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Abstract

This paper uses patent data to estimate the effect of new technologies on energy consumption.
Matching energy patent counts to the industries using these patents, I create stocks of energy
knowledge for 13 industries. Including the stocks in restricted variable cost functions, I estimate the
median present value of long run savings from a new patent to be over US$ 14.5 million. Combining
these results with estimates of price-induced innovation, I conclude that two-thirds of the change in
energy consumption with respect to a price change is due to simple price-induced factor substitution,
while the remaining third results from induced innovation. © 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

This paper uses data on energy patents to estimate the effect of new technology on indus-
trial energy consumption. Using the Yale Technology Concordance (YTC) to map energy
patents to the industries in which they are used, I construct stocks of energy-efficient knowl-
edge. By including these knowledge stocks in cost functions for various energy intensive
industries, I estimate the effect of new technology on energy consumption. Finally, by com-
bining these estimates with the results of Popp (2000), which estimates the elasticity of
energy R&D with respect to energy prices, I calculate the effect of induced innovation on
energy consumption.
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Fig. 1. Energy prices and energy innovation: plots changes in energy prices and patents in three technology fields
related to energy consumption. All data has been normalized so that 1981 = 100.

The effect of new technologies on energy consumption has important policy implications.
Many environmental policy proposals can be expected to lead to the development of new
technologies. In fact, the Clinton administration made the development of more efficient
technologies one of the cornerstones of its proposal for the 1997 Kyoto summit on climate
change. Furthermore, environmental policy proposals, such as carbon taxes, often take
aim at energy consumption. As these policies increase the cost of energy, they will lead
to the development of more energy-efficient technologies. 1 For example, Fig. 1 shows
how industrial spending on energy R&D and patenting activity in three energy-related
fields increased along with energy prices. 2 Understanding the role that technology plays
in energy consumption is crucial to understanding the total impact of such policies.

Although the main goal of the paper is to estimate the energy-savings resulting from
induced innovation, knowledge of the impact of new energy technologies on energy con-
sumption can also help economists understand recent trends in energy consumption and
make projections about future consumption. As shown in Fig. 2, energy intensity, defined

1 The notion that prices (or policy) lead to new innovations follows from the induced innovation hypothesis, first
suggested by Hicks (1932) and further developed in the 1960s and 1970s in papers such as Ahmad (1966), Kamien
and Schwartz (1968), and Binswanger (1974, 1978a,b). Recent papers demonstrating a positive link between either
policy or prices and environmental-friendly innovation include Popp (2000), Newell et al. (1999), Jaffe and Palmer
(1997), and Lanjouw and Mody (1996).

2 The patent data is taken from Popp (2000), which uses patent data from 21 different technologies to estimate
the elasticity between energy prices and energy patents.
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Fig. 2. Industrial energy efficiencies: energy intensity is Btu of energy per dollar of input. Energy prices are defined
as dollars per million Btu of industrial energy consumption. Both are normalized so that 1982 = 100.

as Btu of energy per dollar of output, fell dramatically during the late 1970s and early
1980s. Price-induced substitution away from energy certainly played a role in the decline
of energy intensity, but it does not tell the whole story. Real energy prices peaked in 1982
before beginning to fall. Yet, even when energy prices returned to pre-crisis levels, energy
intensity continued to fall. If the available technology had not changed, there would have
been no reason for firms to make costly adjustments to capital after prices had fallen. Pre-
sumably they made these adjustments because the new technology, developed in response
to the energy crisis, was better than the previously existing technology. The results of this
paper help explain how changing technology influenced energy consumption. 3

2. Previous literature

This paper uses patent data to construct a stock of energy knowledge. These stocks are then
used in a quadratic formulation of a restricted variable cost function to estimate the effect of

3 As one referee noted, capital adjustment costs are also important here. In particular, it may be that adjustment
costs slow the rate at which firms switch to energy-efficient technologies that were known before the energy crisis,
so that it is not actually new technologies that are driving the reduction in energy prices. The main goal of my
work is to estimate the energy savings that result from energy patents. An important question is when the savings
occur. In the empirical work that follows, I estimate rates of decay and diffusion of the knowledge represented in
these patents, so that the time it takes for the patents to take effect can be discerned. In most cases, new patents
have the strongest effect just a few years after the patent application is filed, suggesting that it was relatively new
technologies reducing energy consumption during the 1980s.
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new knowledge on energy consumption. As such, it borrows from two branches of previous
economic literature. The first are previous studies of the effect on energy consumption
over time. The present paper improves upon these studies by using patent data to more
carefully measure technological progress. The second group of related work is studies of
the productivity of R&D. Using patent data offers improvements to this work as well. The
following section describes previous work in both areas, and details how using patent data
improves the results of each.

2.1. Studies of energy consumption across time

Studies of energy consumption across time began with a series of papers in the 1970s by
authors such as Dale Jorgenson, Ernst Berndt, and David Wood. Typically, a flexible form
cost or production function would be used to derive factor demand equations. In a series of
papers in the 1970s, these authors investigated the demand for energy in American industries,
using translog cost functions. 4 Jorgenson was the first to introduce technological change
into these models. His paper, as well as those that follow, simply modeled technological
change by including a time trend in the regressions. Jorgenson and Fraumeni (1981) use
a time trend to represent technological change, and find that technological change was
energy-using — that is, that energy use per unit output increased over time. Their paper,
however, used data from 1958 to 1974. As shown earlier, the two energy crises of the 1970s
led to much innovation designed to save energy. Such technological change was not included
in the data used by Jorgenson and Fraumeni (1981). Thus, it is reasonable to expect that the
results may be different today.

More recent work does find that technological change is energy saving. Examples include
Berndt et al. (1993), Mountain et al. (1989), and Sterner (1990). One feature common to
all of the above papers is that they simply model technological change by introducing a
time trend to their model. The use of a time trend has two drawbacks. One is that advances
in energy-saving technology do not occur randomly over time, but are instead correlated
with changes in energy prices. Thus, the results of these papers are sensitive to the time
period studied. Technological advancements are energy-using when energy prices are low,
and energy-saving when energy prices are high. Secondly, the time trend can only capture
the overall impact of technological change. It can only tell us whether all of the technolo-
gical advances that occurred during the period studied led to more or less energy use. For
example, technological advances that lead to an increased reliance on capital might increase
energy-use per unit output, as more energy would be required to run additional machines.
However, the energy may be used more efficiently than before.

In both cases, the problem is that using a time trend makes it impossible to attribute
to technological change the effect of only those technologies that are related to energy
consumption. For example, the Mountain et al. (1989) paper finds that technological change
was natural gas-using during the period studied. This occurred because natural gas prices
were low during this period. As a result, new technologies tended to take advantage of low
natural gas prices by using gas more than other energy sources. Nonetheless, there may
have been technologies that improved the efficiency of natural gas use during the period

4 See, for example, Berndt and Wood (1975) and Griffin and Gregory (1976).
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studied. However, the effect of these innovations would not be identified in the study by
Mountain et al. (1989) since it only captures the overall effect of technological change.

Using patents as an indicator of technological change, as is done in this paper, avoids
these pitfalls. By identifying those patents that are related to energy efficiency, it is possible
to identify the effect of technologies specifically related to energy consumption. In addition,
using patent counts allows for fluctuations in the level of technological advancement over
time. Energy prices and technological opportunities both play an important role in the
direction of energy-saving technological change. Patent data can identify both of these
effects. Combining information on the development of new patents with information on the
energy-savings resulting from new patents makes policy simulations possible.

2.2. Studies of the productivity of R&D

The second branch of literature related to this paper are studies that estimate the
productivity of R&D, such as those by Griliches, F.M. Scherer and others during the 1980s.
These papers use either firm or industry data to estimate production functions using R&D
expenditures as an input. Two different approaches are used. In the first, R&D expenditures
are used to create a stock of knowledge, usually by assuming a rate of depreciation of 15%
on old R&D. The equation to be estimated is of the form

logY = α + β(logX) + γ (logK) + ε, (1)

where Y is output, X the traditional inputs, such as labor and capital, and K the stock of
knowledge, represented by a weighted sum of past R&D expenditures. The second approach
uses growth rates to avoid the problem of constructing a stock of knowledge by using R&D
as a measure of the change in the stock of knowledge. These studies estimate an equation
of the form

∂logY

∂t
= α + β

∂logX

∂t
+ γ

R

Y
+ ε, (2)

where R is a measure of R&D expenditures, and R/Y a measure of R&D intensity. A survey
of both types of studies can be found in Griliches (1995).

The results of these studies are mixed. Estimates of the rate of return to R&D range from
0.2 to 0.5. However, estimation of these equations, particularly those like Eq. (1) are com-
plicated by the usual pitfalls of estimating production functions, such as simultaneity. For
example, both Griliches and Mairesse (1984) and Cuneo and Mairesse (1984) find a correla-
tion between firm R&D and productivity across firms, but little correlation over time. These
models are also handicapped in that they do not measure the spillovers from R&D very well.

Finally, using R&D expenditures as a measure of knowledge is problematic because
we do not know the goal of the R&D spending. R&D expenditures can be divided into
two broad categories: process innovations and product innovations. Process innovations
are technological advances that improve the efficiency of production. Other innovations
are product innovations. They either provide new products or improve the quality of an
existing product. Process innovations should affect the production function of the firm.
Product innovations should not affect the production function, but do affect the quality of
output. However, if the price indices used to normalize the value of output do not adequately
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account for improvements in the quality of output, the benefits of R&D affecting quality
will be underestimated. 5

3. Constructing the stock of knowledge

To estimate the effect of technological innovation on energy consumption, the first step
is to construct stocks of energy knowledge. I do this using data on energy patents granted in
the United States since 1918. This section details the construction of the knowledge stocks,
and discusses some of the benefits (and drawbacks) of working with patent data, rather than
R&D data.

3.1. Energy patents by industry — the Yale Technology Concordance

For each industry, i, included in the paper, I construct a stock of energy knowledge by using
a count of patents, PATi,t , over time, t. To construct the stock of knowledge, a rate of decay,
represented byβ1, is used to capture the obsolescence of older patents. Over time, the knowl-
edge embodied in a patent becomes obsolete, as new and better inventions take its place. In
addition, it takes time for the knowledge embodied in a new patent to spread throughout the
economy. A new patent represents invention, the first step in technological change. Before
it can have an effect on the economy, the new invention represented by a patent must be
developed for commercial use. This stage of development is known as innovation. 6 By mea-
suring the effect of knowledge on energy consumption, I am measuring the results of this
commercialization, rather than simply the benefits of discovery of the new invention. Thus,
the stock of knowledge also includes a rate of diffusion, β2, to capture delays in the flow of
knowledge. Both β1 and β2 are parameters that will be estimated. Defining s as the number
of years before the current year, the stock of knowledge in industry i at time t is written as

Ki,t =
∞∑
s=0

e−β1(s)(1 − e−β2(s+1))PATi,s (3)

The rate of diffusion is multiplied by s + 1 so that diffusion is not constrained to be zero
in the current period.

As discussed in Section 2, to capture the effect of new technologies on industrial energy
consumption, it is important that the stock of knowledge capture process innovations, rather
than product innovations. To use patents as a measure of the knowledge available to a firm,
I use the Yale Technology Concordance (YTC) to identify patents that are used in each
industry.

The Yale Technology Concordance (YTC) uses actual patent data to map patents from
their International Patent Classification (IPC) code to both the industries that use the patent

5 To demonstrate this point, Scherer (1993) finds that estimates on the return to R&D from 1973 to 1989 falls from
0.36 to 0.13 when the computer industry is removed from his dataset. Because of the rapid change in computer
technology, the Bureau of Labor Statistics (BLS) uses hedonic methods to construct price indices for the computer
industry. However, at the time, the BLS did not adjust the price indices of other industries for changes in quality.

6 For a discussion of the distinction between invention and innovation in energy technologies, see Grübler et al.
(1999).
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and the industries that manufacture the patent. 7 When a patent is granted in Canada, it is not
only assigned to a technology classification, but also given an industry of use and industry of
manufacture, using the Canadian Standard Industrial Classification System (CSIC). Since a
patent examiner makes these classifications, we can be confident that the assigned industries
are related to the patent in question, as each examiner is an expert in his or her technology
field. Using the actual Canadian data, the YTC authors develop a probability distribution
of possible industries to which a patent in a given technology field may be assigned. The
distribution can then be applied to patents in other countries. 8

I use the Yale Technology Concordance to develop a stock of energy knowledge for US
industries. Since I am able to identify patents used by various industries, whether or not the
R&D to invent the patent occurred in that industry, spillovers across industries are captured.
Because Canada uses the International Patent Classification, I first developed a list of IPC
patent classifications related to energy consumption, including both classifications related
to energy supply and classifications related to energy demand. I assembled the list of tech-
nologies using resources from the Department of Energy and from the academic sciences.
Descriptions of these technologies were matched with IPC patent subclassifications. 9 , 10

The paper makes use of counts of successful patent applications in these classifications
from 1918 to 1991. 11

The next step is to find the industry of use for these patent classes. This is done using
the concordance. Four-digit CSIC codes are used. Only industries that made significant use
of the energy patents are considered. There are many instances of industries that had one

7 For more information on the Yale Technology Concordance, see Evenson et al. (1991) and Kortum and Putnam
(1989, 1997). The most recent version of the concordance, as well as detailed instructions for its use, are available
on the Internet at http://www.wellesley.edu/Economics/johnson/jeps.html.

8 Other concordances are available, but not as reliable.The US Office of Technology Assessment and Forecast
(OTAF) has developed a concordance between US patents and industries, but several problems have been found
with it. When a patent is granted, it is assigned to a technology class and subclass. The OTAF concordance
assigns patents from each subclass to an industry of use. However, if there is more than one industry that would be
reasonably considered to use the patents of a certain subclass, the patents were assigned to all of the industries. This
method led to serious double counting and surprising discrepancies in the data (Griliches, 1990). By developing a
distribution of patents across industries, the YTC authors avoid the problem of double counting that occurs in the
OTAF concordance.

9 More information on the technologies used in this paper, including a list of all the IPC classifications, can
be found on the Internet at: http://faculty.maxwell.syr.edu/dcpopp/index.html. Of course, there may be other
technologies that have an effect on energy consumption. Thus, the results of this paper should be interpreted as
the energy savings resulting from the technologies included in the knowledge stock, and not the energy-savings
resulting from all technological change.
10 The list is similar to the list of US classifications used in Popp (2000). However, for some technologies,
such as insulated windows, it was impossible to find a corresponding IPC classification. In addition, additional
technologies, such as combustion, have been added. The added classifications are ones that have some energy
saving benefit, but also other uses. Ambiguous classes were not included in the earlier papers, because the goal
there was to estimate the effect of energy prices on patent counts. For example, a combustion patent may lead
to a more efficient engine, or it may lead to a more powerful engine. In addition, combustion patents related to
efficiency were influenced not only by energy prices, but fuel economy regulations in the US. These factors would
have complicated the regressions in the earlier papers. However, for this estimation, as long as the patents have
some energy-savings benefit, that effect can be identified in the data.
11 The year of the patent application is used because patents sorted by application years are closely correlated
with R&D expenditures (Griliches, 1990).
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Table 1
Major energy patent classifications in industry groups

Industry group IPC classification Patents assigned to industry/
total patents in sample

Share

Aluminum C22B 21: producing aluminum 36/47 0.766
C25C: electrolytic apparatus 126/387 0.326

Automotive C25D: electrolytic apparatus 11/676 0.016
F02: combustion 741/2277 0.325
F23: combustion 23/1530 0.015
F28: heat exchange 55/745 0.074

Chemical C23C: coating metal 58/1145 0.051

Copper C22B 4: electrothermal treatment 14/24 0.583
C25C: electrolytic apparatus 118/387 0.305

Electrometallurgical C21D: treating metal 4/526 0.008
C22B 4: electrothermal treatment 2/24 0.083

Glass C23C: coating metal 31/1145 0.027

Iron foundries B22D 11: continuous casting 15/565 0.002
C21D: treating metal 7/526 0.013

Metal coating C21D: treating metal 12/526 0.023
C23C: coating metal 527/1145 0.460
C25C: electrolytic apparatus 11/387 0.028
C25D: electrolytic apparatus 428/676 0.633

Plastic film and sheet C23C: coating metal 53/1145 0.046
C25D: electrolytic apparatus 15/676 0.022

Pulp and paper D21C 11: black liquor 107/113 0.947

Rolling and casting B22D 11: continuous casting 418/565 0.740
C21D: treating metal 255/526 0.485
C23C: coating metal 60/1145 0.052
C25C: electrolytic apparatus 14/387 0.036
C25D: electrolytic apparatus 28/676 0.041

Steel foundries B22D 11: continuous casting 81/565 0.143

Steel pipes and tubes C21D: treating metal 13/526 0.002

or two patents from a particular class assigned to them. Such industries are not included
in this paper. Industries for which the patents were obviously product, rather than process,
inventions are also dropped. The results are a list of 13 industry groups used in this paper.
The first column of Table 1 lists the 13 industries. 12

12 For estimation, the knowledge stocks created will be merged with data from the NBER Manufacturing Productiv-
ity Database, which classifies industries by the 1972 US SIC codes. Thus, it is necessary to map the Canadian indus-
tries into the corresponding US industries. As Canadian industries are typically smaller, there are often two or three
US industry codes corresponding to a single Canadian industry code. In addition, since there is frequently a partial
correlation among codes, it is often necessary to group two or three similar Canadian industries into a group, and
then find the corresponding group of American industries. A list of the industry groups, along with their Canadian
and US SIC codes, is included in the data appendix found at: http://faculty.maxwell.syr.edu/dcpopp/index.html.
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Next, using the concordance, the number of energy patents used in each of the 13 industry
groups is calculated. The calculation is as follows. From the Yale Technology Concordance,
I obtain ωi,j , which represents the share of patents from IPC classification j that are used
by industry i. Let PATj,t represent the number of successful patent applications in IPC
classification, j in year t. The number of energy patents from any given year, t, assigned to
industry i is simply

PATi,t =
∑
j

ωi,j PATj,t (4)

where the summation is over all energy IPC’s used by industry i. Table 1 shows the IPC
classifications of the energy patents used most in the various industry groups, along with
the share of patents in that class assigned to the industry and the total number of patents
in that class in the YTC sample. For example, the table shows that 76% of patents in IPC
classification C22B 21 are used by the aluminum industry. If there are 10 patents in this
classification for a given year, 7.6 of them would be assigned to the aluminum industry.

Finally, the energy patents used by each industry are utilized to construct the stock of
energy knowledge, as represented by Eq. (3). The rates of decay and diffusion, β1 and β2,
are parameters to be estimated by the model.

3.2. Pros and cons of using patent data

Using patent counts as a measure of the stock of knowledge allows me to avoid some of the
pitfalls encountered when using R&D expenditures. Most importantly for this paper, using
patent data enables me to identify process innovations, as opposed to product innovations.
By sorting patents by their industry of use, I can be reasonably sure that the patents represent
changes to the production process, rather than changes to the quality of output. In addition,
knowing the innovations represented by each patent classification allows me to eliminate
any remaining innovations that are clearly product innovations.

Patent data also offer other advantages. Unlike other data on inventive activity, such as
R&D expenditures, patent data are available in highly desegregated forms. For example,
data on energy R&D are only available at an economy-wide level. 13 Furthermore, using
patent data allows me to construct a longer time series, as data on energy R&D by industry
are not available until 1972.

However, when working with patent data, it is important to be aware of its limitations.
The existing literature on the benefits and drawbacks of using patent data is quite large. 14

An important concern is that the quality of individual patents varies widely. Some inventions
are extremely valuable, whereas others are of almost no commercial value. This is partly a
result of the random nature of the inventive process. Accordingly, the results of this paper
are best interpreted as the effect of an “average” patent, rather than any specific invention.

However, there are other reasons for variation in the quality of patents that can be con-
trolled. For example, the propensity to patent varies widely by industry. In some industries,
such as the chemical industry, many new innovations are patented. In other industries,

13 Some energy R&D data is available for industries at the two-digit SIC level, but its availability is limited.
14 Griliches (1990) provides a useful survey.



224 D.C. Popp / Resource and Energy Economics 23 (2001) 215–239

secrecy is a more important means of protection. In these industries, the cost of revealing
an idea to competitors is often not worth the gains from patent protection. As a result, the
correlation between R&D and patents varies across industries. 15 It is for this reason that
separate regressions are done for each industry. Within each industry, my interest lies in
the time series aspects of the patent data — that is, how does energy consumption vary
as the knowledge stock varies. To allow for comparisons across industries with different
propensities to patent, the energy-savings resulting from a new energy patent are compared
to the average R&D expenditure per patent in each industry.

Estimating different regressions for each industry controls for variations in the propensity
to patent across industries. Another possible problem is that the propensity to patent may
vary over time. Historically, the ratio of patents to R&D expenditures has fallen in the United
States (as well as in other industrialized nations). Some researchers, such as Evenson (1991)
and Kortum and Lerner (1998), consider the falling ratio to be evidence of diminishing
returns to R&D. 16 Other researchers, most notably Griliches (1989), claim that research
opportunities have not declined, but rather that the fall in the patent-to-R&D ratio is due
to changes in the willingness of inventors to patent new inventions. An exogenous fall
in the willingness to patent — caused, for example by changes in patent laws that affect
the benefits of holding a patent — would result in a falling patent-to-R&D ratio even if
the productivity of research spending remained the same. For this paper, a second set of
regressions was run using patents weighted by the patent-to-R&D ratio as an attempt to
control for possible changes in the quality of patents over time. The weighting had no affect
on the final results. 17

4. Modeling

R&D is a dynamic process. The energy-savings resulting from a new innovation will be
realized for years to come. In addition, the diffusion of benefits across firms in an industry
takes time. As such, a dynamic model is needed for estimation. I use a normalized, restricted
variable cost function (RVCF), described in Berndt et al. (1981) and Watkins and Berndt
(1992). The model allows for dynamic adjustment of quasi-fixed inputs. In this model, short
run demand equations of the variable inputs can be viewed as utilization equations, based
on the current stock of quasi-fixed inputs.

Define the following variables. v = [L,E,M]′ is the vector of variable inputs used by a
firm: labor, energy, and materials. x = [C,KE]′ is the vector of quasi-fixed inputs available
to the firm in any given period. C is the stock of physical capital, and KE is the stock

15 Levin et al. (1987) discusses the variation in patenting behavior across industries.
16 Here, diminishing returns to research refers to the expected return on the inputs to the research process, not the
returns to the output. The notion that there are increasing returns to the output of knowledge, usually attributed
to the public good nature of knowledge, is by no means compromised by claiming that the inputs to research
experience diminishing returns. Diminishing returns to research simply implies that it becomes more and more
difficult to develop new inventions as time progresses.
17 This result does not necessarily mean that the interpretation of diminishing returns to R&D is incorrect. Since the
patent-to-R&D ratio tends to fall monotonically over time, simply correcting for autocorrelation in the regressions
may be enough to correct for changes in the quality of patents.
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of energy-related knowledge. Installing new capital is costly. Resources must be diverted
from the production of output, Y, to installation. In the short run, firms minimize restricted
variable costs, G = w′v, where w′ = [1, pE/w, pM/w] is a vector of normalized variable
input prices. The prices of inputs are given by the wage rate, w, and the price of energy and
materials, pE and pM , respectively. Restricted variable costs are minimized conditional on
w, x, ẋ, Y, and t, where t is a time trend used to capture technological change not related to
energy. 18 The result is the normalized restricted cost function (RVCF)

G = G(w, x, ẋ, Y, t) (5)

Write the normalized price of a variable input, pj /w, as p̂j . 19 In equilibrium, the partial
derivative of the RVCF with respect to the normalized price of a variable input equals the
short run cost-minimizing demand for vj

∂G

∂p̂j

= vj , j = E,M. (6)

To proceed with estimation, a functional form must be provided for G. As in Watkins
and Berndt (1992), a quadratic approximation is used.

G=L + pEE + pMM

= Y
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ẋ2
i

Y
+

∑
i
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p̂j is the normalized price of the jth input (energy or materials), xi is the level of the ith
capital stock (physical capital or energy knowledge), and ẋi is the change in this capital
stock.

Before proceeding, it is necessary to distinguish between net and gross investment models,
as outlined by Watkins and Berndt (1992). Net investment is investment that adds to the

18 Rather than use a time trend to capture non-energy technological change, one could construct a separate
knowledge stock from patents used by the industry that did not pertain to energy use. However, the results of such
regressions are problematic. Recall that the advantage of using patent data for the energy knowledge stock is that
we know the patents are related to saving energy. However, we do not know whether other patents are cost-saving
patents or product innovations that improve the quality of output. Thus, the same problems that arise with using
R&D expenditure data as an input arise, as discussed in Section 2.
19 The results are sensitive to the normalization. If materials prices are used as the numeraire, many of the resulting
price elasticities are positive.
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capital stock, rather than simply replacing depreciated capital. Gross investment includes
both new investments that add to the capital stock and investment that only aims to replace
depreciating capital. Thus, gross investment is the sum of net investment and replacement
investment.

In the steady-state, all inputs are at their optimal level. As a result, net investment is
equal to zero. Gross investment is equal to replacement investment only. That is, the only
investment that occurs in the steady-state is investment that replaces depreciated capital.
The net investment model assumes that this replacement investment is frictionless. It has
no effect on costs in the steady-state. The assumptions of the net investment model imply
that the coefficients on ẋi in the restricted variable cost function, (7), are equal to zero. 20

Conversely, the gross investment model assumes that there are adjustment costs to replace-
ment investment. Thus, even in the steady-state, the costs of investment must be accounted
for, since replacement investment is still necessary.

As noted by Watkins and Berndt (1992), the assumption of frictionless replacement invest-
ment of physical capital is not supported by economic theory. As such, the gross investment
assumption will be made for the capital stock. However, the net investment assumption does
make sense for the stock of knowledge. To see this, consider why the need for replacement
investment arises. In the steady-state, net investment is zero. Steady-state replacement in-
vestment occurs because the existing capital stock is decaying. Although, the theoretical
model outlined in this paper allows the knowledge stock to decay over time, this is merely a
simplification for estimation purposes. In reality, it is not time itself that makes knowledge
obsolete. Rather, the replacement of old knowledge with new and improved knowledge
makes the old knowledge obsolete. Thus, the creation of new patents makes old patents
obsolete. Schumpter referred to this process as “creative destruction”. However, in the
steady-state, there is no desire for a net increase in knowledge, since the knowledge stock is,
by definition of the steady-state, at its optimal level. Thus, there is no demand for new patents.
If new patents are not being created, the old knowledge will not decay. Thus, constraining
the coefficients on ẋi to zero seems reasonable for the stock of knowledge parameters. 21

Using the net investment model form knowledge, the corresponding short run factor
demand equations are 22

Et

Yt
= αE + αEEp̂E,t + αEMp̂M,t + αEtt + αEC

Ct−1

Yt
+ φEĊ

Ċt

Yt

+αEKE

KE,t−1

Yt
+ εE,t (8)

20 Algebraically, this is to ensure that marginal adjustment costs, defined by ∂G/∂ẋi , are equal to zero in the
steady-state. This requires that all coefficients on ẋi be equal to zero except for ϕii , the coefficient on x2

i /Y .
21 Of course, this may not be entirely correct, as simple forgetting may be possible. However, in addition to being
theoretically justifiable, using the net investment model for knowledge is important for calculating the value of
energy-savings resulting from a new patent later in the paper.
22 In principle, it is also possible to estimate capital accumulation equations. However, the amount of data
available limits the number of parameters that can be estimated. Since the main focus of this paper is the effect
of patents on energy consumption, only the variable factor equations are estimated in this paper. However, since
the capital stock equations are properly part of the system of equations to be estimated, instrumental variables
estimation will be used.
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5. Data

5.1. Manufacturing data — the NBER Manufacturing Productivity Database

In addition to the knowledge stocks constructed in Section 3, data on inputs and prices
are needed to estimate Eqs. (8)–(10), data. Industry data for this study were taken from the
NBER Manufacturing Productivity Database, which is available on-line from the NBER
web site. It is described in detail in Bartelsman and Gray (1994). The data set provides annual
information on 450 manufacturing industries from 1958 to 1991. The data are presented at
the four-digit SIC level. Most of the data come from the Annual Survey of Manufactures
(ASM) by the US Census Bureau.

Using the NBER database, labor usage is measured as the number of production worker
hours. Wages can be calculated as total spending on production workers divided by the
number of production worker hours. Total payroll is deflated by the consumer price index
to put it in real dollars. 23 The value of the capital stock is calculated in the NBER data set
by using the investment data, price deflators for 28 types of capital, and an investment flow
matrix to determine the amount of investment in each type of capital for each industry. For
the cost of capital, a price deflator for new investment, constructed by NBER, is used. The
deflator takes into account the various compositions of capital stocks by industry. Finally,
the NBER data set includes both total expenditures on energy and materials and a price
deflator for each. The deflators are created by averaging together price deflators for the

23 Total payroll includes spending on non-production workers. However, data on hours worked for such workers
is not available, so only production workers are included in the calculation of the wage rate.
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inputs used by each industry, 24 and take into account changes in the mix of inputs used
over time.

5.2. R&D expenditure data

Because of variations in the propensity to patent across industries, I use data on R&D
expenditures to calculate benefit–cost ratios for energy R&D. R&D expenditure data are
available from the National Science Foundation. 25 Unfortunately, the data are not available
at the level of detail used in this paper. Rather, they are presented at the two-digit SIC level.
To get the level of detail needed for this paper, I use the Yale Technology Concordance once
again.

The first step in constructing the R&D data is to find the total number of patents manufac-
tured by industries at the two-digit SIC level. This corresponds to the level of data published
by the NSF. The concordance of industry of manufacture is used in this step, because indus-
try of manufacture is more likely to be related to R&D expenditures than industry of use.
Next, I find the number of patents manufactured by the industries in the data set. Given this,
I can calculate the percentage of patents manufactured by the two-digit industry that were
manufactured by industries in the data set. I multiply the R&D data supplied by the NSF
by this percentage to get R&D expenditures for the industry groups used in this paper. 26

6. The effect of new patents on industrial energy consumption

Using the data described in Section 5, the variable factor demand equations can be
estimated, and the effect of new patents on energy consumption can be calculated. Before
proceeding, I first take a general look at the data. For each industry group, Fig. 3 presents a
time series for energy prices (dashed line) and for energy intensity (solid line), with energy
intensity defined as energy use divided by total output. Values in 1982 are normalized to
100. In most of the industry groups, energy intensity has been falling. The exceptions are
aluminum and metal coating, although energy intensity does fall in the aluminum industry
at the end of the sample. In addition, note that for most industries, energy intensity continues
to fall even after energy prices level off, suggesting that technological change, in addition
to simple factor substitution, plays a role in reducing energy intensity. Such a trend is
particularly noticeable in industries such as chemicals, copper, and plastic film and sheets.

The data are used to estimate the variable factor demand Eqs. (8)–(10). To construct the
stocks of knowledge, define the decay rate as β1 = ν/(1 − ν), and the rate of diffusion as

24 Price indices for 369 materials and six types of energy are used. The six types of energy are electricity, residual
fuel oil, distillates, coal, coke, and natural gas.
25 R&D data are published in Research and Development in Industry, and are also available on-line.
26 As one referee noted, using R&D data based on the industry of manufacture ignores costs necessary to absorb
knowledge from other industries. For many of the IPC classifications, the share of patents used by the industry
is greater than the share manufactured, suggesting that knowledge is flowing across industries in this sample of
technologies. As a result, the subsequent results may overstate the total cost savings to industry. However, for
energy economists simply interested in the change of total energy consumption due to technology, the results are
not affected.
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β2 = λ/(1 − λ), where 0 < ν < 1 and 0 < λ < 1. Estimation is carried out by searching
over the range of ν and λ for the rates of decay and diffusion that best fit the data. Given
β1 and β2, the resulting variable factor demand equations are linear in parameters.

Using generalized methods of moments (GMM) estimation, I estimate a separate set
of equations for each industry group, using data from 1959 to 1991. GMM estimates of
β1 and β2 are found by finding the combination of ν and λ that minimizes the GMM
criterion. The price of investment is used as an instrument for the capital stock, and lagged
prices of energy, R&D, material, and investment are used as instruments for the stock of
energy knowledge. To correct for possible autocorrelation and heteroskedasticity, I use the
Newey–West estimator of the weighting matrix in the GMM criterion (Newey and West,
1987).

Fig. 3. Energy intensity and energy prices: plot for energy prices and energy intensity for each of the 13 industries
is included in the paper. Energy intensity is defined as energy use divided by total output. The data for both trends
are normalized so that 1982 = 100. The energy price data comes from the NBER Manufacturing Productivity
Database, and is specific to each industry. Note that for most industries, energy intensity and energy prices are
negatively correlated. Also, for most industries, energy intensity continues to fall even after energy prices leveled
off in the mid 1980s, suggesting that new technologies, and not just factor substitution, played an important role
in the fall of industrial energy intensity.

Fig. 3 (Continued).
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Fig. 3 (Continued).

I summarize the main results of the regression here. Complete parameter estimates are
presented in an appendix available from the author at http://faculty.maxwell.syr.edu/dcpopp/
index.html. In general, the fit of the regressions seems good. Most key parameters, such
as the coefficients for own-price elasticities, are significant. Of particular interest is the
parameter, αEKE

, which captures the effect of energy knowledge on energy consumption.
This parameter is significant at the 99% level in all the 13 equations.

Table 2 presents the estimated price from the regression. All elasticities are calculated
using the mean values for input levels and prices. In general, the estimated elasticities are
similar to results found in earlier studies. 27 The mean value of the price elasticity of energy
is −0.716, and for materials is −0.265.

For a first look at effect of technology on energy consumption, Table 2 also shows the
elasticity of energy consumption with respect to energy patents for both the short run
and long run. The short run elasticity is the immediate effect of new patents on energy
consumption. The long run elasticity uses the present value of energy-savings until the
knowledge embodied in the patents becomes obsolete. These are calculated as follows

SR εE,PAT =
(

∂Et

∂Kt−1

∂Kt−1

∂PATt−1

)
PAT

E
= αEKE

(1 − e−β2)
PAT

E
(11)

27 See, for example, Berndt and Wood (1975), Griffin and Gregory (1976), or the papers in Berndt and Field
(1982).
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Table 2
Elasticitiesa

Industry group εM,pM εE,pE SR εE,PAT LR εE,PAT

Aluminum −0.554 −0.680 0.000 0.015
Automotive −0.503 −0.003 −0.043 −0.371
Chemicals −0.193 −1.378 −0.298 −0.686
Copper 0.003 −0.235 −0.004 −0.205
Electrometallurgical −0.410 −1.596 −0.386 −0.707
Glass −0.602 −0.445 0.029 0.371
Iron foundries −0.357 −0.997 −0.005 −0.119
Metal coating −0.294 −1.316 0.318 1.504
Plastic film and sheet −0.076 0.213 −0.069 −0.142
Pulp and paper −0.145 −0.250 −0.035 −0.065
Rolling and casting 0.068 −0.117 0.008 0.112
Steel foundries −0.056 −0.741 0.013 0.254
Steel pipes and tubes −0.324 −1.763 −0.343 −0.991
Mean −0.265 −0.716 −0.063 −0.079

Median −0.294 −0.680 −0.005 −0.119

a Elasticities calculated using mean levels of inputs. The table presents elasticities for energy and materials.
The first two columns are the elasticity of materials and energy with respect to price. The second two columns are
the short and long run elasticities of energy with respect to patents, as defined in Eqs. (11) and (12).

LR εE,PAT =
{ ∞∑

t=0

e−ρt
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∂PAT0

)}
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E
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e−ρt
(
αEKE

e−β1(t−1)(1 − e−β2t )
)}

PAT

E
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A discount rate of 0.07 was used for the long run calculations. This rate is equal to the mean
of the preferred dividend rate for medium-risk companies, and is often used in studies such
as this (see, for example, Epstein and Denny (1983) and Bernstein and Nadiri (1989)). The
results are not very sensitive to other values of the discount rate.

Overall, the results suggest that new technologies do have an important effect on energy
consumption. The mean long run elasticity of energy consumption with respect to patents is
−0.079. In most industries, the elasticity of energy consumption with respect to new patents
is smaller than the price elasticity of energy consumption. The elasticities of energy with
respect to new energy patents are negative for 8 of the 13 industries. The five exceptions
are aluminum, glass, metal coating, rolling and casting, and steel foundries. Looking back
at Fig. 3, we see that these results could have been anticipated. In these industries, energy
intensity and energy prices seem to be strongly correlated, suggesting that technological
change did not play a crucial role in these industries.

To see the full impact of energy R&D, Table 3 presents the amount of energy saved in
each industry due to a new energy patent. Energy-savings are calculated as follows

short run energy savings =
(

∂Et

∂Kt−1

∂Kt−1

∂PATt−1

)
= αEKE

(1 − e−β2) (13)



232 D.C. Popp / Resource and Energy Economics 23 (2001) 215–239

Table 3
Cost savings from a new energy patent (millions of 1987 dollars)a

Industry group R&D/patent Energy-savings

Short run Long run

&E B/Cb &E B/C rorc

Aluminum 3.13 0.01 0.00 0.59 −0.19 –
Automotive 4.61 −0.09 0.02 −0.74 0.16 0.001
Chemicals 1.50 −50.02 33.32 −115.14 76.70 3.969
Copper 2.35 −0.07 0.03 −4.09 1.74 0.147
Electrometallurgical 2.54 −36.63 14.43 −67.15 26.45 3.094
Glass 1.90 1.04 −0.55 13.51 −7.10 –
Iron foundries 3.02 −0.74 0.24 −16.37 5.42 0.539
Metal coating 0.34 0.36 −1.05 1.68 −4.95 –
Plastic film and sheet 0.92 −6.25 6.78 −12.90 13.98 2.529
Pulp and paper 2.14 −0.77 0.36 −1.42 0.67 0.282
Rolling and casting 0.70 0.37 −0.53 5.20 −7.39 –
Steel foundries 3.22 0.16 −0.05 2.95 −0.92 –
Steel pipes and tubes 2.85 −9.82 3.45 −28.37 9.96 1.894

Mean 2.25 −7.88 3.51d −17.10 7.60d

Mean of negative −13.05 5.34d −30.77 12.12d 1.56

Median 2.35 −0.09 0.04d −1.42 0.61d

Median of negative −3.51 1.44d −14.63 5.98d 1.22

Number of negative values 8 8

a The table presents the cost savings realized from a new energy patent. Benefit–cost ratios and rates of returns
to R&D are included. Savings are represented by negative numbers, and are in millions of 1987 dollars.

b Benefit–cost ratio.
c Rate of return.
d Mean (or median) of benefit–cost ratio calculated using mean (or median) of savings divided by mean cost.

It is not the mean (or median) of the individual ratios.
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The average energy-savings are substantial. In the short run, the average savings are US$
7.9 million. The average of the eight groups with actual savings is US$ 13.1 million. In the
long run, the average savings are US$ 17.1 million, and rise to US$ 30.8 million if only
the groups that experience savings are included. To put these numbers in perspective, an
average of US$ 2.25 million of R&D was spent per patent in these 13 industries. Also, note
that the results, are quite skewed, as most of the savings are concentrated in the chemicals
and electrometallurgical industries. As a result, the median energy-savings are smaller.

Since the propensity to patent varies across industries, simply comparing the energy-
savings from a new patent does not allow interindustry comparisons. For this, the amount
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of R&D spent per patent must also be considered. As such, Table 3 includes data on R&D
spending per patent in each industry, as well as a benefit to cost ratio and a “quasi” rate of
return, using the R&D cost data as described in Section 5. These results are not traditional
rate of returns on investment, and thus must be interpreted carefully. They are presented only
to provide some guidelines as to the magnitude of the savings. However, for two reasons,
the estimates serve as an upper bound of the rate of return on energy R&D.

First, note that the rates of return are based on industry-wide savings resulting from a new
patent, rather than the rate of return to an individual firm or patent holder. Estimates of the
rate of return on R&D for firms range from 0.2 to 0.5. Since the “quasi” rates of return use
industry-wide energy-savings, we would expect the rates of return to be higher than those of
a single firm, due to spillovers between firms within the industry (Griliches, 1995). In fact,
there is a correlation between total energy usage in an industry and the calculated “quasi”
rate of return. The “quasi” rates of return are highest in industries with the greatest energy
use, such as chemicals and plastics, since the potential industry-wide gains from research
were highest here. However, it is not necessarily the case that individual innovators were able
to capture all of the economic rents resulting from these new inventions. 28 , 29 Secondly,
the “quasi” rates of return only focus on the value of energy-savings from the new patents. It
is possible that other costs, such as labor or materials, may increase when new technologies
are adopted. 30 Thus, simply calculating the value of energy-savings overstates the total
value of new energy innovations to firms. 31

Having noted the limitations of the “quasi” rate of return calculations, note that the
“quasi” rates of return on these investments are quite high. The mean rate of return is 1.56,
and the median rate of return is 1.22. In only one of the industries experiencing positive
savings, automotives, is the rate of return less than 0.15. It may be the case that, in the
auto industry, the energy patents are product, rather than process, patents. For example,
combustion patents in the automotive industry may relate to improvements in automobile
engines, as opposed to improvements in combustion processes related to the manufacture
of automobiles.

Table 4 presents the estimated rates of decay and diffusion. The mean decay rate is 0.44,
and the mean rate of diffusion is 2.97. However, in each case, the mean values are driven
by a few outliers, as the median values are much lower. The median rate of decay is 0.22,

28 One referee alertly noted that the opposite is also possible — a monopolistic patent holder could potentially
extract nearly all of the economic rent associated with energy cost savings, so that the industry’s total costs do
not fall. While this is theoretically possible, it seems unlikely to be the case here, as the “quasi” rates of return are
very high, even relative to other rates of return on R&D. If monopolistic inventors were capturing rent, one would
expect more R&D to have been done, given its highly favorable rate of return.
29 More research, done at the firm level, would be helpful here. Since, we are concerned with spillovers, what we
really need to know is whether there are more firms in the industries with the highest social rates of returns. In
these cases, the likelihood of positive spillovers would be greatest. Also, calculations of the rate of return at the
firm level would be welcome.
30 Indeed, the cost of labor and materials do increase for several of the industries after the adoption of these
energy technologies. These results are available from the author. Unfortunately, because there are not enough data
observations to estimate the capital equations, I cannot determine whether capital expenditures, and, thus, total
costs, increase or decrease due to the new technologies.
31 However, from a societal standpoint, there may be other benefits to reduced energy consumption, such as
reduced pollution, that are also left out of the calculation.
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Table 4
Rates of decay and diffusion of knowledgea

Industry group Decay Diffusion Year of maximum impact

Aluminum 0.01 0.11 21
Automotive 0.32 0.03 2
Chemicals 0.45 19.00 0
Copper 0.06 0.01 14
Electrometallurgical 1.17 0.01 0
Glass 0.15 0.23 3
Iron foundries 0.15 0.02 5
Metal coating 0.15 19.00 0
Plastic film and sheet 1.04 0.01 0
Pulp and paper 1.13 0.08 0
Rolling and casting 0.22 0.02 3
Steel foundries 0.18 0.01 5
Steel pipes and tubes 0.75 0.03 0

Mean 0.44 2.97 4.08
Median 0.22 0.03 2.00

Maximum year of mean decay and diffusion 0

Maximum years of median decay and diffusion 3

a The table presents the estimated discount rate and the rates of decay and diffusion. Year of maximum impact
is the number of years until a patent has its greatest impact on energy-savings, based on the rates of decay and
diffusion for each industry. The final two rows are the year in which patents have their greatest impact, based on
the mean and median rates of decay and diffusion.

and the median diffusion is 0.03. Industries with low rates of decay and diffusion, such
as copper and steel foundries, are established industries that do not have a reputation for
much technological innovation. Industries that are known for greater innovation, such as
chemicals, have higher rates of decay and diffusion.

Given the rates of decay and diffusion, we can find the effect that a new patent has on
the stock of knowledge for each year after its initial application. Recall from Eq. (3) that
the weight a patent applied for s years earlier has on the stock of knowledge today is equal
to e−β1s(1 − e−β2(s+1)). Fig. 4 presents this weight for the first 50 years of a new patent’s
life, based on the median rate of decay and diffusion. Note that new patents have their
largest impact within the first 3 years. After this, the effect of decay dominates the effect of
diffusion, and the influence of the patent declines. The number of years that pass before a
new patent has its greatest effect on the stock of knowledge is presented in Table 4. These
figures can be seen as the peak of the graph in Fig. 4. The mean is 4.08 years, and the
median is 2 years. This result is consistent with the notion that the process of disseminating
new knowledge, along with adjustment costs necessary to install new equipment, delay the
benefits of new research.

Finally, Table 5 considers the full effect that price-induced innovation has on energy
consumption. Whereas Table 3 presents the energy-savings resulting from a single new
energy patent, Table 5 includes results on induced innovation to calculate the effect of
all patents induced by an energy price increase. It uses results on induced innovation from
Popp (1997, 2000) to determine the impact of a price increase on both energy innovation and
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Fig. 4. Effectiveness of energy patents over time: shows the weight given to a patent from year 0 in that year
and over the next 50 years. The weight represents a patent’s contribution to the stock of knowledge in a given
year. As shown in Eq. (3), the weight is a combination of the decay rate and the rate of diffusion, and is equal to
e−β1s (1 − e−β2(s+1)), where s is the age of the patent. Calculations are based on the median rates of decay and
diffusion.

energy consumption. It distinguishes between induced innovation — new technologies that
were developed in response to changes in the price of energy — and factor substitution — a
movement along a production isoquant, holding technology constant. Table 5 is a short run
effect only. To allow time for lagged reactions to the price change, Table 5 considers the effect
of patents developed a year after an energy price increase. Only industries experiencing
energy-savings are included.

The first column of the table presents the elasticity of energy patents with respect to
a change in energy prices. These figures were calculated in Popp (1997, 2000). 32 The
elasticity of energy use with respect to patents, as calculated above, is in column two.
The elasticity of energy use with respect to induced innovation, shown in column three,
is the product of these two elasticities. It is the percent change in energy consumption
resulting from the new technologies induced by a 1% change in energy prices. Formally,
the relationship is

&E due to induced technological change = f (patents (price))

Continuing with Table 5, the fourth column presents the elasticity of energy use with
respect to price, also calculated above. This is the change in energy consumption resulting

32 Popp (1997) provides elasticities with respect to energy prices for several different energy technologies. The
elasticity for the most important technology for each industry is used in Table 5. For industries that are not
represented by a specific technology in Popp (1997), a pooled estimate from all industrial technologies, found
in Popp (2000) is used. The technologies used for each industry are: electrolytic production of metals (copper,
electrometallurgical, plastic film and sheets), continuous casting (steel and iron foundries), and the pooled results
(automotive, chemicals, pulp and paper, and steel pipes and tubes).
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from factor substitution. Column five shows the total effect of a change in energy prices. It
is the sum of the elasticities with respect to induced innovation and factor substitution found
in columns three and four. Column six shows the percentage of the total elasticity that is
due to induced innovation. Finally, to show the impact of including the energy knowledge
stocks in the regression, column seven presents the elasticity of energy with respect to price
from regressions that constrain the coefficients on KE to be zero, so that only a time trend
is used to capture technological change.

The total elasticity of energy consumption ranges from −0.049 for the automotive in-
dustry to −3.423 for the electrometallurgical industry. The average total energy elasticity is
−1.123. On average, one-third of the total elasticity results from induced innovation, with
the remaining two-thirds due to factor substitution. Note that the price elasticities from the
regressions without knowledge stocks are similar to the combined elasticities in column
five. This suggests that price elasticities taken from regressions that use only a time trend
to model technological change include both induced innovation and factor substitution ef-
fects. Thus, economists who wish to use these estimates in models that also include induced
innovation would be double-counting the effects of induced innovation.

7. Conclusions

This paper has combined patent data and industry-level input and price data to estimate
the effect of new energy patents on energy consumption in 13 industry groups. The median
present value of long run energy-savings in the nine groups experiencing savings is over
US$ 14.5 million. The median rate of decay for a new patent is 0.22, and the median rate
of diffusion is 0.03, indicating that a patent has its largest effect on energy consumption for
3 years after the initial patent application.

Combining estimates of the effect of energy patents with elasticities of energy patents
with respect to price, I find that two-thirds of the initial change in industrial energy consump-
tion after a price change is due to simple price-induced substitution, while the remaining
one-third is due to induced innovation. Also, the results suggest that estimates of energy
price elasticities taken from regressions without energy patents include both factor substi-
tution and induced innovation effects. Modelers who wish to use such elasticities in studies
incorporating induced innovation must be careful to avoid double-counting the effects of
induced innovation. Finally, it is important to remember that the long term effects of in-
duced innovation are likely to be more substantial, both because it takes time for the induced
knowledge to diffuse through industry, and because higher prices may induce new innova-
tions for several years. A more complete analysis of the long term effects, however, requires
a general equilibrium analysis, to account for adjustments in energy prices that result from
induced changes in demand. This is left for future research.
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