policy in their analysis 

requires further refinement. Moreover, they expressed concerns about their ability to identify all 

relevant patent classes.  
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 In this paper, we examine innovations for renewable energy, using a panel data set comprised 

of 25 countries and 26 years. The case is interesting for a number of reasons. First, the study 

contributes to the literature in that it has a cross-country focus. As noted, the studies by Popp (2006) 

and de Vries and Withagen (2005) are the only cross-country studies available. Most importantly, this 

cross-country focus allows us to examine the effects of a wide variety of policy types, including feed-

in tariffs, production quotas, and investment subsidies. Third, we study patent activity with respect to 

a number of different sources of renewable energy (wind, solar, ocean, geothermal, biomass, waste-

to-energy), allowing us to observe how the effectiveness of different policy types varies by 

technology. For instance, encouraging innovation in solar power, which has high costs and is rarely 

competitive with existing power sources, might require a different set of policy instruments than 

would be needed to encourage innovation in wind power.   

 The next section presents the principal hypotheses tested in this paper. The third section 

presents the data used in the analysis, including data on patents with respect to renewable energy 

technologies, as well as data on public policy measures and other relevant explanatory variables. The 

fourth section presents the model specification and empirical results. The paper concludes with a 

summary of the main results. 

 

II. Principal hypotheses 

Our goal in this paper is to test the effect of various renewable energy policies on innovation.  While 

the broad notion that environmental policies encourage innovation is well-documented, previous 

attempts which assess policy types focus on broad categories of policies (e.g. market-based policies 

versus command and control regulation).  However, within these broad categories lie several policy 

variants, such as price supports, tax credits, and renewable energy mandates, all of which are likely to 

have different effects on renewable energy innovation. 

Our study focuses on high-income countries, many of which have adopted policies to 

encourage the development of renewable energy. First, in the 1970s, a number of countries introduced 

support for R&D. This was followed by investment incentives (third-party financing, investment 
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guarantees), taxes (exemptions, rebates), and price-support policies (tariffs, guaranteed prices). More 

recently, a number of countries have introduced quantity obligations, often followed by certificates in 

which the obligations are tradable across generators (IEA 2004).  

Given differences in cost structures and level of maturity for different renewable energy 

sources it is likely that the effects of policy measures will vary by energy source. For instance, 

investment grants might be particularly effective in inducing innovation for renewable energy sources 

with high fixed costs per kWh. The inherent riskiness of investments in inventive activities and the 

skewed nature of potential returns mean that lenders may have difficulty assessing potential 

investments in R&D (Jaumotte and Pain 2005). Under such conditions, policies which improve access 

to capital may be particularly important for renewable energy sources such as photovoltaics, ocean 

energy and waste-to-energy, which have high up-front fixed costs.  

In addition, while in theory price-based measures (e.g. feed-in tariffs) and quantity-based 

measures (e.g. production quotas) with equivalent environmental objectives should have equal effects 

on innovation, this may not be the case in practice. Due to the significant uncertainty associated with 

the early stages of technological development, production quotas which guarantee a market might be 

more effective in inducing innovation for renewable energy sources in which technologies are less 

mature such as concentrating solar and integrated bio-energy systems. Conversely, price-based 

policies (such as feed-in tariffs) may be more effective for sources where technologies have reached 

or are approaching competitiveness with fossil fuel sources, such as wind, biomass and geothermal 

energy (IEA 2004).   

And finally, evidence has shown that the effectiveness of „voluntary‟ environmental policy 

measures depends significantly on the nature and scope of sanctions associated with „non-compliance‟ 

(Morgenstern and Pizer 2007). This will depend, in part, upon the institutional and market 

characteristics of the regulated entities.  In the case of electricity supply the regulated firms are subject 

to both economic (and not just environmental) regulation, increasing the potential for governments to 

impose sanctions should the objectives of voluntary approaches not be met.  Perhaps more 
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significantly, many firms remain in public hands, reducing the need for the introduction of mandatory 

regulations in order to meet given policy objectives. 

In addition to the influence of policy, we control for a number of other factors that are likely 

to affect incentives for innovation. First and foremost, renewable energy sources are primarily used as 

intermediate inputs into the production of electricity, which are substitutable with fossil fuels. Based 

on the induced innovation literature (e.g., Binswanger 1974) relative prices of alternative factor inputs 

are clearly an important determinant of innovation. Therefore, with rising prices of fossil fuels, there 

will be incentives to innovate with respect to the generation of electricity from renewable energy 

sources.  

Schmookler  (1966) emphasized the role of demand factors in inducing innovation. As with 

any activity, R&D is likely to be responsive to profit-making opportunities. As such, with growing 

markets, the potential to recoup investments will increase. Moreover, due to the „serendipitous‟ nature 

of successful inventive activity, a large market will increase the potential for inventive talent to 

identify solutions to a given problem (Popp 2006; Scherer and Harhoff 2000). For these reasons 

successful innovation is more likely in dynamic sectors in fast-growing economies. In the case of 

renewable energy, fast-growing markets can be identified by growing electricity consumption. 

On the supply-side, general scientific capacity (scientific personnel, resources, etc.) is likely 

to have an important influence on inventive activity in general. Moreover, the propensity of inventors 

to patent the results of inventive activity is likely to vary across countries and change over time within 

countries, both because different strategies may be adopted to capture the rents from innovation and 

because legal conditions may differ across countries and change through time (Jaumotte and Pain 

2005). It is, therefore, important to capture the effects of these two factors in the specific case of 

renewable energy.  
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III. Data  

A. Patent applications 

Given the importance of technological innovation in modern economies, identifying reliable measures 

of technological innovation has long preoccupied economists. However, there are still very few such 

measures available. Many potential candidates (e.g. research and development expenditures, number 

of scientific personnel, etc.) are at best imperfect indicators of the innovative performance of an 

economy since they focus on inputs. 

 In this context patents, as an output measure, have emerged as a valuable source of 

information, reflecting the innovative performance of a firm or an economy in a manner which is 

attractive to researchers (Griliches 1990). Patent applications provide a wealth of information on the 

nature of the invention and the applicant. The data is both readily available (if not always in a 

convenient format), discrete (and thus easily subject to statistical analysis), and can be disaggregated 

to specific technological areas. Significantly, there are very few examples of economically significant 

inventions which have not been patented (Dernis and Guellec 2001; Dernis and Kahn 2004). 

 Patents, issued by national patent offices (usually specialized agencies), give the holder the 

right to exclude others from the production of a specific good (or from using a specific process) for a 

defined number of years, which may vary depending upon the nature of the innovation. In order to be 

eligible for a patent, the innovation must be novel, involve a non-obvious inventive step, and be 

commercially viable (Dernis and Guellec 2001; Dernis and Kahn 2004). 

 However, patents are an imperfect measure of technological innovation for a variety of 

reasons: (a) It is difficult to distinguish between the „value‟ of different patents on the basis of patent 

applications. Most clearly, the use of unweighted patent counts would attribute the same importance 

to patents for which there were no successful commercial applications with those which are highly 

profitable; (b) There is variation in the propensity to patent across countries and sectors. This is due in 

part to the level of protection afforded by the patent, but also to the possibility of protecting monopoly 

rights by other means depending upon market conditions; and, (c) Differences in patent regimes 

across countries mean that it is difficult to be certain that one is comparing „like with like‟. For 
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instance, some countries would require multiple patents for the same innovation which could be 

covered by a single patent in other countries. Fortunately, we can control for these country-specific 

differences in the regressions that follow. Moreover, by focusing on differences in patenting trends 

across time, Griliches (1990) shows that patents, sorted by their year of application, are strongly 

correlated with R&D spending, and thus make a good proxy for innovative activity. 

 Despite their shortcomings, patent counts are still the best available source of data on 

innovation which is readily available and comparable across countries. Relevant patents in different 

subject areas can be identified using the International Patent Classification (IPC) codes, developed at 

the World Intellectual Property Organisation. This classification system is a hierarchy of codes, 

structured into different levels. Table 1 gives an idea of the hierarchical structure, taking the example 

of solar concentrating devices used for the generation of mechanical power. While other classification 

systems (e.g., commodity or sectoral classifications) may be suitable to study innovation in general, 

the advantage of the IPC classification is that it is application-based – and thus facilitates 

identification of „environmentally-relevant‟ technology classes. 

 Based upon an extensive literature review of technology developments in the area of 

renewable energy, a set of keywords were identified for this study. These were used to determine 

appropriate IPC codes which relate directly to renewable energy in the areas of wind, solar, 

geothermal, ocean, biomass, and waste (the complete list of the relevant codes and their definitions is 

included in the Appendix). Two possible types of error are possible when searching for relevant 

patents – inclusion of irrelevant patents and exclusion of relevant patents from the selected 

classifications. In contrast to some other „environmental‟ technologies, renewable energy technologies 

have the advantage that these types of errors are largely minimized because the definition of the 

relevant patent classifications allows easy identification of the relevant patents. 



  

8 

 

 Patent counts were generated for each of the IPC classifications using the OECD Patent 

Database (OECD 2007).
2
 Only patent applications deposited at the European Patent Office (EPO) 

were included. Through the EPO, the applicant designates as many of the EPO member states for 

protection as it desires, rather than applying to individual European patent offices among the 32 

contributing countries. If the application is successful, the patent is transferred to the individual 

national patent offices designated for protection in the application. Given that EPO applications are 

more expensive than applications to national patent offices, inventors typically first file a patent 

application in their home country, and then apply to the EPO if they desire protection in multiple 

European countries. However, costs will be much lower by filing with the EPO than if individual 

applications are made to each country (see Popp 2005). For the purpose of this paper, the EPO data is 

thus superior to data from national patent offices because the difference in costs provides a quality 

hurdle which eliminates applications for low-value inventions. 

 Counts were obtained for all major patenting countries, including non-European countries. 

While the European market is significant, it is still expected that there will be some bias toward 

applications from European inventors (see Dernis and Guellec 2001). In the empirical analysis 

undertaken in this study this bias is addressed through the inclusion of both country fixed effects and a 

control variable reflecting data on total EPO applications for all technology areas.  

 Figure 1 shows the total number of patent applications for six renewable energy sources. 

Geothermal applications fell off dramatically after the late 1970s, while there has been continuous 

growth in patenting for solar power technologies. Wind power and waste-to-energy exhibit even more 

rapid growth, particularly since the mid-1990s. There are relatively few patents for ocean and biomass 

energy, but they have been also increasing.
3
 

                                                 
2
 The assistance of Hélène Dernis, OECD Directorate for Science, Technology and Industry, in the 

collection of the data is gratefully acknowledged. 

3
 Interestingly, EPO applications for patents in total increased approximately ten-fold over the period 

in question, while patents for renewables increased just over four-fold. However, in recent years the 
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 Figure 2 compares total patent applications for a selection of OECD countries which have 

exhibited significant levels of innovation. Germany has the highest number of patents, but relative to 

the US and Japan, this partly reflects the „home bias‟ in EPO applications. France and the UK both 

have at least 200 patent applications over the period.  

 In addition to these countries, there are specific areas in which individual countries have been 

important innovators for specific renewables. In addition to Germany, Japan and the US (countries 

which are consistently important for most renewables), other significant innovators for particular 

sources have included Denmark (wind), Switzerland (solar, geothermal), France (geothermal, 

biomass, waste), the UK (ocean, biomass and waste), Italy (ocean), Netherlands (wind), and Sweden 

(ocean).  

 However, a comparison of patenting activity across countries needs to account for relative 

differences in the size of countries‟ economies. In Table 2, the counts are weighted by country‟s GDP 

to yield a measure of patent intensity. On this basis, a number of smaller countries such as Denmark, 

Switzerland, Austria, and Sweden achieve the highest innovation output per unit of GDP. Of the three 

countries which have the highest absolute counts, only Germany continues to rank consistently in the 

top five. Japan and the US remain first and third among non-EPO countries, with Australia second.
 
 

 And finally, differences in general propensity to patent may also affect country‟s innovative 

output through its effect on direction of innovation. Since national environmental policies generally 

complement innovation policies (IPR regimes, etc.), differences in levels of patents across countries 

may be due to innovation policy, rather than environmental policy. While we control for such effects 

in our regression analysis, in Table 3 we simply normalize patent counts by the volume of a country‟s 

patenting activity overall (in all technological areas). On this basis, countries such as Denmark, Spain, 

Australia, Austria and Norway achieve the highest innovation output in renewables. Moreover, 

                                                                                                                                                        
rate of growth in the area of renewables has been higher than the rate of growth of total EPO 

applications. 
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several non-EPO countries achieve relatively high innovation output, with Australia, Taiwan and 

Canada leading the group.  

 

B. Public policy measures 

In this paper, a database of public policies aimed at developing renewable energy sources compiled at 

the International Energy Agency (IEA) was used to construct alternative policy indicators. Figure 3 

provides a graphical representation of the introduction of alternative policy types in various countries 

(IEA 2004). Each point on the scatter plot represents the year in which a significant example of a 

particular type of policy instrument was first introduced in that particular country. Six different policy 

types are distinguished: R&D; investment incentives (e.g. risk guarantees, grants, low-interest loans); 

tax incentives (e.g. accelerated depreciation); tariff incentives (e.g. feed-in tariffs); voluntary 

programs; obligations (e.g. guaranteed markets, production quotas); and, tradable certificates. 

 Figure 4 gives a first descriptive indication of the relative importance of public policy factors 

on patenting (total renewable energy patent applications) in selected countries. There is no obvious 

correlation between the introduction of different policies and 'spikes' in patent activity, except perhaps 

the introduction of tariffs in Germany (with some lag), obligations and taxes in Denmark, and 

investment credits in Japan. 

Unfortunately due to the heterogeneous nature of the data, it is not possible to construct 

continuous variables in which the level of „stringency‟ (or „support‟) is commensurable across policy 

types and countries. As such, for most of the policy types dummy variables are introduced to capture 

the effect of the implementation of different policies. First, binary variables are constructed for the 

different policy types, including R&D support, tax measures, investment incentives, differentiated 

tariffs, voluntary programs, quantity obligations, and tradable certificates. The variables take on a 

value of 0 prior to introduction of the policy, and 1 thereafter. Second, cluster analysis is applied to 

construct clusters of policy instruments based upon the policy dummies described above. Third, 

principal component analysis is applied to construct a composite policy variable. These policy 
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variables provide a representation of environmental policy framework which is useful for studying the 

effects of instrument choice on innovation.  

This treatment of public policy influences complements the range of measures used 

previously to reflect regulatory stringency (e.g., pollution abatement and control expenditures, 

inspection frequency, etc.). However, it is recognized that this does not capture differences in relative 

stringency (or support) provided by different measures.  

One exception is the case of energy R&D. The IEA‟s Energy Technology Research and 

Development Database (IEA 2006c) collects data on national public sector expenditures on R&D 

disaggregated by type of renewable energy. Thus, for public R&D support, we are able to include data 

on the magnitude, as well as the existence, of support.  The sign on this variable is expected to be 

positive. 

 

C. Other explanatory variables 

As noted, returns on innovation are affected by the potential market for this innovation. In the case of 

renewable energy this is best reflected in trends for electricity consumption. A growing market for 

electricity should increase incentives to innovate with respect to renewable energy technologies. Data 

on household and industry sector electricity consumption was obtained from the IEA‟s Energy 

Balances Database (IEA 2006d). 

 Consistent with the „induced innovation‟ hypothesis, the commercial viability of renewable 

energy is dependent in large part upon the its cost, relative to substitute factor inputs. Since the costs 

of electricity production using renewable energy sources are generally greater than for fossil fuels, an 

increase in the price of electricity should increase incentives for innovation in the area of renewable 

energies. Since renewable sources represent a relatively small proportion of total electricity 

generation, it is assumed that the price of electricity can be considered exogenous. Data on residential 

and industry end-user prices was obtained from IEA‟s Energy Prices and Taxes Database (IEA 

2006e). The electricity price variable was constructed by weighting price indices for residential and 

industrial use by consumption levels. The sign is expected to be positive. 
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 Differences in both scientific capacity and the propensity to patent across countries and time 

are captured through the use of a variable which reflects overall EPO patent applications filed across 

the whole spectrum of technological areas (OECD 2007). In addition, inventors from non-European 

countries are less likely to patent at the EPO (home bias). This variable thus serves as a „trend‟ 

variable in that it controls for the changes in general propensity to patent over time and across 

countries. The sign is expected to be positive. Table 4 provides basic descriptive statistics for the 

policy dummies and other explanatory variables. 

 

IV. Model specification and empirical results 

A. Model specification 

In order to test the hypotheses set out in Section 2 above, the following reduced-form equation is 

specified:  

       

   
, 1 , 2 , 3 ,

4 , 5 , ,

&i t i t i t i t

i t i t i i t

PATENTS POLICY R D CONS

PRICE EPO

  

   

  

   
                         (1) 

where i = 1,…,25 indexes the cross-sectional unit (country) and t = 1978,…,2003 indexes time. The 

dependent variable, patenting activity, is measured by the number of patent applications in each of the 

technological areas of renewable energy (wind, solar, geothermal, ocean, biomass, and waste). The 

explanatory variables include a vector of policy variables (POLICYi,t), specific R&D expenditures 

(R&Di,t), electricity consumption (CONSi,t), electricity price (PRICEi,t) and total EPO filings (EPOi,t).  

Fixed effects ( i ) are introduced to capture unobservable country-specific heterogeneity. All the 

residual variation is captured by the error term ( ,i t ).  

A negative binomial model is used to estimate the equation in (1). Count data models, such as 

the Poisson and negative binomial, have been suggested for estimating the number of occurrences of 

an event, or event counts (Maddala 1983: 51; Cameron and Trivedi 1998). In this paper, an event 

count is the number of patent applications deposited at the EPO. Formally, an event count is defined 

as a realization of a nonnegative integer-valued random variable. We suppose that the number of 
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patents (
,i tPATENTS ) follows a negative binomial distribution, i.e. the patent count is modeled as a 

Poisson process with an unobserved error parameter ( u ) introducing heterogeneity in the variance, 

and an intensity parameter (  ) explained (in log) by a vector of explanatory variables ( X ): 

       , ;i tPATENTS NegBin   , that is                                                               (2) 

 
 

,

exp

with 1 1
;

i t

u X

PATENTS Poisson
u

  



 

   


   
 

 



                                   (3) 

Therefore,  ,i tE PATENTS   and    21V PATENTS     . It follows that as 
2 0   the 

model converges to the Poisson distribution with intensity  . Maximum likelihood method is used to 

estimate the parameters.
4
 

Using data on patent counts the determinants of patenting activity for renewable energy are 

assessed. In total, a panel of 25 countries and 26 years (1978-2003) is available, but the presence of 

missing observations and all-zero outcomes of patent count for some countries and some technologies 

reduce the size of the samples to between 400 and 500 in most models estimated.
5
 

 

B. Empirical results 

Several alternative specifications of the model were estimated. Table 5 presents the estimation results 

when all policy dummies are included in the regressions, except the dummy for R&D programs (due 

to correlation with the intercept).
6
 The coefficient of electricity price has a positive sign in every 

                                                 
4
 For further details on negative binomial models, see Cameron and Trivedi (1998); Hausman, Hall 

and Griliches (1984). 

5
 The variation in the number of observations used in the regression models is due (a) to a small 

number of missing values in the specific R&D variable, but (b) is mostly caused by all-zero outcomes 

of patent counts leading to data for individual countries being dropped from the regression. 

6
 Most countries introduced R&D support programs as early as the 1970s. Since our data begin in 

1978, this policy variable is (almost perfectly) correlated with the intercept (fixed effects). 



  

14 

 

equation. It is statistically significant at the 1% and 5% levels in the solar and biomass equations, 

respectively. This suggests that higher electricity prices provide an incentive for increased patenting 

activity in the solar and biomass technologies. The results also suggest that renewable-specific R&D 

spending is a significant determinant of patenting in renewable energy overall, and especially in wind 

and ocean technologies.
7
 The estimated coefficient of electricity consumption is negative in every 

equation and statistically significant only in the waste-to-energy equation. One possible explanation of 

the negative sign could be related to the fact that policies aimed at renewables are often concurrent 

with policies aimed at encouraging energy efficiency. The estimated coefficient of the total number of 

EPO filings is positive and statistically significant at the 1% level in every technological area, 

suggesting that a part of the variation in patenting activity in renewable energies is due to changes in 

the general propensity to patent.
8
  

 The results on the policy dummies suggest that public policy plays a significant role in 

inducing innovations in renewable energies. However, the efficacy of alternative policy instruments in 

inducing innovations varies by renewable energy source. For wind technology and for renewable 

energies overall, tax measures, obligations, and tradable certificates are statistically significant (at the 

5% level and higher) policy instruments. Given that wind power is currently the most cost-effective of 

these technologies, the finding that policies mandating additional renewable sources encourage 

innovation for wind, but not other renewables, is consistent with the notion that firms focus 

innovation on ways to comply with command and control regulations as cheaply as possible (Popp 

2003). The variable reflecting the provision of investment incentives is statistically significant for 

                                                 
7
 The negative and significant coefficient in the biomass equation is counter-intuitive. It is possible 

that public R&D is „crowding out‟ private R&D.  However, why this should be the case specifically 

for biomass energy is not clear. Unfortunately, there is no data on private spending on R&D by 

renewable source, and as such this remains a conjecture. Note also that the coefficient is not 

statistically significant in any of the alternative models. 

8
 The coefficient is insignificant in the ocean equation. This is most likely due to the low variation in 

ocean patent counts. 
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innovations in solar power. This is consistent with the hypothesis that more direct incentives are 

needed for riskier investments. Investment incentives, as well as voluntary programs, are statistically 

significant policy instruments for waste-to-energy incineration. Finally, putting in place preferential 

tariff structures, and to a lesser extent tax measures, are statistically significant for patent activity with 

respect to biomass energy. 

 There are two concerns related to including all policy dummies in the regression. First, 

correlation among the dummies may cause multicollinearity problems. In particular, dummies 

representing investment incentives, tax measures, and tariffs are correlated (correlation coefficient 

0.53 and 0.57).
9
 Similarly, obligations and tradable permits are correlated (0.48).

10
 Second, it is 

possible that there are interaction effects among alternative policy instruments (e.g., investment 

incentives for capital goods may be accompanied by preferential tax rates for final goods). In an 

alternative specification, the individual policy dummies were included one-by-one in the regressions. 

The results (not reported) suggest that the key qualitative findings remain unaffected. Policies which 

are found to be statistically significant when all dummies are included in the regression remain 

statistically significant, and with the same signs, when they are included separately.   

 Including all policy dummies may cause multicollinearity. However, including policy 

dummies one-by-one may lead to incorrect conclusions due to omitted variables and possible 

interaction effects among the different policies. Two approaches are adopted in order to address these 

issues: (a) clusters of policy variables are developed by clustering similar policies in groups (to 

address possible multicollinearity and classification error); and (b) a composite policy variable is 

constructed using principal component analysis. This latter variable also allows assessing dynamic 

impacts in a more satisfactory manner.  

                                                 
9
 The negative and statistically significant coefficient of tariffs in the wind energy equation could be 

considered a consequence of multicollinearity. However, it remains robust even if the tax dummy is 

dropped. 

10
 In spite of this, we get a positive and significant coefficient even for tradable certificates. This 

suggests that allowing obligations to be traded provides a strong incentive for innovation. 
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 Hierarchical cluster analysis is a method that can be applied in order to reduce a set of 

correlated variables into a smaller number of cluster components, with little loss of information. This 

allows for the identification of 'clusters' of policy instruments which are then used as explanatory 

variables. The variables are clustered in such a manner that variables within one group are correlated, 

but uncorrelated with variables in the other groups (see, for example, Hair et al. 1998).  

 The choice of the number of clusters to retain must be made ad hoc. We chose to use the 

clustering of policy variables which yields three conceptually distinct groups of policies: (1) price-

based policy instruments (including investment incentives, tax measures, and tariffs), (2) voluntary 

programs; and (3) quantity-based policy instruments (obligations and tradable certificates). We note 

that the dummy variable for voluntary programs is approximately equally correlated with the 

remaining two clusters. The estimated scoring coefficients were used to compute the component 

scores for each cluster.  

 Table 6 shows the regression estimates when policy variables are divided into three clusters. 

The estimated coefficients on the key regressors remain close to those obtained with individual policy 

variables. The results suggest that innovation effects of alternative policy instruments differ by the 

type of renewable energy technology. The evidence of differential policy effectiveness is particularly 

straightforward for wind, solar, biomass and waste-to-energy technologies. For wind power, the 

coefficient of quantity-based policy instruments (cluster 3) is positive and statistically significant at 

the 1% level, again supporting the notion that command and control first promotes innovation on the 

cheapest alternative. For solar, biomass and waste energy, the coefficients of price-based policy 

instruments (cluster 1) are positive and statistically significant at the 1% level. In addition, the 

coefficient of voluntary programs (cluster 2) in the waste equation is positive and statistically 

significant at the 5% level or higher. For ocean energy, none of the policy cluster variables are 

significant. Overall, for all renewables, the innovation effects of both price- and quantity-based 

instruments are highly statistically significant. Voluntary approaches seem to play a minor role. 

 As an alternative to cluster analysis, principal components analysis (PCA) was used to reduce 

the dimensionality of the set of individual policy variables. PCA transforms a number of correlated 
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variables into a (smaller) number of uncorrelated variables (principal components). The first principal 

component accounts for as much of the variability in the data as possible, and in descending order 

each succeeding component accounts for as much of the remaining variability as possible (see, for 

example, Hair et al. 1998). 

 In this study, we chose to keep only the first principal component for two reasons: (a) it 

explains a good share of the variance (the inertia criterion), and (b) it is a true composite variable 

since all variables have a positive sign, while the second principal component opposes two clusters. In 

the first principal component, the estimated coefficients of all the policies are positive which means 

that the variable captures national tendencies to develop environmental policies to support renewable 

energy, but does not significantly disentangle policy types from each other. As a result, this variable 

does not help to draw conclusions on the efficacy of the different kinds of policies, but is a good 

indicator of the intensity of environmental regulation. The advantage of this approach is that the 

composite variable addresses the problem of multicollinearity, as well as potential interaction effects 

among policy instruments. Moreover, it can be lagged to analyze dynamic issues. 

 Table 7 presents the estimation results using the composite policy variable. The coefficients 

remain close to those obtained previously. The estimated coefficient of the composite policy variable 

is positive and statistically significant at the 5% level in every equation. This suggests that public 

policy is a significant driver of innovative activity in renewable energy overall, as well as for specific 

renewable energy sources.  However, unlike before, we are unable to evaluate the effectiveness of 

various policy types using the composite variable. 

  Using the same model, the dynamic aspects of innovative activity were analyzed using 1- to 

4-year lags. In addition, for the composite policy variable a 1-year leap was tested since inventors 

may anticipate the introduction of policies in support of the use of renewable energy sources. The 

coefficients remain robust to such changes. The coefficient of the composite policy variable is most 

significant with lags between 0 and 2 years, suggesting that the impact of public policy on patenting is 

rather fast. This is consistent with the findings in Popp (2002) who found that energy patents followed 

energy price changes with little lag. 
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Finally, there is a concern that variables such as electricity consumption, EPO patent filings, 

and fixed effects may all, to a certain extent, reflect the same national tendencies. Including all of 

these variables in a regression may cause „over-fitting‟ of the model. However, when country-specific 

fixed effects are dropped from the regression the key qualitative findings remain robust. 

 In sum, the variable (EPO filings) reflecting scientific capacity and general propensity to 

patent is consistently positive and significant. However, electricity price is only significant and 

positive for solar power and electricity consumption is generally insignificant. Overall, public policy 

plays an important role. Public expenditures on renewable-specific R&D consistently have a positive 

and significant effect on patent activity, particularly for wind and ocean energy.  

The other major policy-related finding of this paper is that different policies have a greater 

effect on patent activity for some renewable energy sources than for others. In particular, quantity-

based policy instruments such as obligations and tradable certificates are most effective in inducing 

innovations in wind power technology. Price-based instruments such as investment incentives, tax 

measures and tariffs are most effective in encouraging innovation in solar, biomass, and waste-to-

energy technologies. Voluntary programs are not significant, except perhaps in the case of waste. 

These findings are robust to alternative policy measures and model specifications.
11

 

 While our policy choice hypotheses are not fully supported, there are good economic reasons 

to explain some of the findings. For instance, the significance of investment incentives for solar 

energy is likely due to the fact that many solar installations are the most capital intensive (in terms of 

investment costs required per kW) among the studied renewable energy technologies (see, for 

example, Dickson and Fanelli 2004). Waste-to-energy investments can also involve significant up-

front fixed costs, and the coefficient is significant and positive in this case as well. In addition, the 

relative importance of voluntary programs for waste may be explained by the importance of the public 

sector in waste management, perhaps obviating the need for mandatory regulations. The hypothesis 

                                                 
11

 In addition to the models described above, random effects negative binomial models were estimated 

and the results confirm robustness of the major findings. 
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that quantity-based measures are likely to be more important for less mature technologies (that is, that 

such policies can be “technology forcing”) is not supported. Indeed, it is only in the case of wind 

power that obligations are significant. However, the significant and positive coefficient on price-based 

measures (feed-in tariffs) for biomass is consistent with our hypothesis since this source is relatively 

mature and competitive. 

 

V. Conclusions 

This paper examines the effects of public policies on innovation in the area of renewable energies in a 

cross-section of OECD countries over the period 1978-2003. Patent counts are used as the most 

suitable proxy for innovation and the effects of a wide variety of different policy types are assessed.  

 The descriptive data indicates rapid growth in wind and waste-to-energy patent activity, 

particularly since the mid-1990s. There continues to be innovation with respect to solar energy, 

perhaps reflecting the opportunities presented by developments in concentrating solar power. 

Innovation with respect to biomass and ocean energy are also growing, but from a very low base. And 

finally, there appears to have been little innovation in the area of geothermal energy since the 1970s. 

 At the same time, significant changes have occurred in the public policy framework put in 

place to support renewable energy. Initially R&D programs were introduced in a number of countries. 

This was followed by investment incentives, and later, tax incentives and preferential tariffs. Next, 

voluntary programs were developed. More recently, quantitative obligations, and finally tradable 

certificates, have been applied. 

 Our empirical results indicate that public policy has had a very significant influence on the 

development of new technologies in the area of renewable energy. Using the composite policy 

variable, statistical significance at the 1% level is found for all renewable energy sources, except 

biomass (where it is significant at the 5% level). However, the results suggest that instrument choice 

also matters. With respect to patent activity in renewable energy overall, taxes, obligations and 

tradable certificates are the only statistically significant policy instruments. 
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 Interestingly however, source-specific models indicate that there is variation in the effects of 

instrument type on different renewables. As governments place increasing emphasis on developing a 

portfolio of energy alternatives, understanding these differences is important for policy. Broadly, 

investment incentives are effective in supporting innovation in solar and waste-to-energy 

technologies, tariff structures are important for biomass, obligations and tradable certificates (which 

are closely related) support wind technology, and voluntary programs are helpful in inducing waste-

to-energy innovations. Overall, only tax incentives have wide influence on innovation for a number of 

renewable energy sources. 

 While the results are interesting and robust, further work in the area could be undertaken. This 

includes accounting for variation in natural conditions as determinants of patenting in renewable 

energy technologies, and better examination of dynamic issues, with a particular focus on addressing 

the possible simultaneity of R&D expenditures and patenting activity. 
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Table 1. International patent classification (IPC) system 

Subdivision 
Number of 

subdivisions 

Example of an IPC code 

Symbol Title 

Section 8 F 
Mechanical Engineering; Lighting; Heating; 

Weapons; Blasting 

Subsection 21 F0 Engines or Pumps 

Class 120 F03 

Machines or Engines for Liquids; Wind, Spring, 

or Weight Motors; Producing Mechanical Power 

or a Reactive Propulsive Thrust, Not Otherwise 

Provided For 

Subclass 628 F03G 

Spring, Weight, Inertia, or Like Motors; 

Mechanical-Power-Producing Devices or 

Mechanisms, Not Otherwise Provided For; or 

Using Energy Sources Not Otherwise Provided 

For 

Main group ca. 6,900 F03G 6 
Devices For Producing Mechanical Power From 

Solar Energy…. 

Subgroup ca. 62,100 F03G 6/08 With Solar Energy Concentrating Means 
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Table 2. Number of EPO Patent Applications in Renewable Energy Technologies    

per Unit of GDP (1978-2003) 

 Wind Solar 

Geo- 

thermal Ocean Biomass Waste 

All 

renewables 

1978-2003 

Total 

AT 2.54 6.55 6.76 0.85 1.48 5.07 23.24 110 

AU 0.49 4.82 1.08 0.49 0.29 1.08 8.26 84 

BE 4.17 2.26 1.91 0.17 0.70 1.39 10.60 59 

CA 0.88 0.82 0.35 0.12 0.18 1.76 4.05 66 

CH 2.66 11.07 6.97 0.41 0.82 6.97 28.90 138 

DE 8.14 7.51 4.10 0.41 2.07 6.90 28.99 1285 

DK 27.16 3.70 1.54 3.40 1.23 5.86 42.91 137 

ES 1.49 1.25 0.12 0.71 0.00 0.12 3.69 61 

FI 2.55 3.27 1.09 0.73 0.00 4.73 12.37 34 

FR 1.42 1.51 2.23 0.27 1.27 1.48 8.15 267 

GB 1.65 1.10 0.78 0.81 4.59 1.62 10.41 322 

GR 1.27 1.27 0.00 0.51 0.00 0.51 3.55 14 

HU 0.68 1.71 1.71 0.68 0.34 0.00 5.13 15 

IE 2.95 2.36 0.00 2.95 0.00 0.00 8.27 14 

IT 0.97 1.10 0.75 0.50 0.25 1.06 4.63 148 

JP 0.64 2.68 0.64 0.16 0.29 5.00 9.41 656 

KR 0.66 0.08 0.00 0.08 0.08 0.33 1.23 15 

NL 5.74 4.53 2.76 0.55 0.99 3.42 17.78 161 

NO 2.51 2.20 1.57 3.76 0.31 0.94 11.29 36 

NZ 0.59 0.00 0.59 0.59 0.59 1.77 4.13 7 

PL 0.11 0.23 0.23 0.00 0.11 0.11 0.80 7 

PT 1.37 1.37 0.00 0.27 0.00 0.27 3.29 12 

SE 6.86 3.14 5.69 3.14 0.78 2.16 21.76 109 

TW 0.70 0.56 0.14 0.14 0.00 0.70 2.25 16 

US 0.52 0.81 0.51 0.28 1.19 1.60 4.92 925 

         

Total 942 1079 616 216 566 1285 4702  

 

Note: The table gives the annual mean number of patent applications for renewables during 1978-

2003, classified by inventor country, and normalized by country‟s GDP (in trillions of US dollars, 

using 2000 prices and PPP). Countries in the top five for each renewable are indicated in bold face. 
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Table 3. Number of EPO Patent Applications in Renewable Energy Technologies, 

Normalized by Overall Patenting Activity (1978-2003) 

 Wind Solar 

Geo- 

thermal Ocean Biomass Waste 

All 

renewables 

AT 0.67 1.75 1.76 0.22 0.39 1.33 6.13 

AU 0.39 3.75 0.86 0.42 0.25 0.84 6.50 

BE 1.31 0.69 0.61 0.06 0.17 0.44 3.28 

CA 0.73 0.68 0.30 0.08 0.16 1.38 3.34 

CH 0.29 1.15 0.75 0.03 0.08 0.74 3.03 

DE 1.10 1.01 0.55 0.05 0.27 0.93 3.91 

DK 7.65 1.03 0.44 0.92 0.35 1.64 12.04 

ES 2.62 2.29 0.24 1.31 0.00 0.24 6.70 

FI 0.47 0.60 0.20 0.13 0.00 0.85 2.25 

FR 0.37 0.39 0.60 0.07 0.33 0.39 2.15 

GB 0.51 0.35 0.24 0.25 1.46 0.50 3.32 

IT 0.53 0.61 0.42 0.28 0.14 0.59 2.57 

JP 0.16 0.65 0.16 0.04 0.07 1.21 2.29 

KR 0.62 0.08 0.00 0.08 0.08 0.31 1.16 

NL 1.11 0.88 0.55 0.10 0.20 0.68 3.52 

NO 1.68 1.41 1.01 2.39 0.20 0.61 7.31 

SE 1.05 0.49 0.90 0.49 0.11 0.31 3.36 

TW 1.48 1.19 0.30 0.30 0.00 1.48 4.75 

US 0.21 0.33 0.21 0.11 0.48 0.66 2.01 

 

Note: The table gives the total number of patent applications for renewables during 1978-2003, 

classified by inventor country, and normalized by country‟s total number of patent applications in all 

technology areas (in millions of EPO filings). Only countries with a minimum of 2,600 EPO patent 

filings overall (25
th
 percentile) are included in the table. Countries in the top five for each renewable 

are indicated in bold face. 
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Table 4. Descriptive statistics of explanatory variables (1978-2003) 

Variable Obs. Mean Std. Dev. 

Policy dummies  

R&D support 676 0.8432 0.3639 

Investment incentives 676 0.4127 0.4927 

Tax measures 676 0.2722 0.4454 

Tariffs 676 0.3151 0.4649 

Voluntary programs 676 0.1050 0.3068 

Obligations 676 0.2130 0.4097 

Tradable certificates 676 0.0577 0.2333 

    

Technology-specific R&D expenditures (10e9 USD, 2005 prices and PPP) 

Wind R&D            478 0.0063 0.0140 

Solar R&D             479 0.0237 0.0702 

Ocean R&D           477 0.0016 0.0077 

Bioenergy R&D     478 0.0086 0.0157 

Renewables R&D 482 0.0481 0.1261 

    

Electricity price (US$/unit, using PPP) 583 0.0849 0.0345 

Electricity consumption (millions GWh) 624 0.0158 0.0323 

Total EPO patent filings (thousands) 673 2.3964 4.9912 
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Table 5. Estimated coefficients of the negative binomial fixed effects models                    

with individual policy variables 

 Wind Solar Ocean Biomass Waste All renewables 

       

Electricity price 3.187 18.718
** 

2.181 14.769
* 

2.957 0.994 

 (0.488) (0.000) (0.737) (0.035) (0.469) (0.683) 

       

Specific R&D  17.789
** 

0.966 13.889
* 

-7.473
* 

0.479 1.063
** 

 expenditures (0.000) (0.153) (0.038) (0.043) (0.249) (0.000) 

       

Electricity  -9.630 -8.060 -15.200 -15.900 -13.600
** 

-5.030 

 consumption (0.123) (0.141) (0.335) (0.115) (0.005) (0.162) 

       

Total EPO filings  0.106
** 

0.074
** 

0.069 0.121
** 

0.122
** 

0.081
** 

 (0.001) (0.000) (0.188) (0.001) (0.000) (0.000) 

       

Policy dummies       

       

Investment -0.214 0.626
** 

-0.097 -0.176 0.723
** 

0.145 

 incentives (0.292) (0.000) (0.740) (0.481) (0.000) (0.146) 

       

Tax measures 0.371
* 

-0.021 0.538
 

0.500
* 

0.083 0.235
* 

 (0.040) (0.881) (0.089) (0.050) (0.578) (0.017) 

       

Tariffs -0.434
 

0.116 0.015 0.783
** 

0.192 -0.043 

 (0.053) (0.547) (0.964) (0.000) (0.336) (0.717) 

       

Voluntary  0.089 0.020 -0.066 -0.240 0.334
* 

0.119 

 programs (0.718) (0.898) (0.863) (0.307) (0.043) (0.318) 

       

Obligations 1.157
** 

0.181 0.472 -0.212 0.045 0.384
** 

 (0.000) (0.214) (0.155) (0.372) (0.761) (0.001) 

       

Tradable  0.485
* 

0.064 0.192 -0.081 0.245 0.305
* 

 certificates (0.034) (0.718) (0.597) (0.798) (0.159) (0.016) 

       

Intercept -0.214 0.267 15.394 1.012 0.372 0.995
** 

 (0.598) (0.685) (0.992) (0.371) (0.509) (0.000) 

       

Observations 452 427 450 334 441 463 

Log-likelihood -477.65 -488.20 -238.56 -289.98 -482.30 -926.40 

Wald chi2  

(Prob > chi2) 

250.63 

(0.000) 

209.21 

(0.000) 

33.22 

(0.000) 

80.03 

(0.000) 

337.01 

(0.000) 

398.90 

(0.000) 

 

Notes: * and ** refer to 5% and 1% level of statistical significance. P-values are in parentheses. The 

dependent variable is the patent count (successful and unsuccessful applications) in a given 

technological area. Intercept represents the average value of the country-specific fixed effects. Results 

for geothermal energy are not reported because they represent a significant outlier. 
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Table 6. Estimated coefficients of the negative binomial fixed effects models                

with clusters of policy variables 

 Wind Solar Ocean Biomass Waste 

All 

renewables 

       

Electricity price -2.465 20.112
**

 1.787 12.459 5.013 0.094 

 (0.547) (0.000) (0.775) (0.094) (0.190) (0.968) 

       

Specific R&D  16.944
**

 1.100 15.028
*
 -6.705 0.490 1.069

**
 

  expenditures (0.000) (0.091) (0.023) (0.067) (0.245) (0.000) 

       

Electricity -11.551 -7.088 -13.868 -9.658 -11.160
*
 -5.825 

  consumption (0.073) (0.175) (0.361) (0.253) (0.011) (0.109) 

       

Total EPO filings  0.121
**

 0.075
**

 0.064 0.094
**

 0.116
**

 0.087
**

 

 (0.000) (0.000) (0.199) (0.004) (0.000) (0.000) 

       

Policy clusters       

       

Policy cluster 1 -0.018 0.614
**

 0.419 1.053
**

 0.728
**

 0.310
**

 

 (incl. inv, tax, tar) (0.941) (0.000) (0.216) (0.000) (0.000) (0.005) 

       

Policy cluster 2 -0.006 0.030 -0.075 -0.127 0.366
*
 0.072 

 (incl. vol) (0.980) (0.843) (0.842) (0.573) (0.031) (0.521) 

       

Policy cluster 3 1.632
**

 0.209 0.665 -0.508 0.219 0.639
**

 

 (incl. oblig, trad) (0.000) (0.184) (0.055) (0.074) (0.184) (0.000) 

       

Intercept -0.132 0.006 13.727 0.346 -0.027 1.029
**

 

 (0.726) (0.991) (0.982) (0.646) (0.955) (0.000) 

       

Observations 452 427 450 334 441 463 

Log-likelihood -483.95 -493.77 -239.69 -293.72 -487.22 -927.89 

Wald chi2  

(Prob > chi2) 

 216.29 

(0.000) 

 200.81 

(0.000) 

   31.89 

(0.000) 

   64.08 

(0.000) 

 297.49 

(0.000) 

 393.14 

(0.000) 

 

Notes: * and ** refer to 5%, and 1% level of statistical significance. P-values are in parentheses. The 

dependent variable is the patent count (successful and unsuccessful applications) in a given 

technological area. The coefficient on the intercept represents the average value of the country-

specific fixed effects. Policy cluster 1 includes investment incentives, tax measures, and tariffs; Policy 

cluster 2 includes voluntary programs; Policy cluster 3 includes obligations and tradable certificates. 
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Table 7. Estimated coefficients of the negative binomial fixed effects models                

with a composite policy variable 

 Wind Solar Ocean Biomass Waste 

All 

renewables 

       

Electricity price -4.679 19.671
**

 1.442 12.337 4.813 0.110 

 (0.265) (0.000) (0.818) (0.080) (0.210) (0.963) 

       

Specific R&D  15.024
**

 0.956 13.824
*
 -7.415 0.483 1.088

**
 

  expenditures (0.000) (0.155) (0.029) (0.057) (0.257) (0.000) 

       

Electricity  -15.010
**

 -6.070 -17.008 -0.918 -9.462
*
 -7.669

*
 

  consumption (0.006) (0.210) (0.249) (0.894) (0.024) (0.021) 

       

Total EPO filings  0.106
**

 0.064
**

 0.055 0.063
*
 0.117

**
 0.087

**
 

 (0.000) (0.000) (0.251) (0.025) (0.000) (0.000) 

       

Composite  0.366
**

 0.162
**

 0.226
**

 0.097
*
 0.223

**
 0.202

**
 

  policy variable (0.000) (0.000) (0.000) (0.047) (0.000) (0.000) 

       

Intercept 0.168 0.275 17.660 0.276 0.251 1.284
**

 

 (0.660) (0.617) (0.968) (0.675) (0.595) (0.000) 

       

Observations 452 427 450 334 441 463 

Log-likelihood -495.04 -495.35 -240.17 -299.37 -488.16 -930.27 

Wald chi2  

(Prob > chi2) 

151.10 

(0.000) 

200.20 

(0.000) 

30.53 

(0.000) 

47.48 

(0.000) 

307.67 

(0.000) 

369.11 

(0.000) 

 

Notes: * and ** refer to 5%, and 1% level of statistical significance. P-values are in parentheses. The 

dependent variable is the patent count (successful and unsuccessful applications) in a given 

technological area. The coefficient on the intercept represents the average value of the country-

specific fixed effects. 
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Figure 1. Number of EPO patent applications for renewables by type of technology 
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Figure 2. Number of EPO patent applications for renewables by country 
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Figure 3. Introduction of renewable energy policies by type in OECD countries
13

 

                                                 
12

 An updated version of the table published in IEA (2004) was kindly provided by Piotr Tulej of the 

International Energy Agency. 

13
 AUS - Australia, C - Canada, FI - Finland, GR - Greece, ITA - Italy, L - Luxembourg, NO - 

Norway, SW - Sweden, UK - United Kingdom, A - Austria, CZ - Czech Rep., F - France, H - 

Hungary  J - Japan, NE - Netherlands, P - Portugal, CH - Switzerland, US - United States, B - 

Belgium, DK - Denmark, DE - Germany, IR - Ireland, K-Korea, NZ - New Zealand, E - Spain, T - 

Turkey. 
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Figure 4. Relationship between point of introduction of policies and patent counts
14

 

                                                 
14

 RD = Research and Development; INV=Investment Incentive; TAR=Tariff Structure; 

VOL=Voluntary Agreement; OBLIG=Obligation or Quota; TAX=Tax Incentive  



  

34 

 

APPENDIX. IPC codes for renewable energy technologies 

WIND Class Sub-Classes 

Wind motors with rotation axis substantially in wind direction   F03D 1/00-06 

Wind motors with rotation axis substantially at right angle to wind direction  F03D 3/00-06 

Other wind motors  F03D 5/00-06 

Controlling wind motors F03D 7/00-06 

Adaptations of wind motors for special use;   F03D 9/00-02 

Details, component parts, or accessories not provided for in, or of interest apart from, the other 

groups of this subclass  
F03D 11/00-04 

Electric propulsion with power supply from force of nature, e.g. sun, wind   B60L 8/00 

Effecting propulsion by wind motors driving water-engaging propulsive elements  B63H  13/00 

SOLAR 

Devices for producing mechanical power from solar energy F03G 6/00-08 

Use of solar heat, e.g. solar heat collectors  F24J 2/00-54 

Machine plant or systems using particular sources of energy - sun F25B 27/00B 

Drying solid materials or objects by processes involving the application of heat by radiation - 

e.g. sun 
F26B 3/28 

Semiconductor devices sensitive to infra-red radiation - including a panel or array of 

photoelectric cells, e.g. solar cells   
H01L   31/042 

Generators in which light radiation is directly converted into electrical energy H02N 6/00 

Aspects of roofing for the collection of energy – i.e. solar panels E04D  13/18 

Electric propulsion with power supply from force of nature, e.g. sun, wind   B60L 8/00 

GEOTHERMAL 

Other production or use of heat, not derived from combustion - using natural or geothermal 

heat 
F24J 3/00-08 

Devices for producing mechanical power from geothermal energy F03G 4/00-06 

Electric motors using thermal effects H02N 10/00 

OCEAN 

Adaptations of machines or engines for special use - characterized by using wave or tide 

energy 
F03B 13/12-24 

Mechanical-power producing mechanisms - ocean thermal energy conversion F03G 7/05 

Mechanical-power producing mechanisms - using pressure differentials or thermal differences F03G 7/04 

Water wheels F03B 7/00 

BIOMASS 

Solid fuels based on materials of non-mineral origin - animal or vegetable C10L 5/42-44 

Engines operating on gaseous fuels from solid fuel - e.g. wood F02B 43/08 

Liquid carbonaceous fuels - organic compounds C10L 1/14 

Anion exchange - use of materials, cellulose or wood B01J 41/16 

WASTE 

Solid fuels based on materials of non-material origin - refuse or waste C10L 5/46-48 

Machine plant or systems using particular sources of energy - waste F25B 27/02 

Hot gas or combustion - Profiting from waste heat of exhaust gases F02G 5/00-04 

Incineration of waste - recuperation of heat F23G 5/46 

Plants or engines characterized by use  of industrial or other waste gases F012K 25/14 

Prod. of combustible gases - combined with waste heat boilers C10J 3/86 

Incinerators or other apparatus consuming waste - field organic waste F23G 7/10 

Manufacture of fuel cells - combined with treatment of residues H01M 8/06 

 




