Chapter 1

Introduction

Science is facts; just as houses are made of stones,
so is science made of facts; but a pile of stones is not
a house and a collection of facts is not necessarily
science.

—Henri Poincaré

1.1 Background

‘The seminal contribution of Kydland and Prescott (1982) marked the crest
of a sea change in the way macroeconomists conduct empirical research.
Under the empirical paradigm that remained predominant at the time, the
focus was either on purely statistical (or reduced-form) characterizations of
macroeconomic behavior, or on systems-of-equations models that ignored
both general-equilibrium considerations and forward-looking behavior on
the part of purposeful decision makers. But the powerful criticism of this
approach set forth by Lucas (1976), and the methodological contributions
of, for example, Sims (1972) and Hansen and Sargent (1980), sparked a
transition to a new empirical paradigm. In this transitional stage, the for-
mal imposition of theoretical discipline on reduced-form characteriza-
tions became established. The source of this discipline was a.class of mod-
els that have come to be known as dynamic stochastic general equilibrium
(DSGE) models. The imposition of discipline most typically took the form
of “cross-equation restrictions,” under which the stochastic behavior of a
set of exogenous variables, coupled with forward-looking behavior on the
part of economic decision makers, yield implications for the endogenous
stochastic behavior of variables determined by the decision makers. Never-
theless, the imposition of such restrictions was indirect, and reduced-form
specifications continued to serve as the focal point of empirical research.
Kydland and Prescott turned this emphasis on its head. As a legacy of
their work, DSGE models no longer serve as indirect sources of the-
oretical discipline to be imposed upon statistical specifications. Instead,
they serve directly as the foundation upon which empirical work may be
conducted. The methodologies used to implement DSGE models as foun-
dational empirical models have evolved over time and vary considerably.
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The same is true of the statistical formality with which this work is con-
&,._nﬁnn. But despite the characteristic heterogeneity of methods used in
pursuing contemporary empirical macroeconomic research. the influence
of HQ.&MEQ and Prescott remains evident today. v
ﬁum book details the use of DSGE models as foundations upon which
n.B@En&. work may be conducted. It is intended primarily as an instruc-
ﬂo:& guide for graduate students and practitioners, and so contains a dis-
tinct voé-no perspective throughout. The methodologies it presents are
n.vmmmEN&. roughly following the chronological evolution of the empirical
literature in macroeconomics that has emerged following the work of Kyd-
land and Prescott; thus it also serves as a reference guide. H.Eozmrowm
the methodologies are demonstrated using applications to three _uobnw.u
mark models: a real-business-cycle model (fashioned after King, Plosser.
mma Rebelo, 1988); a monetary model featuring Bosomommmn&aw com n.v
titive firms (fashioned after Ireland, 2004a); and an asset-pricin m 1
(fashioned after Lucas, 1978), , Fricing mode
The empirical tools outlined in the text share a common foundation: a
system of nonlinear expectational difference equations derived as the moh.z-
tion of a Ummm model. The strategies Sutlined for implementing these
models empirically typically involve the derivation of approximations of
the systems, and then the establishment of various empirical implications
of the systems. The primary focus of this book is on the latter component
o.w these strategies: This text covers a wide range of alternative methodolg-
gies that have been used in pursuit of a wide range of nﬁwﬁn& applications
Demonstrated applications include: parameter estimation, assessments ow
fit and model comparison, forecasting, policy analysis, mnva measurement

of unobservable facets of ag : . 5 ;
gregate eCoOnoOmic acti
of productivity shocks). & activity (e.g., measurement

1.2 Overview

~ Y

HFm book is divided into three parts. Part I presents foundational material

:.H.Fanm to help keep the book self-contained. Following this introduc-

tion, chapter 2 9&.52 two preliminary steps often used in converting a

%MQWH H.um GE ﬂoa& into an wB@Ean\ implementable system of equations,
¢ fist step involves the linear approximation of the model; the second

MMW :Mmo_wam the solution of the resulting linearized system. Hv,rn solution

. .

mowg&nﬁomw MM, %&Mwﬁn-mmmnn representation for the observable variables
Chapter 3 presents two important preliminary steps

priming data for empirical analysis: nnWogm Qnﬁam Mmao MMWMMM%&QMH

.an purpose ow these steps is to align what is being measured in EM%%&

with what is being modelled by the theory. For example, the separation of
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trend from cycle is necessary in confronting trending data with models of
business cycle activity. .
Chapter 4 presents tools used to summarize properties of the data.
First, two important reduced-form models are introduced: autoregressive-
moving average models for individual time series, and vector autoregressive
models for sets of time series. These models provide flexible characteriza-
tions of the data that can be used as a means of calculating a wide range of
important summary statistics. Next, a collection of popular summary statis-
tics (along with algorithms available for calculating them) are introduced.
These statistics often serve as targets for estimating the parameters of struc-
tural models, and as benchmarks for judging their empirical performance.
Empirical analyses involving collections of summary statistics are broadly
categorized as limited-information analyses. Finally, the Kalman filter is
presented as a means for pursuing likelihood-based, or full-information,
analyses of state-space representations. Part I concludes in chapter 5
with an introduction of the benchmark models that serve as examples in
part II. :
Part IT, composed of chapters 6 tlirough 9, presents the following empir-
ical methodologies: calibration, limited-information estimation, maximum
likelihood estimation, and Bayesian estimation. Each chapter contains a
general presentation of the methodology, and then presents applications
of the methodology to the benchmark models in pursuit of alternative
empirical objectives. .
Chapter 6 presents the most basic empirical methodology covered in the
text: the calibration exercise, as pioneered by Kydland and Prescott (1982).
Original applications of this exercise sought to determine whether models
designed and parameterized to provide an empirically relevant account of
long-term growth were also capable of accounting for the nature of short-
term fluctuations that characterize business-cycle fluctuations, summarized .
using collections of sample statistics measured in the data. More generally,
implementation begins with the identification of a set of empirical mea-
surements that serve as constraints on the parameterization of the model
under investigation: parameters are chosen to insure that the model can
successfully account for these measurements. (It is often the case that cer-
tain parameters must also satisfy additional a priori considerations.) Next,
implications of the duly parameterized model for an additional set of statis-
tical measurements are compared with their empirical counterparts to judge
whether the model is capable of providing a successful account of these
additional features of the data. A challenge associated with this method-
ology arises in judging success, because this second-stage comparison is
made in the absence of a formal statistical foundation.
The limited-information estimation methodologies presented in chap-
ter 7 serve as one way to address problems arising from the statistical
informality associated with calibration exercises. Motivation for their im-
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plementation stems from the fact that there is statistical uncertainty asso-
ciated with the set of empirical measurements that serve as constraints in
the parameterization stage of a calibration exercise. For example, a sample
mean has an associated sample standard error. Thus there is also statis-
tical uncertainty associated with model parameterizations derived from
mappings onto empirical measurements (referred to generally as statisti-
cal moments). Limited-information estimation methodologies account for
this uncertainty formally: the parameterizations they yield are interpretable
as estimates, featuring classical statistical characteristics. Moreover, if the
number of empirical targets used in obtaining parameter estimates exceeds
the number of parameters being estimated (i-e., if the model in question is
over-identified), the estimation stage also yields objective goodness-of-fit
measures that can be used to judge the model’s empirical performance.
Prominent examples of limited-information methodologies include the
generalized and simulated methods of moments (GMM and SMM), and
indirect-inference methods.

Limited-information estimation procedures share a common trait: they
are based on a subset of information available in the data (the targeted
measurements selected in the estimation stage). An attractive feature of
these methodologies is that they may be implemented in the absence of
explicit assumptions regarding the underlying distributions that govern the
stochastic behavior of the variables featured in the model., A drawback is
that decisions regarding the moments chosen in the estimation stage are
often arbitrary, and results (e.g., regarding fit) can be sensitive ro parti-
cular choices. Chapters 8 and 9 present full-information counterparts to
these methodologies: likelihood-based analyses. Given a distributional
assumption regarding sources of stochastic behavior in a given model,
chapter 8 details how the full range of empirical implications of thé model
may be assessed via maximum-likelihood analysis, facilitated by use of the
Kalman filter. Parameter estimates and model evaluation are facilitated in
a straightforward way using maximum-likelihood techniques. Moreover,
given model estimates, the implied behavior of unobservable variables
present in the model (e.g., productivity shocks) may be inferred as a by-
product of the estimation stage. :

A distinct advantage in working directly with structural models is that,
unlike their reduced-form counterparts, one often has clear a priori guid-
ance concerning their parameterization. For example, specifications of sub-
jective annual discount rates that exceed 10% may be dismissed out-of-
hand as implausible. This motivates the subject of chapter 9, which details

-the adoption of a Bayesian perspective in bringing full-information pro-
cedures to bear in working with structural models. From the Bayesian
perspective, a priori views on model parameterization may be incorporated
formally in the empirical analysis, in the form of a prior distribution. Cou-
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pled with the associated likelihood mﬁbnmo.w via w.mwn% Hﬂc_nw the corre-
sponding posterior distribution may be anﬁﬁnmw this conveys M&OHBMUMD
regarding the relative likelihood of alternative parameterizations of the
model, conditional on the specified prior and observed data. In turn, nwbw
ditional statements regarding the nB?&om.H wﬂmoﬂd.ubnn of the Bovm
relative to competing alternatives, the implied ,Unw»Som. of govmﬂﬁ m
variables present in the model, and likely ?E.Hn trajectories of mode <NM
ables may also be derived. A drawback mmwo.n:ﬁna with @6 mmomnﬁ.ub o M
Bayesian perspective in this class of models is that posterior wb&%m.a Bﬁww
be accomplished via the use of sophisticated numerical techniques; speci
attention is devoted to this problem in the nrm@nn.ﬁ . iy
Part III outlines how nonlinear model approximations QE.UQ use QE
place of linear approximations in pursuing the Q.Euﬁn& ovmnnn:\.nm e-
scribed throughout the book. Chapter 10 presents three F»&b.m alterna-
tives to the linearization approach to model moFBOD Enmnbﬁn.m in nrmmﬂnn
2: projection methods, value-function #nnmnowm.u and mor@-m«nnﬁou
iterations. Chapter 11 then describes how the Q.EUES_ Bn&oao.womwnm %MM-
sented in chapters 6-9 may be applied to DOD.HEnB. mmmﬁoﬁgmcwnm_ of the
underlying model produced by these &nozumwzn moFﬁoa. Enﬁ.ro o omwnm.
The key step in shifting from linear to moubb.nwﬂ approximations involves
the reliance upon simulations from the cbaangbm. model mﬁwn n.wwnmmﬁnﬁNEW
its statistical implications. In conducting calibration and Sﬁna-&oﬂuw
tion estimation analyses, simulations are used to. construct numeric
estimates of the statistical targets chosen for analysis, .Uonwﬁmn E.x&&n&
expressions for these targets are no longer available. And in nObﬁ.EnnEm full-
information analyses, simulations are used to nOb.chQ.men_un& approx-
imations of the likelihood function noﬂnmmObm.Em with the underlying
model, using 2 numerical tool known as the particle filter. .
The organization we have chosen for the _unow stems from our view that
the coverage of empirical applications involving boBEQ.mH model w_.umnoxw
imations is better understood once a solid ubmnnmﬁmb&bm of E.o use o
linear approximations has been gained. gogownﬁ linear mmvnosvmmwm
usefully serve as complementary inputs into the ﬁbﬁoﬁgﬁmﬂow of mewb -
ear approximations. However, if one wished to cover linear and no: ear
applications in concert, then we suggest ﬁ_un. following mwmaomﬁw H.womup_m
exploring model-solution techniques by covering chapters .N and 1 mMm» w.
taneously. Then having worked through chapter 3 and sections 4.1 an 9
of chapter 4, cover section 4.3 of chapter 4 (the Kalman filter) along wi
section 11.2 of chapter 11 (the particle filter). Then m_.dnnﬂ %Oﬁmr ngm.w.
ters 5-9 as organized, coupling section 7.3.4 of chapter 7 with section 11.
er'11.
OWMMMWM spirit of reducing barriers to entry into the field, we have .%4%-
oped a textbook Web site that contains the data sets that serve as nxmBm es
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throughout the text, as well as computer code used to execute the method-
ologies we present. The code is in the form of procedures written in the
GAUSS programming language. Instructions for executing the proce-
dures are provided within the individual files. The Web site address is
http: /www.pitt.edu/ “dejong/text.htm. References to procedures avail-
able at this site are provided throughout this book. In addition, a host
of freeware is available throughout the Internet. In searching for code,
good starting points include the collection housed by Christian Zimmer-
man in his Quantitative Macroeconomics Web page, and the collection of
programs that comprise DYNARE:

http://dge.repec.org/ ,
http: // www.cepremap.cnrs.fr/~michel /dynare /

Much of the code provided at our Web site reflects the modification of
code developed by others, and we have attempted to indicate this explic-

itly whenever possible. Beyond this attempt, we express our gratitude to

the many generous programmers who have made their code available for
public use.

1.3 Notation

A common set of notation is used throughout the text in presenting models
and empirical methodologies. A summary is as follows. Steady state values
oflevels of variables are denoted with an upper bar. For example, the steady
state value of the level of output JYr is denoted as §. Logged deviations of
variables from steady state values are denoted using tildes; e.g.,

~ J
e ()-

The vector %, denotes the collection of
- indicated otherwise) in terms of logged d
e.g., :

model variables, written (unless
eviations from steady state values;

u=109 T %l
The vector v, denotes the collection of structural shocks incorporated in
the model, and 75, denotes the collection of expectational errors associ-
ated with intertemporal optimality conditions. Finally, the % x 1 vector 13

denotes the collection of “deep” parameters associated with the structural
model. , .

9
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Log-linear approximations of structural models are represented as
Axpy1 = By + Curyl + Dz, (1.1)

where the elements of the matrices A, B, C, and D are functions of the
structural parameters 4. Solutions of (1.1) are expressed as

wop1 = F()m + G(u)ves1. (1.2)

in variables in the vector x; are unobservable, éwﬂ.nmm .
O%MHM HA.MW ,mww.mﬁoagbmnoum of variables) are ovmnzmmwﬁ. Hnﬂwmm mMMMHM .
ing methods such as the Kalman filter must be used to ev MM@. ¢ Wmnm?
empirically. The Kalman filter requires an observer equation umEm obse
ables to unobservables. Observable variables are denoted by X, where

X, = H(u) % + s, (1.3)

with

-~

.MT},&C e -

The presence of #; in (1.3) reflects the @omm:.uEQ that En observations of
X; are associated with measurement error. Finally, defining

er1 = G(1)Ur41,
the covariance matrix of ¢, is given by |
Q) =B(as)). (14)

i apti i hastic nature of measurement er-
Given assumptions regarding the stoc i £ m .
rors and the structural shocks, (1.2)~(1.4) SnE. a log-likelihood »,M_w.unnow

log L(X|A), where A collects the parameters in F(u), w.wo:\v“ 4, A0
Q (). Often, it will be convenient to take as mnmbﬁnm. mappings mo.B W to
F,. H . y &MQ Q. In such cases the likelihood function will be written as
HAZnﬁWEamH approximations of structural models are represented using
three equations, written with variables nxmnnmmnn.w in terms of _nﬁmm.. Han
first characterizes the evolution of the state 4&.5_&% 5; included in the
model:

St ".\.A.m.lquWVq AHmv

where once again v, denotés the collection of structural mro.QG MHOQO-
rated in the model. The second equation is known as a policy function,
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which represents the optimal specificati i
: pecification of the control variabl in-
cluded in the model as a function of the state variables: e

Ly = Rb,v. AH.QV

.HrnEb.an@amaomBmwmﬁwng_nocnm i i
S third © ction of Boa& variables into the

Nn = MA.@J Lpy Us, §Nv AHQV
m%AMwu §WVU AH.WV

SWMR once again #; denotes measurement error. Parameters associated

with f A#L.u Ug), n?y Ewa 8(s¢, n;) are again obtained as mappings from
iy %wum their associated likelihood function is also written as L(X|w)
n wnx . . . . . '

t chapter has two objectives. First, it outlines procedures for

mapping nonlinear systems into (1.1). Next, it present i i
methods for deriving (1.2), given (1.1). 1 presens varions solution

Y

B

" of Taylo

k24
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Approximating and Solving DSGE Models

EMPIRICAL INVESTIGATIONS involving DSGE models invariably require the
completion of two preparatory stages. One stage involves preparation of
the model to be analyzed, which is the focus of this chapter. The other
involves preparation of the data, which is the focus of chapter 3.

Regarding the model-preparation stage, DSGE models typically include
three components: a characterization of the environment in which decision
makers reside, a set of decision rules that dictate their behavior, and a char-
acterization of the uncertainty they face in making decisions. Collectively,
these components take the form of a nonlinear system of expectatichal -
difference equations. Such systems dre not directly amenablé to empiri-
cal analysis, but can be converted into empirically implementable systems
through the completion of the general two-step process outlined in this
chapter. :

The first step involves the construction of m;mwwmm,_wmmmw%mwﬁbm the
Bo@@r@ﬁwn as nonlinear equations may be approximated linearly via the use
r.8eries expansions, so too may nonlinear systems of expectational

difference equations. The second step involves the solution of the resulting

Bl e ety

linear approximation of the system. The m@mma written in terms of

» . . S— . .
variables expressed as deviations from steady state values, and is directly
amenable to empirical implementation.

Although this chapter is intended to be self-contained, far more detail is
provided in the literature cited below. Here, the goal is to impart an intu-
itive understanding of the model-preparation stage, and to provide guid-
ance regarding its implementation. But we acknowledge that there are
alternatives to the particular approaches to model approximation and solu-
tion presented in this chapter. Three such alternatives are provided by
projection methods, value-function iterations, and policy-function itera-
tions, which are presented in chapter 10. (For additional textbook dis-
cussions, see Judd, 1998; Adda and Cooper, 2003; Ljungqvist and
Sargent, 2004; Heer and Maussner, 2005; and Canova, 2006.) These alter-
natives yield nonlinear approximations of the model under investigation.
Details regarding empirical implementations based on nonlinear approxi-

* mations are provided in chapter 11. In addition, a leading alternative to

model approximation is provided by perturbation methods; for a textbook
discussion see Judd (1998).
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2.1 Linearization

2.1.1 Taylor Sevies Approximation

Consider the following #-equation system of nonlinear difference equa-
tions:

Y(z+1,2:) = 0, - @I)

where the 2’s and 0 are % x 1 vectors, and the z’s represent variables
expressed in levels. The parameters of the system are contained in the vec-
tor 4. DSGE models are typically represented in terms of such a system,
augmented to include sources of stochastic behavior, We abstract from
the stochastic component of the model in the linearization stage, because
models are typically designed to incorporate stochastic behavior directly
into the linearized system (a modest example is provided in section 2.2;
detailed examples are provided in chapter 5). Also, whereas expectational
terms are typically included among the variables in z (e.g., variables of the
form E;(z:4;), where E; is the conditional expectations operator), these
are not singled out at this point, because they receive no special treatment
in the linearization stage. v

Before proceeding, note that although (2.1) is written as a first-order
system, higher-order specifications may be written as first-order systems.
by augmenting z; to include variables observed at different points in time.
For example, the p™-order equation

Wiyl = P10r + P20 1 + -« + PpWr—pi]
can be written in first-order form as

Wr41 p P2
Wz 1 0

Wy

onP

W1
. =0,
Dpept2 | 6 0 ... 1 9o Ws—pi1

or more compactly, as

Zry1 — Mz =0, Zpyl = HSI.?S?.. .. vendi&\.

Thus (2.1) is sufficiently general to characterize a system of arbitrary order.

The goal of the linearization step is to convert (2.1) into a linear system,
which can then be solved using any of the procedures outlined below. The
reason for taking this step is that explicit solutions to (2.1) are typically

_ . 13
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unavailable, rendering quantitative assessments of ﬁ.vn system as problem-
atic. For textbook discussions of the analysis of nonlinear systems, see Aza-
riadis (1993) and Sedaghat (2003). N

?Mnmmmmbm the notation that follows in section 2.2, the form for the
system we seek is given by .

.\P&ﬂu_.w "‘w.&u.u AN.NV ’

where x; represents a transformation of z;. Unnombm the mﬁnma.% mﬁpﬂm of
the system as W(Z) = 0, where Z is understood to Un. a mubnﬁow of u,
linearization is accomplished via a first-order. Taylor Series approximation

of (2.1) around its steady state, given by

ovw _ oy _ = 2 m“v
~ (R b — (5 — X (241 — B), .
0~ W(3)+ 37, Z) X {z: — %)+ P (3) % (Zr+1 ) ,,

where (z: — %) is » x 1, and the »# X # matrix WMAMV denotes Ewr Jacobian
i Z. is, the (7,7)™ element
of W(z:41, %) with respect to z; evaluated at z. That s, he @,
of w%mmw is the derivative of the /" equation in (2.1) with respect to the
Zr
7o element of z;. Defining
N 5w

(2), = leﬂ.Amv“ b@ H ANwlmv

.,- 0Zp41

yields (2.2), where variables are expressed as deviations from steady state

- values. (It is also possible to work with higher-order approximations of .

(2.2); e.g., see Schmitt-Grohé and Uribe, 2002.)

2.1.2 Logavithmic Approximations

It is often useful to work with _,%mmggmmnbm .Om. (2.1), due to
their ease of interpretation. For illustration, we begin with a simple example
in which the system is 1x1, and can be written as

Ze41 = f(2).
‘Taking natural logs and noting that z; Hxn_om 2z the system becomes
log z;41 = log [ f(£°8%))].
Then approximating,

[z
(@)

log z;41 =~ log [ f(2)] + (log(z) =~ log (%)),
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or because log [ £(Z)] = logZ,

o (42) ~ £ ()

FOZ . . .
.Zonn ﬂrmml 70 i the elasticity of 2,1 with respect to z;. Moreover, writ-
Ing 2; as z - &, where &; denotes a small departure from steady state,

on(2) =g 1+ %) 2,

Z, . . - X .
and thus log (%) is seen as expressing z; in terms of its percentage deviation
from steady state.

Returning to the # x 1 case, rewrite (2.1) as

GZN?TENL = W (z41, Zt), .AN.&

w.nnmsm_n im uwﬁ momaEnHoﬁ&no_ommowvog.mﬁnm& AN.C. .Vm&u using
2z = £°8% taking logs of (2.4) and rearranging vields .

log Wy (o871, flo8%) _ Jog Wy (ploB7+1 glogzy (2.5)

The first-order Taylor Series approximation of this converted system yields

ﬁUn _n.um-mbopn mwmmoﬁammous\nmonw.HbawmwmogmmommOnEnmumﬁ
term is .

log W1 (241, 2:) = log [W1(2)] + ITMV MMW% (2) x Tom AW&
‘ w N... .

dlog [ ]
dlog (ze41)

+ .@ x @om Amwm.z (2.6)

dlog [ W] ,— dlog[ V] /- .
where Fog (7)) (%) and .Eom?yavﬁmv are #Xn Hmno_u_\ matrices, and

[log(%)] and [log(%£1)] are % x 1 vectors. The #pproximation of the
second term in (2.5) is analogous. Then defining .

e ﬁ blog [W1] . dlog [,] i v

olog (z¢+1) dlog (z+1)
— _|dlog W] _, - dlog W]
B = =
ﬁ dlog (z¢) @ dlog (z;) ANL ’
% = log AWV ,
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we once again obtain (2.2). The elements of A and B are now elastici-
_ties, and the variables of the system are expressed in terms of percentage
“deviations from steady state.

In part II we will discuss several empirical applications that involve the
need to approximate (2.1) or (2.5) repeatedly for alternative values of .
In such cases, it is useful ro automate the linearization stage via the use
of a numerical gradient calculation procedure. We introduce this briefly
here in the context of approximating (2.1); the approximation of (2.5) is
analogous.

Gradient procedures are designed to construct the Jacobian matrices in
(2.3) or (2.6) without analytical expressions for the required derivatives.
Derivatives are instead calculated numerically, given the provision of three
components by the user. The first two components are a specification of u
and a corresponding specification of 2. The third component is a procedure
designed to return the # x 1 vector of values ¢ generated by (2.1) for two
cases. In the first case z;41 is treated as variable and 2z; is fixed at Z; in the
second case 2 is treated as variable and z,.1 is fixed at Z. The gradient
procedure delivers the Jacobian ~ *

ow )
(2)=4
) 0241
in the first case and
o
—_—{ —=3 |.w
57, (2)

in the second case. Examples follow.

2.1.3 Examples
Consider the simple resource constraint
Ye = et iz,

w.m&nwmbm that output (¥, ) can be either consumed:(¢; ) orinvested (7;). This
equation is already linear. In the notation of (2.1) the equation appears as

vwlnwlg.nﬂcw,
and in terms of (2.3), with
ze =% & 3]
and the equation representing the i of the system, the ™ row of

av
mNN

®=[1 -1 -].
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In the notation of (2.5), the equation appears as

logy; —log[exp(og ;) — explog i;)] = 0,

and in terms of (2.2), the 7 row of the right-hand-side matrix B is

doglwn] ) dog¥a] ) [1 -7
Tsmg ®) dlog (z) A&n 5 33 a3 @

ME&? to ﬂ%mn a gradient procedure to accomplish log-linear approxima-
tion, the s return of the system-evaluation procedure is

si =logy: — log [exp(og ;) — explog 7;)] .

. As an additional example consider the Cobb-Douglas production func-
tion

g =wmlin} ™, ae(0,1),

where output is produced by the use of nm@ﬁ& (%) and labor (#;) and.is

m:.E. ecttoa 8.&50_0 gy or productivity shock (4;). Linear approximation of
this equation is left as an exercise. To accomplish log-linear approximation,

Mw_nmwm Hommom.ﬁran@cmmobmbanamqwb%bm EmvmﬁnognboﬁmmouOm
5) as .

log y; ~ log a4, — alog by — (1 — a)log 7, = 0.
With .

!
e _omﬁ.\w log .“.slwu* s
7

e
z; = | log = log —
ﬁ J 5% k

the 7™ row of the right-hand-side matrix in (2.2)is .

dlog [W1] . dlog [Wy] _
Tﬁom@v @) - msm& ?Ln [1-1-0-(1-a)]. (28)

g&.nm,o use a gradient procedure to mnnoEmmmr log-linear approximation,
the #™ return of the system-evaluation procedure is

si =logy; —loga; — alog by — (1 — a)log n,.
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mmﬁnmmmwuoxgmﬂna&oaom&wm5AN.NVUénboxnmnnwnmmowsnomommvn
form :

X1 = N...Rw -+ Q.CI.H. ANOV

This solution represents the time series behavior of {x;} as a fanction of {v;},
where v; is a vector of exogenous innovations, or as frequently referenced,
structural shocks. .

Here we present four popular approaches to the derivation of (2.9) from
(2.2). Each approach involves an alternative way of expressing (2.2), and
uses specialized notation. Also, each approach makes intensive use of linear
algebra: background for this material is available at the undergraduate level,
for example, from Lay (2002); and at the graduate level, for example, from
Roman (2005).

Before describing these approaches, we introduce an explicit example
of (2.2), which we will map into the notation used under each approach
to aid with the exposition. The example is a linearized stochastic version
of Ramsey’s (1928) optimal growth model. (See, e.g., Romer, 2006, for a
detailed textbook exposition.) The model is represented as:

For — Feql — ahpy1 =0 (2.10)

. | Fpy1 = Vebral — ¥iter1 =0 (2.11)

010 Ee(Cra1) + 0n Be(Bri1) + &mkmwiv +62,%; =0 (2.12)
Bral — 8pks —8i3, =0 - (2.13)

| Bry1 — Py = Er41. (2.14)

The variables {¥,, Z;, Tt M? 7} represent output, consumption, investment;
physical capital, and a productivity shock, all expressed as logged deviations
from steady state values. The variable ¢; is a serially uncorrelated stochastic
process. The vector

o= mQ Ve ViB1:04 010281 8: .bu_\.

contains the “deep” parametets of the model. .
Two modifications enable a mapping of the model into a specification

resembling (2.2). First, the expectations operator . E(-) is dropped from

(2.12), introducing an expectational error into the modified equation; let
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this error be denoted as Nee+1. Next, the innovation term &ry] in (2.14)
must be accommodated. The resulting expression is

0 0 —a -1 9, r+1
~¥e —vi O 0 Trel
mwn 0 %\N %& M\I.w

00 1 o0 Fri
0 0 0 1 Bry1

A

OO O e

R
Xr41
e

C

I
(ocooc

|

&

™
O o oo

o oo

+
oo oo
Do o0 oo
oo o0 oo

i
SO0 nioo0c o oo wJ
I
i
1]
Axd
4
-

+
C OO0 oo
oo oo
DO OO

0
0 4

0 0 | (2.15)
0

0

f
o1

2.2.1 Blanchavd and Kobn’s Method

The first solution method we _
present was developed by Blanchard and
Kahn (1980), and is applied to models written as ’ -

X1r+41 ow X1
ﬁms?utlvg =4 Tﬁ; B (2.16)

where the model variables have been divided into an nm %1 vector of
endogenous predetermined variables xi, (defined as variables for which
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Ei(%1741) = %1:41), and an mx1 vector of endogenous nonpredeter-
mined variables %,; (for which x2;41 = Ez(%2:41) + 741, with 7,4 repre-
senting an expectational error). The % x 1 vector £; contains exogenous
forcing variables.

In the event that the linearization of the model under investigation does
not automatically lend itself to the form given by (2.16), a preliminary
step due to King and Watson (2002) may be implemented. The step is
referred ro as a system reduction: it involves writing the model in terms of
a subset of variables that are uniquely determined. In terms of the exam-
ple, note that observations on % and k; are sufficient for determining ¥,
using (2.10), and that given ¥,, the observation of either Z; or z; is suf-
ficient for determining both variables using (2.11). Thus we proceed in
working directly with {Z;, £, 2;} using (2.12)~(2.14), and recover {y,, 2},
as functions of {Z;, ks, ;) using (2.10) and (2.11). Among {Zy, ks, 4}, ks
is predetermined (given %; and 7;, k41 is determined as in (2.13)); Z; is
endogenous but not predetermined (as indicated in (2.12), its ime-(# + 1)
realization is associated with an expectations error); and 7 is an exogenous
forcing variable. Thus in the notation of (2.16), we seek a specification of
the model in the form .

% ~[% -
SR Ny g B - (2.17) .
Er(Cry1) cr :

. ,Hm obtain this expression, let
m,nﬂﬁwﬁ ML\, ?H_”Mw nL\,
&.5 note Emw
Ey(#r11) = p7;.

In terms of these variables, the model may be written as

11 0 a0 1]~ :
ﬁu. Lv\m“—mn, T IO V\nwwwl*l —HOH—h‘w ANHWV
D e s S’
Yy Uy L2
o 6 . [0 —o 0 0° 0207~
W3 ,@» Wg ¥g
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Next, substituting (2.18) into (2.19), which requires inversion of Wy, we
obtain

W3 Be(Lo1) = [Wa + Us W50 1gs + (W6 + Us W5 0015, (2.20)

Finally, premultiplying (2.20) by 123 1 yields a specification in the form of
(2.17); Blanchard and Kahn’s solution method can now be implemented.
Hereafter, we describe its implementation in terms of the notation used
in (2.16). -

The method begins with a Jordan decomposition of 4, yielding

~

A=AT"JA, (2.21)

where the diagonal elements of J, consisting of the eigenvalues of A, are
ordered in increasing absolute value in moving from left to right.! Thus

J can be written as
[ 0 : .
NaT \Lu S (2.22)

where the €igenvalues in Jj lie on or within the unit circle, and those
in J; lie outside of the unit circle. J is said to be unstable or explosive,
because J* diverges as # increases. The matrices A and E are partitioned

conformably as
Al A @ T& H* .
A= , E= ; 2.23
T/S A2 B, : ( V.

where A1 is conformable with Ji, etc. If the number of explosive eigen-
values is equal to the number of nonpredetermined variables, the system is

said to be saddle-path stable and a unique solution to the model exists. If

the number of explosive eigenvalues exceeds the number of nonpredeter- -
mined variables, no solution exists (and the system is said to be a source);
and in the opposite case an infinity of solutions exist (and the $ystem is said
to be a sink).

Proceeding under the case of saddle-path stability, substitution for A4 in
(2.16) yields

_HENMML =477A TM& + mw Tﬁ (2.24)

! Eigenvalues of a matrix © are obtained from the solution of equations of the form ®¢ =

Ae, where ¢ is an eigenvector and A the associated eigenvalue, The GAUSS command eigv
performs this decomposition.
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Next, the system is premultiplied by A, yielding

TMMML N Tw ML Wu +,TWMT: (2.25)

$1:| _ [-An EL _Hxi (2.26)
%2 Azl A2z || %
Dil _[Aan Anl[hBE Q . (2.27)
Dy A An]||EBE] :
This transformation effectively “de-couples” the system, 50 that the non-
predetermined variables depend upon only the unstable eigenvalues of:A
contained in J5, as expressed in the lower part of (2.25).
Having decoupled the system, we derive a solution for the uomwnn.%ﬂnn.
mined variables by performing a forward iteration on the lower portion of

(2.25). Using f3, to denote the portion of f; nouw.omﬂmﬂn é.#w Dy, this is
accomplished as follows. First, re-express the lower, portion of (2.25) as

where

%2t = Jy L Eu(d2011) — I3t Da for (2.28)
“This implies an expression for £3,41 of the form
Fao41 =I5 Be1($2042) — J5 - D vl (2.29)

which can be substituted into (2.28) to obtain

dar = J5 2 Ex(Faea) — J5 2 DaEe( fra1) — J5 - D2 for- (2.30)

ngn.bm@.wovinwmﬁ nxﬁoﬁam 9@HwéomHﬁnnmﬂna..mﬁunnﬂmmoumv.
which holds that . .

ErfBrp1(%:)] = ()

for m..5< x: (e.g., see Ljungqvist and Sargent, 2004). wn.unmcm.n J2 contains
explosive eigenvalues, J,™ disappears as # approaches infinity, thus con-
tinuation of the iteration process yields :

e ==Y J5 I DaE( foras). (2.31)

=0 :

gmmmwbm this back into an expression for x;; using (2.26), we obtain .

. oo
. _ a1
dpr=—Ayy Aoixis — A Y T D Dy B forti)- (2.32)
. () :
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In the case of the example model presented above,

Er( for+i) = bmmv
and thus (2.32) becomes

#e==A3 Aty — AR T NI = pJ Dp) G, (2.33)

Finally, to solve the nonexplosive portion of the system begin by expand-
ing the upper portion of (2.24): _

X141 = Anx; + Agawor + By Tt (2.34)

where \NS and wa are partitions of >L\>,nou%9.8m_u_o with %1, and
%2¢. Then substituting for x,; using (2.32) yields a solution for %1, of the
form given by (2.9). .

We conclude this subsection by highlighting two requirements of this
solution method. First, a model-specific system reduction may be required
to obtain an expression of the model that consists ofa subset of its variables.
The variables in the subset are distinguished as being either predetermined
or non-predetermined. Second, invertibility of the lead matrices Yo and

GwmmR@Emnammo&n:oo_uﬁmﬁm mmnnwmnmﬂ.ouommrnEoma_mBnmmEnmg
solution. : ) .

Exercise 2.1

v

Write computer code for mapping the example model expressed in (2.10)-
(2.14) into the form of the representation given in (2.16)

2.2.2 Sims’s Method
Sims (2001) proposes a solution method-applied to models expressed as
kA;K«fTw = \W.&N. -+ E -+ OCW:TH -+ .NUJNFTHV Awwmv

where E is a matrix of constants.? Relative to the notation we have used
above, E is unnecessary because the variables in X; are expressed in terms
of deviations from steady state values. Like Blanchard and Kahn’s (1980)
method, Sims” method involves a decoupling of the system into explosive
and nonexplosive portions. However, rather than expressing variables in
terms of expected values, expectations operators have been dropped, giving
rise to the expectations errors contained in N#+1. Also, although Blanchard

2 The programs available on Sims’s Web site perform all of the steps of this procedure. The
Web address is: http://www.princeton.edu/~sims/. The programs are written in Matlab.
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’s method entails isolation of the forcing variables from el
MMWMMMHHEQE&& in %41 under Sims’ method; thus nvn. w@m.nmﬁmmnn Eﬁwﬁwm
system of the vector of shocks to the <mm.wm_u_nm Urtl- .E.E.P Sims’ me ME
does not require an initial system-reduction step. mEme. it does EMM en
a distinction between predetermined and nonpredetermined varia .nm.%

Note from (2.15) that the example model has m_nnmmq vmnm nmmwm in ~ w
form of (2.35); thus we proceed directly to a nwwhmmwaﬁwmnonw o nMo Ga
tion method: The first step uses a “QZ factorization” to decompose A an
B into unitary upper triangular matrices:

.Nw — \@\\WNN\U ANWQV

i and (A, Q) are upper triangular. (A unitary matrix
Mwmnmmmmmbn\m N@MM Mnﬁmwwwmu I HM. Q wvba\ ome contain complex values, the
transpositions reflect complex conjugation; that is,.each nonMx bnvbM.M
is replaced by its conjugate and then memmomn.m.v Z.nxﬁ (0,2, m\w o
ordered such that, in absolute value the mgﬂ.&ﬁwa gigenvalues o A an X
are onmmEN& in A and Q in increasing order md.oSbm.m.oB leftto Dm&Mw Em@
asin Blanchard and Kahn’s Jordan mnnoamowﬁou E.Onn%mn. Amnsﬂﬂ ze
nw.mabﬁwmnm of @ are obtained as the solution to @n”»nﬁ sznww Zisa
symmetric matrix.) Having obtained the factorization, the origin m%mwnﬂ
is then premultiplied by Q, yielding the transformed system expressed in.,
terms of z;41 = Z'%41:

Az = Q251 + OF + OCu: + QD115 (2.38)

where we have mena.ﬁwn.mﬁmna by one period in order to match the

tation (and code) of Sims. . .
bovm.ﬂmv Mw with Blanchard and Kahn’s (1980) method, (2.38) is parti-
tioned into explosive and nonexplosive blocks:

An A=z ]_[9n QSQTH?;
ﬁo Ao ] 22 l_ 0 Qa]lze

Lm& E+9¢+bi. (2.39)

The explosive block (the lower equations) is solved as follows. Letting

-wy = Q(E + Cu; + D),

~ partitioned conformably as wy; and wa;, the lower block of (2.39) is

given by
Aoz = Q222251 + Wz (2.40)
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Leading (2.40) by one period and solving for z3, yields

~1 .
7 = Mzopq1 — Q55 war1, (2.41)
where
-1
M = Q55 Azs.
Then recursive substitution for z:41, 225432, . . . yields
o0
;1 .
2y = lME» 22 W2t+1+is (2.42)
i=0
since
lim M?z; = 0.
>0

Recalling that w, is defined as w; = Q(E + Cu; + Dn;), note that A.N.mwv
expresses 2, as a function of future values of structural and expectational
errors. But 2, is known at time #, and .

E(Ns4s) = Ep(vpas) = 0, s>0,

thus (2.42) may be written as

8 .

NN“M IMEﬁmwb\Nmy “...@.»wv
=0 :

where Q> E) are the lower portions of QF conformable with 2. (Sims also

considers the case in which the structural innovations v, are serially cor-

related, which leads to a generalization of (2.43).) Postmultiplying (2.43)

by ( QMNH Q2E) ! and noting that

S w
=D M= —(I- M),
§=0 Tt
the solution of 2; is obtained as

z: = (A2z — Q22)71 Q1 E. . (2.44)

Having solved for zy,, the final step is to solve for 21:1in (2.39). Note that
the solution of zj, requires a solution for the expectations errors that appear
in (2.39). As Sims notes, when a unique solution for the model exists, a
systematic relationship will exist between the expectations errors associated
with z1; and 2y;; exploiting this relationship yields a straightforward means
of solving for z;. The necessary and sufficient condition for uniqueness is
given by the existence of a & x (n — k) matrix @ that satisfies .

QD =2Q,D, ‘ (2.45)
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which represents the systematic relationship Ungnnb. the expectations
errors associated with 2, and z; noted above. Given uniqueness, Eu.m thus
the ability to calculate ® asin (2.45), the mo_c.mou of z); proceeds with the
pre-multiplication of (2.38) by [I — @], which yields

: Zy ¢
— DA
[A11 Ap—@ NN 1 Twﬂu_

=[Qn Q12— dQ0] _“MH& +[Q1— @03][E + Cu; + D]
(2.46)

Then due to (2.45), the loading factor for the expectational errors in (2.46)
is zero, and thus the system may be written in the form

% = O + Opx:—1 + O1vy, (2.47)
where '
-1 -1 _ o
Hoz| Mt TAn (A= @A) (2.48)
0 1
os=mH| T g (2.49)
, (22 — A22)7 02
@ = N>w~5i@§ LA (2.50)
o= i | uoe@ > (2.51)

Exercise 2.2 -

Gm.p.mm the code cited for this method, compute the solution for (2.10)-
(2.14) for given values of w.

2.2.3 Klein’s Method

i . i that i id of those of
Klein (2000) proposes a solution method that is a hybri . .
Blanchard and Kahn (1980) and Sims (2001).3 The method is applied

to systems written as . .
AEy(%:41) = B + Ef;, (2.52)

3 GAUSS and Matlab code that implement this solution method are available at
http: //WWW.ssC.uwo.ca/ economics/faculty/Idein/
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where the vector f; (of length #;) has a zero-mean vector autoregressive
(VAR) specification with autocorrelation matrix ®; additionally A may be
singular. (See chapter 4, section 4.1.2, for a description of VAR models.)

Like Blanchard and Kahn, Klein distinguishes between the predeter-
mined and nonpredetermined variables of the model. The former are
contained in x1;41, the latter in %2z41:

Ey(spq1) = [%1641  Er(w2:41)1

The solution approach once again involves de-coupling the system into
nonexplosive and explosive components, and solving the two components
in turn.

Returning to the example model expressed in (2.10)~(2.14), the form
of the model amenable to the implementation of Klein’s method is given
by (2.20), repeated here for convenience:

W3 Eplfrp1) = [Wa + U505 W11t + [Y6 + W Wy Wo)E,.  (2.53)

An advantage of Klein’s approach relative to Blanchard and Kahn’s is that

W3 may be singular. In addition, it is also faster to-implement computa- -

tionally. To proceed with the description of Klein’s approach, we revert to
the notation used in (2.52). -

Klein’s approach overcomes the potential noninvertibility of A by im-
plementing a complex generalized Schur decomposition to decompose A
and B. This is in place of the QZ decomposition used by Sims. In short,
the Schur decomposition is a generalization of the QZ. decomposition that
allows for complex cigenvalues associated with A and B. Given the decom-
position of A and B, Klein’s method closely follows that of Blanchard and
Kahn. _ _

The Schur decompositions of A and B are given by -

QAZ =S§ (2.54)
03z=T, . (2.55)

where (Q,Z) are unitary and (S, T')-are upper: triangular matrices with
diagonal elements containing the generalized eigenvalues of A and B. Once
again the eigenvalues are ordered in increasing value in moving from left
to right. Partitioning Z as .

N:NS ., .
7 = N.mo
hN& @L ’ (256)

Zy1 is m x m1 and corresponds to the nonexplosive eigenvalues of the sys-
tem. Given saddle-path stability, this conforms with 41, which contains the
predetermined variables of the model. :
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Having obtained this decomposition, the next step in solving the system

is to triangularize (2.52) as was done in working with the QOZ decomp-
osition. Begin by defining

5 = ZH %, (2.57)

where ZH refers to a Hermitian transpose. (Given a matrix ®, if the
lower triangular portion of @ is the complex conjugate transpose of the
‘upper triangle portion of ®, then © is denoted as Hermitian.) This trans-
formed vector is divided into #; x 1 stable (5;) and ny x 1 unstable (#;)
components. Then since

A=0Q'szH
and
B=Q'TZH,

(2.52) may be written as

S Sz s1] [T T)[s 01
ﬁo ,wmu“—m;“&ni =l 0o Tol|lm|T b«ww*m&: (2.58)

once again, the lower portion of (2.58) contains.the unstable components
of the system. Solving this component via forward iteration, we obtain

we=Mf; _ = | (2.59)
vec(M) = [(®T ® S22) — I, ® o] ' vec(Q2E).  (2.60)

The appearance of the vec OWnnwmoH accommodates the VAR specification
for f;. In the context of the example model, ®7T is replaced by the scalar
o7, and (2.60) becomes

M=[pT 8 — T] Q2E.

This solution for the unstable component is then used to solve the stable
component, yielding ‘

541 = S s + SH T2 M — S Mo
+ O1EYf — Z1 ZiaMus i, (2.61)

where vy is'a serially uncorrelated stochastic process representing the
innovations in the VAR specification for f41. In the context of our example
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model, f; corresponds to @;, the innovation to which is &;. In terms of the
original variables the solution is expressed as

20 = Zn 2y o1 + Nf; (2.62)
X1ee1 = Zn S5 T was + L | (2.63)
N = (Zoz — Z1 Z  Z12)M - (2.64)

= -Z11 S T2 Z1aM + Z S
x [T1aM — S12M® + Q1 E] + Z12 M ®. (2.65)

This solution can be cast into the form 0w (2.9) as
x1541 =[Z11 ST H:N_.%NENW% %1z
+ (2S5 Tz N + L1 f. (2.66)

Exercise 2.3

Apply Klein’s code to the example model presented in (2.10)—(2.14). 4

2.2.4 An Undetermined Coefficients Approach

Uhlig (1999) proposes a solution method based on the method of
undetermined coefficients.* The method is applied to systems written as

0 = E;[Fxr41 + Gop + Hxpm1 + Lz + M f3] - (2.67)
fir1 = Nfi +up1, Er(vs41) = 0. , (2.68)
With respect to the example model in (2.10)-(2.14), let

N T

Xp = mﬂn mw iz \nL\.

Then lagging the first two equations, which are subject neither to struc-
tural shocks nor expectations errors, the matrices in (2.67) and (2.68) are
given by

0 0 0 0 1 0 0 -a
1o 0o 0o 1 = = o0 |
F=l0 6,09/ °=|0 e o ol &
0 0 0 1 0 0~ -8 -8

H=0,L=[006,0], M =[-1000],and N'= p:

4 Matlab code available for implementing this solution method is available at:
hetp: //www.wiwi.hu-berlin.de /wpol /html /toolkit. htm
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Solutions to (2.67)—(2.68) take the form

sy = Pr_1 + Q. f5. (2.70)

In deriving (2.70), we will confront the problem of solving matrix quadratic
equations of the form

WP -TP-0=0 (2.71)
for the m x m matrix P. Thus we first describe the solution of such equa-

tions. :
To begin, define

r C) Y Omxm
g = A = . 2.72
2mx2m hﬁa o‘:xig P 2mx2m _”o§x§ L Hd ( )

" Given these matrices, let s and A denote the generalized eigenvector and

eigenvalue of & with respect to A, and note that s’ = [Ax/, %] for some
x € %™, Then the solution to the matrix quadratic is given by

P=QAQL,
Q= _”.“S.u. . ..u.stu
TN = ding(M,. ), : (2.73)

so long as the m eigenvalues contained in A and (%1, . ..,%) are linearly

independent. The solution is stable if the generalized eigenvalues are all

less than one in'absolute value.

Returning to the solution of the system in (2.67)-(2.68), the first step
towards obtaining (2.70) is to combine these three equations into a single
equation. This is accomplished in two steps. First, write % in (2.67) in
terms of its relationship with x;—1 given by (2.70), and do the same for
%41, where the relationship is given by

%41 = P2y + PO f + Q fis1. (2.74)

Next, write f41 in terms of its relationship with f; mZnD. by (2.68). Taking
expectations of the resulting equation yields

0 = [FP? + GP + Hl—1 + [(FP + G)Q + M + (FO.+ L)N1f.
(2.75)

Note that in order for (2.75) to hold, the coefficients on x;—1 and f;
must be zero. The first restriction implies that P must satisfy the matrix
quadratic equation o -
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0=FP>+GP+H, (2.76)

the solution of which is obtained as indicated in (2.72) and (2.73). The
second restriction requires the derivation of Q which satisfies

(FP+ G)Q + M + (FQ + LYN = 0. (2.77)
The required O can be shown to be given by
Q = V7 [—pec(LN + M)], (2.78)
where V is defined as
V=N ®F+I,&®(FP+G). (2.79)

.Hrnmor&oamozumb&bné@nﬁ&@camo_osm»mﬁwn Ewﬁxwrmmmﬁwdﬁ

eigenvalues. . .
.>.m noted by Christiano (2002), this solution method is particularly con-

venient for working with models involving endogenous variables that have

differing associated information sets. Such models can be cast in the form .

of Aw.owv..ww.awy with the expectations operator E; replacing E;. In terms
of calculating the expectation of an # x 1 vector Xz, E; is defined as

.mANHLm:v

(%) = . (2.80)

E(Xz|Ene)

where E;; represents the information set available for formulating expec-
taticns over the 5 element of X;. Thus systems involving this form of
heterogeneity may be accommodated using an expansion of the system
(2.67)-(2.68) specified for a representative agent. The solution of the ex-

panded system proceeds as indicated aBove;'for details and extensions, see
Christiano (2002).

Exercise 2.4

Apply Uhlig’s code to the example model presented in AN.HSAN.H&_

. We conclude by repeating our acknowledgement that there are alterna-
tives to the approaches to model approximation and solution presented
in this chapter. Those interested in exploring alternatives at this point
may wish to jump to chapter 10. There, we present three leading alterna-
tives: projection methods, value-function iterations, and policy-function
mnam.momm. Each yields a nonlinear approximation of the model under in-
vestigation.

Chapter 3

Removing Trends and Isolating Cycles

JusT AS DSGE MODELS rhust be primed for empirical analysis, so too must
the corresponding data. Broadly speaking, data preparation involves three
steps. A guiding principle behind all three involves the symmetric treatmient
of the actual data and their theoretical counterparts. First, correspondence
mnst be established berween what is being characterized by the model
and what is being measured in the data. For example, if the focusis o a
business cycle model that does not include a government sector, it would
not be appropriate to align the model’s characterization of output with the
measure of aggregate GDP rgported in the National Income and Product
Accounts. The collection of papers in Cooley (1995) provide a good set of
examples for dealing with this issue, and do so for a.broad range of models.

T

“The second and third steps involve the removal of trenyls and the isola-

_ tion of cycles. Regarding the former, model solutions are typically in terms

of stationary versions of variables: the stochastic behavior of the variables is

" in the form of temporary departures from steady state values. Correspond-

ing data are represented analogously. So again using a business cycle model
as an example, if the model is designed.to characterize the cyclical behavior
of a set of time series, and the time series exhibit both trends and cycles,
the trends are eliminated prior to analysis. In such cases, it is often useful
to build both trend and cyclical behavior into the model, and eliminate
trends from the model and actual data in parallel fashion. Indeed, a typical
objective in the business cycle literature is to determine whether models
capable of capturing salient features of economic growth can also account
for observed patterns of business cycle activity. Under this objective, the
specification of the model is subject to the constraint that it must success-

Tully characterize trend behavior..Having satisfied the constraint, trends are

climinated appropriately and the analysis proceeds with an investigation of
cyclical behavior. Steady states in this case are interpretable as the relative
heights of trend lines.

Regarding the isolation of cycles, this is closely related to the removal
of trends. Indeed, for a time series exhibiting cyclical deviations about a
trend, the identification of the trend automatically serves to identify the
cyclical deviations as well. However, even after the separation of trend
from cycle is accomplished, additional steps may be necessary to isolate
cycles by the m@ of their recurrence. Return again to the example
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. Consumption
. . .. . Output
of a business cycle model. By design, the model is intended to characterize = _

patterns of fluctuations in the data that recur at business cycle frequencies:
between approximately 6 and 40 quarters. It is not intended to characterize
seasonal fluctuations. Yet unless additional steps are taken, the removal of
the trend will leave such fluctuations intact, and their presence can have
a detrimental impact on inferences involving business cycle behavior. (For
an example of a model designed to jointly characterize both cyclical and
seasonal variations in aggregate economic activity, see Wen, 2002.)

The isolation of cycles is also related to the task-of aligning models with

9.0

. - ; . 76 ‘ _
appropriate data, because the frequency with which data are measured in 1952 1960 1968 1976 1984 1982 1952 1960 1968 1976 1984 1992 200
part determines their cyclical characteristics. For example, empirical anal- Investment Hours
yses of economic growth typically involve measurements of variables aver- - 3.68 T
aged over long time spans (e.g., over half-decade intervals). This is because 254
the models in question are not designed to characterize business cycle T
activity, and time aggregation at the five-year level is typically sufficient to 80
eliminate the influence of cyclical variations while retaining relevant in- 3.46
formation regarding long-term growth. For related reasons, analyses of 5.42
aggregate asset-pricing behavior are typically conducted using annual data,
which mitigates the need to control, for example, for seasonal fluctuations. 838 T
Analyses of business cycle behavior are typically conducted using quarterly 334

data. Measurement at this frequency is not ideal, because it introduces the
influence of seasonal fluctuations into the analysis; but on the other hand,
aggregation to an annual frequency would entail an important loss of infor-
mation regarding fluctuations observed at business cycle frequencies. Thus
an alternative to time aggregation is needed to isolate ‘cycles in this case.

This chapter presents alternative approaches available for eliminating
trends and isolating cycles. Supplements to the brief coveérage of these top-
ics provided here are available from any number of texts devoted to time
series analysis (e.g., Harvey, 1993; Hamilton, 1994). Specific textbook
coverage of cycle isolation in the context of macroeconomic applications
is provided by Sargent (1987a) and Kaiser and Maravall (2001).

To illustrate the. concepts introduced in this chapter, we work with a
prototypical data set used to analyze business cycle behavior, It is designed
for alignment with the real business cycle model introduced in chapter 5.
The data are contained in the text file rbedata. txt, available for down-
loading at the textbook Web site. A -description of the data is contained
in an accompanying file. Briefly, the data set consists of four time series:
consumption of nondurables and services; gross private domestic invest-
ment; output, measured as the sum of consumption and investment; and
hours of labor supplied in the nonfarm business sector. Each variable is
real, measured in per capita terms, and is seasonally adjusted. The data are
quarterly, and span 1948:1 through 2004:IV. In addition, we also work
with the nonseasonally adjusted counterpart to consumption. Logged time
series trajectories of the seasonally adjusted data are illustrated in figure 3.1.

1952 1960 1968 1976 1984 1892

Figure 3.1 Business cycle data.

.m.__H Wonp.oﬁbm.. Trends

.Hvaanﬁn.ﬁwnnn Fm&dW\mﬁ@anr%nonaavibmqg%m.oa annon.wno-
nomic time series.. Hﬁn goal under all three is to transform the data into

ean-zero covariance stationary stochastic processes (CSSPs). By defini-

tion, such processes have time-invariant second moments; therefore, sam-
ple averages may be used to estimate population averages n.gm these moments,
and functions thereof. Trend removal is not sufficient to induce covariance
. stationarity, but is of first=order importance. N
Before describing the three approaches, we note that it is common to
work with logged versions of data represented in levels (e. g, asin figure
3.1). This is because changes in the log of a variable y; over time represent
the growth rate of the variable:

where j, = .%w 5. In addition, when using log-linear approximations to rep-

resent the corresponding structural model, working with logged <a.§05m
of levels of the data provides symmetric treatment of both sets of variables.

1952 1960 1968 1976 1984 1892 200C
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The first two approaches to trend removal, detrending and differencing,
are conducted under the implicit assumption that the data follow roughly
constant growth rajes. Detrending proceeds under the assumption that the
level of y;-obeys™

=y(l+g)'e%,  w~CSSP. (3.2)
Then taking Homm,

log y; = logyo+gyt + us, (3.3)

s&nmn log (1+ gy) is approximated as gy. Trend removal is mnnonra
by fitting a linear trend to logy, using an ordinary least squares (OLS)
regression, and subtracting the estimated trend:
= log y; — &y ~ @1t = #;, (3.4)
where the @'s are coefficient estimates. In this case, log y; is said to be trend
stationary.
In working with a set of m variables characterized by the corresponding

model as sharing a common trend component (i.e., exhibiting balanced
growth), symmetry dictates the removal of a common trend from-all vari-

ables. Defining QW as the trend coefficient associated with variable 7, this is
accomplished via the imposition of the linear restrictions

1 J_ :
oy —oy =0, J=2,...,m,

easily imposed in an OLS estimation framework.!

Differencing proceeds under the assumption that ¥; obeys
= yoe’, . (3.5)
& =y + &1+ %, uy ~ CSSP. (3.6)

Note from (3.6) that iterative substitution for &;..1, £:-2,..., yields an
expression for &; of the form

r—1

&Hﬁ+Mu§d.+m.9 (3.7)
J=0

and thus the growth rate of y; is given by y. From (3.5),
logy; = logy + &;. - (3.8)
Thus the first difference of log ¥;, given by

logy: —logy—1 = (1 — Hzomuf

1 The GAUSS procedure ct . pre, available at the textbook Web site, serves this purpose.
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where the lag operator L is defined such that L?y; = y;_, is stationary:

logy: — logyr—1 = & — &1 (3.9)

In this-ease,log y; is said to be difference stationary. Estimating y using the

wﬂxbmwo average of log y; — log 31 1 yields the desired transformation of ;:

~—.. SRS

5, =logy; — logy—1 — ¥V = . (3.10)

Once again, a common growth rate may be imposed across a mnﬁ of'variables
via restricted OLS by estimating 7 subject to the restriction”

i =0, j=2,..,m (3.11)

The choice between detrending versus differencing hinges on assump-
tions regarding whether (3.3) or (3.9) provides a more appropriate repre-
sentation for log y;. Nelson and Plosser (1982) initiated an intense debate
regarding this issue, and despite”the large literature that has followed,
the issue has proven difficult to resolve. (For overviews of this literature,
see, e.g., DeJong and Whiteman, 1993; and Stock, 1994.) A remedy for
this-difficulty is to work with both specifications in turn, and evaluate the
sensitivity of results to the chosen specification.

As figure 3.2 illustrates, the choice of either specification is problematic
in the present empirical context, because the data do not appear to follow

a constant average growth rate throughout the sample period. The figuire
“depicts the 16gged variables, along with fitted trends estimated for con-
sumption, investment, and output (subject to the common-trend restric-
tion). A trend was not fitted to hours, which as expected, does not exhibit
trend behavior.

As figure 3.2 indicates, consumption, invegtmenty-and oﬁﬂuzﬁ exhibit a
distinct reduction in growth in mmwmoﬁBmﬁ&,ﬁHou» MoEQQEm with the
reduction in productivity observed during this period (for a recent discus-
sion of this phenomenon, see Nordhaus, 2004). Note in particular the

persistent tendency for consumption to lie above its estimated trend line

- over the first half of the sample period, and below its trend line during

the second half of the period. This illustrates that if the series were truly
trend stationary, but around a broken trend line, the detrended series will
exhibit a spurious degree of persistence, tainting inferences regarding their
cyclical behavior (see Perron, 1989 for a discussion of this issue). Likewise,
the removal of a constant from first differences of the data will result in
series that persistently lie above and below zero, also threatening to taint
inferences regarding cyclicality.

2 The GAUSS procedure ct.prc is also available for this purpose. -
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Figure 3.2 Logged n.&.nnno&ow and fitted trends.

The third approach to detrending involves the use of filters designed
to separate trend from cycle, but given the admission of a slowly evolving
trend. In this section we introduce the Hodrick-Prescott (H-P) filter, which
has proven popular in business cycle applications. In section 3. 2, we intro-
duce a leading alternative to the H-P filter: the _umba pass filter.

Decomposing log y; as

n

logy: =gt + ¢, (3.12)

where g; denotes the growth component of logy; and ¢; denotes the
cyclical component, the H-P filter estimates g; and ¢; in order to minimize

T T
Y2 +AY (1 - LYel, (3.13)
N.l.. S—

taking A as given.? Trend removal is accomplished simply as

~

¥, =logy: — & =7%. (3.14)

3 The GAUSS procedure hpfilter.prc is available for this mE.mown.

Figure 3.3 Hommnm trajectories mba H-r ﬁ.n:am.

The parameter .A in A,w.u_.mv. determines the importance of having a
smoothly evolving growth component: the smoother is g;, the smaller will
be its second difference. With-A = 0, smoothness receives no value, and

all variation in log y; will be assigned to the trend component. As A — o0,

the trend is assigned to be maximally smooth, that is, linear.

In general, A is specified to strike a compromise between these two
extremes. In working with business cycle data, the standard choice is A =
1,600. To explain the logic behind this choice and what it accomplishes,
it is necessary to venture into the frequency domain. Before doing so, we

illustrate the trajectories of g; resulting from this specification for the exam- .
- ple data, including hours. (In business cycle applications, it is conventional

to apply the H-P filter to all series, absent a common-trend restriction.)
These are presented in figure 3.3. Thé evolution of the estimated Z;’s
serves to underscore the mid-1970s reduction in the growth rates of
consumption, investment, and output discussed above.

The versions of detrended output ¥, generated by these three trend-
removal procedures are illustrated in figure 3.4. Most striking is the differ-
ence in volatility observed across the three measures: the standard deviation
of the Eﬁm&% detrended series is o o»a noBmmnna with 0.010 for the
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differenced series and 0.018 for the H-P filtered series. The behavior of
the linearly detrended series is dominated by the large and extended depar-
ture above zero observed during the mid-1960s through the mid-1970s,
and the subsequent reversal at the end of the sample. This behavior pro-
vides an additional indication of the trend break observed for this series in
the mid-1970s. The correlation between the linearly detrended and differ-
enced series is only 0.12; the correlation between the linearly detrended
and H-P filtered series is 0.49; and the correlation between the H-P filtered
and differenced series is 0.27.

3.2 Isolating Cycles

3.2.1 Mathematical wﬁ&mﬁsasm

In venturing into the frequency domain, background information on com-
plex variables is useful. Brown and Churchill (2003) and Palka (1991) are
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good undergraduate and graduate textbook sources of background infor-
mation. And as noted above, expanded textbook treatments on the isola-
tion of cycles are available from Sargent (1987a), Harvey (1993), Hamilton
(1994), and Kaiser and Maravall (2001). -

To help keep this section relatively self-contained, here we briefly sketch

some key points regarding complex variables. Let 7 be imaginary, so that

Vi=-1.
A variable z is complex if it can be represented as
z=x+1y, (3.15)

where x and y are real; x is referenced as the real component of z, and y as
the imaginary component. This representation of z is in terms of rectangu-
lar coordinates. In a graphical mnwmnmg of z, with the real component of
z depicted on the horizontal axis and the imaginary component depicted
on the vertical axis, the distance of z from the origin is given by

Vot +y2 =

(5 + 3y)(% — 3y)
2], _ (3.16)

In (3.16), (x — éy) is known as the complex conjugate of z, and |z] is
known as the modulus of 2. If |z| =1, z is said to lie on the unit circle. See
figure 3.5 for an illustration.

An additional representation of z is in polar coordinates. Let @ denote
the radian angle of z in (x,y) space: that is, o is the distance traveled
counterclockwise along a circle starting on the x axis before reaching z
(again, se¢ figure 3.5 for an illustration). In terms of polar coordinates,
% may be represented as

z = |z|(cosw + isin w)
= |z|e™, (3.17)

where the second equality may be derived by taking Taylor Series expan-
sions of cosw, sin , and £ about 0 and matching terms. Using (3.17),

we obtain U&SQS& s Theorem:

nu_NKNQ%
= _Nt.AnomE\..Tﬁ.mbi.‘.v. (3.18)

In mnEEom to DeMoivre’s Theorem, another important result WOB
complex analysis we shall reference below comes from the Riesz- Fischer
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Figure 3.5 The unit circle.

Theorem, which we now sketch. For,a sequence of complex numbers

{a w =00 that satisfy

> lajlP<oo, (3.19)

j=—o0

known as a square-summability condition, there exists a complex function
f(w) such that

b . .
= M aje” ", (3.20)
J=—00 ,
where w e [—m,m]. Note from (3.17) that

£ = (cosw — isinw).

Aaai}2
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The construction of f () from ?@ w j=—c0 is known as the Fourier transform
of {a; r.ut - Given f(w), the elements of {a; rl! o Can be recovered

using the inversion formula

1

Nu \,Aevm«é dow. (3.21)

4 =

Finally, note that for any two functions f() and g(w), where
8 . . 8 . .
flo)y=Y"ae ™,  go)= ) e,
Jm—00 Jj=—00

we have

floytg(@)= 3 (s + )™,

j==c0

Q.NRE.V.H Mou Q&u.nl.em,.

J=—00

HEm establishes that the Fourier transform of the sum of sequences is

the sum of their Fourier transforms, and that the Fourier transform of

o is & caom the Fourier EE&.OHE of ?@ oo

3.2.2 Cramér Represeniations

Consider the behavior of a time series-y;’ given by
3 = a(w) cos(wt) + B(w) sin(wt), (3.22)

where a(w) and B{w) are uncorrelated zero-mean random variables with
equal variances. As above, w is measured in radians; here it determines
the frequency with which cos(w?) completes a cycle relative to cos(#) as
t evolves from 0 to 27, 27 to 4, and so on (the frequency for cos(z)
being 1). The upper panels of figure 3.6 depict cos(wt) and sin(wz) as ¢
evolves from 0 to 27 for w = 1 and @ = 2. Accordingly, given realizations
for a(w) and B(w), y2 follows a deterministic cycle that is completed w
times as ¢ ranges mnoB 0 to 2m, and so on. This is depicted in the lower
panels of figure 3.6, using a(w) = f(w) =1, w =1 and 0 = 2.

*‘Consider now the construction of a time series y; obtained §~ combining
a continuum of ¥’s, differentiated by infinitessimal variations in w over the

_ interval [0,7]: , B ~
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g = \o " o) cos(wt)do + \o " 8(0) sin(wr)do. (3.23)

(The symmetry of cos(w#) and sin(wz) between ¢ € [0,7] and ¢ € [7,27]
renders the latter range as redundant.) Given appropriate specifications for
a(w) and B(w), any time series y; may be represented in this manner. This is
referred to as the spectral representation, or Cramér representation, of y;.
It represents y; as resulting from the combined influence of a continuum of

cyclical components differing by the frequency with which they complete
their cycles.

3.2.3 Spectra

Closely related to the spectral representation of y; is its spectrum. This is
a tool that measures the contribution to the overall variance of ¥, made
by the cyclical components 92 over the continuum [0, 7 ]. Specifically, the
spectrum is a decomposition of the variance of y; by frequency.
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To explain why, let y(7) denote the autocovariance between ¥; and Y4+
(or equivalently, between y; and y:—r):

y(r) = E(y — pe)(Frgr — Brtr)s E(y:) = phr-

Note that y(0) denotes the variance of y. So long as the sequence
(N2 _ 8 square-summable, by the Riesz-Fischer Theorem, we may
calculate its Fourier transform:

o0}

flw)= Y y(r)e ™" (3.24)

T=-~00

Moreover, by the inversion formula,

Sy g .
Vo) =35 \1 pla) do. (3.25)
The power spectrum of y; (spectrum hereafter) is defined as

5 (@) = .N.W Ale). (3.26)

From (3.25) and (3.26), note the sense in which the spectrum can be
viewed as a decomposition of the variance of y; by frequency: setting T = 0,
the integral of sy(w) over the range [—m, 7] yields y(0), and comparisons
of the height of 5,(w) for alternative values of w indicate the relative impor-
tance of fluctuations at the chosen frequencies in influencing variations
m Y .

For an alternative representation of the spectrum, note that DeMoivre’s
Theorem allows us to rewrite £~ as (cos wt — 7 sin wt). Thus combining
(3.24) and (3.26), we obtain

&0

s(w) = MW‘ MU y(t)(coswt — N..m.wbeﬂv. (3.27)

=—00

Moreover, since y(t)=y(~1), cos(0)=1, sin(0)=0, sin(—w) = —sin ,

and cos(—w) = cosw, (3.27) simplifies to

H 8 A
s(@) = Ammv §S+ NWN\S Smﬁe&. a.mwv
Because cos(wt ) is symmetric over [—m,0] and [0,7 ], so too is s(w); thus
it is customary to represent sy(w) over [0,7].

“To obtain an interpretation for frequency in terms of units of time rather
than radians, it is useful to relate w to its associated period 2, defined as
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the number of units of time necessary for 32 in (3.22) to complete a cycle:
p=2n/w.In turn, 1/p = w/2x indicates the number of cycles completed
by y? per period. For example, with a period representing a quarter, a
10-year or 40-quarter cycle has an associated valie of  of 27/40 = 0.157.
For a 6-quarter cycle, w = 27/6 = 1.047. Thus values for w in the range
[0.157,1.047] are of central interest in analyzing business cycle behavior.

3.2.4 Using Filters to Isolate Cycles

Returning to the problem of trend removal, it is useful to think of a slowly
evolving trend as a cycle with very low frequency; in the case of a constant
trend, the associated frequency is zero. Filters are tools designed to elim-
inate the influence of cyclical variation at various frequencies. Detrending
filters such as the first-difference and H-P filters target low frequencies;
seasonal filters target seasonal frequencies; etc.

The general form of a linear filter applied to y, producing SH is given by

3

h .
3l = > ey = C(L)ys:. 7 (3.29)
= .

In other words, the Enﬂ.nm. series QM is a linear combination of the original
series ;. In En frequency domain, the counterpart to C(L) is obtained
by replacing LJ with ¢~/ The nnmc.:” is the frequency response function:
C(e™*),

To gain an appreciation for how the Eﬂnﬂ works to isolate cycles, it

is useful to derive the spectrum of v&a ; here we do so following Sargent
Qomuwv Suppose {y;} is a mean-zero process with autocovariance se-

quence {y(7)}?2 _,. The autocovariance between ‘emq and Sm.ﬂ is given by

~ (3

$

. S
o&w.%\”ﬂv =E M Ei¥e—g . M Ch Ytb—r

fozey h=—7

= mMU MU CiChYr—fYsmh—t

J=—r b=y

=Y Y oyt +k—j)

.N.“l.* k=—v

=y,0(2). (3.30)
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Taking the Fourier transform of y, s (7), the spectrum of o\mx is given by

1 & :
30T
syr(w) = Mm M Yyr(T)e

35S S

J=—r bk=—7

Let b =t + k — , and re-write £77 in (3.31) as
T wlﬂ.«c@.{l@

- w!mewwlme.ﬂ.wmew. AwwNv

Finally, substituting for ¢~ in (3.31) using (3.32), we obtain

5,

uﬂlw b=—r wlloo
MU cie gl MU &Nw:&“iev
J=—r - h=—r
= C(e72)C(e*)s5y(w), . (3.33)

%rmmn. the second equality stems from the definition of s,(w).
Before interpreting this expression, we introduce the gain function:

G@)=ICe™), (3.34)

where | C(£7*)| denotes the modulus of C(¢~):

|C(e~)| = |/ Cle=w)C(e™@). (3.35)

For example, for the first-difference filter AH L), ﬁrn gain function is
given by

Glw) = /\AH — g 0)(1 — gi®).
H.)\M,\H — cos{w), (3.36)

swhere the second equality follows from the EWD.QJ\
. 67 4 7% = 2 cos(w). A (3.37)
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Given the definition of the gain function, the relationship between s, syr (@)
and sy(w) in (3.33) can be written as

5,6 (@) = |C(e7*) Py (@)
= G(w)?s(o), (3.38)

where G(w)? is referred to as the squared gain of the filter. This relation-
ship illustrates how filters serve to isolate cycles: they attenuate or amplify
the spectrum of the original series on a frequency-by-frequency basis. For
example, note from (3.36) that the first-difference filter (1 — L) shuts down
cycles of frequency zero.

3.2.5 The Hodvick-Prescots Filter

Regarding the H-P filter, the specification of A determines the division of
the influence of y° on y; between g; and ¢; in (3.12). Following Kaiser
and Maravall (2001), its gain function is given by

-1

B sin(w/2) \*
where
. 1 .
wp = 2 arcsin Awi\»v . (3.40)

The parameter wp, selected through the specification of A, determines
the frequency at which G(w)=0.5, or at which 50% of the filter gain has
been completed. The specification A = 1, 600 for quarterly data implies 50%
completion at a 40-quarter cycle. The choice of A =400 moves the 50%
completion point to a 20-quarter cycle, and A =6,400 to a 56-quarter.
cycle.

Squared gains G(w)? associated with the mHmm-&wmaHnDnn and H-P filter
(for the choices of A highlighted above) are illustrated in figure 3.7. In all
cases, the filters shut down zero-frequency fluctuations, and. rise mono-
tonically with frequency (reported hereafter in terms of cycles per quarter:
w/27). 4

Although the first-difference and H-P filters are capable of eliminat-
ing trends, they are not designed to eliminate seasonal fluctuations. For
quarterly data, seasonal frequencies correspond with.1/4 and 1/2 cycles
per quarter, and the squared gains associated with each of these filters are
positive at these values. As noted, business cycle models are typically not
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First-Difference Filter
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Figure 3.7 Squared gains of the first-difference and H-P filters. (Bottom Panel:
A=6,400: Dots; 1 =1, 600: Solid; A = 400: Dashes)

designed to explain seasonal variation, thus it is desirable to work with
variables that have had seasonal variations eliminated.

3.2.6 Seasonal Adjustment

As with the example analyzed above, it is most often the case that aggregate
variables are reported in mnmmODmE\ adjusted (SA) form. Seasonal adjust-
ment is typically achieved using the so-called X-11 filter (as characterized,

- e.g., by Bell and Monsell, 1992). So typically, seasonal adjustment is not

an issue of concern in the preliminary stages of an empirical analysis. How-
ever, it is useful to consider this issue in order to appreciate the importance
of the seasonal adjustment step; the issue also serves to motivate the intro-
duction of the band pass filter, which provides an important alternative to
the H-P filter.

As an illustration of the importance of seasonal adjustment, figure 3.8
presents the consumption series discussed above, along with its nonseason-
ally adjusted (NSA) counterpart (including H-P trends for both). Trend
behavior dominates both series, but the recurrent seasonal spikes associated

0.50
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Figure 3.10 Spectra of H-P filtered consumption. AZOS The nEd panel
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with the NSA series are distinctly apparent. The spikes are even more
apparent in figure 3.9, which presents the H-P filtered series.

Figure 3.10 presents spectra estimated for both versions of the H-P fil-

tered data (chapter 4, section 4.2 presents methods for estimating spectra).
The bottom panel of the figure truncates the seasonal spikes associated
with the spectrum of the NSA series to better illustrate the extent to
which the seasonal fluctuations dominate the contribution of business cycle
fluctuations to the overall variance of the series (recall that business cycle
fluctuations lie roughly between 1/40 and 1/6 cycles per quarter).

3.2.7 Band Pass Filters
We turn now to the band mmmm (B-P) filter. This is a filter designed to shut

down all fluctuations outside of a chosen frequency band. Given an interest -

in cycles with periods between p; and p,, (again, roughly between 6 and 40
quarters in business cycle applications), the ideal B-P filter has a squared
gain that satisfies

0.50
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1, we [27m/pu,2n/p;]

Glw)? =
(@) 0, otherwise.

(3.41)

As (3.42) below indicates, it is not feasible to implement the ideal B-P
filter, because doing so requires as input an infinite number of observa-
tions of the unfiltered series. However, several approaches to estimating
approximate B-P filters have been proposed. Here, we present the approach
developed by Baxter and King (1999); for alternatives, for example, see
Woitek (1998) and Christiano and Fitzgerald (1999).%

Let the ideal symmetric B-P filter for a chosen frequency range be
given by

w(L)= Y oL, (3.42)

j=—00

where symmetry implies «—; = o; V7. This is an important property for
filters because it avoids inducing what is known as a phase effect. Under
a phase effect, the timing of events between the unfiltered and filtered
series, such as the timing of business cycle turning points, will be altered.
The Fourier transformation of a symmetric filter has a very simple form.
In the present case,

[20]
a(67) = a(w) = M o@.wi.&.
j=—00

o0
=g+ Mo@.?t:& + m“.esv
J=1

o0 .
=ag+2) a;cos(w), (3.43)
=1

where the second equality follows from symmetry and the last equaliry
results from (3.37). . \

Baxter and King’s approximation to « (w) is given by the symmetric,
finite-ordered filter

K

Alw) = ap + NMS cos(w), (3.44)

j=1

* The collection of GAUSS procedures contained in bp . src are available for constructing
Baxter and King’s B-P filter.
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where
X
A(0)= ) a;=0,
=K

insuring that A(w) is capable of Hnn.uoibm a trend from the unfiltered series
(see their Appendix A for details). A(w) is chosen to solve

min \ " lo(w) — A(w)Pdo  subject to A(0) = 0; (3.45)
4 Jem

that is, A(w) minimizes departures from o(w) (measured in squared-error
sense) accumulated over frequencies. The solution to this objective ‘is
given by )

aj=a;+0, 7=~-K,...,K;

Oy
T

..C‘T.A.v.l..
IEIFEETHE?H,
X . .
~ 2K
= 3.46
6 2K+1 ° ( )
where w;=2n/py, and w,, =27 /p;.

Baxter and King propose the selection of X =12 in working with quar-
terly data, entailing the loss of 12 filtered observations at the beginning
and end of the sample period. Figure 3.11 illustrates the squared gains
associated with the ideal and approximated B-P filters constructed over
the 1/40 and 1/6 cycles per quarter range.

Application of the B-P filter constructed using K =12 to the SA and

'NSA consumption data produces the smoothed series illustrated in fig-

ure 3.12. The series exhibit close correspondence, with no discernible
trends or seasonal variations. The spectra estimated for these series, illus-
trated in figure 3.13, confirm the absence of both influences on the varia-
tions in the series. :

3.3 Spuriousness

We conclude this chapter with some words of caution. The common pres-
ence of trends in macroeconomic time series requires the completion of a
preliminary trend-removal step in most empirical applications. But because
it is difficult to convincingly establish the precise nature of the driving pro-
cess that gives rise to trend behavior, and the separation of trend from cycle

i
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can also pose challenges, it is difficult to insure that appropriate steps have
been taken in this preliminary stage. Unfortunately, this is an important
issue due toa comm roblem involving spurious stochastic behavior.
In general, m\ uriousness 1y used to characterize situations in which the
stochastic behaviorofafittéfed variable differs systematically from its unfil-
tered counterpart along the dimension of original interest in the empirical
analysis. Of course, the stochastic behavior of the two series will differ in
general, but for example, if the-removal of a trend induces systematic dif-

ferences in the business cycle vmomamnnw of filtered variables, spuriousness

s said to have Gnnb induced.

mmauommbamm can arise both in removing trends and Hmo_mnbm cycles.
Regarding the latter, consider the extreme but illustrative case in which
an H-P or B-P filter is applied to a collection of zero-mean serially uncor-
related CSSPs. Such CSSPs are referred to as white noise: their spectra are

~uniform. In this case, spectra of the filtered series will identically assume

the shape of the squared gains of the filters, and thus the filtered series will
exhibit spurious cyclical behavior. Harvey and Jaeger (1993) provide an
analysis of spurious behavior arising from H-P filtered data.

Regarding trend removal, we have seen that the removal of fixed trends
from the levels of series that have evidently undergone trend breaks can
induce considerable persistence in the detrended series. So even if the
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underlying data were trend-stationary, the application of a fixed trend
specification in this case would induce undue persistence in the detrended
series. Moreover, as noted, it is difficult to distinguish between trend-
and difference-stationary specifications even given the ideal case of con-
stant average growth over the sample period. And as shown by Chan,
Hayya, and Ord (1977) and Nelson and Kang (1981), both the removal
of a deterministic trend from a difference-stationary specification and the
application of the difference operator (1 — L) to a trend-stationary process
induces spurious autocorrelation in the resulting series. Similarly, Cogley
and Nason (1995) and Murray (2003) illustrate spuriousness arising from
the application of the H-P and B-P filters to nonstationary data.

Having painted this bleak picture, we conclude by noting that steps are
available for helping to mitigate these problems, For example, regarding
the trend- versus difference-stationarity issue, although it is typically diffi-
cult to reject either specification in applications of classical hypothesis tests
to macroeconomic time series, it is possible to obtain conditional infer-
ences regarding their relative plausibility using Bayesian methods. Such
inferences can be informative in many instances. (See DeJong and White-
man, 1991a,b, for examples in macroeconomic applications; and Phillips,
1991, for skepticism. Tools for implementing Bayesian methods in general
are presented in chapter 9.) And the use of alternative filtering methodsin a
given application is a useful way to investigate the robustness of inferences
to steps taken in this preliminary stage.

Chapter 4

Summarizing Time Sevies Behavior

The sign of a truly educated man is to be deeply
moved by statistics.
—-George Bernard Shaw

THIS CHAPTER OPENS WITH the assumption that both the model- and data-
preparation stages characterized in chapters 2 and 3 have been completed
successfully. Completion of the model-preparation stage implies that the
structural model under investigation is written as

Xy = MC\MV.&TH =+ &,
ey = Qﬁtvcr
E(ese;) = G()E(vpv;) G(r) = Q(1).

These equations are collectively referred to as the m@&mninn@nmﬂwgbm
the evolution of the # x 1 vector %, of model variables. Certain variables
contained in x; are unobservable, whereas others (or linear combinations
thereof) are observable. nﬁOvmn?my variables are contained in the m x 1

Sl

vector X;, and are related to x; via either .
X = H(p) %
or
X = H(uY o+, Elmw) =T,

either of which is known as a measurement equation. Hereafter, the depen-
dence of [F, G, Q, H] upon the structural parameters contained in p will
often be taken as granted for ease of notation.

Completion of the data-preparation stage implies that the variables con-
tained in X; are mean-zero covariance stationary stochastic processes
(CSSPs) exhibiting fluctnations isolated to desired frequencies. The data
represent deviations from steady state valnes. .

This chapter has three purposes. First, it presents two important
reduced-form models that provide flexible characterizations of the time-
series behavior of X;. The autoregressive-moving average (ARMA) model
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is presented for representing a single element of X;, and the vector auto-
regressive (VAR) model is presented for representing the elements of X;
collectively. Second, the chapter presents a collection of summary statistics
that frequently serve as targets for estimating the parameters of struc-
tural models, and as benchmarks for judging their empirical performance.
Empirical analyses involving collections of summary statistics are broadly
categorized as limited-information analyses. The statistics are all calculable
as functions of the parameters of either an ARMA or VAR model. The chap-
ter concludes with a presentation of the means by which full-information
analyses of structural models are conducted: evaluation of the likelihood
functions corresponding with their associated state-space representations.

The chapter uses the following notation. A univariate time series consid-
ered in isolation is denoted as y;. The variable Xj; denotes the i element
of X;. The parameters of a given reduced-form model are collected in the
vector ¥, and a generic function of these parameters is denoted as g(#).
The corresponding generic function of the parameters of a given structural
model is denoted as g(u).

As with chapter 3, supplements to the brief coverage of these topics
provided here are available from any number of texts devoted to time series
analysis (e.g., Harvey, 1993; Hamilton, 1994). Also, the example business
cycle data set introduced in chapter 3 is used to illustrate the material
presented in this chapter,

4.1 Two Useful Reduced-Form Models

4.1.1 The ARMA Model

The foundation of the models presented in this section is 'a mean-zero
covariance-stationary stochastic process {e;}, which is serially uncorrelated
at all leads and lags: E(g;e,) = 0, £ #s..The variance of ¢, is denoted as
2. Recall from chapter 3 that such a process is referred to as white noise,
due to the shape of its spectrum. The variable y; constructed as

Yo =€ +0er
=(1+6L)e; (4.1)

is said to follow a moving average process of order 1, or MA(]) process: it
is a moving average of the two most recent observations of &,. The variance
of ¥, denoted as Qu.w or y(0), is given by .

oy = E(3}) |
= mAmm + 208es801 + mwmwipv
= (1+6%)0?, | (4.2)
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and its autocovariance pattern is simply

v(1) = E(9:yp-1)
= E(e; +0e;-1)(67—-1 + 0&:-2)

=602 . (4.3)
v (s) = E(33e—s) = 0, s>1.

Denoting the s-order autocorrelation of ¥ as ¢(s) = y(s)/y(0), the
corresponding autocorrelation pattern is

1) = 5 .
,GAVWNH&H.WNJ,

p(sy =0, s>1. (4.4)
Thus the impact ow gron { ui_ persists one period beyond its initial realiza-

tion, imparting first-order serial correlation in {y}.
© An MA(q) process specified for y; generalizes to

Ye=¢&r+ e+ + mmmnrw

q
= M%&mwl\

7=0

7
=D (6 L)z

=6(L)er, " (45)

where 8y = 1. The variance of y; in this case is given by
a 2
> =02) 07, 4.6
of =) 6}, : (4.6)
j=0
and its covariance pattern is

o.u ﬁm.q +.9.+w$ + mi.wmw +ee mmmmiL 3 5= Hu Y 4
v(s)= 0 , 5>4q.
. (4.7)

Note that the persistence of ¢; is limited to the vonNos noﬂmmmob&bm.
with g. .
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Finally, an infinite-order MA process specified for y; is given by

oo
Y= Muﬁ\\u,mul\
j=0

=y(L)es. . (4.8)

The Wold Decomposition Theorem holds that any CSSP may be repre-
sented as in (4.8), where

D ¥l <oo, (4.9)
7=0

with the white noise process {g;} representing a sequence of one-step-ahead:
forecast errors:

8r =9 — B 1(9e|9s—1, r—2, - ... (4.10)

The expectations operator E;_1(-|2) is conditional on information con-
tained in  available at time # — 1. The condition (4.9) is referred to as
square summability. Itis necessary to insure a finite variance and covariances
for 3::

o =0y Yk - (4.11)
=0 _ o
v(s) =02 [Ysho + Vo191 + Yo2¥2 + -+ 1. (4.12)

Consider now a specification for y; of the form -
Y=pYp-1+ten  pl<L. (4.13)

In this case, y; is said to follow an-autoregressive process of order 1, or
AR(1) process. To derive the variance and covariance pattern for 5, implied
by (4.13), it is useful obtain an expression for : in terms of {&;}. One way
to do so is through recursive substitution. This begins by substituting for
%1 in (4.13), yielding

Y = p(pYs—2 + &:-1) + &
=& + p&s—1 + 0%Ys2.

Repeated substitution for y,_2, %3, and so on yields

[oo]

Yp.= Mb\.mwi... (4.14)
‘ =0
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Notice the role played by the restriction |p] < 1: this insures satisfaction
of the square-summability condition, thus (4.14) constitutes a Wold Rep-
resentation. For the special case in- which p =1, (1 — L)y = &, and thus
9: is said to be difference-stationary. Square-summability is violated in this
case, and the variance of y; does not exist. In this special case y; is also said
to be integrated, since from (4.14) ; is obtained by integrating over the
set of realizations of {&;} observed up to time &.

Given the restriction |p} < 1, the expressions for Qu_u and y(s) in (4.11)
and (4.12) specialize to

2= . (4.15)

s=1,2,.... (4.16)

Correspondingly, ¢(s) = p°. From both (4.14) and (4.16), it is evident
that p determines the persistence of &;: the nearer is p to 1, the stronger
is the influence of ;—; on ¥;. .

Before generalizing beyond the AR(1) case, it is useful to consider a

. more direct approach to the -derivation of (4.14). Rewriting (4.13) as

¥e = pLy: + &,
(4.14) can be derived as follows:

(I —pL)y: = &r;

1
I T a=en”

MUABN.H\.vmw

J=0

= M\ohmwl&..
7=0

Think of (1 — pL) as a first-order ‘polynomial in the lag operator L. The
root of this polynomial is 1/p, which lies outside the unit circle given
that |p| < 1. This is a necessary condition for the stationarity of y;. Again
returning to the special case in which p = 1, the root of the polynomial is
unity, and in this case y; is said to follow a unit root process.
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Generalizing to the AR(p) case, 4; is given by

Yo = P1Y1-1+ P2Ye—2 + -+ + PpYe—p + &1, (4.17)
or

(I = oL —-—pyLP)y, = p(L)y; = &s. (4.18)
Factoring (1 — p1L — -+ — ppLP)as (1 = A1 LY(1 — ApL)...(1 — ApL), s

can be ON@HnmmﬂQ as
A v

= Y (L)e;. . (4.19)

i

Je

So long as the roots 1 \r\., J=1,...,p of the polynomial p(L) lie outside
the unit circle, ¥(L) is square- ,.EEBmEn and (4.19) constitutes a Wold
Wn@anmmnﬁmnom

The persistence of ¢, is determined by the proximity of the smallest root
to unity: the closer to unity, the greater is the associated value of A, and
thus the greater is the persistence. If 4 roots lie exactly on the unit circle,
then 4 applications of the difference operator to %, denoted as (1= L)y,
will cancel the 4 terms f hv on the right-hand side of (4.19), and thus
(1—L)* y, will be stationary. In this case, y; is said to be Emnmnmﬁnu of
order 4, or an I(4) process.

> means for deriving the coefficients of ¥(L) (and thus expressions for
o} 2 and y(s) using (4.11) and (4.12)) as functions of the coefficients of p(L)
is ?oSmna by the method of undetermined coefficients. This @nmEm by
combining (4.8) and (4.18) to obtain

p(L)ler = ¥(L)es,
implying
= p(L)¥(L)
= =pL—- = ppLE) W0 +y1L+ Y2 L% +-..). (4.20)

Both sides of (4.20) may be thought of as infinite-order polynomials in
L. Equating the coefficients associated with L%, L!, ... on both sides of
(4.20) yields the following system of equations: .
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1=1
O=yYr1—p=2>Y1=p1
0= — o1 — o2 => Y2 =p? + 2

0=1vy— p¥p-—1— p2¥p—2— - — pp¥o

0= Yipej — PVptiol — P2Viptia = = ol §=12,....
2+ v 421)

Exercise 4.1

Derive expressions for ¥, § = 0,1,2,... as functions o,m the coefficients of
o(L) for p = 1,2, and 3.

The specifications for y; as outlined are encompassed by an ARMA (p, 7)
model, expressed as

I-p;L—----— bmHSS,.H (1+6L+- o+ 8,L)e;, or
p(L)ys = 6(L)es. _ (4.22)

Stationarity is once again determined by the roots of p(L). Assuming these
lie outside the unit circle, the inversion of RHV yields the Wold Repre-

mg%g
- (5)e

Combining (4.8) and (4.23) yields the relationship
6(L) = p(LY(L), | (4.24)

which generalizes (4.20). Accordingly, the method ofundetermined coeffi-
cients may be applied to (4.24) to obtain expressions for v/, = 0,1,2,.
as mﬁbnnomm of the coefficients of §(L) and p(L), again yielding nﬁunnmﬁonm

for q and y(s) via (4. HC and (4.12).

Exercise 4.2

Derive expressions for v/, j =0, 1,2, ... as fanctions of the coefficients of
p(L)yand 6(L) for p=1,4=1.

A numerical m_mo&ﬁgd for implementing the method of undetermined
coefficients involves the construction of a hypothetical realization of { 73 poidny
resulting from a special realization of innovations {e;}$2,. Specifically, let
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—p+1),9-p), - - - ¥~} = 0,80 = 1, and {e:}72; = 0. Then from (4.8), the
resulting sequence {y;}72, is identically {1, %M? From (4.22), the sequence
T\SWO may thus be constructed iteratively as follows:

Yo=1
Y1=p1+060
V2= p1y1 + o2 + 62

Vp=p1¥p-1+m¥p2+--+pp+6

v = p1vj-1 + p2¥j2 + - 4 ppWi—p + 65, (4.25)

where 6; = 0 for 7 > 4. A plot of the resulting sequence E@.%Mo is referred
to as an impulse response function, because it traces out the response of y;
to the realization of a representative shock.

We conclude with a brief discussion of estimation. Note from (4.17)
that the coefficients of an AR(p) model can be estimated in straightforward
fashion using an ordinary least squares (OLS) regression. In the regression,
the (T — p) x 1vectory = [9541,%+2,- .. y7] servesasthe dependent vari-
able, and Ly, L2y,..., LTy serve as independent variables, where L7y =
(Yp+1=7>%p+2~5>- - - y7—;1, and T denotes the total number of observations
of {%:}. Moreover, given the assumption of normality for {e,}, the result-
ing OLS estimates of p(L) coincide with conditional maximum likelihood
(ML) estimates, as you will be asked to demonstrate in exercise 4.5 below
(where conditioning is on the initial observations [31,%,.:., ).

Estimation is not as straightforward when-the specification for y; contains
an MA component. Complication arises from-the presence of unobservable
variables as explanatory variables for y;: namely, lagged values of &;. But as
demonstrated in section 4.3, this complication may be overcome via use
of the Kalman filter; see in particular exercise 4.6.1 .

4.1.2 The VAR Model

A vector autoregressive (VAR) model specified for the m x 1 vector X is
the multivarjate analogue of an AR model specified for the single variable

1 GAUSS’s Time Series module is also available for estimating ARMA models. Alternatively,
estimation code is available at C
http://www.american.edu/academic.depts/cas/econ/gaussres/timeseri/timeseri.htm
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Pr. .Hwn.&nﬁﬁnmma analogue to the AR(p) mmanm.mnmmom (4.18) for X; is
given by

p11(L) p12(L) ... pm(L) || X1z £1¢
p21(L)  p22(L) oo pam(L) || Ko | _ | E2e | B(eel) =3,
Pl AHV biwﬁhv cee \oiwxﬂhv Koy Emt
(4.26)
where

b@.ﬁhv = C, + Pw.w.ﬁl_. e +b¢w.ﬁwv

is a p™-order polynomial in the lag operator, expressing the influence of
X; on X;. Defining the lead matrix in (4.26) as ®(L), the roots of the VAR
representation correspond to the mp factors of the determinant of ®(z),
z complex. These roots will lie outside the unit circle given stationarity
of the individual elements of X;, thus ®(L) may be inverted to obtain a
multivariate analogue of the Wold Representation (4.8):

o0
X =) W, (4.27)
7=0

where W; is m x m.

Covariation patterns between the elements of X; may be conveniently
characterized by writing the VAR in companion form. The companion
form of an AR(p) model for a single element X;; of X, is given by

Xir pil iz PE3 - Pip | [ K-l Eir
Xip 1 1 0 0 - 0 p. ) 0
Xipen =10 1 0o ... 0 Xp3|+1|0
Xir—(p+1) "0 0 0 ...1 © Xir—p 0
(4.28)
Defining the (mp) x 1 vector

Zr = [X1r Xip-1.. . Xipo(p1) X2t Xor1
cen Nwwl@tv o Xome Kopp—1 - NEIQI.C_\V

and the ?&E x 1 vector

Ww”Mme O...OmeO...Om»&ﬂ O...Ou\,u
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the companion form for the VAR is given by

Zyp = kA‘Nw|M -+ Ery A$.N®v
where the (mp) X (mp) companion matrix A contains VAR equations
in the 1%, (p+ 1), ..., and [(m — 1)p+ 11% rows, and maintains iden-
tities between elements of z, and %1 in the remaining rows. Note
the correspondence between (4.29) and the AR(1) expression for y; in
(4.13).

Exploiting this correspondence, let

I'(0) = E(z2;,)
denote the contemporaneous variance-covariance matrix of 2, and

I'(s) = E(zz._,)

the s®-order covariance matrix. From (4.29),

I'(0) = E[(Az—1 + e )(Az—1 + 2;)]
= AT(0)4' + %, (4.30)

the solution to which is given by
vec[T(0)] = [I - A® AT pec[z], (4.31)
where ® denotes the Kronecker product. Further,

I'(1) = E(zz_,) -
= E((Az-1.+ &)z._))
= AT(0),

and in general,

[(s)=AD(s - 1)
= A°’T(0). (4.32)

Note the symmetry between (4.31) and (4.15), and between (4.32) and
(4.16).

4.2 Summary Statistics . o 65

As with the AR(p) specification, the parameters of the VAR model may
be estimated using OLS by rewriting (4.26) in standard regression no-
tation: :

Y = EB+ u, (4.33)
where the (T — p) x » matrix
T=[XX% ... X,
with
X = [Xp+1Xips2 ... X7l

the (T — p) x (mp) matrix & contains in its ™ row

[X1s1 N:tu cen NDTNV N«mn!u N«NTN N‘NTNV
vor Kp Xtz ... NEN,INLH .

the (#p) x m matrix B contains VAR parameters for X; in its #% column,
and the (T — p) X m matrix % contains the (T — p) x 1 vector of innova-
tions [g;p41 Sipr2...81] corresponding with the VAR equation for X;.
And as with the AR(p) model, OLS estimates coincide with ML estimates

given the assumption of normality for ¢,.2

4.2 Summary Statistics

We begin by discussing summary statistics for a single variable y,. A good
initial characterization of y; is provided by its autocorrelation function,
which plots ¢(s) as a function of s (since @(s) = @(—s), negative values of
s are ignored). This plot provides an indication of the persistence of inno-
vations to y, because as indicated in (4.12), the greater the persistence
(i.c., the greater the horizon over-which ¥ differs from zero), the greater
will be the horizon over which autocovariance terms (and thus autocorre-
lation terms) will differ from zero. The plot also illustrates cyclical patterns
followed by ;.

2 The collection of procedures contained in var . src is available for estimating VAR speci-
fications, constructing the companion matrix 4, and calculating I(s),s=0,1,....
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Estimates of the elements of ¢(s) may be obtained using the following
collection of sample averages:>

(33
70 =(7) M@N -57

76)=(7) S G- =)

t=s+1
() = V(s)/7(0). . (4.34)

Alternatively, given estimates of an ARMA specification for y, the cor-
responding Wold Representation of y; may be constructed using (4.25),
which can then be mapped into $(s) using (4.12).

Plots of §(s) (estimated using sample averages) for the four filtered ver-
sions of output described in chapter 3 are illustrated in figure 4.1. The
four versions were obtained by detrending, differencing, Hodrick-Prescott
(H-P) filtering, and band-pass (B-P) filtering; each series represents logged
deviations from trend.

Immediately apparent from figure 4.1 is the high degree of pérsistence
exhibited by the detrended series. Recall from figure 3.2 that the level
of the series follows broken trend line, indicating a substantial reduction
in growth approximately midway through the sample period. Given the
removal of an unbroken trend line, the resulting detrended series persis-
tently lies above zero during the first half of the sample period, and below
zero during the second half. This persistence translates into the behavior
of 3(s) depicted in figure 4.1, which decays very slowly, and remains at
approximately 0.25 even at the 40-quarter horizon. Plots of P(s) esti-
mated for the alternative versions of ; reveal a pattern of cyclical behavior:
positive autocorrelation over the first four to six guarters gives way to
negative autocorrelation until roughly the 16-quarter horizon, indicating
predictable movements of y; above and below trend.

Another useful means of summarizing the persistence and cyclicality of
9 is through the construction of its spectrum. The spectrum was described
in detail in chapter 3, section 3.2; here we provide a brief summary. The
spectrum §,(w) is a decomposition of the variance of y; by frequency w. Fre-
quency, measured in radians, is usefully interpreted through its relationship

3'The GATUSS command autocor performs these calculations.
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Figure 4.1 Sample autocorrelations of output.

with period p, which measures the number of time periods needed to com-
Enﬁ.n a cycle: w = 2 /p. Thus business cycle frequencies, associated with
periods between 6 and 40 quarters, fall within the range [0.157, 1.047]in

working with quarterly data. The spectrum is closely related to the auto-
covariance function:

1 - A
&.?&NAMMV iovl_,wMuiﬂvnomASﬂv : (4.35)

=1

The integral of sy(w) over the range [, 7] yields y(0), and comparisons
of the height of 5y(w) for alternative values of w indicate the relative impor-
tance of fluctuations at the chosen frequencies in influencing variations
in 9;. Recall that because cos(wt) is symmetric over [—7, 0] and [0, 7], so
too is s(w); it is customary to represent sy(w) over [0,7]. T

. As is clear from (4.35), the construction of an estimate of sy(w) for y;
is straightforward given estimates ¥(s). Alternatively, an estimate of s(w)
can be obtained through its relationship with the parameters of an %
specification estimated for ¥;; the relationship is given by:

;%Eﬁj_p
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Figure 4.2 Spectra of output.
where
£7* = cos(w) — i sin(w),
vi= -1, and |- | denotes the modulus operator; for example,*

6(e7%)] = |/8(e=@)B(e™).

Spectra estimated for the four versions: of output described above are
iltustrated in figure 4.2. Also, spectra estimated for the H-P filtered versions
of output, consumption, investment, and hours are illustrated in figure 4.3.
The estimates were obtained by estimating ARMA models for each series,
and constructing sy(w) as in (4.36). In'the figures, the horizontal axis is in
terms of w/2m: cycles per quarter.

Note how the behavior of the autocorrelaton functions depicted in
figure 4.1 translate into the behavior of the spectra depicted in figure 4.2.
The persistence evident in the detrended series translates as a spike in its
corresponding spectrum at zero frequency. (The height of this spectrum

4 See Harvey (1993) for a derivation of (4.36). The procedure spec_arma.prc can be
used to construct sy(w), taking p(L) and 6(L) as inputs. )
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- Figure 4.3 Spectra of H-P filtered data. -

actually grows unboundedly as w approaches zero; the spectrum was trun-
cated at 0.1 in the figure to better depict the additional spectra.) The fre-
quency zero corresponds to a period p of infinity, or to a cycle that never
repeats. As indicated by its spectriim, innovations with this characteristic
dominate the behavior of the detrended series.

For the remaining series, spectral peaks lie within business cycle fre-
quencies (between 1,/40 and 1/6 cycles per quarter). In the case of the
H-P and B-P filtered series, this is by design, as the characterization of
the squared gains corresponding with the H-P and B-P filters provided in’

* chapter 3, section 3.2 illustrate (see in particular figures 3.6 and 3.10).

The spectral peak associated with the differenced series is much less pro-
nounced in comparison, and the non-trivial component of the spectrum
of this series over the range [0.15, 0.5] reflects the influence of relatively
high-frequency fluctuations on the overall behavior of this-series.

We conclude the characterization of y; by recalling the discussion of
impulse response functions in section 4.1. Recall that these trace the res-
ponse of ¥ to the realization of a single shock at time 0: g9 = 1, &; = 0,
¢ > 0. Equivalently, these functions plot the coefficients ¥, j = 1,2,...
of the Wold Representation of ;, as expressed in (4.8). Impulse response
functions are illustrated for the four H-P filtered series in figure 4.4. Each
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Figure 4.4 Univariate impulse response functions of H-P filtered data,

function was constructed from estimates of an ARMA specification, which
were used to construct ¥, j = 1,2,... asin (4.25).

Note how the cyclical nature of the responses mimic the autocorrelation
pattern of H-P filtered output in figure 4.1. A positive shock drives each
series above trend for approximately four to six quarters; the series then
overshoot their trend lines before ultimately recovering at approximately
the 20-quarter horizon. Note also the close relationship between the dy-
namic responses of the series, .

We now discuss summary statistics for the collection of variables con-
tained in the m x 1 vector X;, or when convenient, for the expanded col-
lection of variables contained in the (mp) x 1 vector 2, constructed from
X; as indicated by the companion form of the VAR specified in (4.29).
Patterns of auto- and cross-covariation are usefully nrmnmnnmmﬁﬂfz&bm
I'(s) = E(%2,),s = 0,1,.... These may be obtained from ¢stimated’ VAR
parameters following (4.30)—(4.32). A collection of statistics frequently of
interest in empirical business cycle applications are reported for the differ-
enced, H-P filtered, and B-P filtered data in table 4.1. The detrended data
were excluded from the table because the VAR specification estimated for
these data contains a unit root, thus the construction of I'(0) via (4.31) is
not possible in this case. .

5 The procedure armaimp.pre can be used to calculate impulse response functons in
this fashion.
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TABLE 4.1 )
Summary statistics estimated ffom VAR
Differenced Datn
j oj 2 o) 00 giy(1)
y 0.0099 1.00 0.36 1.00 0.36
C 0.0051 0.51 0.22 0.54 0.42
Z 0.0505 5.10 0.14 091 0.21
b 0.0091 0.92 0.60 0.69 0.32
H-P filtered Datn
j o) 2 o) ep0) gD
y -0.0177 1.00 0.86 1.00 0.86
c 0.0081 0.46 0.83 0.82 0.75
1 0.0748 423 0.79 0.95 0.80
b 0.0185 1.05 0.90 0.83 0.62
B-P filtered Data
. oj ’
J oy m,.“. e(1) me\.,v_ﬁov @,QQV
y 0.0184 1.00 0.94 1.00 0.94
¢ 0.0084 0.46 0.94 0.90 0.85
i 0.0733 3.98 0.92 0.96 0.89
b

0.0193 1.05 0.94 0.87 0.71

The first column of the table reports standard deviations of the individual
series, and the second reports standard deviations relative to the standard
deviation of output. Note that under all three versions of the data, invest-
ment is far more volatile than output (o; /oy ranges from approximately
4 to 5), whereas consumption is far smoother (o, /oy is roughly 0.5); the

-+ volatility of hours and output are roughly equal. Measures of first-order

serial correlation are quite low among the differenced series ( particularly for
investment: 0.14); while ranging from 0.79 to 0.94 among the H-P and
B-P filtered data. Finally, with ¢;,(s) denoting the s®-order correlation
between variable j and output, note that output is most closely correlated
with investment, and that correlation patterns in general are relatively weak

among the differenced series in comparison with the H-P and B-P filtered
series.

,,mwomnmma 4.3

Construct the collection of summary statistics presented in table 4.1 using
a version of detrended output obtained by fitting a broken trend to the
data. Do this using the following steps.
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1. Split the sample into two periods: observations through 1993:1V, and obser-
vations from 1994:1—2004:1V. For each, fit 2 common linear trend to logged
output, consumption, and investment; subtract the estimated trend; then
recombine the resulting series (use the procedure ct . prc for this step).

2. Estimate a VAR representation for the data using p = 8, construct the com-
panion matrix A4 as in (4.29), and then construct I'(0) and I'(1) using (4.30)-
(4.32) (use E% procedures contained in var . src for this step).

3. Obtain [oy, q“, @(1), ¢;4(0), 9;,(1)] from the relevant entries of I'(0)
and I"(1).

Spectral representations of the data may also be constructed using VARs.
This is accomplished via a multivariate analogue of (4.36). Setting 6(L) =1,
(4.36) characterizes how the spectrum of a single variable is obtained
using estimates of an AR(p) model. To obtain the multivariate analogue of
(4.36), write the VAR of X; as

Xy =M1Xp 1 + N2 X2+ + TpXsep + 65, (4.37)
where Y is & x k. Letting .
T(L)y=I-"1L—---—TpL?,

the spectrum of X;, denoted as §(w), is given by®
(@) = 5 IT( Y (e, (4.38)

The j® diagonal element of S(w) contains the spectrum of the /% variable
of X; at frequency o, sj(w), and the (4,7)® element of S(w) contains the
cross spectrum between the 7% and ;™ variables of X;, 5; j(w). Estimates of
the spectra for the H-P filtered data produced using (4.38) closely mimic
those depicted in figure 4.3, and thus are not reported here.

Finally, impulse response functions may also be constructed using VARs.
This is most conveniently accomplished using the companion form of the
VAR given by (4.29). Initializing z_; = 0, this proceeds by constructing
a nonzero initial value ¢y, and then constructing {z;}32, as zo = €, 21 =
Agy, zp = A%ep, ... The specification for ep is typically chosen to simulate
the impact on the system of a one-standard-deviation innovation to the %
variable of the system. If the innovations were all uncorrelated, so that the
covariance matrix X were diagonal, the specification for ¢ would contain
a zero in all but its [(§ — 1)p + 1] row, which corresponds to the ;&
equation of the VAR. This entry would be set to the square root of the

6 For a derivation, see Hannan (1970). The vSnnaEn spec_var .prc is available for use
in constructing S(w) using (4.38).
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7% diagonal element of X. However, correlation among the innovations
implies that an innovation to the ;™ variable of the system coincides with
innovations to additional variables in the system. To capture this, g9 must
be constructed dccordingly.

Recall that g, relates to the system innovations as

Ww"MMHwO....OmNu O...Om.%»w OOM\.‘.

for the moment, it will be convenient to work directly with the vector
g;. To recap, the problem faced in constructing e is that the elements
of &; are typically correlated, so that a movement in one component will
coincide with movements in additional components. The leading approach
to dealing with this involves working with orthogonalized innovations in
place of &;. Orthogonalized innovations are innovations that are uncor-
related across VAR equations. Leét v; represent such innovations, so that

~ E(vrv;)=1. Defining a matrix P such that

Plzpl=1, (4.39)
which implies :
T = PP/, (4.40)
vy may be coristructed using
v =P lg,. \ (4.41)

The only problem at aﬁm point is that there are many possible specifications
of P! that can be constructed to satisfy (4.40). Here we discuss a leading
specification: the Cholesky decomposition of X see Hamilton (1994) for
a discussion of alternative decompositions.

- The Cholesky decomposition of T isa Hoén_.,qmmnmﬁmn matrix that satis-
fies (4.40), with diagonal elements containing the square root of the diag-

" onal elements of X (i.e., the standard deviations of the elements of &;).
‘Consider the nObmﬁ.cQuOD of vy OUSE& by introducing into (4.41) a

specification of &g containing 1 in its 7/ row and -zeros elsewhere. The
resulting specification of vy will contain the % column of P~1. Using the

. ‘Cholesky decomposition of  for P~1, vy will contain zeros in the first

7 —1 entries, the standard deviation of the j® element of &, in the 5™ row,
and non-zero entries in the remaining Hoém These latter entries represent
the influence of an innovation to the 7™ equation of the system on inno-
vations to the (7 + 1)* through m equations. This reflects the correlation

- among the innovations. Note however that under this construct the inno-

vation to the j® equation is prevented from influencing the 1% through
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Figure 4.5 System impulse response functions of H-P filtered data.

(7 — 1) equations; thus the ordering of the variables of the system will
influence impulse response functions constructed in this manner.

Impulse response functions constructed using the H-P filtered data are
illustrated in figure 4,5.7 The ordering of the variables used to construct the
responses is { ¥, ¢, £, #). Most striking is the magnitude of the responses of
investment to each shock, clearly indicating the high volatility of this series
in comparison with the others.. Investment initially responds negatively
to a positive consumption shock; otherwise, all variables exhibit positive
covariation in response to the shocks. Finally, the cyclical patterns described
above are once again in evidence here: note in particular that the variables
tend to overshoot their targets in returning to pre-shock levels.

As noted, each of the summary statistics we have discussed may be con-
structed from estimates of ARMA or VAR models, which can themselves be
estimated using ML or OLS techniques. An issue involving these estimates
regards the choice of lag lengths p and g for these specifications. Often this
choice will depend on factors particular to the problem at hand. For exam-
ple, if the number of available data points is relatively low, parsimony may

7 A procedure for calculating impulse response functions is included in var.sre.
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be of primary concern. Alternatively, if the objective is to obtain a general

feel for the data, as with the examples provided above, it may be preferable
to work with relatively liberal specifications. Here, we briefly mention three
leading approaches to lag-length specification; for an extended discussion,
see Judge et al. (1985).

First is a general-to-specific approach. This involves the sequential testing
of exclusion restrictions given an initial specification of a liberally parame-
terized model. For example, this could involve individual #-tests of the null
hypothesis that the 4™ lag chosen for the MA component of an ARMA

‘model, or the p™ lag chosen for the AR component, is zero. Alterna-

tively, sets of exclusion restrictions could be evaluated using a likelihood
ratio (LR) test. Letting L, and L, denote values of the unrestricted and
restricted likelihood functions associated with the model being estimated,
the LR test statistic is given by 2log [ L, — L, ], which is asymptotically dis-
tributed as x2(k), where k denotes the number of restrictions imposed in
calculating L,.

Alternative. approaches involve the use of selection criteria that explic-
itly incorporate penalties for selecting liberal parameterizations. Letting K

" denote the total number of parameters associated with a given model spec-

ification, two leading criteria are the Akaike Information Criterion (AIC)
(Akaike, 1974), which delivers the K that minimizes

AIC = |3(K)| + 2K

= (4.42)

‘and the Bayesian Information Criterion (BIC) (Schwarz, Howmv“ which

delivers the K that minimizes

Klog(T)

BIC = |E(K
S0+ —%

(4.43)
The notation X(XK) is used to indicate explicitly that the fit of the model,
.H.nmnnmnuﬂnm by |Z(K)|, will improve as K increases: |S(K)] is decreasing
in K. Of course, gains realized by increasing K are countered by increases
in the penalty terms.

To this point the discussion has centered on summary statistics designed

_to characterize the time-series behavior of the collection of observable

variables X;. However, the same collection of statistics may be used to char-
acterize the time-series behavior of model variables. Recall that these are
contained in the vector &;, which has a structural representation given by

E(ere) = Q.

Note the similarity of this specification relative to the companion form of
the VAR specified for z;. Exploiting this similarity, we simply note here that

% =Foy_1 + &1, (4.44)
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each of the summary statistics that can be constructed from VAR estimates
can also be constructed for x; by replacing 4 and ¥ with F and Q. More-
over, because the relationship between model variables and observables is
given by the simple linear mapping X; = H'x;, itis straightforward to align
summary statistics obtained from reduced-form specifications with those
obtained from structural specifications. The various empirical techniques
presented in part IT of this book use alternative approaches to aligning
statistics and judging their proximity.

We conclude this section with a note regarding measures of the preci-
sion with which summary statistics have been estimated. For concreteness,
let g(#) denote the estimate of a given function of the k£ x 1 vector of
parameters ¥, which summarize a reduced-form model specified for the

data. (The replacement of m\Ay.smﬁr m&v so that the discussion is cen-
tered on a structural rather than a reduced-form model, yields an analogous
discussion.) From a classical statistical perspective, under which parame-
ters are interpreted as fixed and data as random,_precision is conveyed
by reporting the standard error associated with g(?). From a Bayesian
perspective, under which the data are interpreted as fixed and parame-
ters as random, precision is conveyed by reporting the posterior standard
deviation associated with g(i#). . -

Beginning with the former, because the data used to construct g(#)
are random, and represent. one of many possible realizations that could
have been obtained, g(##) is also random. Its variance is referred to as the
sampling variance of g(#), which must typically be estimated. The square
root of this estimate is the standard error of g(%). In some cases analytical
expressions for standard errors are available; often they are not. For exam-
ple, if the vector ¢ is being estimated using an OLS regression of the form

y=X0+e,

and w\?wv isavector n@@nnmnbn.um” the OLS estimate of ¥, then the associated
standard errors of the individual elements of g(#) are the square roots of
the diagonal elements of

I

. T
Var(9) =5X(X'X)™, &%= @uv > &%, H=y-XP.

t=1

When g(¥) represents a nonlinear function of @, analytical expressions
for the standard error of g(##) are generally unavailable. One remedy for
this is use of the Delta method. Consider a first-order Taylor Series approxi-
mation of g(¥) around the true value ¥:
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. (4.45)

— g\ =

£ o)+ (53) @ - 0).
If g(®) is a scalar, (@)Y is 1 x kand (F — #)is kx 1. If g(#)isan £ x 1
vector, \mw%v\ is an £ x k Jacobian matrix, with (7,7)® element given by
the derivative of the i row of g(¢) with respect to the j& clement of
. By Slutsky’s Theorem (e.g., as presented in Greene, 2003), if % is a
consistent estimate of ¢, then g(#) will be a consistent estimator of g(#),
with variance given by

Var] g(9)] ~ Aw&@v\ s:@, mm&.@v .

(4.46)
30 39

The standard errors associated with the individual elements of wNW ) are

—

thus the square roots of the diagonal elements of Var[ g(%)].

Alternatively, if expressions for mfh%wlv are difficult to obtain, standard
_ errors may be calculated using numerical approximation methods, such
" as the method of Monte Carlo. This involves generating artificial sample
. drawings of data from the distribution implied by a parameterized version
of their reduced-form model, calculating g(1) for each artificial drawing,
and then computing the variance of g(#) from the resulting collection
of drawings. Once again, square roots of the diagonal elements of the
. estimated variance of g(1#) serve as estimates of the standard errors of the
individual elements of g(#).

As an example, consider the construction of estimates of o7, ®j(1), and
i j(s) via the use of a VAR specified for X;, as demonstrated in table 4.1, In

" this case, a parameterized version of (4.26), or equivalently (4.29), serves
as the model used to generate artificial realizations of ﬁNLm.ui this model
is known as the data generation process in the experiment. Consider the
- use of (4.29) for this purpose. Using p initial values of {X;} as starting
“values, implying a specification z, a drawing of TNLN,HH is obtained using -
(4.29) first by obtaining a drawing of FLWMH from a specified distribution,
inserting ¢ into (4.29) to obtain

z1 = Azg + 61, .

and then selecting the 1%, (p 4+ 1)®, ... [(m — 1)p + 1] elements from
7] to obtain X7. Repeating this process T times yields ANLMI..H. This real-
ization is then used to estimate 4 and ¥, from which I'(0) and I'(1) are
constructed using (4.30)—(4.32). Finally, extraction of aj, 9;(1), and

¢i,j(s) from I'(0) and I'(1) yields a Monte Carlo drawing of these statistics.
- Denote the /& drawing of these statistics as % v“., The mean-and vari-

sty

~ ance of g(¥) calculated over the realization of N Monte Carlo drawings
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are given by
20 = .W.MU Y (4.47)
i1
Var(g(9)) = WME@. ~s@] (448)

The square root of the diagonal clements of Var(g(%)) @HOS% a single
estimate of the standard error of wgv Denote this estimate as s5.e. [ g(#)].
Replication of this process using a total of J Monte Carlo nxmnmanua
yields J drawings of s.e.[ g(#)]. Letting the 7% drawing be given by
s.e.[ g(9)Y, a natural estimator of s.e.[g(?#)] is the average computed
over the J experiments:

J
- 1 . . .
se.fg(®)] = IMPW. [a(3)) . . (4.49)
\N‘N."H
The variance of this estimator is calculated as

Var T e.lg %v@ M T e. ﬁwgv% —s.e. Tw?wv”;w s (4.50)

\Iw

and the standard deviation .fw.?.w. [ WA%VZ is once again the square root
of the diagonal elements of the variance.

An assessment of the accuracy of s.e.[ g()] is provided by its numerical
standard error (#se). The #nse associated with any Monte Carlo estimator
is given by the ratio of its standard error to the number of Monte Carlo
replications (e.g., see Rubinstein, 1981). The #se of s.e.[ g(#)]is therefore

s.e. ﬁgg . (4.51)
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A critical step in obtaining Monte Carlo estimates involves the design of
the experiment. In the present context the design has three components:
parameterization of the DGP (including the distribution chosen for é;),

nse *gw =
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the specification for zp, and the specification of the artificial sample size T

. Choices for these components in general will depend upon the particular

objective of the experiment. But given the goal of constructing standard
errofs for point estimates of statistics constructed from the parameters of

~ a reduced-form specification, a natural starting point for parameterizing

the DGP is to use point estimates obtained using the actual sample. Also,

‘natural choices for zg include the unconditional mean of z (zero in this

case), or the initial value for zg obtained for the actual sample. And a

- natural choice for T is the actual sample size. Variations along all three

dimensions are useful for assessing the sensitivity of results.

‘Exercise 4.4

Construct a Monte Carlo estimate of standard errors associated with esti-

‘mates of the spectrum of a single variable y; obtained using (4.36). Do so

using the following steps.

I. Construct an ARMA(1,1) DGP for y;, using T=100, y5=0, p=0.8, § =
—0.3,and e; ~ N(0,1).

2. Let w?wv represent the (#4 1) x 1 vector of values of the spectrum 5(w)
w=0,m/n2x/n,... .7, n=40. .

3. For each of 100 realizations of {y:) obtained from the DGP you constructed,
estimate an ARMA(2,2) specification, and construct m\ﬁwv by inserting the
parameter estimates you obtain in (4.36).

4. Calculate the standard deviation of each element of mA ) over En 100 draw-
_ings you obtained: this yields a single estimate of s.e. T».ASM_ w=0, n/n,
/0y ...

5. Repeat steps 3 and 4 100 dmes, and use the resulting 100 drawings of

s.e.[sy(w)] to construct s.e. [ g(9)], s.e. [s.e. %va: and Ew? e.[g(9)]}.

3

- Under the Bayesian mnnm@nnnﬁ ¥ (and thus (g( %)) is interpreted as ran-
dom; inferences regarding g(#) involve calculations of conditional proba-*
g:unm associated with alternative values of g(?¥). Conditional probabilities
are assigned by the posterior distribution associated with w?wv The pos-

terior distribution reflects the combined influence of a prior distribution

specified by the reséarcher over g(?), and the conditional likelihood func-
tion associated with g(®) (where _conditioning is with respect to the
observed data). Point estimates m?wv are typically given by means or
modes of the posterior distribution obtained for g(#); and the precision of
these estimates is typically summarized using posterior standard deviations.
Details regarding the Bayesian perspective are provided in nvwwﬁﬂ. 9.



80 4 Summarizing Time Series Bebavior

4.3 The Kalman Filter

We now turn to the foundation of full-information analyses of structural
models: evaluation of the likelihood function via use of the Kalman filter.
For convenience, we begin by repeating the characterization of the DSGE
model solution as a collection of stochastic difference equations of the form

% = F(u)se_1 + & (4.52)
o = G(u)r (4.53)
E(ere)) = G(u)B(vs0}) G() = Q(u). (4.54)

Again, (4.52)~(4.54) comprise the state system, Qnmnavmbm the evolution
of the # x 1 vector of model variables x;. These are mapped into the 7 x 1
vector of observable variables X via either

X, = H(u) s (4.55)

or

X =H(uY %+,  E(mnl) =3y, (4.56)

both of which are known as measurement equations. The Kalman filter can
be used to build likelihood functions based on various specifications of the
measurement system, under the assumption of normality for {e,} and {#,}.8
Departures from normality, and from the linear structure considered here,
prompt us to an alternative known as the particle filter, which is outlined
in chapter 11. Here we present a general overview of the Kalman filter,
and then make specific presentations for three leading specifications.

4.3.1 Overview

Full-information analyses entail calculations of the probability or likeli-
hood associated with the realization of an observed sample X = ﬁanMhH.
The Kalman filter is an algorithm designed to execute this calculation
recursively, following the recursive nature of its associated structural model.

The idea behind the algorithm is to. produce assessments of the con-

ditional probability associated with the time-# observation X;, given the
history of past realizations X*~1 = t@ﬁmw Denote this probability as
L(X;|X*1), with L(X1]X?) denoting the unconditional likelihood asso-
ciated with X3 . The sequence of conditional likelihoods {L(X)x71 &w.up

8 The GAUSS procedure kalman.pre is available for performing the calculations des-
cribed in this section.
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‘are independent across time, thus the likelihood associated with X is given
by the product of the individual conditional likelihoods:

’ T
LX) = [[L(Xlx*Y).

t==1

Regarding the structure of L{X;| X*~1), this is most simply described for
the case in which each of the elements of x; is observable, so that X; = x;.

Conditional on T@vﬂw , from (4.52) we observe that the optimal forecast
- of % is given by

Mn/w =F Q\ev%ﬂlwu
and the difference between the forecasted and observed value of %, serves
- as the inferred value of ¢;:
& =% — F(u)w-1.

“The conditional likelihood associated with the observation of %; can thus
be assessed as the likelihood assigned to 2 by its assumed probability
distribution (say, ,):

LX) = pu(B).

‘The details are slightly more complicated when certain elements of x;
are unobservable, but the basic idea is the same: conditional likelihoods
_represent probabilities associated with the realization of observables at time
t, given the sequence of variables that were observed previously:

4.3.2 The Filter without Measuvement Ervors

When the measurement system is given by (4.55), then (4.52)~(4.55) are
eferred to as a state-space representation. The associated likelihood func-
on is obtained by making a distributional assumption for {;}. As noted,
we proceed here under the assumption of normality.

Consider the objective of calculating the value of the likelihood function
for a given value of u, which implies values for [F(u), G(u), O(w), H(u)]
(hereafter, we revert to the notation under which the dependence of F,
etc. on 4 is taken as given). To establish intuition for how this is achieved
given the presence of unobservable variables in X¢, consider first thé sim-
ler case in which each variable is instead observable, as in the previous
subsection. In this case, the system consists of (4.52)—(4.54); likelihood
evaluation is achieved via the iterative evaluation of a sequence of condi-
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tional distributions for x;, given x;—1 . The iteration begins by inserting x)
into its unconditional distribution, which is N(0, Q):

L) = (@) "P1Q 7 exp| -3 (4072 .

Then for x;, ¢+ = 2,..., T, the iteration continues by inserting %, into its
conditional (on %)) distribution, which is N (Fx;—1, 0 ):

L{x|p) = m )21 Q7112
1

x@@ ﬁm? lgga\bn:xwamf L .

Finally, the sample likelihood is the product of the individual likelihoods:

T
L(tlp) = [ [L(w).

t=1
Exercise 4.5

Map the AR(p) process specified for the univariate time series ; in (4.17)
into a representation of the form given in (4.52)—-(4.54). Next, show that
OLS and ML estimates of p(L) coincide.

For the case in which x; includes unobservables, the Kalman filter adds
an additional step to this iterative process. This involves making an infer-
ence regarding the most likely specification for x;, given the sequence of
observations on {X;}, 7 =1,...¢.

Let %51 be the conditional expectation of x; given observations

A‘qu. . V.Nwlwwu

and

- =

Nuzwsy H.mmxw - xxnlu.xxw - xw_wlwv@

be its associated covariance matrix. The iterative process begins with the
calculation of their initial (unconditional) values, given by

=0 Py= FPoF' + O

— vec(Pyjo) = (I — F® F') 1vec(Q). (4.57)
These are used to construct associated values for X0, given by
X10 = m\b&_o = 0, (4.58)
Q10 = E[(X1 — Xa1j0)(X1 — X1p)]
=H'PpH. : (4.59)
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These serve as inputs for the likelihood function of Xj, which is
N (X1, S2100):

— _ 1, . _
L(Ei1w) = @y Plegh | ap -3 (Koo x| (460

Finally, the unconditional values [%1)0, P1jo] are updated to take into ac-
count information conveyed by the observation of X;. The updates yield
conditional values %11 =% and Py = P:

= x0 + PuoHQp(X — Xijo) (4.61)
Pijy = Puo — PyoHQq o H' Pyyo. (4.62)

Having accomplished initialization, the iterations involving X;, =
2,...T areidentical. First, 4,1 and P;j;-1 are constructed:

Kpjp—1 = Fp1 (4.63)
Pyio1 = FPyp1 F' + Q
— vee(Prp—1) = (I — F @ F'Y vec(Q). (4.64)
These serve as Emsa for the construction of Cm:.?? Qppr-11:
Xipp1 = H 31 (4.65)
@w_ﬂlw = m_xumﬂ - N‘zTHXN«w - Nw_wlw vg
= H'Py;1 H. . (4.66)

These then facilitare the calculation of the likelihood function for X, which

Cis N(Xpjp—1, Q1)

L(Xlw) = @r)y™2 10,1 |12

tlr—
-1 ) / -1
X €xp uM,ANw = Xpp-1) Qa1 (X — Xpp-1) | Am@uv
Finally, X; is fed into the updating system, yielding
Kojr = Zefp—1 + Prp1 HO_1 (% — Xoppo1) (4.68)
Prjs = Pris—1 = Prp—1 HQp;_ H' Pyjso1. (4.69)

‘, be sample likelihood is once again the product of the individual likeli-
hoods: .
T
L(X|u) = [ [L(Zel). (4.70)
t=]
Itis often the case that the time-series behavior of certain unobserved ele-
ments of x; are of independent interest. It is possible to infer this behavior
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as a by-product of the likelihood evaluation process by obtaining what are
known as smoothed estimates of the unobservables: mwziw& . Asindicated
abave, the steps of the Kalman filrer yield values of

{oned i (11} g (P} g and (Pryap) 15

These values may be used to construct ﬁ«z:iMlL , as follows. The smoothed

estimate %77 is simply the last entry of ?ELWM 1- Next, the quantity J; =

P4+ F' Pryy)r is computed so that the series QLM..L is available. This allows
the computation of

®7-UT =F7-1T-1 + JT1F7|T — BTIT-1), (4.71)
which can be used for ¢ = T — 2 to.compute

®¥r-1T = ¥T-17-1 + JT-1(FT|T — FT|T-1). (4.72)
Proceeding recursively in this manner yields the sequence of interest

v T
ﬁxw_iwnt

with associated covariance given by
Pyt = Prjz + Je(PrayiT — Pryrpe)J;- (4.73)

Exercise 4.6

Repeat Steps 1-3 of the previous exercise using the ARMA model for 3,
specified in (4.22), given p = g = 1.

4.3.3 The Filter with Measuvement Evrvors

When there is measurement errof asséciated with the observation of
X;, the measurement system is given by (4.56). The likelihood finc-
tion is obtained in this case by making a distributional assumption for
{e:} and the m x 1 vector of measurement errors {#;}. Once again, we
proceed here under the assumption of normality for both ¢; and #;.° In
addition, we assume that the measurement errors #; are serially uncorre-
lated; in section 4.3.4 we consider the case in which this assumption is

‘generalized.

Relative to the case in which there is no measurement error, many of
the computations required to build the likelihood function remain the

oﬁunO>dmm@8nn&5nwwwamma.@ﬁnmmmﬁmmv_nmon maannBanran&nEmmoam mmm.
cribed in this section. :
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same. The main difference is that the initial unconditional values at which
the filter begins are altered slightly. This implies changes in the updating
" formulae used in the construction of the likelihood function. In particular,
Qo is now given by

Qo = E[(X1 — X10)(X1 — Xaj0)]

= H'PijoH + Z,; (4.74)
mb&omocm? Q¢)z—1 is given by:
Q-1 ="E[(X; — Xepa Xy — Xopp1 vq

= m\Nuﬁ_le.m‘ -+ M§ Aﬁnﬂmv

"The calculation of the likelihood function for X;, which continues to be
N(Xy3-1,)r-1), is facilitated by replacing (4.66) by (4.75). Finally,
smoothed estimates are obtained using exactly the same process described
:above, with (4.75) replacing (4.66) prior to the computation of (4.71)-
{4.73). - .

Exercise 4.7

-Consider the following model relating no.umc.n%mou () to income (2;),
aste shocks (%), and subject to an error in measurement (&)

¥ = Mm%+ mxs + &5, £:~ N(0,52).
-Assume that taste shocks follow an AR(1) specification given by
X, = PXp-.1 ..Tmn.v mw)\zAOuWNv.

1. Specify the model in state-space form.
2. Initalize the Kalman filter.
3. Specify the likelihood function of the model expressed in Kalman filter form.

& 3.4 Serially Corvelated Measuvement Ervors

.»6 a final case, suppose that the measurement errors in (4.56) are serially
‘orrelated, obeying;: ‘

= Doy + & A@n.ﬂmv
E(&:8;) = Ze. , (4.77)

argent (1989) demonstrated the evaluation of DSGE models featuring
“diagonal specifications for the m x m matrices T and Xg, and Ireland
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(2004b) demonstrated an extension to the non-diagonal case. In either
case, the evaluation of the likelihood function associated with (4.52)-
(4.54), (4.56), and (4.76)—(4.77) turns out to be identical to the case
in which the observation equation is given by (4.55), and thus the system
has no measurement error. To see why, consider an augmentation of the
state system given by

L= T‘; and . = ﬁi . (4.78)

Given this augmentation, the state-space representation may be written as

& = Oplr—1 + v (4.79)
X, = 014 (4.80)
® = ﬁw 3 , O = Tﬁ (4.81)
Q' =E(pryy) = ﬁm MOL, o (4.82)

which is exactly in the form of (4.52)~(4.55). Thus replacing F and H
with ®¢ and ®; in section 4.3.2 enables the construction of the likelihood
function; likewise, this replacement enables the calculation of smoothed
estimates of ¢;. .

As a preview of issues to be discussed in chapter 8, we conclude this

chapter by noting that in the absence of restrictions on the matrices

(F,G,H,Q), the likelihood function can take on the same value for more
than one set of values for u. This is known as an identification problem.
There are several ways to address this problem, one of which involves res-
tricting (F, G, H, Q) on the basis of theoretical restrictions on u, which
then map into restrictions on (F, G, H, Q ). Beyond this issue, we also note
that in addition to likelihood evaluation and smoothing, the Kalman filter
can be used to conduct a battery of model diagnostics. We discuss these
and related issues in chapter 8, paying particular attention to peculiarities
that arise in the context of the analysis of DSGE models.

Chapter 5

DSGE Models: Three Examples

»~ Example is the School of Mankind, and they will
learn at no other.
—Edmund Burke, Thoughis on the Cause of
the Present Discontents o

CHAPTER 2 PROVIDED background for preparing structural models for
empirical analysis. Recall that the first step of the preparation stage is the
onstruction of a linear approximation of the structural model under inves-
“tigation, which takes the form

Axpy1 = Boy + Cupql + Dy,

his chapter demonstrates the completion of this first step for three pro-
otypical model environments that will serve as examples throughout the
-remainder of the text. This will set the stage for part IT, which outlines and
lemonstrates alternative approaches to pursuing empirical analysis. (For
guidance regarding the completion of this step for a far broader range of
models than those considered here, see Hansen and Sargent, 2005.)

The first environment is an example of a simple real business cycle
‘RBC) framework, patterned after that of Kydland and Prescott (1982).
he foundation of models in the RBC tradition is a neoclassical growth
nvironment, augmented with two key features: a labor-leisure trade-off
that-confronts decision makers, and uncertainty regarding the evolution
f technological progress. The empirical question Kydland and Prescott
1982) sought to address was the extent to which such a model, bereft
f market imperfections and featuring fully flexible prices, could account
r observed patterns of business cycle activity while capturing salient fea-
es of economic growth. This question continues to serve as a central
ocus of this active literature; overviews are available in the collection of
yapers presented in Barro (1989) and Cooley (1995).

Viewed through the lens of an RBC model, business cycle activity is
terpretable as reflecting optimal responses to stochastic movements in the
olution of technological progress. Such interpretations are not without
ntroversy. Alternative interpretations cite the existence of market imper-
tions, costs associated with the adjustment of prices, and other nominal

A
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and real frictions as potentially playing important roles in influencing
business cycle behavior, and giving rise to additional sources of business
cycle fluctuations. Initial skepticism of this nature was voiced by Summers
(1986), and the collection of papers contained in Mankiw and Romer
(1991) provide an overview of DSGE models that highlight the role of, for
example, market imperfections in influencing aggregate economic behav-
ior. As a complement to the RBC environment, the second environment
presented here (that of Ireland, 2004a) provides an example of a model
within this neo-Keynesian tradition. Its empirical purpose is to simultane-
ously evaluate the role of cost, demand, and productivity shocks in driving
business cycle fluctuations. Textbook references for models within this
tradition are Benassy (2002) and Woodford (2003).

The realm of empirical applications pursued through the use of DSGE
models extends well beyond the study of business cycles. The third environ-
ment serves as an example of this point: it is a model of asset-pricing behav-
ior adopted from Lucas (1978). The model represents financial assets as
tools used by households to optimize intertemporal patterns of consump-
tion in the face of exogenous stochastic movements in income and divi-
dends earned from asset holdings. Viewed through the lens of this model,
two particular features of asset-pricing behavior have proven exceptionally
difficult to explain. First, LeRoy and Porter (1981) and Shiller (1981) used
versions of the model to underscore the puzzling volatility of prices asso-
ciated with broad indexes of assets (such as the Standard & Poor’s 500),
highlighting what has come to be known as the “volatility puzzle.” Second,
Mehra and Prescott (1985) and Weil (1989) used versions of the model to
highlight the puzzling dual phenomenon of a large gap observed between
aggregate returns on risky and riskless assets, coupled with exceptionally
low returns yielded by riskless assets. These features came to be known
as the “equity premium” and “risk-free rate” puzzles. The texts of Shiller
(1989), Campbell, Lo and MacKinlay (1997), and Cochrane (2001) pro-
vide overviews of literatures deveted to analyses of these puzzles.

In addition to the references cited above, a host of introductory
graduate-level textbooks serve as useful references for the specific example
models considered here, and for a wide range of extensions. A partial list-
ing includes Sargent (1987a,b), Stokey and Lucas (1989), Blanchard and
Fischer (1998), Romer (2001), and Ljungqvist and Sargent (2004).

5.1 Model I: A Real Business Cycle Model

5.1.1 Envivonment

"The economy consists of a large number of identical households; aggregate
economic activity is analyzed by focusing on a representative household.
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" The household’s objective is to maximize U, the expected discounted flow
-of utility arising from chosen streams of consumption and leisure:

max  Us=Eoy B'ul(e, k). (5.1)

nw«Nw +=0

‘In (5.1), Ep is the expectations operator conditional on information avail-
ble at time 0, B € (0, 1) is the household’s subjective discount factor, #(-)
is an instantaneous utlity function, and ¢; and J; denote levels of con-
umption and leisure chosen at time . _
_ The household is equipped with a production technology that can be
sed to produce a single good y;. The production technology is repre-
ented by .

.$ = zf (ke m2), Amwv

where £; and #; denote quantities of physical capital and labor assigned
by the household to the production process, and z; denotes a random dis-
tirbance to the productivity of these inputs to production (that is, a prod-
uctivity or technology shock). : i :
~ Within a period, the household has one unit of time available for division
between labor and leisure activities:

l=m+b (5.3)

In addition, output generated at time ¢ can be either consumed or used
0. augment the stock of physical capital available for use in the production
processin period ¢ + 1. Thatis, output can be either consumed or invested:

Ve =+, - (54)

ere i, denotes the quantity of investment. Finally, the stock of physical
pital evolves according to

\m&.TH = “.w + AH - mv.«ny Ammv

where § € (0,1) denotes the depreciation rate. The household’s problem
s to maximize (5.1) subject to (5.2)—(5.5), taking &y and 2y as given.:
TImplicit in the specification of the houschold’s problem are two sets
of trade-offs. One is a consumption/savings trade-off: from (5.4), higher
consumption today implies lower investment (savings), and thus from
(5.5), less capital available for production tomorrow. The other is a labor/
isure trade-off: from (5.3), higher leisure today implies lower labor today
and thus lower output today.

‘In order to explore quantitative implications of the model, it is necessary
to specify explicit functional forms for #(-) and f(-), and to characterize-the



90 5 DSGE Models: Three Examples

stochastic behavior of the productivity shock . We pause before doing
so to make some general comments. As noted, an explicit goal of the
RBC literature is to begin with a mode} specified to capture important
characteristics of economic growth, and then to judge the ability of the
model to capture key components of business cycle activity. From the
model builder’s perspective, the former requirement serves as a constraint
on choices regarding the specifications for #(-), f(-), and the stochastic
process of z;. Three key aspects of economic growth serve as constraints
in this context: over long time horizons the growth rates of {¢, %, ¥, %}
are roughly equal (balanced growth), the marginal productivity of capital
and labor (reflected by relative factor payments) are roughly constant over
time, and {/;, #;} show no tendencies for long-term growth.

Beyond satisfying this constraint, functional forms chosen for #(-) are
typically strictly increasing in both arguments, twice continuously differ-
entiable, strictly concave, and satisfy

m§Athva . mu\uAthva
DT i — 22 = o, 5.6
m_lmmv decs Wmmw 0k - oo (56)

Functional forms chosen for f(-) typically feature constant returns to scale
and satisfy similar imit conditions.

Finally, we note that the inclusion of a wEm_o source of uncertainty in
this framework, via the productivity shock z;, implies that the model carries
nontrivial implications for the stochastic behavior of a single corresponding
observable variable. For the purposes of this chapter, this limitation is not
important; however, it will- motivate the introduction of extensions of this
basic model in part II.

FUNCTIONAL FORMS

The functional forms presented here enjoy prominent roles in the macro-
economics literature. Instantaneous utility is of the constant relative risk
aversion {CRRA) form:

e A
1-¢ ) °

u(cs, ) =

(5.7)

or when ¢ =1, #(-) =log(-). The parameter ¢ > 0 determines two
attributes: it is the coefficient of relative risk aversion, and also determines
the intertemporal elasticity of substitution, given by w (for textbook dis-
cussions, see €.g., Blanchard and Fischer, 1998; or Romer, 2006). Note
that the larger is ¢, the more intense is the household’s interest in main-
taining a smooth consumption/leisure profile. Also, ¢ & (0, 1) indicates the
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importance of consumption relative to leisure in determining instantaneous

utility.
Next, the production function is of the Cobb-Douglas variety:

¥ = 5k ml e, (5.8)

. where o € (0,1) represents capital’s share of output. Finally, the log of

the technology shock is assumed to follow a first-order autoregressive, or
AR(1), process:

logz; = (1 — p)log () + plog 21 + & (5.9)
g ~ NID(0,02), pe(-1,1). (5.10)

The solution to the household’s problem may be obtained via standard
application of the theory of dynamic programming (e.g., as described in
detail in Stokey and Lucas, 1989; and briefly in chapter 10 of this book).
Necessary conditions assaciated 8;7 the rognroivm problem expressed

‘in general terms are given by

(e k) _ ,_pmihriv g Am\ﬁrsv* (5.11)

dl dcy 39y

(e ) _ o [ 3%(es1, 1) [ Of (hra1, o)
oy B umw ﬁ msl& ~H m\&,ﬁ * AH B 3“: Am.HNv

- The intratemporal optimality condition (5.11) equates the marginal bene-
-fit of an additional unit of leisure time with its opportunity cost: the mar-
. ginal value of the foregone output resulting from the corresponding reduc-

tion in labor time. The intertemporal optimality condition (5.12) equates

) the marginal benefit of an additional unit of consumption today with its

opportunity cost: the discounted expected value of the additional util-
ity tomorrow that the corresponding reduction in savings would have

-generated (higher output plus undepreciated capital).:

Consider the qualitative implications of (5.11) and (5.12) for the im-
pact of a positive productivity shock on the household’s labor/leisure and
consumption,/savings decisions. From (5.11), higher labor productivity

] implies a higher opportunity cost of leisure, prompting a reduction in

leisure time in favor of labor time. From (5. HNV the curvature in the house-
hold’s utility function carries with it a nOmeﬁmnos smoothing objective.

- A positive productivity shock serves to increase output, thus affording an

increase in consumption; however, because the marginal utility of con-
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sumption is decreasing in consumption, this drives down the opportunity
cost of savings. The greater is the curvature of #(-), the more intense is
the consumption-smoothing objective, and thus the greater will be the
intertemporal reallocation of resources in the face of a productivity shock.
Dividing (5.11) by the expression for the marginal utility of consump-
tion, and using the functional forms introduced above, these conditions
can be written as
o
120\ e _ gy, (& : (5.13)
@ N“, e

HL=9)=1 f1-p)(1-0)

. 1 1-—-a
02y Aﬂmv

+(1 -8

e(1-¢)=1 (1-¢)(1-¢)

= BE | £ . (5.14)

5.1.2 'The Nonlinear System

Collecting components, the system of nonlinear stochastic difference equa-
tions that comprise the model is given by

L20Na 1 _aye (BY  (5.15)
% Nw ’ P
A mrp1\1 ¢
el = BE; mI.HN aze+1 | 7 +(1-19) (5.16)
r+1
¥ = 2K ml (5.17)
Ye= o+ .. 4 (5.18)
bepl =t 4+ (1 — 8)k: . - (5.19)
l=m+Lk . . (5.20)
logz: = (1 — p)log (3) + plog z:—1 + &t, (5.21)
where
k=p(l-¢)-1
and
A=(l-9)1-¢).
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Steady states of the variables { y;, ¢, %, %z, b, k¢, 2;} may be computed ana-
Iytically from this system. These are derived by holding z; to its steady state
" value Z, which we set to 1:

S RIS T
'H
B
|
O
VQD

=86,
T= 1 (5.22)
1+ (5) (552) [1 - s62<]
I=1 — 7,
£ 2o,
7 .
‘where . : .
, ) .
9=
, 1/B—1+6
n = 6%,

- Note that in steady state the variables {y:, ¢z, %, #:} do not grow over
time. Implicitly, these variables are represented in the model in terms of
eviations from trend, and steady state values indicate the relative heights
f trend lines. To incorporate growth explicitly, consider an alternative
;mwnn&nmnom of z:

-z = zo(1+g)e®, (5.23)

(5.24)

Note that, -absent shocks, the growth rate of z; is given by g, and that
‘removal of the trend component (1+g)? from z; yields the specification for
log z; given by (5.21). Further, the reader is invited to verify that under this
mnnEnmnom for 2;, {ct) %, J¢, b} will have a common growth rate given by
1&-. Thus the model is consistent with the balanced-growth requirement,
and as specified, all variables are interpreted as being measured in terms of
leviations from their common trend.

One subtlety is associated with the issue of trend removal that arises in
dealing with the dynamic equations of the system. Consider the law of
‘motion for capital (5.19). Trend removal here involves division of both

= pwi-1 + &;.
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sides of (5.19) by (1 + M.m.mvﬁ however, the trend component associated
with k1 is (14 &)

, so the specification in terms of detrended vari-
ables is ,

(+52

Likewise, a residual trend factor will be associated with ;11 in the intertem-
poral optimality condition (5.16). Because ;4 is raised to the power

=¢(l-9¢)-1
the residual factor is given by (1 + .Htmlava“

v st = ds + (1 — 8)ks. (5.25)

hMNW. = \w\mw

g K .§w+w l—a
X AH;THIQV f.it QN?ZA v +(1-8)|¢.

ksy1
(5.26)

With « negative (insured by w <1, i.e., an inelastic intertemporal elasticity
of substitution specification), the presence of g provides an incentive to
shift resources away from (¢ + 1) towards .

Exercise 5.1

Rederive the steady state expressions (5.22) by replacing (5.19) with
(5.25), and (5.16) with (5.26). Interpret the intuition behind the impact
of g on the expressions you derive.

5.1.3 Lineavization

The linearization step involves taking a log-linear approximation of the
model at steady state values. In this case, the objective is to map (5.15)-
(5.21) into the linearized system

Axpyy = By + Cups + Dipyl

for eventual empirical evaluation. Regarding D, &ovmﬁm E; from the
Euler equation (5.16) introduces an nxmnnﬁmnomm error in the model’s
second equation, therefore

=[01000007.

Likewise, the presence of the productivity shock in the model’s seventh
equation (5.21) implies

C=[00000017.
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| " Regarding A and B, using the solution methodology discussed in chap-
ter 2, these can be constructed by introducing the following system of
equations into a gradient procedure (where time mﬁvmnsmﬁm are dropped so

“that, e.g.,y =y and ' = yr41):

oﬂ_om AH ssv +_ommi~om\I~omA!QleomN\

— alogk + alog#’ . (5.27)

0 = klog ¢ + Alog ! —log B — log ¢’ — Alog /' (5.28)
- log _“Q exp(log NJMMWMMW HMWH_MMMM +( - &

0 =logy —logs —aloghk— (1 —a)logn’ (5.29)

0 = logy' — log {expllog (¢')] + expllog ()1} (5.30)

= log ¥ — log {exp[log (¢')] + (1 — &) exp[log (&)1} (5.31)

0 = —og {expllog (#)] + expllog ()]} (5.32)

0 =logz' — plog z. | (5.33)

The mapping from (5.15)-(5.21) to (5.27)~(5.33) involves four steps.
First, logs of both sides of each equation are taken; second, all variables
not converted into logs in the first step are converted using the fact, for
example, that y = exp (og (y)); third, all terms are collected on the right-
hand side of each equation; fourth, all equations are multiplied by —1.
érivatives taken with respect to logy’, and so on evaluated at steady state
alues yield A, and derivatives taken with respect to logy, and so on yield
-B. Note that nmw_ﬁm_ installed at time 2 is not productive until period ¢ 4 1;
us k rather than %’ appears in (5.29).

"Having obtained A, B, C, and D, the system can be solved using any of
e solution methods outlined in chapter 2 to obtain a system of the form

Al

Kyl = F(U)%: + 1.

"his system can then be evaluated empirically using any of the methods
gscribed in part I1.

b by
Ho wo _o o
v\ m m g= 7 g= 7

7

2

Jlog =
og MH~
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and

=[aBooépol =[0.33097520.50.060.9 0.017,

show that the steady state values of the model are 5= 0.9, 7= 0.7, 7 =
0.2, %=047,1=0.53, and k= 3.5 Ambaﬁ&nnmmmﬁmbﬂnawls.zgn
use a numerical gradient @38&508 derive

24

0 1 0 03 -1 0 -1
0 15 0 —-012 05 0 —017
1 0 0 -067 0 0 -1
A=|1 -077 -023 0 0 0 0
0 0 -018 0 o 1 0
0 0 0 -047 —053 0 0
0 0 0 0 0 0 1 |
0 0 00 0 033 0]
0 15 0 0 05 —09 0
0 0 00 0 03 0
B={0 0 00 0 0 0]/
0 0 00 0 077 0|
00 00 0 0 O
00 00 0 0 09

Exercise 5.3

Rederive the matrices A and B given the explicit incorporation of growth
in the model. That is, derive A and B using, the steady state expressions

obtained in Exercise m 1, and using (5.25) and (5.26) in place of (5.19)
and (5.16).

5.2 Model IT: Monopolistic Ooanﬂﬁob
and Monetary Policy

This section outlines a model of imperfect competition featuring “sticky”
prices. The model includes three sources of aggregate uncertainty: shocks
to demand, technology, and the competitive structure of the economy. The
model is due to Ireland (2004a), who designed it to determine how the
apparent role of technology shocks in driving business-cycle fluctuations is
influenced by the inclusion of these additional sources of uncertainty.
From a pedagogical perspective, the model differs in two interesting ways
relative to the RBC model outlined above. Whereas the linearized RBC
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model is a first-order system of difference equations, the linearized version
~of this model is a second-order system. However, recall from chapter 2 that
it is possible to represent a system of arbitrary order using the first-order
~form taken by

" Axpq1 = By + Cupq1 + Dnsyl,

-~ given appropriate specification of the elements of x;. Second, the problem
~‘'of mapping implications carried by a stationary model into the behav-
~ior of non-stationary data is revisited from an alternative perspective than
that adopted in the discussion of the RBC model. Specifically, rather than
" assuming the actual data follow stationary deviations around determinis-
tic trends, here the data are modeled as following drifting random walks;
. stationarity is induced via differencing rather than detrending.

- 5.2.1 @3&353»&&

. The economy once again consists of a continuum of identical households.

- Here, there are two distinct production sectors: an intermediate-goods

sector and a final-goods sector. The former is imperfectly competitive: it

* consists of a continuum of firms that produce differentiated products that

serve as factors of production in the final-goods sector. Although firms in

this sector have the ability to set prices, they face a friction in aoEm 50.
Finally, there is a central bank.

HOUSEHOLDS

- The representative household maximizes lifetime utility defined over con-
sumption, money holdings, and labor:

= ], W Pr
max U= mom.m aloge; +lo m F (5.34)
1
s.t. m.wnw + 4 ..T my = §nlw.+$w!u_. + T+ Wty + &wu Am.wmv

where S€(0,1) and £>1. According to the budget constraint (5.35),
the household divides its wealth between holdings of bonds &, and money
~ my; bonds mature at the gross nominal rate 7, between time periods. The
household also receives transfers 7; from the monetary authority and works
7; hours in order to earn wages w; to finance its expenditures. Finally,
the household owns an intermediate-goods firm, from which it receives a
- dividend payment ;. Note from (5.34) that the household is subject to
~ an exogenous demand shock #; that affects its consumption decision.
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Recognizing that the instantaneous marginal utility derived from con-

sumption is given by 2, the first-order conditions associated with the

household’s choices of m&uor bond holdings, and money holdings are

given by
SO
slE)E)-EE e
(& o (Z)E) - o

Exercise 5.4

Interpret how (5.36)—(5.38) represent the optimal balancing of trade-offs
associated with the household’s choices of », b, and m.

FIRMS

There are two types of firms: one produces a final consumption good Y,
which sells at price p;; the other is a continuum of intermediate- .m%n.ﬁm firms
that supply inputs to the final-good firm. The output of the ¢ " interme-
diate good is given by #;:, which sells at price p;;. The mbﬂnnﬁn%mﬁn.mow%
combine to produce the final good via a constant elasticity of mmvmnﬁpﬂ.om
(CES) production function. The final-good firm operates in a competitive
environment and pursues the following objective:

. A
bwwx ﬂwﬂwﬂwl.\o DirYir i (5.39)
1 g1 T |

st Y= \o v Ay . (5.40)

The solution to this problem yields a standard demand for intermediate
inputs and a price aggregator:

. Tié (5.41)
Yir = Yt »

) ="

0
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Notice that 8; is the markup of price above marginal cost; randomness in
8; provides the notion of a cost-push shock in this environment.
Intermediate-goods firms are monopolistically competitive. Because the
output of each firm enters the final-good production function symmet-
rically, the focus is on a representative firm. The firm is owned by the
representative household, thus its objectives are aligned with the house-
hold’s. It manipulates the sales price of its good in pursuit of these objec-
tives, subject to a quadratic adjustment cost:

me =R 5 (2)(2), (5.43)

Ly

=0 4
s.r. Yit = Z¢Pir . Amﬁﬁ.v
. b
Yir =Yt ﬁwwmw (5.45)
P

‘ % Nuﬂ.w w .
x@“.??wtwvﬂ b ﬁ%mw:,lllu. I L .S:%VP (5.46)

“where T is the gross inflation rate targeted by the monetary authority

“ (described below), and the real value of dividends in (5.43) is given by

mm H *Nﬁ.&ﬁ Iﬁiﬁw
P P:

The associated first-order condition can be written as

6: — 1) Ammv:m" Xz

- x@:?::v . (5.47)

P P:
=0 ANWV;?L NWWWI ﬁ_” Pir !L Je .y
’ o Pr % Pr T Piz—1 T Pir1

(2t o A?.: ..Hv Fo+1Die+1 (5.48)

f Gl \ T Pir ww.%wﬂ

The left-hand side of (5.48) reflects the marginal revenue to-the firm

" generated by an increase in price; the right-hand side reflects associated
marginal costs. Under perfect price flexibility (¢ = 0) there is no dynamic

component to the firm’s problem; the price-setting rule reduces to

%w Wt
| Dir = 512"
which is a standard markup of price over marginal cost 2. Under “sticky

“prices” (¢ > 0) the marginal cost of an increase in price has two additional
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components: the direct cost of a price adjustment, and an expected dis-
counted cost of a price change adjusted by the marginal utility to the
households of conducting such a change. Empirically, the estimation of ¢
is of particular interest: this parameter plays a central role in distinguishing
this model from its counterparts in the RBC literature.

THE MONETARY AUTHORITY .

The monetary authority chooses the nominal interest rate according to a
Taylor Rule. With all variables expressed in terms of logged deviations from
steady state values, the rule is given by

Fr = 0,Fso1 + PuTr + gy + Po0r + Erey e~ HAN(0,02),  (5.49)

where 7; is the gross inflation rate, g, is the gross growth rate of output, and
0y is the outpur gap (defined below). The p; parameters denote elasticities.
The inclusion of 7,1 as an input into the Taylor Rule allows for the gradual
adjustment of policy to demand and technology mroaa for example, as in
Clarida, Gali, and Gertler (2000).

The output gap is the Jogarithm of the ratio of actual output y; to capacity
output %;. Capacity output is defined to be the “efficient” level of output,
which is equivalent to the level of output chosen by a benevolent social
planner who solves:

&

0 ‘ -1
~ 1 . .
max US = moMUm~w alogy, — = .\ i di (5.50)
Yt Bir 0 m 0
1 %rm '
! Gr—
st = \o nt di) . (5.51)
The symmetric solution to this problem is simply
. 1
5 = a; 7. (5.52)

STOCHASTIC SPECIFICATION

In addition to the monetary policy shock m*.w introduced in (5.49), the
model features a demand shock a;, a technology shock 2;, and a cost-push
shock 8;. The former is 77d; the latter three evolve according to

log (as) = (1 — pa)log (@) + palog (#s—1) + €45, &E>1  (5.53)
log (2;) = log (2) + log (z5-1) + £, z>1  (5.54)
log (8;) = (1 — po)log (B) + pelog (1) +&ar,  8>1, (5.55)
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“with |p;| <1, 7 = a,6. Note that the technology shock is non-stationary:

it evolves as a drifting random walk. This induces similar behavior in the
model’s endogenous variables, and necessitates the use of an alternative to
the detrending method discussed above in the context of the RBC model.
Here, stationarity is induced by normalizing model variables by 2;. For
the corresponding observable variables, stationarity is induced by differ-
encing rather than detrending: the observables are measured as deviations
of growth rates (logged differences of levels) from sample averages. Details
are provided in the linearization step discussed below.

- The model is closed through two additional steps. The first is the impo-

* sition of symmetry among the intermediate-goods firms. Given that the

number of firms is normalized to one, symmetry implies:

Yit = Y, Bip = Ny, Pir = P, Ay = dy. (5.56)

The second is the requirement that the money and bond markets clear:
| My =1+ T, ‘ (5.57)
by=b1=0 . (5.58)

5.2.2 The Nonlinear System

In its current form, the model consists of twelve equations: the house-
hold’s first-order conditions and budget constraint, the aggregate pro-.
duction function, the aggregate real dividends paid to the household
by its intermediate-goods firm, the intermediate-goods firm’s first-order

-condition, the stochastic specifications for the structural shocks, and the
-expression for capacity output. Following Ireland’s (2004a) empirical

implementation the focus is on a linearized reduction to an eight-equation
system consisting of an IS curve, a Phillips curve, the Taylor Rule (specified
in linearized form in (5.49)), mrn three exogenous shock specifications, and
definitions for the growth rate of output and the output gap.

The reduced system is recast in terms of the following normalized
variables: .

. Yo oL - b = Y . Pt
=, ¢ s = Ty =
e = Zr & Zt Je b g Pl
g, = A&w\mva By = wa\miu ity = A§“\m¢v, 5, = 2
. Z Zy 2 -1

Using the Qﬁnom.ﬁow for real dividends given by (5.47), the household’s
budget constraint in equilibrium is rewritten as

o=t 2 (Z-1) 5, (5.59)
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Next, the household’s first-order condition (5.37) is written in normalized
form as

a1 o 1 1 v (5.60)

Wumﬁmﬂ” x X

Lrel Zr41 T+l

Nezxt, the household’s remaining first-order conditions, the expression for

the real dividend payment (5.47) it receives, and the aggregate production .

function can be combined to eliminate wages, money, labor, dividends,
and capacity output from the system. Having done this, we then introduce
the expression for the output gap into the system:

p=2=2t (5.61)
Ye E
ay

Finally, normalizing the first-order condition of the intermediate-goods
firm and the stochastic specifications leads to the following nonlinear
system:

. . ¢ (7y 2,
¥, =+ ) AW! - v ¥, . (5.62)
2 1 1
M\I = BrE; "wl.u X = X % . (5.63)
e Cr4l Br41 T+l

.l _ W...mxwl Tr .\ T
0=1-6+0,"5/ aAm v

T
+ BOE; *mﬂﬁlw Auﬁiw _ Hv T+l wml.wv (5.64)
Crpl T . T mw .
g =2t (5.65)
Ye-1
o=2L=2 , (5.66)
Ye i
log (a;) = (1 — pa)log (&) + palog (a:-1) + €4s (5.67)
log (6:) = (1 — po)log (8) + pelog (6:-1) + €0 (5.68)
log (%) = log (Z) + £4: (5.69)

Along with the Taylor Rule, this is the system to be linearized.
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5.2.3 Lineavization

Log-linearization proceeds with the calculation of steady state values of the

- endogenous variables:

™
il
<l
il
w|

(5.62)(5.69) are then log-linearized around these values. As with model
I, this can be accomplished through the use of a numerical gradient proce-
dure. However, as an alternative to_this approach, here we follow Ireland
(20042) and demonstrate the use of a more analytically oriented procedure.

“In the process, it helps to be mindful of the re-configiration Ireland worked

with: an IS curve, a Phillips curve, the Taylor Rule; the shock processes,
and definitions of the growth rate of output and the output gap.
As a first step, the variables appearing in (5.62)-(5.69) are written in

 logged form. Log-linearization of (5.62) then yields:

- AN
5, =log m%v =7,

because the partial detivative of ¥, with respect to 7; (evaluated at steady
state) is zero. (Recall our notational convention: tildes denote logged devi-
ations of variables from steady state values.) Hence upon linearization, this
equation is eliminated from the system, and 7; is replaced by ¥, in the
remaining equations.

- Next, recalling that E;(%;.41) = 0, log-linearization of (5.63) yields

0="7: = Eftry1 — (B¥pyn — Jy) + By — %2 (6.71)
Relating output and the output gap via the log-linearization of (5.66),
~ 1o
Y= W§+e? (5.72)

the term E;(¥,,,) — ¥, can be substituted out of (5.71), yielding the IS
curve:

T = BBy — (Fe — Esfor1) + (1 — E71)(1 — pa)7s. (5.73)
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Similarly, log-linearizing (5.64) and eliminating ¥, using (5.72) yields
the Phillips curve:

7 = BE 41 + ¥0; — %, (5.74)
where ¥ = ﬂﬂ, L and e = www This latter equality is a normalization

of the cost-push shock; like the cost-push shock itself, the normalized
shock follows an AR(1) process with persistence parameter pg = p,, and
innovation standard deviation o, = w@.

The resulting IS and Phillips curves are forward looking: they include the
one-step-ahead expectations operator. However, prior to-empirical imple-
mentation, Ireland augmented these equations to include lagged variables
of the output gap and inflation in order to enhance the empirical coherence
of the model. This final step yields the system he analyzed. Dropping time
subscripts and denoting, for example, 9;—1 as 3, the system is given by

T=0,0" +(1=)Ed — (F~EF)+ (1 -1 ~-p0,)% (5.75)

T=PBozT™ + Bl —ay)EF +v35—% (5.76)
=y -5+7 (5.77)
V=5 &1y (5.78)
7' = 0,7+ pn T+ pg8 + 0,0 + &L (5.79)
7 = paitel _ (5.80)
¥ =07 +6, (5.81)
¥ = . . (5.82)

where the structural shocks

Vg = {&ps, €01, EetyEar)

are 724N with diagonal covariance matrix ¥: The additional parameters
introduced are @, € [0,1] and a, €[0, 1]; setting «, = o = 0 yields the
original microfoundations. .

The augmentation of the IS and Phillips curves with lagged values of
the output gap and inflation converts the model from a first- to a second-

oan:%mnoB.chm»mb&mna@mmmnacwnag Em@@gmngm&anﬁnwbﬁo&n
first-order specification : .

Axi1 = By + Cupyy + Dijpyy.

This is accomplished by augmenting the vector x; to include not only
contemporaneous observations of the variables of the system, but also to
include lagged values of the output gap and inflation:

~

...zz zz ~ o~ o~ ~
=0, 0,0y T W1 y, Tr B, B % 1.
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This also requires the introduction of two additional equations into the
system: 7' = 7’ and 9’ = 7. Specifying these as the final two equations of
the system, the corresponding matrices A and B are given by

C—(1—ag) 1 -1 00 0 0 0 0 0
0 - —B(l—-ay 1 0 O 0 0 0 ©
0 0 0 . 0 -1 0 1 0O 0 -1
1 0 0 0 -1 0 0 ¢! 0 0.
A= — 00 0 —pr 0 0 1 —p, 0 0 O
- 0 0 0 0 0 0 0 1 0 0P
0 0 0 0 0 0 0 0 1 O
0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 O 0 0 0
i 0 1 0 0 0 0 O 0 0 0|
(5.83)
[0 & 0 0 0 -1 0 (1-¢1)1—-py) 0 0]
0 0 0 Bar O O -0 0 -1 0
0 0 0 0 -1 0 O 0 . 0 0
0 0 0 O 0 0 0 -0 0 0
B 0.0 0 O 0 p O 0 0 0
10 0 0 0 0 0 0 Pa 0 o}
0 0 0 O 0 0 0 0 p:. O
0 0 0 O 0 0 0 0 0 0
0 0.1 0 0 0 0 0 0.0
1 0 0 0 0 0 0 0 0 0} -
(5.84)
Further, defining n; = [n1; 72:), where
:.:,I = E;0pt1 - U1
and
M2s4+1 = BTty — Frpa,
‘the matrices C and D are given by
™ N
1 0 00 :
0 1 00 ~{1 =~ a0) -1
C = 0 0 1 0l D= 0 —B(1 —ay)
0 0 01 0248
L 0204 B ‘

(5.85)
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The final step needed for empirical implementation is to identify the
observable variables of the system. For Ireland, these are the gross growth
rate of output g;, the gross inflation rate 7;, and the nominal interest rate 7:
(all measured as logged ratios of sample averages). Under the assumption
that output and aggregate prices follow drifting random walks, g; and 7,
are stationary; the additional assumption of stationarity for #, is all that is
necessary to proceed with the analysis.

Exercise 5.5

Solve the linearized system (5.75)~(5.82) using any of the methods out-
lined in chapter 2. Note that the vector of deep parameters is now
given by:

L=[Z7% Bwb ¢oyar pr pr Pg Px Pa P8 Og 09 05 071 .

Exercise 5.6

Consider the following CRRA form for the instantaneous utility function
for model II:

g hw my §M
U\ Cey—, 8 | = ap— +log — — L,

P A P &

1. Derive the nonlinear system under this specification.
2. Sketch the linearization of the system via a numerical gradient procedure.

5.3 Model III: Asset Huinm.bm

The final model is an adaptation of Fucas® (1978) one-tree model of
asset-pricing behavior. Alternative versions of the model have played a
prominent role in two important strands of the empirical finance litera-
ture. The first, launched by LeRoy and Porter (1981) and Shiller (1981)
in the context of single-asset versions of the model, concerns the puzzl-
ing degree of volatility exhibited by prices associated with aggregate stock
indexes. The second, launched by Mehra and Prescott (1985) in the con-
text of a multi-asset version of the model, and subsequently underscored
by Weil (1989), concerns the puzzling coincidence of a large gap observed
between the returns of risky and risk-free assets, and a low average risk-
free return. Resolutions to both puzzles have been investigated using
alternate preference specifications. After outlining single- and multi-asset
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versions of the model given a generic specification of preferences, alterna-
tive functional forms are introduced. Overviews of the role of preferences
in the equity-premium literature are provided by Kocherlakota (1996);
Campbell, Lo, and MacKinlay (1997); and Cochrane (2001); and in the
stock-price volatility literarure by Shiller (1989) and DeJong and Ripoll
(2004).

5.3.1 Single-Asset Envivonment

The model features a continuum of identical households and a single risky
asset. Shares held during period (z — 1), 51, yield a dividend payment
4y at time #; time-¢ share prices are p;. Households maximize expected
lifetime utility by financing consumption ¢; from an exogenous stochastic
dividend stream, proceeds from sales of shares, and an exogenous stochas-
tic endowment 4;. The utility maximization problem of the representative
household is given by

max  U=E) Bue),  (5.86)

=0

where € (0,1) again denotes the discount factor, and optimization is
subject to

[~ +Ewﬁhn - hu.lwv et &shwlw -4 &w. ) Ammﬂv
Because households are identical, equilibrium requires s; ="5,_1 for all t,
and thus

=i+ =4dr + 1

(hereafter, s; is normalized to 1). Combining this equilibrium condition

with the household’s necessary condition for a2 maximum yields the pricing
equation : :

#'(dry1 + ge41)
u'(dr + qy)

2= o5, ()| (589)

From (5.88), following a shock to either 4, or g:, the response of p;
depends in part upon the variation of the marginal rate of substitution
between # and # + 1. This in turn depends upon the instantaneous util-
ity function #(-). The puzzle identified by LeRoy and Porter (1981) and
Shiller (1981) is that p; is far more volatile than what (5.88) would imply,
given the observed volatility of 4;.
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The model is closed by specifying stochastic processes for (4, 4;). These
are given by

log dy = (1 — pg)log (d) + palog (de—1) + &4 (5.89)
log 7: = (1 — py)log (7) + pylog (g:-1) + er, (5.90)
with |o;] < 1, %= 4, 4,and
ﬁ mi ~ #dN(0, 2). (5.91)
&;%n

5.3.2 Multi-Asset Envivonment

An m-asset extension of the environment leaves the household’s objec-
tive function intact, but modifies its budget constraint to incorporate the
potential for holding # assets. As a special case, Mehra and Prescott (1985)
studied a two-asset specification, including a risk-free asset (ownership of
government bonds) and risky asset (ownership of equity). In this case, the
household’s budget constraint is given by

e pi0st —sty) +pl sl = desi_y + IMH + 41, (5.92)

where p; denotes the price of the risky asset, s represents the number of
shares held in the asset during period # — 1, and NW and .qmﬁ are analogous
for the risk-free asset. The risk-free asset pays one unit of the consumption
good at time 7 if held at time # — 1 (hence the loading factor of 1 associated
with s/ | on the right-hand side of the budget constraint).

First-order conditions associated with the choice of the assets are ana-

logous to the pricing equation (5.88) established in the single-asset spe-
cification. Rearranging slightly:

w(em1)  Pipn+ QJ _1

BE; ” X

(o) 7 (5.93)

#(er1) 1 _
\w.mﬁ lﬁ.\Nm.vI. X MW. =1. Amb*v

Defining gross returns associated with the assets as
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Mehra and Prescott’s identification of the equity premium puzzle cen-
ters on

wW(ev1) 5 | _ .
BE: A:I@M\Anlwvﬁ\?:v =1 (5.95)
. ﬂ%\AﬁNlTHv . .\o 3
m;lalii 7201 - Ez =0, (5.96)

where (5.96) is derived by subtracting (5.94) from (5.93). The equity
premium puzzle has two components. First, taking {¢;} as given, the aver-
age value of »* —#/ is quite large: given CRRA preferences, implausibly
large values of the risk-aversion parameter are needed to account for the
average difference observed in returns. Second, given a specification of
u(c) that accounts for (5.96), and again taking {c;} as given, the average
value observed for #/ is far too low to reconcile with (5.95). This second
component, as emphasized by Weil (1989), is the risk-free rate puzzle.

5.3.3 Alternative Prefevence @m&u@.n&&&&

As noted, alternative preference specifications have been considered for
their potential in resolving both puzzles. Here, in'the context of the single-
asset environment, three forms for the instantaneous utility function are
presented in anticipation of the empirical applications to be presented
in part II: CRRA preferences, habit/durability preferences, and self-
control preferences. The presentation follows that of DeJong and Ripoll
(2004), who sought to evaluate empirically the ability of these preference
specifications to make headway in resolving the stock-price volatility puzzle.

CRRA
Once again, CRRA preferences are parameterized as

1-

w(er) = (5.97)

1-y°
thus y >0 measures the degree of relative risk aversion, and 1 /y the
intertemporal elasticity of substitution. The equilibrium pricing equation
is given by .

(Ze1 + gp41)77

Fﬂmmﬂﬁ (o ¥ 1)

(atp)|. (699
Notice that, ceteris paribus, a relatively large value of .y will Ennnwmn the
volatility of price responses to exogenous shocks, at the cost of decreasing
the correlation between p; and 4; (due to the heightened role assigned to
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4 in driving price fluctuations). Because {4} and {4:} are exogenous, their
steady states 4 and 7 are simply parameters. Normalizing 4 to 1 and defin-
ingn= m, so that n = 7, the steady state value of nOEFB@ﬁOb (derived
from the budget constraint) is 7 = 1 + 7. And from the pricing equation

- B
p= m.lllm&
B
= : 5.99
T (5.99)
Letting 8 = 1/(1 + #), where » denotes the household’s discount rate
(5.99) implies p/4 = 1/#. Thus as the household’s discount rate increases,
its asset demand decreases, driving down the steady state price level. Empir-
ically, the average price/dividend ratio observed i in the data serves to pin
down § under this specification of preferences.

b

Exercise 5.7

Linearize the pricing equation (5.98) around the model’s steady state
values.

HABIT/DURABILITY

Following Ferson and Constantinides (1991) and Heaton (1995), an alter-
native specification of preferences that introduces habit and mEmUEQ into
the specification of preferences is parameterized as

By
W) = 7 > (5.100)
with
=i - o% (5.101)

where o € 8 1), b# is the household’s aEmEé stock, and 4? its habit
stock. The stocks are defined by,

8 .
W= 80 (5.102)
8 -
b= (1-0)) 6t
7=0

(1-9) MU%M%F 1-i (5.103)

J=0 =0
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where 6 €(0,1) and 6 € (0,1). Thus the durability stock represents the
flow of services from past consumption, which depreciates at rate 8. This
parameter also represents the degree of intertemporal substitutability of
consumption. The habit stock can be interpreted as a weighted average
of the durability stock, where the weights sum to one. Notice that more
recent durability stocks, or morerecent flows of consumption, are weighted
relatively heavily; thus ﬁra presence of habit captures intertemporal con-
sumption complementarity. The variable 4, represents the current level of
durable services net of the average of past services; the parameter o mea-
sures the fraction of the average of past services that is netted out. Notice
that if § =0, there would be only habit persistence, whereas if @ = 0 only
durability survives. Finally, when 6 =0, the habit stock includes only one
lag. Thus estimates of these parameters are of particular interest empirically.
Using the definitions of durability and habit stocks, 4, becomes

by = cp + vU & —a(l— Smm sl P

=0
o :
=> @5, (5.104)
7=0
where ®g = 1. Thus for these preferences, the pricing equation is given by

Mulo \w\@ AMU“!O. ®; hl.w.I.Lv
Mu\lomu @ (720 ®: Crtj—i vlw
where as before ¢; = 4; + g; in equilibrium.

To see how the presence of habit and durability can potentially influence
the volatility of the prices, rewrite the pricing equation as

i = BE;

(drs1 +®+Hv - (5.105)

(er41 + P16 + Dogpy +---)77
(e + @161 + Pacpg +--2)7

b = BE;

ITmOwHAthTNlTeth.TW+@th+...v] +..: A& HlT.% v
HBOL(er41 + P16 + Pagey + o) oo T AL
(5.106)

When there is a positive shock to say 4, £y increases by the amount of
the shock, say o;. Given (5.89)-(5.90), ;41 would increase by PgOygs Eet2
would increase by bm oy, and so on. Now, examine the first term in paren-
thesis in both the numerator and the denominator. First, in the denom-
inator ¢, will grow by o,. Second, in the numerator ¢;41 + ®1¢; goes
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up by (og + ®1) 0y S 0. Thus, whether the share price p; increases by
more than in the standard CRRA case depends ultimately on whether
pq+ @1 s 1. Notice that if ; = 0 for j > 0, (5.106) reduces to the stan-
dard CRRA utility case. If we had only habit and not durability, then
®1< 0, and thus the response of prices would be greater than in the CRRA
case. This result is intuitive: habit captures intertemporal complementarity
in consumption, which strengthens the smoothing motive relative to the
time-separable CRRA case.

Alternatively, if there was only durability and not habit, then 0 < ®1 < 1,
but one still would not know whether p + ®1 < 1. Thus with only dura-
bility, we cannot judge how the volatility of p; would be affected: this
will depend upon the sizes of p and ®;. Finally, we also face indeterminacy
under a combination of both durability and habit: if « is large and § is small
enough to make p 4+ ®1< 1, then we would get increased price volatility.
Thus this issue is fundamentally quantitative. Finally, with respect to the
steady state price, note from (5.106) that it is identical to the CRRA case.

Exercise 5.8

Given that the pricing equation under Habit/Durability involves an infinite
number of lags, truncate the lags to 3 and linearize the pricing equation
(5.106) around its steady state.

SELF-CONTROL PREFERENCES

Consider next a household that every period faces a temptation to consume
all of its wealth. Resisting this temptation imposes a self-control utility
cost. To model these preferences we follow Gul and Pesendorfer (2004),
who identified a class of dynamic self-control preferences. In this case, the
problem of the household can be formulated recursively as

W(s, P) = max{u(c) + »(c) + BEW (s, P')} —max »(Z),  (5.107)

‘where P = (9,4, 49), »() and »(-) are Von Neuman-Morgenstern utility

functions, B € (0,1), 7 represents temptation consumption, and s’ denotes
share holdings in the next period. Whereas #%(-) is the momentary util-
ity function, »(-) represents temptation. The problem is subject to the
following budget constraints:

= .&..TNIMC\I& (5.108)
T=ds+q—pF —s). (5.109)

In (5.107), »(¢c) — maxy »(E) < 0 represents the disutility of self-control
given that the agent has chosen ¢. With »(¢) specified as strictly increasing,
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the solution for maxy (%) is simply to drive ¢ to the maximum allowed by
the constraint
T=ds+ q .I.%Awi - hVu

which is attained by setting 57 = 0. Thus the problem is written as

W(s,P) = Bu,wi&?_v + v(c) + BEW(s', P} — v(ds + g+ ps) (5.110)

subject to
c=ds+q—p(s —s). (5.111)
The optimality condition reads
[#(c)+ 7' (c)] p = BEW'(s', P"), (5.112)
and since

W'(s,P) = T\?v -+ e\?m (A+p)— v (ds+q+ps)(d+p), (5113)
the optimality condition becomes .
[#(c) +v/(c)] p = BE[s/ (<) +¥(c) = V/(d's' & 4 + p's)] (&' + 7).

. (5.114)

Combining this expression with the equilibrium conditions s = 5 = 1 and
¢=d+ gyields .

o TR )+ )~ P+ f D)
TE.? :.i W+ 0)+ A+ D) :

(5.115)

Notice that when »(-) = 0, there is no temptation, and the pricing
equation reduces to the standard case. Otherwise, the term #'(4' + ¢') +
V(d' + q') = v'(d'+ 4 + p') represents tomorrow’s utility benefit from
saving today. This corresponds to the standard marginal utility of wealth
tomorrow #'(4' + ¢'), plus the term v'(d’ + ¢')— v/(d' + ¢4 + p') which
represents the derivative of the utility cost of self-control with respect to
wealth. :

DeJong and Ripoll (2004) assume the following functional forms for
the momentary and temptation utility functions: ,

1
¢

1

#(c) = G.HE

4
P

v(c) = " , (5.117)



114 5 DSGE Models: Three Examples

with A > 0, which imply the following pricing equation:

1 IN—Y U Nne—-1 _ U / No—1
mummfx+sqﬁ&+mv +MA g ) —MA gt p) gf
(Ad+g)7Y + M4+ )1
(5.118)
The concavity /convexity of »(-) plays an important role in determining
implications of this preference specification for the stock-price volatility
issue. To understand why, rewrite (5.118) as

p=BE{[d +]

WA A4 g [+ P — (& + o + )71

8 1+ A(d + g)P~ 17

(5.119)

Suppose ¢ > 1, so that »(-) is convex, and consider the impact on p of a
positive endowment shock. This increases the denominator, while decreas-
ing the term

MA+ g (@ + ) = (@ + 4+

in the numerator. Both effects imply that relative to the CRRA case, in
which A =0, this specification reduces price volatility in the face of an
endowment shock, which is precisely the opposite of what one would like
to achieve in seeking to resolve the stock-price volatility puzzle.

The mechanism behind this reductien in-price volatility is as follows: a
positive shock to 4 or g increases the household’s wealth today, which has
three effects. The first (“smoothing”) captures the standard intertempo-
ral motive: the household would like to increase saving, which drives up
the share price. Second, there is a “temptation” effect: with more wealth
today, the feasible budget set for the household increases, which repre-
sents more temptation to consume, and less willingness to save. This effect
works opposite to the first, and reduces price volatility with respect to the
standard case. Third, there is the “self-control” effect: due to the assumed
convexity of p(-), marginal self-control costs also increase, which reinforces
the second effect. As shown above, the last two effects dominate the first,
and thus under convexity of »(-) the volatility is reduced relative to the
CRRA case.
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In contrast, price volatility would not necessarily be reduced if »(-) is
concave, and thus 0 < ¢ < 1. In this case, when 4 or g increases, the term

MA+ g d + 4P —(d + 4 + )

increases. On the other hand, if ¢ — 1 + y > 0, that is, if the risk-aversion
parameter y > 1, the denominator also increases. If the increase in the
numerator dominates that in the denominator, then higher price volatility
can be observed than in the CRRA case.

To understand this effect, note that the derivative of the utility cost of
self-control with respect to wealth is positive if »(-) is concave:

V(A +q)-v(d +4+p)>0.

- This means that as agents get wealthier, self-control costs become lower.

This explains why it might be possible to get higher price volatility
in this case. The mechanism behind this result still involves the three effects
discussed above: smoothing, temptation, and self-control. The difference
is on the latter effect: under concavity, self-control costs are decreasing in
wealth. This gives the agent an incehtive to save more rather than less. If this
self-control effect dominates the temptation effect,-then these preferences
will produce higher price volatility.

Notice that when »(-) is concave, conditions need to be imposed to
guarantee that W(-) is strictly concave, so that the solution corresponds to
a maximum (e.g., see Stokey and Lucas, 1989). In particular, the second
derivative of W(-) must be negative:

—p A+ VA - DA+ )P 2 —(d+ g+ 2] <0
, (5.120)

which holds for any 4, g4, and p>0,and for y >0, A>0,and 0 <¢p < 1.
The empirical implementation in part IT of this book proceeds under this
set of parameter restrictions.

Finally, from the optimality conditions under self-control preferences,
steady-state temptation consumption is _

t=1+n+3.
From (5.118), the steady-state price in this case is given by
p=p01+p)

5 ? )7 AL AP A1+ g ,Q?J
(L+n)77 + A1+ )Pt .

Regarding (5.121), the left-hand-side is a 45-degree line. The right-
hand side is strictly concave in %, has a positive intercept, and a positive

(5.121)
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slope that is less than one at the intercept. Thus (5.121) yields a unique
positive solution for 7 for any admissible parameterization of the model.
(In practice, (5.121) can be solved numerically, e.g., using GAUSS’s quasi-
Newton algorithm NLSYS; see Judd, 1998, for a presentation of alternative
solution algorithms.) An increase in A causes the function of 7 on the right-
hand side of (5.121) to shift down and flatten, thus 7 is decreasing in 1,
The intuition for this is again straightforward: an increase in A represents an
intensification of the household’s temptation to liquidate its asset holdings.
This drives down its demand for asset shares, and thus . Note the parallel
between this effect and that generated by an increase in #, or a decrease in
B, which operates analogously in both (5.99) and (5.121).

Exercise 5.9

Solve for p in (5.121) using B = 0.96,y =2,1 =0.01, 5 = 10, ¢ = 0.4,
Linearize the asset-pricing equation (5.119) using the steady state values
for (, 4,7) implied by these parameter values.

Part 11

Ewmpirvical Methods

When you come to a fork in the road, take it.
—TYogi Berra .



Chapter 6

Calibration

Models are to be used, not cnmnswm.
—Henri Theil, Principles of Econometrics

‘6.1 Historical Origins and Philosophy

" With their seminal analysis of business cycles, Kydland and Prescott (1982)
capped a paradigm shift in the conduct of empirical work in macroeco-
nomics. They did so using a methodology that enabled them to cast the
DSGE model they analyzed as the centerpiece of their empirical analy-
sis. The analysis contributed towards the Nobel Prize in Economics they
received in 2004, and the methodelogy has come to be known as a calibra-
tion exercise.! Calibration not only remains a popular tool for analyzing
DSGEs, but has also served as the building block for subsequent method-
ologies developed towards this end. Thus it provides a natural point of
departure for our presentation of these-methodalggies.
L\U Although undoubtedly an ngmﬁn& Bnﬁroaowy calibration is distinct
from the branch of econometrics underwihich theoretical models are rep-
resented as complete probability models that can be estimated, tested, and
L _used to generate predictions using formal statistical procedures. Haavelmo
(1944) provided an early and forceful articulation of this latter approach
to econometrics, and in 1989 received the Nobel Prize in Economics
“... for his clarification of the probability theory foundations of econo-
metrics and his analyses of simultaneous economic structures.” (Bank of
Sweden, 1989) Henceforth, we will refer to this as the probability approach
to econometrics.

‘Regarding Haavelmo’s “... analyses of simultaneous economic struc-
tures,” otherwise known as m<memw,ml of-equations models, at the time of his
work this was the most sophisticated class of structural models that could
be subjected to formal empirical analysis. As characterized by Koopmans
(1949), such models include equations falling into one of four classes:

! Specifically, Kydland and Prescott received the Nobel Prize “for their contributions to
dynamic macroeconomics: the time consistency of economic policy and the driving forces
behind business cycles.” (Banlk of Sweden, 2004)
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identities (e.g., the national income accounting identity), institutional rules
(e.g., tax rates), technology constraints (e.g., a production function), and

~ behavioral equations (e.g., a consumption function relating consumption
to disposable income). For a textbook presentation of. systems-of-equations
models, see Sargent (1987a).

This latter class of equations distinguishes systems-of-equations mod-
els from DSGE models. Behavioral equations cast endogenous variables
as ad hoc functions of additional variables included in the model. An im-
portant objective in designing these specifications is to capture relation-
ships between variables observed from historical data. Indeed, econometric
implementations of such models proceed under the assumption that the
parameters of the behavioral equations are fixed, and thus may be esti-
mated using historical data; the estimated models are then used to address
quantitative questions. Such analyses represented state-of-the-art practice
in econometrics into the 1970s.

In place of behavioral equations; DSGE models feature equations that
reflect the pursuit of explicit objectives’ (e.g., the maximization of life-
time utility) by purposel iston makers (e.g., representative house-
holds). For example, the RBC model presented in chapter 5 features two
such equations: the intratemporal optimality condition that determines
the labor-leisure trade-off; and the intertemporal optimality condition that
determines the consumption-investment trade-off, The parametersin these
equations reflect cither the preferences of the decision maker (e.g., discount
factors, intertemporal elasticities of substitution, etc.) or features of their
environment (e.g., capital’s share of labor in the production technology).

Two important developments ultimately ended the predominance of
the systems-of-equations approach. The first was empirical: systems-of-
equations models suffered “... spectacular predictive failure ...” in the
policy guidance they provided during the episode of stagflation experienced
during the early 1970s (Kydland and Prescott, 1991a, p. 166). Quoting
Lucas and Sargent (1979): D

In the present decade, the U.S. economy has undergone its first major depression
since the 1930%s, to the accompaniment of inflation rates in excess of 10 per-
cent per annum. ... These events . .. were accompanied by massive government
budget deficits and high rates of monetary expansion, policies which, although
bearing an admitted risk of inflation, promised according to modern Keynesian
doctrine rapid real growth and low rates of unemployment. That these predic-
tions were wildly incorrect and that the doctrine on which they were based is
fundamentally flawed are now simple matters of fact, involving no noveldes in
economic theory. [p. 1]

The second development was theoretical: the underlying assumption
that the parameters of behavioral equations in such models are fixed was
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_recognized as being inconsistent with optimizing behavior on t of

purposeful decision makers. This is the thrust of Lucas’ (1976) critique)of
policy evaluation based on systems-of-equations models:

... given that the structure of an econometric model consists of optimal decision
rules of economic agents, and that optimal decision rules vary systematically with
changes in the structure of series relevant to the decision maker, it follows that
any change in policy will systematically alter the structure of econometric models.

[p. 41]
Or as summarized by Lucas and Sargent (1979):

The casual treatment of expectations is not a peripheral problem in these models,
for the role of expectations is pervasive in them and exerts a massive influence
on their dynamic properties. ... The failure of existing models to derive restric-
tions on expectations from any first principles grounded in economic theory is
a symptom of a deeper and more general failure to derive behavioral relation-
ships from any consistently posed dynamic optimization problem. ... There are,
-therefore, ... theoretical reasons for, believing that the parameters identified as
structural by current macroeconomic methods are not in fact structural. That is,
we see no reason to believe that these models have isolated structures which will
remain invariant across the class of interventions that figure in contemporary
discussions of economic policy. [pp. 5-6]

In consequence, Lucas (1976) concludes that “... simulations using
these models can, in principle, provide no useful information as to the
actual consequences of alternative economic policies.” [p. 20] In turn,
again referring to the predictive failure of these models during the stagfla-
tion episode of the 1970s, Lucas and Sargent (1979) conclude that “. . . the
difficulties are fztal: that modern macroeconomic models are of #o value

" in guiding policy and that this condition will not be remedied by modifi-

cations along any line which is currently being pursued.” [p. 2]

Two leading reactions to these developments ensued. First, remaining in
the tradition of the probability approach ﬂo\@nowgﬁdﬂ.d}nﬁﬁvomopom-
ical contributions of Sims (1972) and Hansen and Sargent §1980) made

possible the impositioni of theoretical diséipline-omrrediiced-form mod-

. els of macroeconomic activity. DSGE models featuring rational decision

makers provided the source of this discipline, and the form of the dis-
cipline most commonly took the form of “cross-equation restrictions”™
imposed on vector autoregressive (VAR) models. This development rep-

. resents an intermediate step towards the implementation of DSGE models

in empirical applications, because reduced-form models serve as the focal
point of such analyses. Moreover, early empirical applications spawned by
this development proved to be disappointing, because rejections of par-
ticular parametric implementations of the restrictions were commonplace
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(e.g., see Hansen and Sargent, 1981; Hansen and Singleton 1982, 1983;
and Eichenbaum 1983). The second reaction was the development of the
modern calibration exercise.

In place of estimation and testing, 9@ a calibration exercise is
to use a parameterized structural model Rw%»]admomm a specific quantitative
question. The model is constructed and parameterized subject to the con-
straint that it mimic features of the actual economy that have been identified

.wmmomw. Oﬁnmmmmmﬁ%gmnﬂgomgnn& Unw&bmm.ﬁrn<8m<5<o?oﬁwn

ability of the model to account for an additional set of features of the ac-
‘tual economy; that is, they may involve assessments of fit. Alternatively,
they may involve assessments of the theoretical implications of changes in
economic policy. This characterization stems from Kydland and Prescott
(1991a, 1996), who traced the historical roots of the use of calibration
exercises as an empirical methodology, and outlined their view of what such
exercises entail.

Kydland and Prescott (1991a) identify calibration as embodying the
approach to econometrics articulated and practiced by Frisch (1933a,b).
Regarding articulation, this is provided by Frisch’s (1933a) editorial open-
ing the inangural issue of the flagship journal of the Econometric Society:
Econometrica. As stated in its constitution, the main objective of the Eco-
nometric.Society is to

... promote studies that aim at a unification of the theoretical-quantitative and
empirical-quantitative approach to economic problems and that are penetrated
by constructive and rigorous thinking. . . . Any activity which promises ultimately
to further such unification of theoretical and factual studies in economics shall
be within the sphere of interest of the Society. [p. 1]

Such studies personified Frisch’s vision of econometrics: “This mutual
penetration of quantitative economic theory and statistical observation is
the essence of econometrics.” [p. 2] . .

Of course, this vision was also shared by the developers of the probability
approach to econometrics. To quote Haavelmo (1944): “The method of
econometric research aims, essentially, at a conjunction of economic theory
and actual measurements, using the theory and technique of statistical
inference as a bridge pier.” [p. iii] However, in practice Frisch pursued this
vision without strict adherence to the probability approach: for example,
his (1933D) analysis of the propagation of business-cycle shocks was based
on a production technology with parameters calibrated on the basis of
micro data. This work contributed towards the inaugural Nobel Prize in
Economics he shared with Jan Tinbergen in 1969:

Let me take, as an example, Professor Frisch’s pioneer work in the early thir-
ties involving a dynamic formulation of the theory of cycles. He demonstrated
how a dynamic system with difference and differential equations for investments
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and consumption expenditure, with certain monetary restrictions, produced a
damped wave movement with wavelengths of 4 and 8 years. By exposing the
system to random disruptions, he could demonstrate also how these wave move-
ments became permanent and uneven in a rather realistic manner. Frisch was
before his time in the building of mathematical models, and he has many succes-
sors. The same is true of his contribution to methods for the statistical testing
of hypotheses. [Lundberg, 1969]

In their own analysis of business cycles, Kydland and Prescott (1982)
eschewed the probability approach in favor of a calibration experiment that
enabled them to cast the DSGE model they analyzed as the focal point
of their empirical analysis. (Tools for working with general-equilibrinm
models in static and nonstochastic settings had been developed earlier by
Shoven and Whalley, 1972; and Scarfand Hansen, 1973.) Itis tempting to
view this as a decision made due to practical considerations, because formal
statistical tools for implementing DSGE models empirically had yet to be
developed. However, an important component of Kydland and Prescott’s
advocacy of calibration is based on a criticism of the probability approach.
For example, writing with specific reférence to calibration exercises involv-
ing real business cycle models, Prescott (1986) makes-the case as follows:

The models constructed within this theoretical framework are necessarily highly
abstract. Consequently, they are necessarily false, and statistical hypothesis test-
ing will reject them. This does not imply, however, that nothing can be learned
from such quantitative theoretical exercises. [p. 10] :

A similar sentiment was expressed earlier by Lucas (1980): “Any model
that is well enough articulated to give clear.answers to the questions we
put to it will necessarily be artificial, abstract, patently ‘unreal.”” [p. 696]
As another example, in discussing Frisch’s (1970) characterization of the
state of econometrics, Kydland and Prescott (1991a) offer the following
observation:

In this review (Frisch) discusses what he considers to be ‘econometric analysis
of the genuine kind’ (p. 163), and gives four examples of such analysis. None
of these examples involve the estimation and statistical testing of some model.
None involve an attempt to discover some true relationship. Al use a model,
which is an abstraction of a complex reality, to address some clear-cut question
or issue. [p. 162]

In sum, the use of calibration exercises as a means for facilitating the
empirical implementation of DSGE models arose in the aftermath of the
demise of systems-of-equations analyses. Estimation and testing are pur-
posefully de-emphasized under this approach, yet calibration exercises are
decidedly an empirical tool, in that they are designed to provide concrete
answers to quantitative questions. We now describe their WBEanbSmonm
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6.2 Implementation

Enunciations of the specific methodology advocated by Kydland and
Prescott for implementing calibration exercises in applications to DSGE
models are available in a variety of sources (e.g., Kydland and Prescott
1991a, 1996; Prescott 1986, 2006:-an Cooley and Prescott 1995). Here
we begin by outlining the five-step procedu¥e presented b Kydland and
Prescott (1996). We then &mgﬁ%nmﬁmmon in n_._o%nomnnﬁ of the
notation established ﬁ@mm&d is.book.

The first step is td pose a question, which will fall under one of two

» . (ﬂll\ . -
general headings: questions may involve assessments of the theoretical im-

plications of changes in policy (e.g., the potential welfare gains associated

with a given tax reform), or they may involve assessments of the ability of
a model to mimic features of the actual economy, ydland and Prescott

et g st s e

characterize the latter class of quéstions as follows:

Other questions are concerned with the testing and development of theory.
These questions typically ask about the quantitative implications of theory for
some phenomena. If the answer to these questions is that the predictions of the-
ory match the observations, theory has passed that particular test. If the answer
Is that there is a discrepancy, a deviation from theory has been documented.
[pp. 70-71]

. «. ) ,\\.\\XJ
The second step is to use “well-tested theory” to address the questioh:
“With a particular question in mind, a researcher needs

some strong the-
Ory to carry out a computational experiment: that is, a researcher needs
a theory that has been tested through use and found to provide reliable
answers to a class of questions.” [p. 72] This step comes with a caveat: “We
recognize, of course, that although the economist should choose a well-
tested theory, every theory has some issues and questions that it does not
address well.” [p. 72] .

Of course, this caveat does not apply exclusively to calibration exercises:
as simplifications of reality, all models suffer empirical shortcomings along
certain dimensions, and any procedure that enables their empirical imple-
mentation must be applied with this problem in mind. The point here is
that the chosen theory must be suitably developed along the dimensions of
relevance to the question at hand. To take the example offered by Kydland
and Prescott: “In the case of neoclassical growth theory ... it fails spectac-
ularly when used to address economic development issues. ... This does
not preclude its usefulness in evaluating tax policies and in business cycle
research.” [p. 72] . T —

The third step involves the construction of the model econ. my: “With
a particular theoretical framework in mind; the third 'stép in conducting
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a computational experiment is to construct a model economy. Here, key
issues are the amount of detail and the feasibility of computing the equi-
librium process.” [p. 72] Regarding this last point, the more detailed and
complex is a given model, the harder it is to analyze; thus in the words
of Solow (1956): “The art of successful theorizing is to make the inevitable
simplifying assumptions in such a way that the final results are not very
sensitive.” [p. 65] So in close relation with step two, the specific model
chosen for analysis is ideally constructed to be sufficiently rich for address-
ing the question at hand without being unnecessarily complex. For exam-
ple, Rowenhorst (1991) studied versions of an RBC model with and with-
out the “time-to-build” feature of the production technology included in
the model analyzed by Kydland and Prescott (1982). (Under “time to
build,” current investments yield productive capital only in future dates.)
His analysis demonstrated that the time-to-build feature was relatively
unimportant in contributing to the propagation of technology shocks;
today, time-to-build rarely serves as hﬁm&%n of RBC models.
Beyond ease of analysis, model ‘simplicity ha additional virtue: it is
valuable for helping to disentahgle nﬁuuﬂww\@\o\nﬂmgn of various features of a
given specification for generating a particular result. Consider the simul-
taneous inclusion of a set of additional features to a baseline model with
known properties. Given the outcome of an interesting modification of the
‘model’s properties, the attribution of importance to the individual features
in generating this result is at minimum a significant challenge. In contrast,

~ analysis of the impact of the individual features in isolation or in smaller

subsets is a far more effective means of achieving attribution. It may turn
out that each additional feature is necessary for achieving the result; alter-
natively, certain features may turn out to be unimportant and usefully
discarded. .

These first three steps apply quite broadly to empirical applications; the

fourth step, the calibration of model parameters, does not:

Generally, some economic questions have known answers, and the model should
give an approximately correct answer to them if we are to have any -confidence
in the answer given to the question with unknown answer. Thus, data are used
n.o.n.pmvnwﬁ the model economy so that it mimics the world as closely as possible
&mﬁm 2 limited; but clearly specified, number of dimensions. [p. 74]

Upon offering this definition, calibration is then distinguished from esti-
mation: “Note that calibration is not an attempt at assessing the size of
something: it is not estimation.” [p. 74] Moreover:

It is important to emphasize that the parameter values selected are not the ones

that provide the best fit in some statistical sense. In some cases, the presence of a

particular discrepancy between the data and the model economy is a test of the
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theory being used. In these cases, absence of that discrepancy is grounds to reject
the use of the theory to address the question. [p. 74]

Although in general this definition implies no restrictions on the spe-
cific dimensions of the world used to pin down parameter values, certain
‘dimensions have come to be applied rather extensively in a wide range of
applications. Long-run averages such as the share of output paid to labor,
and the fraction of available hours worked per household, both of which
Wm<n been remarkably stable over time, serve as primary examples. In addi-

tion, empirical results obtained in micro studiesyconducted at the indivi-
dual or household level are often used asa means of pinning down certain
parameters. For example, the time-allocation study of Ghez and Becker
(1975), conducted using panel data on individual allocations of time to
market activities, was used by Cooley and Prescott (1995) to determine the
relative weights assigned to consumption and leisure in the instantaneous
atility gnmom»mnwgnm in the RBC model they analyzed.
The final step.is to run the experiment. Just how this is done depends
upon the ¢ question at hand, but at a minimum this involves the solution
dow the model, for example, as outlined in chapter 2. Using the notation
established in part I of this book, the model solution yields a state-spacé
representation of the form

Xyl = F(p)xr + G(p)ve1 (6.1)
Xe=H(u) s . (6.2)
E(ere;) = G(u)E(vrv,)G(u) = Q (k). (6.3)

Recall that x; represents the full set of variables included in the model,
represented as deviations from steady state values; X; represents the col-
lection of associated observable variables, represented analogously; and 1
contains the structural parameters of the model.

At this point it is useful to distingunish befween two versions of X;. We will
denote model versions as X, and the actual data as X;. In the context of
this notation, the calibration step involves the specification of the individual
elements of 4. Representing-the real-world criteria used to specify u as

QNL 1), the nmrvnmﬁou mﬁmwubawo?nm the choice of 1 such that

QUEML,) = AL, (6.4

If the question posed in the calibration exercise is to compare model pre-
dictions with an additional collection of features of the real world, then
denoting these additional features as GQN‘L —1)» the question is addressed

via comparison of GQNL Hv and ®({XM) lev Depending upon the spec-
ification of o(-), GQNE }; Hv may either be calculated analytically or via

mEE._mnom
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As noted above, Kydland and Prescott characterize exercises of this sort
as a means of facilitating the “... testing and development of theory.”
[p. 70] As will be apparent in chapter 7, wherein we present generalized
and simulated BnﬁWo.u\ of-moment procedures, such exercises are closely
related to morfient-matching exXércises, which provide a powerful means
of estimating Boammlﬂma.m@ggm their ability to capture real-world
phenomena. The only substantive difference lies in the level of statistical
formality upon which comparisons are based. _

“If the question posed in the exercise involves an assessment of the theo-
retical implications of a change in policy, then once again the experiment
begins with the choice of p such that (6.4) is satisfied. In this case, given
that i contains as a subset of elements parameters characterizing the nature

of the policy under investigation, then the policy change will be reflected

by a new specification 1/, and thus .Nu\ The @znmmom can then be cast
in the form of a comparison between @QNEW ,) and ®({xM MMJHV
Examples of both sorts of exercises follow.

f==]

-

6.3 The Welfare Cost of Business Cycles

We begin with an example of the first sort, based on an exercise conducred
originally by Lucas (1987), and updated by Lucas (2003). The question
involves a calculation of the potential gains in welfare that could be achieved
through improvements in the management of business-cycle fluctuations.
In particular, consider the availability of a policy capable of eliminating all
variability in consumption, beyond long-term growth. Given risk aversion
on the part of consumers, the implementation of such a policy will lead to
an improvement in welfare. The question is: to what extent?

A quantitative answer to this question is available from a comparison of
the utility derived from consumption streams ?} and ?w } associated with
the implementation of alternative policies A4 and B. Suppose the latter is
preferred to the former, so that

U({cfh) < U({E)).

To quantify the potential welfare gains to be had in moving from A to B,
or alternatively, the welfare cost associated with adherence to policy 4,
Lucas proposed the calculation of A such that

UL +2)e)) = U({eE). (6.5)

In this way, welfare costs are measured in units of a percentage of the level
of consumption realized under policy A.
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Lucas’ implementation of this question entailed a comparison of the
expected discounted lifetime utility derived by a representative consumer
from two alternative consumption streams: one that mimics the behavior of
actual postwar consumption, and one that mimics the deterministic growth
pattern followed by postwar consumption. Under the first, consumption
is stochastic, and obeys

o = &mt»“rwqumr (6.6)
where loge; is distributed as N(0,02). Under this distributional assump-

tion for &;,

1.2,.2

E(e}”) = e2™, (6.7)
and thus

E(er) = AeH, (6.8)

the growth rate of which is . Under the second, consumption is deter-
ministic, and at time £ is given by Ae#?, as in (6.8).

Modeling the lifetime utility generated by a given consumption stream
{er} as .

By B, (6.9)

where 8 is the consumer’s discount factor and y measures the consumer’s

degree of relative risk aversion, Lucas’ welfare comparison involves the
calculation of A such that

8H Taoo ;.,
McMUmL”A Mwwu nru Mhn?wmtlv y\u AQ.HOV
=0 - =0 Y

with the behavior of ¢; given by (6.6). Given (6.7),
Eo(e; ") = 10070,
and thus (6.10) simplifies to
(14 a)t7p2(-rPe? _ (6.11)

Finally, taking logs and using the approximation log (1 + 1) = A, the com-
parison reduces to

oy. . (6.12)

[ S
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TABLE 6.1
Welfare Costs, CRRA Preferences
y A $/person, 2004
0.5 ©0.00023 $5.86
1 0.00045 $11.72
1.5 0.00068 $17.59
2 c.coooo $23.45
2.5 0.00113 $29.31

Thus the calculation of A boils down to this simple relationship involv-
ing two parameters: o2 and y. The former can be estimated directly as
the residual variance in a regression of logs; on a constant and trend.
Using annual data on real per capita consumption spanning 1947-2001,
Lucas (2003) estimated o as (0.032)2. Extending these data through
2004 yields an estimate of (0.030)2; the data used for this purpose are
contained in the file weldat . £xt, available at the textbook Web site.

Regarding the specification of y, Lucas (2003) appeals to an intertem-
poral optimality condition for consumption growth y that is a standard fea-
ture of theoretical growth models featuring consumer optimization (e.g.,
see Barro and Sala-i-Martin, 2004):

puwclby . (6.13)

where » is the after-tax rate of return generated by mE\mwn&H capital and

p is the consumer’s subjective discount rate. In this context, y represents
the consumer’s intertemporal elasticity of substitution. With # averaging
approximately 0.05 in postwar data, u estimated as 0.023 in the regression
of log ¢; on a constant and trend, and p restricted to be positive, an upper
bound for y is approximately 2.2, and a value of 1 is often chosen as a
benchmark specification. .

Table 6.1 reports values of A calculated for alternative specifications of y,
based on the estimate o2 = (0.030)2. It also reports the associated (chain-
weighted 2000) dollar value of per capita consumption in 2004. = .

As these figures indicate, potential welfare gains offered by the complete
elimination of cyclical fluctuations in consumption are strikingly low: as
high as only $29.31 per person given y =2.5,and only $11.71 given y =1.
They led Lucas (2003) to two conclusions. First, the figures serve as a trib-
ute to the success of the stabilization policies that have been implemented
over the postwar period: the policies have not left much room for improve-
ment. Second, efforts designed to deliver further gains in stabilization have
little to offer in generating further improvements in welfare.
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Lucas’ (1987) analysis prompted an extensive literature that grew out
of efforts to analyze the robustness of these figures; a summary of this lit-
erature is provided by Lucas (2003). For example, one prominent strand
of this literature involves investigations of robustness to departures from
the representative-agent framework (e.g., as pursued by Krusell and Smith,
1999). Such departures enable the calculation of differential welfare
effects for, for example, low-income households, who may suffer dispro-
portionately from cyclical uncertainty. Another prominent strand involves
departures from the CRRA specification chosen for instantaneous util-
ity. Lucas’ (2003) reading of this literature led him to conclude that his
original calculations have proven to be remarkably robust. Here we demon-
strate an extension that underscores this conclusion, adopted from Otrok
(2001).

Otrok’s extension involves the replacement of the CRRA specification
for instantaneous utility with the habit/durability specification introduced
in chapter 5. Otrok’s analysis was conducted in the context of a fully speci-
fied RBC model featuring a labor/leisure trade-off, along with a consump-
tion/investment trade-off. The parameters of the model were estimated
using Bayesian methods discussed in chapter 9. Here, we adopt Otrok’s
estimates of the habit/durability parameters in pursuit of calculations of
A akin to those made by Lucas (1987, 2003) for the CRRA case.

Recall that under H&;\ durability preferences, instantaneous utility is
given by

By
w(hy) = —— | (6.14)
1-vy
with
by = b? —ab?, , (6.15)

where o €(0,1), 47 is the household’s mﬁmmEQ stock, and 47 its habit
stock. The stocks are defined by

[oe]
W= 80 ; (6.16)
7=0
8 3
=(1-8)) 0'h1;
=0
8 . 8 13
=(1-6)) 67y 81 (6.17)
=0 =0
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where 8 € (0,1) and 6 € (0,1). Substituting for 47 and 4 in (6.15) thus
yields

I

oo j-1
G+ | —a(l-0)) s g,

j=1 i=0

by

%) ’ .
= ®je_j, (6.18)
~

where ®g = 1.
Combining (6.14) and (6.18) with (6.10), Lucas’ welfare comparison in
this case involves the calculation of A such that

mom 5 TH +A) * Mmuuw&.nf.:wé

=0

A AMMMD G\.\»w:T\.VHlx .
nmwm T v (6.19)

where once again the behavior of ¢; is given by (6.6). In this case, a conve-
nient analytical expression for A is unavailable, due .to the complicated
nature of the integral needed to calculate the expectation on the left-
hand side of (6.19). Hence we proceed in this case by approximating A
numerically.

The &mo&g we use for this purpose takes the collection of parame-
ters that appear in (6.19) and (6.6), including A, as given. The parameters
(A, n,0?), dictating the behavior of consumption, were obtained once
again from an OLS regression of log ¢; on a constant and trend; the param-
eters (B, y,a,8,0) were obtained from Otrok (2001), and a grid of values
was specified for A. Because Otrok’s estimates were obtained using postwar
quarterly data on per capita consumption, defined as the consumption of
nondurables and services, we re-estimated (A, i, o) using this alternative
measure of consumption. The series is contained in ycih. txt, available
at the textbook Web site. It is slightly more volatile than the wE.E& mea-
sure of nommEE,uHOb considered by Lucas: the estimate of o2 it yields
is (0.035)2. ,

Given a specification of parameters, the right-hand side om (6.19) may be
calculated directly, subject to two mmwmogmﬁoum First, for each value of
t, the infinite-order expression To ®; ;Ae" 7 must be calculated using a
mEﬁn ordered approximation. It turns oﬁ that under the range of values for
(8,7,2,8,0) estimated by Otrok, the corresponding sequence ﬁ L decays
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rapidly as 7 increases, reaching approximately zero for j = 6; we set an upper
bound of J =10 to be conservative. Second, the infinite time horizon over
which the discounted value of instantaneous utility is aggregated must also
be truncated. It turns out that summation over approximately a 1,500-
period tirme span provides an accurate approximation of the infinite time
horizon; we worked with an upper bound of T = 3, 000 to be conservative.

Using the same upper limits J and T, an additional approximation is
required to calculate the expectation that appears on the left-hand side of
(6.19). This is accomplished via use of a technique known as numerical
integration. Full details on the general use of this technique are provided
in chapter 9. In the present application, the process begins by obtaining
a simulated realization of {#;} w.uH from an N(0,0?) distribution, calculat-
ing ?LW,MH using &; = ¢*, and then inserting ?im,uH into (6.6) to obtain
a simulated drawing of ?Lm,nw. Using this drawing, the corresponding
realization of the discounted value of instantaneous utility is calculated.
These steps deliver the value of a single realization of lifetime utility.
Computing the average value of realized lifetime utilities calculated over
many replications of this process yields an approximation of the expected
value of lifetime utility. The results reported below were obtained using
1,000 replications of this process. (A discussion of the accuracy with which
this calculation approximates the actual integral we seek is provided in
chapter 9.)

Finally, to determine the value of A that satisfies (6.19), the left-hand side
of this equation was approximated over a sequence of values specified for
A; the specific sequence we used began at 0 and increased in increments of
0.000025. Given the risk aversion implied by the habit /durability specifica-
tion, the left-hand side of (6.19) is guaranteed to be less than the right-hand
side given A = 0; and as X increases, the left-hand side increases, ultimately
reaching the value of the right-hand side. The value of A we seek in the ap-
proximation is the value that generates equality between the two sides.

Results of this exercise are reported in table 6.2 for nine specifications of
(B,v,2,8,0). The first is referenced as a baseline: these correspond with
median values of the marginal posterior distributions Otrok calculated for
cach parameter: 0.9878, 0.7228, 0.446, 0.1533, 0.1299. Next, sensitivity
to the specification of y is demonstrated by re-specifying y first at the 5%
quantile value of its marginal posterior distribution, then at its 95% quantile
value. The remaining parameters were held fixed at their median values

given the re-specification of y . Sensitivity to the specifications of &, §, and_

6 is demonstrated analogously. Finally, a modification of the baseline under
which y =1 is reported, to facilitate a closer comparison of Lucas’ estimate
of A obtained under CRRA preferences given y =1.

Under Otrok’s baseline parameterization, A is estimated as 0.00275.
In terms of the annual version of consumption considered by Lucas,
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TABLE 6.2

Welfare Costs, Habit/Durability Preferences
Parameterization A $/Person, 2004
Baseline 0.000275 $7.15 -
y = 0.5363 0.000225 $5.85
y = 0.9471 0.000400 $10.40 -
f =0.0178 "0.000375 $9.75
6 = 0.3039 0.000200 $5.20
a = 02618 0.000275 $7.15
o =0.6133 0.000400 $10.40
§ =0.0223 0.000425 $11.05
8§ =0.3428 0.000175 - $4.55
y =1 0.000550 - $14.30

Note: Bascline estimates are (B, y,,3,8)=(0.9878, 0.7228, 0.446,
0.1533, 0.1299).

this corresponds with a consumption cost of $7.15 /person in 2004. For
the modification of the baseline under which y=1, the cost rises to
$14.30/person, which slightly exceeds the cost of $11.72/person calcu-
lated using CRRA preferences given y = 1. The estimated value of A is most
sensitive to changes in §, which determines the persistence of the flow of
services from past consumption in contributing to the durability stock.
However, even in this case the range of estimates is modest: $4.55 /person
given §=0.3428; $11.05/person given §=0.0223. These results serve
to demonstrate the general insensitivity of Lucas® results to this particular
modification of the specification of instantaneous utility; as characterized
by Otrok: ... it is a result that casts doubt that empirically plausible mod-
ifications to preferences alone could lead to large costs of consumption
volatility.” [p. 88] :

Exercise 6.1

Recalculate the welfare cost of business cycles for the CRRA case given

mnn_pxmmonommrnHom-Zo_.Bme»mchmmo:moﬁ.?L.Uomo c&bmﬁrn
following steps. :

1. Using the consumption data contained in weldat. txt, regress the log of
consumption on a constant and trend. Use the resulting parameter estimates
to specify (4, u,02)in (6.6), and save the resulting residuals in the vector #.

2. Construct a simulated realization of ?Lm.n 0> I'=3, 000, by obtaining ran-
dom drawings (with replacement) of the individual elements of %. For each
of the ¢ drawings #; you obtain, calculate &; = % ; then insert the resulting

drawing {;}]__ into (6.6) to obtain {:}T,.



134 6 Calibration

1—
3. Using the drawing (e}, calculare 7 mwﬁwﬂh using = 0.96,

y=0.5, 1, 1.5, 2 (recalling that for y =1, mw..wm =In(x)), and A=0,

0.000025,...,0.0001.
4. Repeat steps 2 and 3 1,000 times, and record the average values of Mum,uo

1~ 1-
B wﬁwﬁlw you obtain as approximations of Ey MUWHO Bt E’w

5. Calculate the right-hand side of (6.10) using the estimates of A and u
obtained in step 1. Do so for each value of y considered in step 3.

6. For each value of y, find the value of A that most closely satisfies (6.10).
Compare the values you obtain with those reported in table 6.1. Are Lucas’
original calculations robust to departures from the log-Normality assumption
adopted for {e;}?

Exercise 6.2

Using the baseline estimates of the habit/durability specification reported
in table 6.2, evaluate the robustness of the estimates of A reported in table
6.2 to departures from the log-Normality assumption adopted for {e;].
Do so using simulations of ?&wno generated as described in step 2 of the
exercise 6.1. Once again, are the results reported in table 6.2 robust to
departures from the log-Normality assumption adopted for {¢;}?

6.4 Productivity Shocks and Business
W Cycle Fluctuations

As an example of an experiment involving a question of fit, we calibrate
the RBC model presented in chapter 5, section 5.1.1, and examine the
extent to which it is capable of accounting for aspects of the behavior of
-output, consumption, investment, and hours introduced in chapters 3 and
4 (the data are contained in ycih.txt, available at the textbook Web
site). Reverting to the notation used in the specification of the model,
the parameters to be calibrated are as follows: capital’s share of output a;
the subjective discount factor 8 = TH.IE where g is the subjective discount
rate; the degree of relative risk aversion ¢; consumption’s share (relative to
leisure) of instantaneous utility ¢; the depreciation rate of physical capital 5;
the AR parameter specified for the productivity shock p; and the standard
deviation of innovations to the productivity shock o :
Standard specifications of B result from the association of the subjective
discount rate @ with average real interest rates: roughly 4%-5% on an annual
basis, or 1%-1.25% on a quarterly basis. As a baseline, we select a rate of 1%,

implying B = .ﬁwo.w = ob\o. The parameterization of the CRRA parameter
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was discussed in the previous section; as a baseline, we set ¢=1.5, and
consider [0.5,2.5] as a plausible range of alternative values.

We use the long-run relationship observed between output and invest-
ment to identify plausible parameterizations of @ and §. Recall that steady

7 and I are of
state values of < and £ are given by

y
=T,
7
2 =3,
7
where
1
o =
B Am.lv ’
n = g%,

Combining these expressions yields the relationship

h\ Q\%P

Qu Amw%.v W . (6.20)

‘Using the sample average of 0.175 as a measure of m.“, and given 0 =0.01,

a simple relationship is established between  and §.

Before illustrating this relationship explicitly, we use a similar step to
identify 2 plausible range of values for ¢. Here we use the steady state
expression for 7, the fraction of discretionary time spent on job-market
activities:

7= 1 v (6.21)
- 1) (1= a1 .
1+ (2) (52) - s0r-e

According to the time-allocation study of Ghez and Becker (1975), which
is based on household survey data, 7 is approximately 1/3. Using this
figure in (6.21), and exploiting the fact that £ =[1—3861~*] (the sample
average of which is 0.825), we obtain the following relationship between
o and @:

1 ,
e (6.22)
75

In sum, using sample averages to pin down Z, £ and 7, We obtain
the relationships between @, 8, and ¢ characterized by (6.20) and (6.22).

SI..II
1+

2t
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TABLE 6.3
Trade-Offs Between 8, &, and ¢
8 o 7]
0.010 0.35 0.39
0.015 0.29 0.37
0.020 0.26 0.36
0.025 0.24 0.35
0.030 0.23 0.35
0.035 0.22 0.35
0.040 0.22 0.35

Nore: The moments used to establish these trade-offs are
0.175, £ w =0.825,and 7=1/3.

‘<1Iv~ |

Table 6.3 presents combinations of these parameters for a grid of values
specified for § over the range [0.01,0.04], implying a R@mnodﬂdbﬂ
depreciation rates of [4%,16%]. As a Ummngn we speci //lo .025_(10%
annual depreciation), yielding mmaemnmnoum Om o =0.24 and ¢ =0.35 that
match the empirical values of £ 5> % and 7. Regarding the specification of
a, this is somewhat lower than the residual value attributed to capital’s
share given the measure of labor’s share calculated from National Income
and Product Accounts (NIPA) data. In the NIPA data, labor’s share is
approximately 2 /3, implying the specification of @ =1/3. The reason for
the difference in this application is the particular measure of investment we
use (real gross private domestic investment). Using the same measure of
investment over the period 1948:1-1995:IV, DeJong and Ingram (2001)
obtain an estimate of @ = 0.23 (with a corresponding estimate of § = 0.02)
using Bayesian methods described in chapter 9.

The final parameters to be established are those associated with the
behavior of the productivity shock 2;: p and o. We obtain these by first
measuring the behavior of 2, implied by the specification of the produc-
tion function, coupled with the observed behavior of output, hours, and
physical capital. Given this measure, we then estimate the AR parameters
directly via QLS.

Regarding physical capital, the narrow definition of investment we use
must be taken into account in measuring the corresponding behavior of
capital. We do so using a tool MSOQB as the perpetual inventory method.
Hgm involves the input of TL 1 and kg into the law of motion of capital

ko1 = de+ (1 — 8)ky (6.23)
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to obtain a corresponding sequence QNLWMH. A measure of ky may be
obtained in four steps: divide both sides of (6. wmv by y:; use beginning-of-

sample averages to measure the resulting ratios wv % = 1, k; solve for

i

©a | b=
21l =

; (6.24)

2l &

and finally, BEEUF g %. The results reported here are based on

the specification Om : ovﬁwﬁnm using an Qmwn-wncoa or two-year sample
average.

Given this measure of QNL,"L , log z; is derived following Solow (1957)
as the unexplained component of log y; given the input of log £, and log #;
in the production function:

logz; = logy; — alog by — (1 — a)log #;. (6.25)

For this reason, 2; is often referred to as a Solow residual. Finally, we m@@?
the Hodrick-Prescott (H-P) filter to each variable, and estimate p and o .
using the HP-filtered version of z;. The resulting estimates are 0.78 and
0.0067.

Having parameterized the model, we characterize its implications
regarding the collection of moments reported for the HP-filtered data in
table 4.1. Moments calculated using both the model'and data are reported
in table 6.4.

As these results indicate, the model performs well in characterizing the
patterns of serial noﬂo_mﬁo: observed in the data, and also replicates the
patterns of volatility observed for consumption and investment relative to
output: the former is quite smooth relative to the latter. However, it per-
forms poorly in characterizing the relative volatility of hours, which are
roughly equally as volatile as output in the data, but only 1 /3 as volatile in
the model. Figure 6.1 illustrates this shortcoming by depicting the time-
series paths followed by output and hours in the actual data, along with
paths followed by counterparts simulated from the model. The simulated
hours series is far smoother than the corresponding output series.

The standard RBC model’s characterization of the volatility of hours is a
well-known shortcoming, and has prompted many extensions that improve
upon its performance along this dimension. Examples include specifica- -
tions featuring indivisible labor hours (Hansen, 1985; Rogerson, 1988;
Kydland and Prescott, 1991b); home production (Benhabib, Rogerson,
and Wright, 1991; Greenwood and Hercowitz, 1991); labor hoarding
(Burnside, Eichenbaum, and Rebelo, 1993; Burnside and Eichenbaum, -
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TABLE 6.4
Moment comparison
H-P filtered Data
. aj
] o 5 (1) i9(0) 95.5(1)
y 0.0177 1.00 0.86 1.00 0.86
¢ 0.0081 0.46 .0.83 10.82 0.75
i 0.0748 423 0.79 0.95 0.80
n 0.0185 1.05 0.90 0.83 0.62
RBC Model

o & o(1) 2;,5(0) ey
¥ 0.0207 1.00 0.87 1.00 0.87
c 0.0101 0.48 0.94 0.96 0.93
i 0.0752 3.63 0.81 0.98 0.79
3 0.0076 0.366 0.78 0.97 0.76

Notes: (1) denotes first-order serial correlation; ¢;5(2) denotes ™ order correlation
berween variables § and y. Model moments based on the parameterization

p=lafopspol =[0.240991.50.350.025 0.78 0.0067] .
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Figure 6.1 Comparisons of output and hours.
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1997Y; fiscal disturbances (McGrattan, 1994); and skill-acquisition activi-
ties (Einarsson and Marquis, 1997; Perli and Sakellaris, 1998; and DeJong
and Ingram, 2001). Thus this example serves as a prime case study for
the use of calibration experiments as a means of facilitating the “. . . testing
and development of theory,” as advocated by Kydland and Prescott (1996,
p. 70).

Exercise 6.3

Reconstruct table 6.4 by using the alternative combinations of values spec-
ified for 8, &, and ¢ listed in table 6.3. Also, consider 0.5 and 2.5 as alter-
native specifications of ¢. Are the results of table 6.4 materially altered by
any of the alternative choices you considered?

Exercise 6.4

Reconduct the calibration exercise of this section using the extension of the
RBC model outlined in chapter 5, section 5.1.1 that explicitly incorporates
long-term growth. Pay careful attention to the fact that equations (6.20)
and (6.22), used to restrict the parameterizations of §, @, and ¢, will be
altered given this extension. So too will be (6.24), which was used to
specify ky. Once again, are the results of table 6.4 materially altered given
this extension of the model?

6.5 The Equity Premium Puzzle

The calibration experiment of Mehra and Prescott (1985) also serves as
a prime case study involving the testing and development of theory. The
test they conducted sought to determine whether the asset-pricing model
presented in chapter 5, section 5.3.2, is capable of characterizing pattérns
of returns generated by relatively risky assets (equity) and riskless assets
(Treasury bills). The data they considered for this purpose consist of the
annual real return on the Standard and Poor’s 500 composite index, the
annualized real return on Treasury bills, and the growth rate of real per
capita consumption on non-durables and services. The time span of their
data is 1889-1978; here we demonstrate a brief replication of their study
using data updated through 2004. The original data set is contained i
mpepp . txt, and the updated data set is contained in mpeppext . txt;
both are available at the textbook Web site.

As characterized in chapter 5, section 5.3.2, Mehra and Prescott’s state-
ment of the equity premium puzzle amounts to a presentation of the
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empirical incompatibility of the following equations, derived in a two-asset
environment:

\
Aai.wv
mm; T wf-1t=0 (6.26)
§R Cr+1) e f —
.mw *‘@M\om.hlul “H\w.:. VTHH— = O.. AQNQV
where % . and rZ, ; denote the gross returns associated with a risk-free and
-+l t+1 B

. . . f . . .
E&Q asset. The difference 7/, ) — 7/, is Hnmnnnna to as the equity premium.

Sample averages (standard deviations) of +H and 7/, are 0.8% (5.67%)
and 6.98% (16.54%) in the data ending in 1978, and 1.11% (5.61%) Eum
7.48% (16.04%) in the data ending through Noo». Thus equity returns
are large and volatile relative to risk-free returns. The question is: can this
pattern of returns be reconciled with the attitudes towards risk embodied
by the CRRA preference specification?

Given CRRA preferences, with y representing _&n risk-aversion param-
eter, the equations are given by

hat 4
BE, A&MHV wfi-1t=0 (6.28)
E Crtl -7 e f =0
A) -] =0 (6.29)

Here, we use sample averages to estimate the expectations represented in
(6.28) and (6.29), and seek to determine whether it is possible to specify
¥ in order to jointly account for each equation, given 8 = 0.99. H.wn results
of this exercise are presented in table 6.5.

Note that for a specification of y bétweén 0 and 0.5, it is possible to
account for the first equation. The reason for the requirement of such
a low value is that in addition to characterizing attitudes towards risk,
¥ plays the role of determining the houschold’s intertemporal elasticity of
substitution, given by 1/y. The presence in the data of a relatively large
average consumption growth rate (1.83% in the data ending in 1978, and
1.79% in the data ending in 2004), coupled with the low average returns
generated by the risk-free rate, implies a highly elastic intertemporal sub-
stitution parameter, and thus a low value of y. Of course, the specification
of a smaller value for B requires an even lower value for y; thus 8=0.99
represents nearly a best-case scenario along this dimension.

In turn, a large specification of y is required to account for the second
equation. In fact, the sample average first becomes negative given y = 20.
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TABLE 6.5
The Equity Premium and Risk-Free Rate Puzzles

T o1 —=v N -y
L (%) "[ta -l
0 0.001 0.064
0.5 —0.007 . 0.062
1 -0.015 =~ 0.060
1.5 —0.023 0.059
2 —0.030 0.057
2.5 -0.037 0.056
3 —0.044 0.054

Notes: % denotes the sample mean of x. Results obtained using f = 0.99.

The reason is that the relatively large premium associated with returns
generated by the risky asset implies substantial risk aversion on the part of
households. This in turn implies a highly inelastic intertemporal elasticity
of substitution given CRRA mnommwnbnnmv which is inconsistent with the first
equation. Thus the puzzle, .

Mebhra and Prescott’s (1985) statement of the MENNF spawned an enor-
mous literature seeking to determine whether alterations of preferences or
additional features of the environment are capable of accounting for this
behavior. Surveys of this literature are given by Kocherlakota (1996) and
Mehra and Prescott (2003). Certainly these efforts have served to make
headway towards a resolution; however, the conclusion of both surveys is -
that the equity premium remains a puzzle. .

Exercise 6.5

Replicate the calculations presénted in table 6.5 using the baseline param-
eterization of the habit/durability specification presented in section 6.3.
Does this modification represent progress in resolving the puzzle? Ponder

the intuition behind your findings.

6.6 Critiques and Extensions

6.6.1 Critiques

As noted, Kydland and Prescott’s (1982) use of a calibration exercise
to implement the DSGE model they studied represents a pathbreaking
advance in the conduct of empirical work in macroeconomic applications.
Moreover, as illustrated in the applications above, calibration exercises c¢an
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certainly serve as an effective means of making headway in empirical ap-
plications involving mnmnn&.mmwmtwﬁ%ﬁ At a minimum, they are
well-suited for conveying a ‘quick initial impression regarding the empir-
ical strengths and weaknesses Omwlmhdmmﬂmmmmﬂm_oa_m > specific dimensions

v ok T e T e T

nromnw,vx ,hm,n.mmmmmmmwm.hﬂ@m Ennnmﬁmcﬁnammnmnam&%ma@o:mbﬁwb
that it provides an effective means of discovering dimensions along which
extensions to the model are most likely to bear fruit.

This being said, thellacko stafistical formality ssociated with calibration
exercises imposes distinct limitations upon what can be learned and com-
municated via their use. Moreover, the particular approach advocated by
Kydland and Prescott (as presented in section 6.2) for addressing empirical
questions in the absence of a formal statistical framework has been criticized
on a variety of fronts. We conclude this chapter by summarizing certain as-
pects of this criticism, and discussing some closely related extensions to
calibration that retain the general spirit of the exercise.

In the preface to his (1944) articulation of the probability approach to
econometrics, Haavelmo opened with a criticism of the approach that pre-
vailed at the time. The criticism is striking in its applicability to calibration
exercises devoted to questions regarding fit (the included quotation marks
and italics are Haavelmo’s):

So far, the common procedure has been, first to construct an economic theory
involving exact functional relationships, then to compare this theory with some
actual measurements, and, finally, “to judge” whether the correspondence is
“good” or “bad.” Tools of statistical inference have been introduced, in some
degree, to support such judgements, e.g., the calculation of a few standard errors
and multiple-correlation coefficients. The application of such simple “statistics”
has been considered legitimate, while, at the same time, the adoption of definite
probability models has been deemed a crime in economic research, a violation of
the very nature of economic data. That is to say, it has been considered legitimate
to use some of the ools developed in statidtical theory without accepting the very
Soundation upon which statistical theory is built. Bor no tool developed in the theory
of statistics has any meaning - except, perhaps, for descriptive purposes - without
being veferved to some stochastic scheme. [p. iii]

Our interpretation of the thrust of this criticism is that in the absence of
statistical formality, communication regarding the results of an experiment
is problematic. Judgments of “good” or “bad”, or as Kydland and Prescott
(1996, p. 71) put it, judgments Of whether “... the predictions of the-
ory match the observations =7 are necessarily subjective. In applications
such as Mehra and Prescott’s (1985) identification of the equity premium
puzzle, empirical shortcomings are admittedly fairly self-evident. Hmbh in
evaluating marginal gains in empirical performance generated by various
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modifications of a baseline model, the availability of coherent and objec-
tive reporting mechanisms is invaluable. No such mechanism is available
in conducting calibration exercises.,

Reacting to Kydland and Prescott (1996), Sims (1996) makes a similar
point:

Economists can do very little experimentation to produce crucial data. This is
v&.mn&m&\ true of macroeconomics. Important policy questions demand opin-
ions from economic experts from month to month, regardless of whether pro-
fessional consensus has emerged on the questions. As a result, economists nor-
mally find themselves.considering many theories and models with legitimate
claims to matching the data and predicting the effects of policy. We have to deliver
recommendations or accurate descriptions of the nature of the uncertainty about
the consequences of alternative policies, despite the lack of a single accepred
theory. [p. 107]

Moreover:

Axiomatic arguments can producethe conclusion that anyone making decisions
under uncertainty must act as if that agent has a probability distribution over the
uncertainty, updating the probability distribution by Bayes’ rule as new evidence
accumulates. People making decisions whose results depend on which of a set
of scientific theories is correct should therefore be interested in probabilistic
characterizations of the state of the evidence. [p. 108]

These observations lead him to conclude:

... formal statistical inference is not necessary when there is no need to choose
among competing theories among which the data do not distinguish decisively.
But if the data do not make the choice of theory obvious, and if decisions depend
on the choice, experts can report and discuss their conclusions reasonably only
using notions of probability. [p. 110]

Regarding the problem of choosing among given-theories, there is no
doubt that from a classical hypothesis testing perspective, under which one
model is posed as the null hypothesis, this is complicated by the fact that the
models in question are “necessarily false.” But this problem is not unique
to the analysis of DSGE models, as the epigram to this chapter by Theil
implics, Moreover, this problem is not an issue given the adoption of a
Bayesian perspective) under which model comparisons involve calculations
of therelative-probability assigned to alternative maodels, conditional on the
observed data. Under this perspective, there is no need for the declaration
of a null model; rather, all models are treated symmetrically, and none are

assumed a priori to be “true.” Details regarding this approach are provided
in chapter 9.
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o

Also in reaction to Kydland and Prescott (1996), Hansen and Heckman
(1996) offer additional criticisms. For one, they challenge the view that
calibration experiments involving questions of fit are to be considered as
distinct from estimation: ... the distinction drawn between calibrating
and estimating the parameters of a model is artificial at best.” [p. 91]
Their reasoning fits nicely with the description provided in section 6.1 of
the means by which the specification of w is achieved via use of (6.4);
and the means by which judgements of fit are achieved via comparisons of
O((X )L, ) with S((XM)L) ):

Econometricians refer to the first stage as estimation and the second stage as
testing. . . . From this perspective, the Kydland-Prescott objection to mainstream
econometrics is simply a complaint about the use of certain loss functions for
describing the fit of a model to the data or for producing parameter estimates.
[p. 92]

In addition, Hansen and Heckman call into question the practice of
yimporting parameter estimates obtained from micro studies into macroeco-
nomic models. They do so on two groviiids. First, such parameter estimates
. r&ﬂxmmww;mmmmmﬂ\#r@b part this uncertainty can be conveyed
by reporting corresponding standard errors, but in addition, model uncer-
MQ.EQ plays a substantial role (a point emphasized by Sims). Second, “... it
-s only under very special circumstances that a micro parameter ... can be
‘plugged into’ a representative consumer model to produce an empirically
concordant aggregate model.” [p. 88] As an example of such a pitfall,
they cite Houthakker (1956), who demonstrated that the aggregation of
Leontief micro production technologies yields an aggregate Cobb-Douglas
production function.
These shortcomings lead Hansen and Heckman and Sims to similar
conclusions. To quote Hansen and Heckman:

Calibration should only be the starting poiat of an empirical analysis of general-

equilibrium models-In the absence of firmly established estimates of key par-

ameters, sensitivity analysey should be routine in real business cycle simulations.

Properly used g qualified simulation methods can be an important source

of information and an important stimulus to high-quality empirical economic
w research. [p. 101]

JAnd to quote Sims:

A focus on solving and calibrating models, rather than carefully fitting them to
data, is reasonable at a stage where solving the models is by itself a major research
task. When plausible theories have been advanced, though, and when deci-

.m.fwomm depend on evaluating them, more systematic collection and comparison of
evidence cannot be avoided. [p. 109] .

)
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It is precisely in the spirit of these sentiments that we present the ad-
ditional material contained in Part IT of this book.

6.6.2 Extensions

We conclude this chapter by presenting two extensions to the basic calibra-
tion exercise. In contrast to the extensions presented in the chapters that
follow, the extensions presented here are distinct in that ﬁrn%\n_b\mmm.mﬁﬁ
an estimation stage. Instead, both are designed to provide/measures of fit
for calibrated models. S—

The first extension is due to Watson (1993), who proposed a measure .
of fit based on the size of the stochastic error necessary for reconciling dis-
crepancies observed between the second moments corresponding to the
model under investigation and those corresponding with the actual data.
Specifically, letting X; denote the mx 1 vector of observable variables cor-
responding with the model, and 7; their empirical counterparts, Watson’s
measure is based on the question: how much error U; would have to
be added to X; so that the autocovariances of X; -+ U; are equal to the
autocovariances of 13;?

To quantify this question, recall from chapter 4 that the s®-order auto-
covariance of a mean-zero covariance-stationary stochastic process z; is
given by the m x m matrix . . .

E(zez,_,) = Ty(s).
Therefore the s®-order autocovariance of Uy = 13 — X is given by
Fy(s) =Tr(s) + I'x(s) — Txr(s) — Trx(s), (6.30)
where ‘
Txr(s) = E(X:Y;_,),
and .
Fxr(s) = Drx(=s)'.
With En‘ autocovariance generating function (ACGF) of z; given by .
Ay(0) = W Ty(s)e™5es, (6.31)

§=—00

where 7 is complex and w € [0, 2] represents a particular frequency, the
ACGF of U implied by (6.30) is given by :

Au(e7) = Ay(e™) + Ax(e~*)
— Axr(£7%) — Axr (7Y, (6.32)
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where
\UQ,A\EV\ — »m.HNAmlmev.

As discussed in chapter 4, it is straightforward to construct Ay (™)
and Ax(e™*) given observations on 7; and a model specified for X;.
However, absent theoretical restrictions imposed upon Axy(e~**), and
absent joint observations on (3, X;), the specification of Axr(e™**) is
arbitrary. Watson overcame this problem by proposing a restriction on
Axr(e~*) that produces a lower bound for the variance of Uy, or in other
words, a best-case scenario for the model’s ability to account for the second
moments of the data.

To characterize the restriction, it is useful to begin with the implausible
but illustrative case in which X; and Y; are serially uncorrelated. In this
case, the restriction involves minimizing the size of the covariance matrix
of Uz, given by

Yy=Xr+ Xy — Zxr — Zrx. (6.33)

Because there is no unique measure of the size of Ly, Watson proposes
the minimization of the trace of WX, where W is an m x m weighting
matrix that enables the researcher to assign alternative importance to linear
combinations of the variables under investigation. If W is specified as the
identity matrix, then each individual variable is treated as equally important.
If alternatively the researcher is interested in G7; and GX;, then W can
be chosen as G’ G, since

w(GTyG) = (G GZy).
Given W, Watson shows that
Sxr=CxVU'Cy (6.34)

is the unique specification of xy that minimizes t»(WZy). In (6.34),
Cx and Cr are arbitrary m x » matrix square roots of £x and S (e.g.,
Y x = Cx Cy, an example of which is the Cholesky decomposition), and
the matrices U and V are obtained by computing the singular value decom-
position of C).WCx. Specifically, the singular value decomposition of
Cy WCx is given by

CyWCx = USV’, (6.35)

where U is an m x k orthonormal matrix (i.e., U’ U is the £ x k identity
matrix), S is a k£ x k matrix, and V is a £ x k orthonormal matrix.?

2In GAUSS, Cholesky decompositions can be obtained using the command chol, and
singular value decompositions can be obtained using the command svdl.
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For the general case in which X, and Y} are serially correlated, Wat-
son’s minimization objective translates directly from Zxr to Axy (™).
Recall from chapter 4 the relationship between ACGFs and spectra; in the
multivariate case of interest here, the relationship is given by

ﬁevuA v Mg%éw we[—m,7). (6.36)

=00

With Cx(w) now denoting the matrix square root of sx () calculated for a
given specification of w, etc., the specification of Axy(¢~**) that minimizes
ir(WXyp) is given by

Axr(e7) = Cx(0) V(@) U'(@)Cy(w), (6.37)

where U(w) and V(w) are as indicated in (6.35).

In this way, the behavior of the minimum-variance stochastic process U
can be analyzed on a frequency-by-frequency basis. As a summary of the
overall performance of the model, Watson proposes a relative mean square
approximation error (RMSAE) statistic, analogous to a lower bound on
1-— Nw statistics in regression analyses (lower is better):

K»qﬁ_wl.ev&.

Ar(e o), (6.38)

7ji(w) =

where Ay (e~ )7 denotes the 7 diagonal element of Ay (e™*).

As an illustration, figure 6.2 closely follows Watson by demonstrating
the application of his procedure to the RBC model presented in section
6.4, parameterized as indicated in table 6.4. Following Watson, the figure
illustrates spectra corresponding to first differences of both the model vari-
ables and their empirical counterparts. This is done to better accentuate
behavior over business-cycle frequencies (i.e., frequencies between 1,/40
and 1/6 cycles per quarter). The data were &mo HP-filtered, and W was
specified as the 4 x 4 identity matrix.?

The striking aspect of this figure is that the model fails to capture the
spectral peaks observed in the data over business-cycle frequencies. Given
this failure, associated RMSAE statistics are decidedly anticlimactic.’
Nevertheless, RMSAEs calculated for output, consumption, investment,
and hours over the [1/40, 1/6] frequency range are given by 0.18, 0.79,
0.15, and 0.66; thus the model’s characterization of consumption and
hours over this range is seen to be particularly poor.

3Three GAUSS procedures were used to produce this figure: modspec.prc,
dataspec.prc, and errspec.prc. All are available at the textbook Web site.
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Figure 6.2 Decomposition of spectra.

Watson’s demonstration of the failure of the standard RBC model to
produce spectral peaks prompted several efforts devoted to determining
whether plausible modifications of the model are capable of improving
empirical performance along this dimension. For example, Wen (1998)
obrained an affirmative answer to this-question by introducing two mod-
ifications: an employment externality, under which the level of aggregate
employment has an external affect on sectoral output; and the specifica-
tion of habit formation in the enjoyment of leisure activities. So too did
Otrok (2001), for the model (described in section 6.3) he used to analyze
the welfare cost of business cycles. Thus the results of figure 6.2 do not
provide a general characterization of the empirical performance of RBC
models along this dimension.

The second extension is due to related work by Canova (1995) and
DeJong, Ingram, and Whiteman (1996). Each study proposed th:
ment of a single set of values speci ver (1 with 2
(). The distribution induced b (1) ovey a collectivn ofer pirical tar-
gets chosen by the researcher is themconstructed and compared with a

0.45
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corresponding distribution calculated from the actual data. For example,
the collection of moments featured in table 6.4 used to evaluate the RBC
model presented in section 6.4 represents a common choice of empiri-
cal targets. Reverting to the notation used in section 6.2, hereafter we

.represent the selected targets as Q.

The difference between these studies lies in the empirical distributions
over Q they use. DeJong et al. worked with posterior distributions over
$ obtained from the specification of a vector autoregressive (VAR) model
for the actual data; Canova worked with sampling distributions. Method-
ologies available for calculating posterior distributions are not presented in
this book until chapter 9, so details regarding the implementation of the
extension proposed by DeJong et al. are not provided here. Instead, we
present an algorithm for calculating sampling distributions over Q induced
by a VAR specification for the data, and thus for implementing Canova’s
measure of fit. This represents a specialization of the Monte Carlo method
presented in chapter 4, section 4.2, as a means of approximating standard
errors numerically. : : .

Using the notation of chapter4, let the VAR specified for X; be given by

N‘w = ..M;H.NNIH + HN‘N.NIN R %MNNlm. -+ Ety .mAm.me.v = 3.
(6.39)

The algorithm takes as inputs OLS estimates &.u 7=1,...,p, w, estimated
residuals {£;}, and the first p observations of X;, which serve as start-
ing values. Given these inputs, a simulated drawing Xp+1 can be con-
structed by obtaining an artificial drawing ), from a given distribution,
and evaluating the right-hand side of (6.39) using {X1, X3,. .. > Xp—1, Xp}
and 7). Next, g p+2 1s constructed by obtaining a second &mﬁmmzwviv
and evaluating the right-hand side of (6.39) using {X3, Xz, . . ., Xp, Xpt1}
and &,. Performing T replications of this process yields an artificial drawing
{X+). (The influence of the initial observations {X1, Xa,. . ., Xp_1, X,} can
be reduced by obtaining T + T" drawings of X ;, and discarding the first 7"
drawings in constructing {X;}.) For each of ] replications of this process,
a collection of J estimates of Q is calculated; the resulting distribution of
{2 approximates the sampling distribution we seck. .

There are two common general methods for obtaining artificial drawings
%;. One B\n,mmoa involves a distributional assumption for {g,}, parame-
terized by . For example, let S denote the Cholesky decomposition of
. Then under the assumption of Normality for {e;}, drawings & may
be obtained using £; = S%, where % represents an m x 1 vector of inde-
pendent N(0, 1) random variables. Alternatively, 3, may be obtained as a
drawing (with replacement) from the collection of residuals {7;).
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Let the distribution obtained for the 5™ element of 2 be given by 8(€2;),
and let [#, b]; denote the range of values for Q; derived by subtracting and
adding one standard deviation of §(£2;) to the mean value of S(R;). Also,
let 7(£2;) denote the prior distribution over Q; induced by 7 (x). Then
Canova’s measure of fit along this dimension of the target space is the
proportion 7 (2;) that lies within [a, &];:

fi= \si?v%r (6.40)

Thus f; € [0,1], and the greater is the proportion of 7 (;) contained in
the range [, &];, the closer f; will be to 1. A measure of fit related to that
proposed by DeJong et al. is obtained by replacing the range [, £]; with
an analogous coverage interval corresponding to a posterior distribution
specified over Q;.

Exercise 6.6

Using the RBC model presented in section 6.4, calculate f; for the collec-
tion of moments analyzed in table 6.4. Use a 6-lag VAR specified for the
data to construct [a, &]; for each moment. Do so using the version of the
Monte Carlo algorithm described above under which artificial drawings Z;
are obtained as drawings (with replacement) from the collection of residuals
{€+}. Finally, use the following prior distribution specified over the elements
of u: p~ U[0.988,0.9925]; § ~ U[0.01,0.04]; p ~ U[0.75,0.81], and
U denoting the cEmOHB distribution. AdEmoHB drawings of, e.g., B over
wm B1 may be obtained using the transformation 8 = B+ B - .3& where
% is a drawing from a U[0, 1] distribution.) Given a drawing of § and ¢ =
1/B — 1, calculate the corresponding value of « using (6.20), and the cor-
responding value of ¢ using (6.22). Throughout, hold o fixed at'0.0067.

-~

Chapter 7

Matching Moments

Know the right moment.
—The Seven Sages, from Diogenes Luertius,
Lives of Eminent Philosophers

7.1 Overview

In the previous chapter, we characterized calibration as an exercise under
which a set of empirical targets is used to pin down the parameters of the
model under investigation, and 2 second set of targets is used to judge the
mode!’s empirical performance. Here we present a collection of procedures
that establish a statistical foundation upon which structural models can be
parameterized and evaluated. Under these procedures, parameterization
is accomplished via estimation, and empirical performance is assessed via
hypothesis testing.

As with calibration, the focus of these procedures remains on a set of
empirical targets chosen by the researcher. Thus we broadly characterize
their implementation as involving the matching of moments (although
our use of the term moments extends rather liberally to include empirical
targets such as spectra and impulse response functions). Butin contrast with
calibration, these procedures involve the adoption of a classical statistical
perspective under which the model under investigation is interpreted as
a potential data generation process from which the actual data, and thus
the moments used to characterize the data, were realized. As discussed
in chapter 4, statistical uncertainty associated with the realization of these
moments is represented by their corresponding standard errors.

In the estimation stage, moment-matching procedures seek to determine
the parameterization u that best enables the underlying structural model
to match a collection of preselected moments. The parameterization i that
accomplishes this objective is interpreted as an estimate of the actual value
of these parameters. Because the estimate 7 is a function of the data, it too
is associated with statistical uncertainty, represented in the form of standard
errors. In the testing stage, the goal is to determine whether the collection
of moments selected as targets can plausibly be interpreted as a random
drawing from the underlying structural model. If the probability associated






