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Abstract
The transient climate response (TCR) is the change in global mean temperature at the time of
an exogenous doubling in atmospheric CO2 concentration increasing at a rate of 1% per year.
A problem with estimating the TCR using observational data is that observed CO2 concen-
trations depend in turn on temperature. Therefore, the observed concentration data
are endogenous, potentially leading to simultaneous causation bias of regression estimates of
the TCR. We address this problem by employing instrumental variables regression, which uses
changes in radiative forcing external to earth systems to provide quasi-experiments that can be
used to estimate the TCR. Because the modern instrumental record is short, we focus on
decadal fluctuations (up to 30-year changes), which also mitigate some statistical issues
associated with highly persistent temperature and concentration data. Our estimates of the
TCR for these shorter horizons, normalized to be comparable to the traditional 70-year TCR,
fall within the range in the IPCC-AR5 and provide new observational confirmation of model-
based estimates.
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1 Introduction

The transient climate response (TCR) has traditionally been defined as the change in global
mean temperature at the time of a doubling of atmospheric CO2 concentration increasing at a
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rate of 1% per year, which takes approximately 70 years (Collins et al. (2013), Box 12.2).
Empirical estimates of the TCR based on the historical record constrain climate models. They
also provide a simple, data-based way to communicate the effects of anthropogenic emissions
to audiences on a human timescale without invoking complex climate models.

As Fig. 1 shows, there is a strong correlation between the mean global temperature anomaly
(T) and radiative forcing from CO2 (RFCO2). However, the bivariate relation between T and
RFCO2 omits other sources of radiative forcing, which could be correlated with RFCO2 and thus
invalidate regression estimates. This concern is readily (and conventionally) handled by
aggregating radiative forcings from multiple sources (Bruns et al. (2020), Kaufmann et al.
(2006a), Myhre et al. (2013), Pretis (2020)). A regression of T on aggregate radiative forcing,
however, has two more substantial limitations. First, because both temperature and CO2

concentrations have increasing trends, there is the possibility that the estimated relationship
is spurious, a well-known problem in the analysis of time series data with trends (Kaufmann
and Stern (2002), Granger and Newbold (1974)). Second, because the earth system has
multiple and complex feedbacks from temperature to CO2 concentrations, CO2 concentrations
are simultaneously determined with temperature (i.e., endogenous), resulting in simultaneity
bias in the regression estimates (Stern and Kaufmann (2014), Stock and Watson (2018, Ch.
12), Wooldridge (2009, Ch. 16)).

One approach to these two challenges – trends and simultaneous causality – is to adopt time
seriesmethods developed for modeling highly persistent data. Some papers have taken this avenue
(Bruns et al. (2020), Kaufmann and Stern (2002), Kaufmann et al. (2006a, b), Phillips et al. (2020),
Pretis (2020)).While this is an important line of work, the appropriate modeling framework for the
trends is a matter of debate, and how the trends are modeled matters for the empirical results
(Bruns et al. (2020), Kaufmann and Stern (1997, 2000), Kaufmann et al. (2006a)).

This paper therefore takes a different, quasi-experimental approach to estimating the TCR
from historical data. The starting point is the thought experiment of an idealized randomized
experiment in which radiative forcings are chosen randomly, the earth is “treated” for h years,
and the h-year change in temperature is recorded; after enough repetitions, the resulting data
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could be used to estimate an h-year treatment effect, which (after normalization) is the h-year
TCR. While this experiment is infeasible, there have in fact been many quasi-experiments that
can be used to estimate the response of global temperature to radiative forcing. For example,
the reductions in chlorofluorocarbons (CFCs) because of the Montreal protocol provide
exogenous sources of variation in radiative forcing.

Specifically, we exploit five such sources of as-if random variation in radiative forcing:
variation in solar radiative forcing arising from solar cycles, from motor vehicle emissions of
CO2, from total anthropogenic CO2 emissions, fromCFCs; and from anthropogenic emissions of
sulfur oxides (SOx).We use these five sources of as-if random variation to construct instrumental
variables to estimate the effect of radiative forcing on temperature. The main methodological
virtue of these quasi-experimental estimates is that they stick closely to the data, they use credible
sources of exogenous variation, and they do not require modeling time series trends. Because the
resulting estimates do not rely on climate science beyond the use of well-established methods for
constructing radiative forcings, they provide external checks on climate model output and can be
used to communicate anthropogenic warming effects without invoking climate models.

Using this approach, we estimate h-year TCRs for 5 ≤ h ≤ 30. (Because our data from
1850–2014 contain only two non-overlapping 70-year periods, we do not estimate a 70-year
TCR.) As we discuss in more detail below, our estimates are in line with estimates of the
longer-run temperature response using time series methods (Kaufmann et al. (2006a), Phillips
et al. (2020), Pretis et al. (2020), Bruns et al. (2020)), once one takes into account the short
response horizon that is our focus. The shorter horizons are of independent interest because
they align with recent human memory and with the short time frames relevant to policy-
makers.

2 The quasi-experimental approach to estimating the h-year TCR

Radiative forcing measures the imposed change in the balance between the absorption of solar
radiation and the emission of infrared radiation to space (Myhre et al. (2013), Section 8.1.1).
Using the standard linear approximation (e.g., Ramaswamy et al. (2001)), over the long run,
the global temperature is proportional to global radiative forcing. Because there is dynamic
adjustment toward this long-run relationship through earth system responses, the temperature
change arising from a sustained increase in radiative forcing depends on the horizon. Over an
h-year horizon, under this linear approximation, the change in temperature (Temp) is propor-
tional to the change in radiative forcing (RF):

ΔhTempt ¼ βhΔhRFt þ ut ð1Þ
where ΔhXt = Xt − Xt − h for variable X, t is time, measured in years, and ut is an error term
representing other factors affecting temperature. Our measure of radiative forcing is the sum of
the contributions of insolation, tropospheric sulfur dioxide (SO2) and the greenhouse gases
carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and chlorofluorocarbons:

RFt ¼ RFSolar
t þ RFCO2

t þ RFCH4
t þ RFN2O

t þ RFSO2
t þ RFCFCs

t ð2Þ
In (1), βh is the causal effect of a unit increase in radiative forcing occurring over h years on
temperature over those h years. The radiative forcing arising from an increase in CO2, relative

to a base year, is approximated by RFCO2
t ¼ 5:35ln CO2;t=CO2;base

� �
(Myhre et al. 2013).
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Thus, if atmospheric CO2 concentrations increase by 1% per year for h years, the causal effect
on temperature over those h years would be 5.35h ln(1.01)βh. For h = 69.99 ≈ 70, hln(1.01) =
ln(2), and this effect is the standard definition of the TCR. For purposes of comparability
across horizons, we define the (normalized) h-year TCR to be TCRh = 5.35 ln(2)βh.

If ΔhRFt were randomly assigned in the historical record, then βh could be estimated
from observational data by estimating (1) using ordinary least squares (OLS). But because
radiative forcing is not randomly assigned, ordinary least squares estimation can, and in
general does, lead to biased estimation of the regression coefficient and thus of the TCR.

This bias, referred to as simultaneity bias, arises because of feedbacks in the earth climate
system. Specifically, suppose that an increase in concentrations results in an increase in temper-
ature, but that increase in temperature in turn results in a decrease in concentrations (through, say,
increased plant uptake). Then the observed temperature increase associated with a given
concentration increase – the relation estimated by OLS – will understate the initial impact effect
which is the causal effect of a concentration increase on temperature. If the decrease in ocean
uptake outweighs plant uptake, then concentrations will go up instead of down, and the bias has
the opposite sign. In general, the sign of the bias cannot be discerned from an OLS regression
coefficient or from data on concentrations and temperature alone. Rather, additional information
must be brought to bear.

This problem arises in a more complicated waywhen there are trends in the variables, as is the
case in concentrations and temperature. In that case, in large samples, there are conditions under
which trend analysis, specifically cointegration methods that use the level, not difference, of
temperature and radiative forcing, can circumvent this simultaneity bias, e.g., Kaufmann et al.
(2006a). Implementing those methods, however, requires making specific assumptions about the
trend models, and those assumptions are often difficult to verify. Moreover, trend assumptions
that are difficult to distinguish empirically can lead to substantially different inferences (Elliott
(1998),Müller andWatson (2017)). Thus, the absence of random assignment of radiative forcing
leads to biased estimation of the TCR, a situation further complicated by the trends in the data.

We therefore adopt a different approach, which is new to this literature, that exploits the as-
if random assignment of certain components of radiative forcing. An example is fluctuations in
insolation arising from solar cycles, for which there is clearly no feedback from earth systems
to solar radiative forcing emissions. Such exogenous sources of radiative forcing provide
quasi-experiments with as-if random variation in aggregate radiative forcing.

This situation in which an endogenous variable has some measurable sources of exogenous
variation has been well-studied in the statistics and econometrics literature. The variable
measuring an exogenous source of variation is called an instrumental variable, and the causal
effect can be estimated by instrumental variables regression (Stock andWatson (2018, Ch. 12),
Wooldridge (2009, Ch. 16)).

We have a total of five instrumental variables, which we consider in two groups. The
first group consists of two sources of variation for which there is no plausible feedback
from global temperatures: solar cycles and CO2 emissions from internal combustion
engines used for transportation. The historical growth of motor vehicle emissions was
based on technology, prices, and demand, none of which depend on mean global temper-
ature. At the same time, growth in these emissions has fluctuated over the decades, for
example, flagging during the Great Depression and accelerating after World War II. The
resulting variation in radiative forcing from vehicular CO2 stems from human events that
are unrelated to temperature, and therefore provides an additional source of as-if random
variation in aggregate radiative forcing.
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The second group of three variables includes broader measures of anthropogenic emissions:
global anthropogenic CO2 emissions from burning fossil fuel, flaring natural gas, and cement
manufacturing; concentrations of chlorofluorocarbons; and global emissions of sulfur dioxide
(SO2), which reflect solar radiation and thus provide negative radiative forcing. None of these
variables are subject to temperature-dependent earth system feedbacks so from that perspective
are exogenous. That said, these variables could be subject to an endogenous response to
temperature through human channels. For example, some CO2 and SO2 emissions come from
burning coal to provide electricity for heating and cooling demand. This induces a small
feedback from global mean temperature to anthropogenic CO2 and SO2 emissions. We use
standard statistical techniques, specifically tests of overidentifying conditions, to assess wheth-
er these feedbacks are sufficiently large to invalidate their use as instrumental variables.

These five instruments are in different units. We therefore convert all the instruments to their
contributions to radiative forcing (expressed inWm-2). This is done using standard formulas for
radiative forcings based on concentrations of different gases. In the case of emissions of CO2

from anthropogenic sources, we convert the series of emissions into concentrations by applying
an empirically estimated second-order autoregressive recursion for concentration, with emis-
sions as the driver, to specific sources of anthropogenic emissions. For a detailed description of
these conversions, we refer the reader to Section 3 on the Online Resource.

We conduct two sets of analyses, one in which (1) is estimated without any control variables
and one in which the radiative forcing from stratospheric SO2 is included as a control variable.
Because stratospheric aerosols arise from volcanic eruptions, their concentrations should be
uncorrelated with the instrumental variables so including or excluding them should not substan-
tively change the results but could affect the standard errors. Following other econometric
treatments of these data (e.g., Kaufmann et al. (2006a), Pretis (2020), Bruns et al. (2019)), we
enter radiative forcing from stratospheric SO2 separately from radiative forcing from the other
sources. One justification for treating radiative forcing from stratospheric SO2 separately is that,
because it is driven by volcanic eruptions and has a residence time only of the order of a couple of
years (Robock (2015)), it is largely a series of spikes, so modeling its effect on temperature
would require looking at higher-frequency (very short-run) relationships than those of interest
involving greenhouse gases. The results reported here include the control variable; results not
using this control variable are provided in the Online Resource and are briefly discussed below.

Results using the five instruments separately are provided in the Online Resource. Here, we
combine the instruments in each group into a single instrument, computed by summing the
instruments (each of which is a radiative forcing). This produces two instrumental variables,
the Group A combined instrument and the Group B combined instrument.

The five instruments are useful separately because they capture variation in radiative forcing at
different horizons. At the five-year horizon, much of the variation in aggregate radiative forcing is
due to the solar cycle (Fig. 2a); in contrast, variation in CO2 emissions from automobiles is useful
in explaining variations in radiative forcing at the 30-year horizon (Fig. 2b).

3 Results

Figure 3 presents the instrumental variables estimates of the (normalized) h-horizon TCR, for
horizons 5–30 years, using the combined Group A instruments and combined Group B
instruments (two instruments total). These estimates and confidence intervals are presented in
Table 1 for h = 10, 20, and 30. The reported statistics address two technical statistical issues. The
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first is the possibility that the instruments might be weak. To that end, following Andrews et al.
(2018), the table reports two confidence intervals in the case of a single instrument: a strong
instrument 95% confidence interval computed using the large-sample normal approximation to
the sampling distribution of the IV estimator, and an alternative that is robust to weak
instruments. The penultimate column of Table 1 reports the first-stage effective F statistic,
which is sufficiently large for the Group A + Group B case to justify reporting only the strong
instrument confidence interval in Table 1 and Fig. 3. In all cases, heteroskedasticity- and
autocorrelation-robust standard errors are computed using the Newey-West (1987) estimator,
with a truncation parameter of 2h and critical values evaluated using Kiefer and Vogelsang
(2005) “fixed-b” asymptotics (Lazarus et al. (2018)). See the Online Resource for details.

Two features of these results are noteworthy. First, the test of overidentifying restrictions
(Table 1, final column) fails to reject, indicating that the endogeneity in the Group B instruments
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arising fromhuman-induced temperature response is sufficiently small that theGroupB instruments
can be used. Second, when both the Group A and Group B instruments are used, the estimated
TCRh is stable across horizons, particularly for h > 10, with an estimate of approximately 1.5.

Results for all instruments individually, at all horizons 5 ≤ h ≤ 30, are given in the Online
Resource, along with first-stage scatterplots like those in Fig. 2.

The Online Resource also reports the results of three sensitivity checks. First, we replace the
HadCRUT4 temperature series with the Berkeley Earth Surface Temperature series (Rohde
et al. (2013a, b)). Doing so results in estimates that are comparable to those in Table 1, for
example, the Group A + Group B 95% confidence interval for TCR20 is (0.95, 2.17) using
HadCRUT4 and (0.85, 2.05) using the Berkeley series.

The second sensitivity check addresses the possibility that even if the instruments are
exogenous in the sense that there is no feedback from temperature to their values, slow earth
dynamics might induce correlation between the error term in (1) and the instrument, thereby
invalidating the instrument. Specifically, because of dynamic adjustment, radiative forcing
from years prior to t–hwill have lagged impact onΔhTempt, and this lagged effect appears in
the error term ut. If the instrumental variables are serially correlated, then they could be
correlated with the error term through this channel. To address this concern, we include an h-
lag of the instrument as a control variable in the instrumental variables estimation of (1). For

example, if the instrument is Zt ¼ ΔhRF
Group A
t , then we include Zt−h ¼ ΔhRF

Group A
t−h as a

control. For a serially correlated instrument, controlling for its h-lag reduces the remaining
variation in the instrument, thereby decreasing the first-stage effective F statistic and the

Table 1 Instrumental Variables Estimates of TCRh

Instruments (Zt) h No.
obs

Estimated
TCRh

95% CI for TCR
(strong, fixed b
asymptotics)

95% CI for TCR
(weak, fixed b
asymptotics)

First
stage
F

Over
identification
test (p-value)

Group A combined:
Solar +
CO2-Vehicles

10 155 0.95 (-0.38, 2.28) (-1.45, 2.11) 18.0 n.a.
20 145 1.15 (0.29, 2.01) (-0.33, 2.41) 15.2 n.a.
30 135 1.54 (0.52, 2.57) (0.93, 9.42) 13.2 n.a.

Group B combined:
CO2-Anth + SOX
+ CFCs

10 155 1.63 (0.90, 2.35) (0.96, 2.37) 355.5 n.a.
20 145 1.60 (0.89, 2.30) (0.96, 2.30) 475.7 n.a.
30 135 1.47 (0.75, 2.20) (0.82, 2.19) 647.1 n.a.

Group A + Group B
(2 instruments)*

10 155 1.53 (0.91, 2.15) 1197.5 0.363
20 145 1.56 (0.95, 2.17) 1184.1 0.622
30 135 1.49 (0.88, 2.10) 1688.2 0.482

OLS 10 155 1.56 (0.97, 2.15)
20 145 1.49 (0.91, 2.08)
30 135 1.45 (0.88, 2.01)

Notes: The TCR is computed as 5.35ln(2) βh, where βh is the coefficient on ΔhRFt in the IV regression of ΔhTempt
on ΔhRFt and ΔhRFVol

t (RF from volcanic aerosols) including an intercept. All confidence intervals and the first-
stage F are HAR; weak confidence intervals are Anderson-Rubin. HAR inference uses a Bartlett (Newey-West)
kernel, window width = 2h. The first-stage F is the effective F-statistic from Montiel Olea and Pflueger (2013).
Fixed-b confidence intervals are based on Kiefer and Vogelsang (2005) and Vogelsang (2012). Overidentification
test uses a window width = h; a statistically significant test statistic (p-value<0.05) indicates that the instruments
may not be valid. The last three rows show OLS estimates for reference (confidence intervals are also HAR and
based on fixed-b asymptotics).

*CO2-Anth excludes CO2 from vehicles to avoid double-counting.
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precision of the estimator; this is especially so for the Group A instruments and at the shorter
horizons. The estimates of TCRh are also reduced at shorter horizons; however, they are
similar to those in Table 1 at h = 20, with the Group A + Group B 95% confidence interval
being (0.85, 2.03) when Zt − h is included as a control variable (HadCRUT4 temperature
series).

Third, we consider specifications in which radiative forcing from stratospheric SO2 con-
centrations is excluded as an additional control variable. Because this is an exogenous control
that ought not matter for the relevance nor exogeneity of the instrument(s), excluding it should
not substantively change the results and in fact that is what we find. For example, we find that
the estimated TCRh when using Group A and Group B instruments is on average approxi-
mately 1.6. Excluding this control variable does not substantially change the precision of the
estimates, at least in the cases in which the instruments are strong.

4 Discussion

Two issues arise when estimating the TCR from observational data. First, trends in the data
have the potential to introduce spurious correlation. Second, earth systems feedback from
temperature to concentrations creates an endogeneity, or simultaneity, problem. To address
these concerns, we exploit quasi-experimental variation in the observational record that mimics
an experiment in which the earth is subject to randomly chosen radiative forcings. In particular,
we consider five sources of as-if random variation in radiative forcing that are not subject to
earth system temperature feedback.

These instrumental variables allow us to identify a TCR by horizon. The 20-year TCR
(normalized to 70 years) that we estimate using all five instrumental variables is 1.56 °C (95%
confidence interval = (0.95, 2.17)), and the 30-year TCR is 1.49 °C (95% confidence interval =
(0.88, 2.10)).

It is useful to compare these estimates to existing econometric ones based on model-
ing trends. Our estimates are in close agreement to those obtained by Pretis (2020), who
uses data from 1955–2011, and Bruns et al. (2020), whose data cover 1850–2014. Both
these authors look at cointegration relations in an energy balance model that explicitly
models the role of the ocean. From this long-run equilibrium relation, Pretis (2020)
estimates an equilibrium climate sensitivity (ECS) of 2.16°C (95% confidence interval =
(1.1, 3.25)) for one preferred specification. Because the ECS gives the equilibrium or
long-run response over a very long horizon, it is expected to be larger than the TCR
(Otto et al. 2013); how much larger depends on the rate of adjustment of the climate
variables. Pretis (2020) uses the model’s short-run dynamic structure to estimate a TCR
between 1.24 °C and 1.38 °C, depending on the specification. Based on a
multicointegrating I(2) model, Bruns et al. (2020) estimate an ECS of 2.8 °C and a
TCR of 1.64 °C for their main specification. They suggest that leaving out the slow-
dynamic role of the ocean from the cointegrating relationships may lead to
overestimating the rate of adjustment.

It is more difficult to compare our estimates to ones that only report long-run relations.
Kaufmann et al. (2006a) and Phillips et al. (2020) use cointegration methods to estimate long-
run relations among the trends in the series. The timescale for these relationships is ambiguous:
the data sets (129 years for Kaufmann et al. (2006a) and 41 years for Phillips et al. (2020)) are
far shorter than the multiple centuries of adjustment associated with the equilibrium climate
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response. With that being said, the long-run relationships represent an equilibrium conver-
gence over the time frame associated with the data span.1 In any event, these estimates would
be expected to be larger than ours because of this additional adjustment, and indeed they are.
Kaufmann et al. (2006a) find temperature sensitivity to a doubling in CO2 equal to 2.1 °C, with
a 95% confidence interval of (1.8 °C, 2.5 °C). Phillips et al. (2020) obtain an estimated
temperature sensitivity of 2.8 °C with a 95% confidence interval of (2.36 °C, 3.24 °C).

Finally, our results are in line with the IPCC-AR5 range of 1–2.5 °C for the (70-year) TCR
(Bindoff et al. (2013)), especially considering that more temperature adjustment would occur
over 70 than 20 or 30 years. Our estimates of the short-run TCRs thus provide an independent
check on model-derived estimates that do not rely on statistical models of trends and align with
the methods used for causal inference in statistics and econometrics.

An additional relevant question is the extent to which the endogeneity of concentrations
results in bias in standard OLS estimates. For 20 and 30-year differences, the OLS estimates
are 1.49 °C and 1.45 °C, slightly smaller than the corresponding IV estimates at 1.56 °C and
1.49 °C. The OLS confidence intervals are also somewhat tighter than the IV intervals, which
is to be expected given that IV tends to deliver larger standard errors. Overall, evidence
suggests that the bias introduced by simultaneous causality is not too large, as least within the
shorter time scales that we analyze. This is an important finding because it suggests that OLS
estimates, which dominate this literature, appear not to be badly biased – a conclusion that, of
course, could not be reached without actually computing the quasi-experimental instrumental
variables estimates in this paper.

We believe that our estimates of short-horizon effects of emissions are of independent
interest for two reasons. First, by essentially just compiling the outcomes of natural experi-
ments, they stay close to the data – and in particular, appeal neither to complex earth system
models nor to advanced time-series econometric methods for modeling trends. Second, they
are on a timescale relevant to non-experts and policymakers. From 2008 to 2018, atmospheric
CO2 concentrations increased at the rate of 0.58% per year. If this rate continues for 10 more
years, then the 10-year TCR estimate of 1.53 implies another 0.13 °C (95% confidence interval
(0.08, 0.18)) increase in mean surface temperatures over the next decade from these additional
emissions alone. This estimate neglects warming over the coming decade that will occur
because of lagged dynamic effects of CO2 that has already been emitted; yet, this warming
alone is fully one-eighth of the total warming from the pre-industrial period to the present.
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