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Abstract

We argue that a stable utility function of consumption and hours worked
for which income effects are slightly stronger than substitution effects can ra-
tionalize the long-run data for the main macroeconomic quantities. In these
long-run data, in the U.S. as well as in other countries, as productivity grows
at a steady rate, hours worked fall slowly and at an approximately constant
rate. We narrow down the set of preferences consistent with balanced growth
under constant (negative) hours growth. The resulting class amounts to a
slight enlargement of the well-known “balanced-growth preferences” that dom-
inate the macro literature and are based on requiring constant hours worked.
Thus, hours falling at a constant rate is not inconsistent with the remaining
balanced-growth facts but merely requires a slight broadening of the prefer-
ence class considered. From this perspective, we interpret the recent decades
of stationary hours worked in the U.S. as a temporary departure from a long-
run pattern, and to the extent productivity will keep growing, we predict that
hours will fall further.
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1 Introduction

The purpose of this paper is to propose a choice- and technology-based theory for the

long-run behavior of the main macroeconomic aggregates. Such a theory—standard

balanced-growth theory, specifying preferences and production possibilities along

with a market mechanism to be consistent with the data—already exists, but what

we argue here is that it needs to be changed. A change is required because of data

on hours worked that we document at some length: over a longer perspective—going

back a hundred years and more—and looking across many countries, hours worked

are falling at a remarkably steady rate: at a little less than half a percentage point

per year. Figure 1 illustrates this for a collection of countries. This finding turns
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Figure 1: Yearly hours worked per capita 1870–1998

Source: Maddison “The world economy: a millennial perspective”, 2001. The sample includes the following 25 countries: Austria,

Belgium, Denmark, Finland, France, Germany, Italy, Netherlands, Norway, Sweden, Switzerland, United Kingdom, Ireland, Spain,

Australia, Canada, United States, Argentina, Brazil, Chile, Colombia, Mexico, Peru, Venezuela, Japan. Regressing the log of hours

on a country fixed effect and year gives a slope coefficient of -0.00462 in the full sample (and -0.00398 for the period 1950–1998).

Huberman and Minns (2007) provide similar data.

out to contrast the data in the postwar U.S., where hours are well described as

stationary, but going back further in time and looking across countries leads one to
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view the recent U.S. data rather as an exception.

Since the persistent fall in hours worked is not consistent with the preferences

and technology used in standard framework, we alter this framework. Our alter-

ation is very simple and, on a general level, obvious: to rationalize decreasing hours

worked we point to steadily increased productivity over a very long periods and

preferences over consumption and leisure with the feature that income effects ex-

ceed substitution effects. As in the case of the standard setting, we however also

impose additional structure by summarizing the long-run data as (roughly, at least)

having been characterized by balanced growth. So on a balanced growth path, our

main economic aggregates—hours worked, output, consumption, investment, and

the stock of capital—all grow at constant rates. Characterizing the data as fluc-

tuations around such a path may be viewed as a poor approximation, but here we

nevertheless do maintain the position that such a characterization is roughly accu-

rate, at least for the last 150 years of data for many developed countries. Hence, we

ask: is there a stable utility function such that consumers choose a balanced growth

path, with constant growth for consumption, and constant (negative) growth for

hours, given that labor productivity grows at a constant rate? We restrict ourselves

to time additivity and constant discounting, in line with the assumptions used to

derive the standard preference framework. We find that there indeed are preferences

that do deliver the desired properties and our main result is a complete characteri-

zation of the class of such preferences.

The modern macroeconomic literature is based on versions of a framework fea-

turing balanced growth with constant hours worked, to a large extent motivated

with reference to U.S. data on postwar hours worked; see, e.g., Cooley and Prescott

(1995). Our main point here is not to take fundamental issue with this practice; in

fact, our proposed utility specification in some ways is quantitatively very similar

to the preferences normally used. However, for some issues the distinction may be

important. As for discussion of hours historically, there is significant recognition in
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the macroeconomic literature that from a longer historical perspective, hours have

indeed fallen. For example, several broadly used textbooks actually do point to the

fact that hours worked have fallen significantly over the longer horizon, often with

concrete examples of how hard our grand-grandfathers (and -mothers) worked; see,

e.g., Barro’s (1984) book and Mankiw’s (2010) latest intermediate text. In a discus-

sion of some significant length, Mankiw actually reminds us of a very well-known

short text wherein John Maynard Keynes speculates that hours worked would fall

dramatically in the future—from the perspective he had back then (see Keynes,

1930). Keynes thus imagines a 15-hour work week for his grandchildren, in par-

ticular, supported by steadily rising productivity. As it turned out, Keynes was

wildly off quantitatively, but we would argue that he was right qualitatively (on this

issue. . . ). Finally, in his forthcoming chapter on growth facts, Jones (2015) also

points to the tension between the typical description of hours as stationary and the

actual historical data.1

From Keynes’s U.K. perspective, over the postwar period, and in contrast to

the U.S. experience, hours worked actually fell steadily until as recently as circa

1980, at which point they appear to have stabilized; we review the data in some

detail in Section 2 below. But perhaps more importantly, the picture that arises

from looking at a broader set of countries strengthens the case for falling, rather

than constant, hours, and going further back in time reinforces this conclusion.

With our eye-balling, at least, a reasonable approximation is actually even more

stringent: hours worked are falling at a rate that appears roughly constant over

longer periods (though, of course, with swings over business cycles, etc.). This rate

is slow—somewhere between 0.3% and 0.5% per year—so shorter-run data will not

suffice for detecting this trend, to the extent we are right; to halve the number of

1Jones writes A standard stylized fact in macroeconomics is that the fraction of the time spent

working shows no trend despite the large upward trend in wages. The next two figures show that

this stylized fact is not really true over the longer term, although the evidence is somewhat nuanced.
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hours worked at this rate requires around 200 years.

Turning back to the case of the U.S., over the last more than 150 years, thus, as

hours have fallen, output has grown at a remarkably steady rate, mainly interrupted

only by the Great Depression and World War II. Moreover, over this rather long

period, all the other macroeconomic balanced-growth facts also hold up very well;

we review these data briefly in Section 3. Thus, as output is growing at a steady

rate, hours are falling slowly at a steady rate. The interpretation of these facts that

we adopt here is that preferences for consumption and hours belong to the class

we define. This preference class is, in fact, very similar to that used ubiquitously

in the macroeconomic literature: that defined in King, Plosser, and Rebelo (1988).

King, Plosser, and Rebelo showed that the preferences they put forth, often referred

to as KPR or, perhaps more descriptively, balanced-growth preferences, were the

only ones consistent with an exact balanced growth path for all the macroeconomic

variables with the restriction to constant hours worked. The class of preferences

that we consider in the present paper is thus strictly larger in that it also allows

hours worked to shrink over time at a constant rate along a balanced path.

In compact terms, one can describe the period utility function under KPR as

a power function of cv(h), where c is consumption and h hours worked and v is

an arbitrary (decreasing) function. What we show in our main Theorem 1 is that

the broader class has the same form: period utility is a power function of cv(hc
ν

1−ν ),

where ν < 1 is the preference parameter that guides how fast hours shrink relative to

productivity. In terms of gross rates, if productivity grows at rate γ, then hours grow

at rate γ−ν , whereas consumption grows at γ1−γ. For ν > 0, the factor c
ν

1−ν captures

the stronger income effect: as consumption grows, there is an added “penalty” to

working (since v is decreasing). Our preference class obviously nests KPR: KPR

corresponds to ν = 0.

Having argued that preferences in our class—with a ν that is slightly larger than

zero—provide a good account of the longer-run data, what do we then make of the
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postwar U.S. experience with stationary hours? The purpose here is not to propose

a full account of the shorter-run data, but it seems relevant in this context to also

revisit the papers by Prescott (2004) and Rogerson (2006, 2008), who argue that

relative tax-rate changes account for the fact that Europeans work less hard now

than Americans compared to the early postwar period. If one looks at France and

Germany, it is clear that hours decline at a rather fast rate—faster than the rate at

which hours decline in the broad cross-section of countries. Our perspective here,

then, is that perhaps these countries and the U.S. are temporarily departing from

a long-run trend, given that productivity has been growing at a rather constant

rate throughout this period. One explanation may well be relative tax-rate changes.

Another possible explanation is sharply increased wage inequality, with median wage

growth close to zero for many decades; for any worker who does not experience wage

growth, the optimal response is of course not to decrease hours. Finally, female

labor-force participation took off sooner in the U.S. and has reached a level above

that in most European economies, and to the extent this phenomenon represents

the loosening of constraints (such as discrimination) it could indeed affect hours in

a way that is not fully offset by the reduction of male hours.

Interestingly, our class encompasses some utility functions that are often used in

the literature (both in macroeconomics and in other fields). One is another famous

functional form of the same vintage as KPR: Greenwood, Hercowitz, and Huffman’s

(1988) proposed utility function, often referred to as GHH preferences. The GHH

class assumes a quasi-linear utility function where utility can be written as a function

of c minus an increasing (and convex) function of h. This formulation implies that

there is no income effect at all on hours worked. With a judicious choice of v and a

ν < 0 we obtain a frequently used case within the GHH class in which the convex

function of hours is restricted to be a power function. Clearly, without an income

effect, hours grow under this formulation (so long as productivity grows). GHH

preferences are often used in applied contexts (see, e.g., Chetty, xyz) because they
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allow simple comparative statics.

Another well-known case is a utility function displaying a constant Frisch elastic-

ity of labor supply (see MaCurdy, 1981). This elasticity is the derivative of log hours

with respect to log wages keeping the marginal utility of consumption constant and

it is obtained when the period utility function is additive in a power function of c

and a power function of h. However, unless the function of consumption is loga-

rithmic (a special case of the power function), these preferences are well-known not

to be consistent with constant hours worked. We show, again by a judicious choice

of v, that our preference class actually includes the constant-Frisch case. That is,

this class of utility functions is consistent with balanced growth—if one admits that

hours can change over time along a balanced path. For shrinking hours, one needs

the curvature to be high enough (higher than log curvature), since otherwise the

marginal utility value of working an hour will grow: if productivity doubles, the

marginal utility of consumption must more than halve, because otherwise it will not

be optimal to lower hours.

A case that is new relative to the literature is one where the “relative risk aver-

sion” to consumption (RRA)—the inverse of the intertemporal substitution elasticity

of consumption—is an increasing (or decreasing) function of the hc
ν

1−ν composite.

Under KPR preferences, the RRA must equal a constant: a preference parameter

(usually labeled σ). So, in particular, it is possible that the RRA under our pref-

erence specification moves countercyclically, thus displaying higher risk aversion in

recessions than in booms. In the cross-section, by the same token, richer households

would then be less averse to risk (in the relative sense) and choose riskier portfo-

lios. We briefly discuss this and other possible applications (to growth and business

cycles) in Section 6 of our paper.

The paper begins with two data sections. In Section 2 we look at hours worked

over different time horizons and in different countries. In Section 3, we then motivate

our balanced-growth perspective on longer-run data by revisiting the long-run facts
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for aggregates, with a focus on the United States. The theory section of the paper

is contained in Section 4 where we lay out the precise balanced-growth restrictions.

Then we go on to state our Theorem 1 about what utility function is needed in

order for consumers to choose balanced-growth consumption and labor sequences.

The proof of the theorem is in the Appendix. However, the proof relies heavily

on two lemmata—one characterizing the implications of balanced-growth choices

for the consumption-hours indifference curves and one for consumption curvature—

and we discuss those results in some detail in the main text. The theory section

also has a Theorem 2, which is straightforward, showing sufficiency of the stated

preference class for balanced-growth choices. The theory section finally contains a

sequence of illustrations with examples of utility functions in this preference class.

Section 5 comments on consumer heterogeneity, a relevant issue since our theory

relies on representative-consumer analysis. This section also briefly discusses the

cross-sectional wage-hours-wealth data. Section 6 looks at the Prescott-Rogerson

Europe vs. the U.S. postwar comparison of hours worked from the perspective of

our theory, and Section 7 concludes.

2 Hours worked over time and across countries

We now go over the hours data from various perspectives: across time and space.

2.1 Hours over time

Figure 2 is the main justification for the assumption constant hours worked main-

tained in the macro literature. At least in post-war U.S. data this seems to be a

good approximation.

What if we look at some other developed countries? Figure 3 shows hours worked

for other selected countries on a logarithmic scale. Now we see that a horizontal line

is no longer the best approximation of the data. A country-fixed effect regression
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Figure 2: U.S. average annual hours per capita aged 15–64, 1950–2013

Notes: Source: GGDC Total Economy Database for total hours worked and OECD for the data on population aged 15–64. The

figure is comparable to the ones in Rogerson (2006). Regressing the logarithm of hours worked on time gives an insignificant slope

coefficient.

suggests that hours fall at 0.45% per year. To be sure, however, there is significant

heterogeneity; Canada, for example, has stationary hours quite like those in the

United States.

The falling hours in Figure 3 tell the same picture. The result is not due to the

selection of countries. A complementary Figure B.1 in the Appendix B.1 shows the

corresponding data for all countries available in the OECD database. Average hours

are declining clearly in this unrestricted sample, at roughly 0.36% per year. Hence in

the cross-country data of the post-war period the United States and Canada overall

rather look like outliers. Interestingly, as B.2 in Appendix B.1 shows, a time-use

survey shows decreasing hours worked even for the post-war United States.

From a longer-run perspective, the U.S. hours have also clearly been falling (see

Figure B.3). We also see that once one abstracts from the Great Depression and

WWII, hours have been falling at a rather steady rate. Only the period 1980–2000
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Figure 3: Selected countries average annual hours per capita aged 15–64,

1950–2015

Notes: Source: GGDC Total Economy Database for total hours worked and OECD for the data on population aged 15–64. The

figure is comparable to the ones in Rogerson (2006). Regressing the logarithm of hours worked on time gives a slope coefficient of

-0.00455.

looks exceptional.

Ramey and Francis (2009) also provide data on schooling (time attending school

and studying at home). As Figure B.3 in Appendix B.1 shows, average weekly

hours of schooling increased by less than two hours in total over the period 1900–

2005 and cannot, therefore, account for the drop in hours worked (hence: leisure

has increased).

The time trend in total hours worked can be split up into trends in participation

rates and trends in hours per employed. Figure 5 shows that hours per employed

was declining at a remarkably constant rate, including during the post-war period.

(That hours worked per employed are falling is a remarkably robust fact over time

and across countries though the rate of decline differs across countries.) In other

words: hours in the post-war U.S. are only relatively stable because the participation

rate increased steeply.
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Figure 4: Weekly U.S. hours worked per population aged 14+, 1900–2005

Notes: Source: Ramey and Francis (2009). Regressing the logarithm of hours worked on time gives slope coefficient of -0.00285.

Figure B.4 in Appendix B.1 shows this split again for the post-war U.S.

To sum up: over 100+ years, hours have been falling in all developed countries. In

the post-war data hours are still falling in most countries. In countries where they are

rather stable, like Canada or the U.S., they are stable only because the participation

rate increased quite dramatically. Hours per worker show a clear downward trend in

all countries. Participation rates do not show a clear trend over time in developed

countries. Hence we conclude that if the participation rate does not increase further

in future in the U.S., hours will continue to fall. In fact since the Great Recession,

the participation rate fell, as did hours worked per working-age population.

2.2 Hours worked in the cross-section

In the cross-section of countries, our theory predicts that labor productivity (or

GDP per capita) should be negatively correlated with hours worked. A negative

correlation of the logarithm of hours worked and the logarithm of wages or per-
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Figure 5: U.S. weekly hours worked per employed in nonfarm establish-

ments 1830–2015

Source: Average weekly hours data for 1830–80: Whaples (1990, Table 2.1). 1890-1970: Historical Statistics of the United States:

Colonial Times to 1970 (Series D765 and D803). 1970–2015: Statistical Abstract of the United States the number for nonfarm

establishments. This graph shows an updates series of the data in Greenwood and Vandenbroucke (2008). Regressing the log of hours

on a constant and year gives a slope coefficient of -0.00315 in the full sample (and -0.00208 for the years 1970–2015).

capita income has already been established in Winston (1966). (See also Bick, Fuchs-

Schuendeln and Lagakos, 2015, for a more recent documentation of this correlation.)

Figure 7 shows this negative correlation in our data set. Figure B.5 in Appendix

B.1 shows this correlation for the years 1955 and 2010 separately.

Finally, in Figure 7 we focus on the 21 countries with data for 1955–2010 and

look at the correlation in the growth rates in labor productivity and hours worked

over these 55 years. The figure shows again that hours clearly fell for most of the

countries. Moreover, with the exception of South Korea, labor productivity growth

is clearly negatively related with growth in hours worked.
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Figure 6: Hours worked vs. labor productivity

Source: Source: GGDC Total Economy Database for total hours worked and labor productivity and OECD for the data on population

aged 15–64. Regression the logarithm of hours worked on the logarithm of labor productivity and a country fixed effect gives a slope

coefficient of -0.13 and an R
2 of 0.69..

3 Balanced-growth facts and theory

For completeness, we now review the basic “stylized facts of growth” for the United

States. These data have been instrumental in guiding the technology and preference

specifications in macroeconomic theory. Figure 8a and 8b show how output and

consumption grew over the decades at a very steady rate.

Figure 8c and 8d show that the consumption-output ratio and the capital-output

ratio remained remarkably stable. (Figure B.6 in Appendix B.1 shows some addi-

tional balanced-growth facts often imposed in the macro literature, like constant

hours worked or constant factor income shares.)

Our main take-away message from Figure 8 is that—in the style of Kaldor

(1961)—we would like to impose restrictions on our macro framework in a man-

ner that is consistent with these facts. We define accordingly a balanced growth

path.
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Figure 7: Changes in hours worked vs. labor productivity

Source: Source: GGDC Total Economy Database for total hours worked and labor productivity and OECD for the data on population

aged 15–64. Regression the logarithm of hours worked on the logarithm of labor productivity and a country fixed effect gives a slope

coefficient of -0.13 and an R
2 of 0.69.

4 Characterization

We now provide our formal analysis. The workhorse macro framework has a resource

constraint given by

Kt+1 = F (Kt, AthtLt) + (1− δ)Kt − Ltct, (1)

where capital letters refer to aggregates and lower-case letters per-capita values, and

F (Kt, AthtLt) is a neoclassical production function. Here, L is population, h is hours

worked per-capita and δ the depreciation rate. Growth is of the labor-augmenting

kind, because of the Uzawa theorem.2 We thus assume constant exogenous technol-

ogy and population growth, i.e.,

At = A0γ
t, and Lt = L0η

t. (2)

2Recently, Grossman, Helpman, Oberfield, and Sampson (2015) discusses an interesting excep-

tion to the Uzawa theorem.
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Figure 8: Balanced growth

Turning to preferences, we assume that they are additively separable over time with

a constant discount factor β. Quite importantly, and in line with the KPR setting,

the instantaneous utility, u(ct, ht), is assumed to be stationary. There is a time

constraint

ht + lt = 1. (3)

A balanced-growth path for this economy is a time path along which K and c

grow at constant rates. Such a path thus requires Kt+1

Kt
= At+1

At

ht+1

ht

Lt+1

Lt
= Lt+1

Lt

ct+1

ct
.
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This in turn implies

γ
ht+1

ht
=
ct+1

ct
(4)

and
Kt+1

Kt

= γ
ht+1

ht
η. (5)

Hence, a balanced-growth path requires ht+1

ht
to be constant.

Turning to preferences, we assume that households (whether infinitely or finitely

lived) maximize

· · ·+ u(ct, ht) + βu(ct+1, ht+1) + . . . (6)

subject to a time constraint and a budget constraint

at+1 = (1 + rt)at + htwt − ct. (7)

Assuming an interior solution (ct > 0, 1 > ht > 0), we can thus base our analysis

on the first-order conditions to this maximization problem.

On a balanced growth path where labor productivity (alternatively, the real wage

per hour) changes at constant gross rate γ > 0, we need to have consumption grow

at the same rate as labor income. The derivations above led to gc = γgh, where

gc is the gross growth rate of consumption and gh that of hours worked. We thus

seek preferences such that gc and gh are determined uniquely as a function of the

growth rate in (real) wages. Thus, we parametrize preferences with a constant ν so

that gc = γ1−ν and gh = γ−ν .3 The special case ν = 0 is of interest but we will

mainly focus on ν 6= 0; ν = 0 is the standard case, where hours will be constant on

a balanced growth path.

Thus, a balanced growth path is one where, for all t, ct = c0γ
(1−ν)t and ht =

h0γ
−νt, for some values c0 and h0. One can think of c0 as a free variable here,

determined by the economy’s, or the consumer’s, overall wealth, with h0 pinned

down by a labor-leisure choice given c0.

3With ν ≥ 1 the theory would predict decreasing (or constant) consumption as the wage rate

increases; we rule this case out.
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In the following we are interested in an interior solution of the consumption

and labor supply decision that is consistent with a balanced growth path. Such

an interior solution requires that utility is strictly increasing in consumption and

strictly decreasing in hours worked. Two first-order conditions are relevant for the

consumer’s optimization. The labor-leisure choice is characterized by

−
u2(ct, ht)

u1(ct, ht)
= wt,

where wt, the return from working one unit of time, thus grows at rate γ: wt = w0γ
t.4

On a balanced growth path we thus need this condition to hold for all t. In our

theorem below, we will also require that preferences admit a balanced growth path

for all w0 > 0. That is, we are looking for preferences that will admit a balanced path

for consumption and hours at growth rates γ1−ν and γ−ν , respectively, regardless of

the (initial) level of the wage rate relative to consumption.

The intertemporal (Euler) equation reads

u1(ct, ht)

u1(ct+1, ht+1)
= β(1 + rt+1),

where r is the return on saving and β > 0 the discount factor. If the economy grows

along a balanced path, then we would like this condition to hold for all t, and we

need the right-hand side to be equal to an appropriate constant, a constant that

moreover depends on the rate of growth of consumption and hours. We will denote

this constant R and discuss its dependence on c, h, and γ below. In the analysis

below, we will switch from sequence to functional notation. Thus we leave out t

subscripts and instead specify the balanced-growth conditions as a requirement that

the paths of all the variables start growing from arbitrary positive values (save for

those nonlinear restrictions relating the variables to each other that are implied by

the equilibrium conditions): they can be scaled arbitrarily.

4In a decentralized equilibrium, this return denotes the individual wage rate including potential

taxes and transfers. Similarly, the return on saving we discuss below should be taken to be net of

taxes and transfers.
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4.1 Balanced growth using functional language

So note that our balanced-growth path requirements on the utility function can be

expressed as follows.

Assumption 1. For any w > 0, c > 0, and γ > 0, there exists an h > 0 and an

R > 0 such that, for any λ > 0,

−
u2 (cλ

1−ν , hλ−ν)

u1 (cλ1−ν , hλ−ν)
= wλ, (8)

and
u1 (cλ

1−ν , hλ−ν)

u1 (cλ1−νγ1−ν , hλ−νγ−ν)
= R, (9)

where ν < 1.

That is, we must be able to scale variables arbitrarily, but of course consistently

with the balanced rates, and still satisfy the two first-order conditions. The scaling

is accomplished using λ (for wages/productivity), λ1−ν (for consumption), and λ−ν

(for hours) in these conditions. Our main theorem below will thus characterize

the class of utility functions u consistent with these conditions. Our theorem will

not provide conditions on convexity of the associated maximization problem (of the

consumer, or a social planner); obviously, however, conditions must be added such

that the first-order conditions indeed characterize the solution. We briefly discuss

this issue in the applied contexts below.

4.2 The main theorem

Our main theorem states what restrictions are necessary on the utility function to

generate balanced growth.

Theorem 1. If u(c, h) is twice continuously differentiable, strictly increasing in c

and strictly decreasing in h, and satisfies Assumption 1, then (save for additive and
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multiplicative constants) it must be of the form

u(c, h) =

(

c · v
(

hc
ν

1−ν

))1−σ

− 1

1− σ
,

for σ 6= 1, or

u(c, h) = log(c) + log
(

v(hc
ν

1−ν )
)

,

where v is an arbitrary, twice continuously differentiable function satisfying, for all

x ≡ hc
ν

1−ν > 0, v′(x) < 0 and v(x) + ν
1−ν

v′(x)x > 0.

The proof relies crucially on two lemmata, one characterizing the marginal rate of

substitution (MRS) function between c and h and one characterizing the curvature

with respect to consumption: the relative risk aversion (RRA) function. The proof

then uses these lemmata to derive the final characterization. The proofs of the

lemmata and of how to use them to complete the proof of the theorem are contained

in Appendix A.1. However, we will state and comment on the lemmata, as they are

of some independent interest, as well as on the overall method of proof.

4.2.1 The consumption-hours indifference curves

We thus begin with the following lemma:

Lemma 1. If u(c, h) satisfies (8) for all λ > 0, and for an arbitrary c > 0 and w > 0,

then its marginal rate of substitution (MRS) function, defined by u2(c, h)/u1(c, h),

must be of the form
u2(c, h)

u1(c, h)
= c

1
1−ν v1(hc

ν

1−ν ), (10)

for an arbitrary function v1.

This lemma characterizes the shape of the within-period indifference curves.

Notice here that, in the long run, hc
ν

1−ν will be constant so that the argument of v1

will not change over time.
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Figure 9: The consumption-leisure trade-off, I

The proof of Lemma is very similar to that for Euler’s theorem, but with ma-

nipulating the first-order condition for the labor-leisure choice.

The indifference curves are illustrated with the following sequence of graphs. In

Figure 9, we see the KPR indifference curves to the left and our case to the right,

with consumption and leisure on the axes. Clearly, in our case, higher income implies

more leisure.

These same preferences can equivalently be depicted with consumption and hours

on the axes, as in Figure 10. As in the previous figure, the KPR case is to the left

and has constant hours worked, whereas in the right-hand side panel hours decline

with higher income.

Finally, Figure 11 takes the right-hand side graph from the previous figure and

puts it on the left. On the right, now, we see that same combination of points but

on log scales for both the axis. Here, the indifference curves are linear, and that is

the the defining characteristic of the indifference curves in Lemma 1.

4.2.2 Curvature

Next, let us characterize curvature of u with respect to c with Lemma 2.
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Figure 11: The consumption-leisure trade-off, III



22

Lemma 2. Under Assumption 1, the relative risk aversion (RRA) function, −cu11(c,h)
u1(c,h)

,

must satisfy

−
cu11(c, h)

u1(c, h)
= v2(hc

ν

1−ν )

for an arbitrary function v2.

As for the previous lemma, let us point out that in the long run, i.e., along a

balanced path, hc
ν

1−ν is constant. Thus, the RRA will be constant. However, its

long-run level is endogenous, and over shorter time horizons, in general it will not

be constant.

The proof of the lemma is straightforward: it involves differentiation of the Euler

equation with respect to λ, the use of Lemma 1, and some manipulations.

4.2.3 The proof structure and some comments

The structure of the overall proof, based on the lemmata, is as follows. Our descrip-

tion is in two steps that are similar in nature. First, use Lemma 2 to integrate over

c to obtain a candidate for u1; this can be accomplished straightforwardly since the

left-hand side of the lemma can be expressed as the derivative of log uc with respect

to log c. Now note that integration with respect to one variable delivers an unknown

function (a “constant”) of the other variable. This function can then be restricted

by comparison with the characterization in Lemma 1 (a “cross-check”).

Second, once the first integration and cross-checking, with its implied restrictions,

is completed, integrate again with respect to c, from the obtained u1, to deliver a

candidate for u. Then, as in the previous step, another function of h appears, and

it too needs to be cross-checked with Lemma 1 and thus further restricted. This,

then, completes the proof.

Notice that, although we were motivated by data displaying increasing productiv-

ity growth and falling hours, the proof does not assume γ > 1 or ν ≥ 0. Potentially,

the model could thus generate an increasing h at a constant rate, and we shall see
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an example of this below.

Second, to our surprise, we did not see a full proof of the KPR result in the

literature. In particular, in the proofs we have looked at, the fact that the RRA is

constant along a balanced path is taken to mean that this constant is exogenous/only

a function of preferences (σ). This is a correct presumption but nontrivial to prove,

and it is dealt with in our proof in the Appendix A.1.5

4.2.4 Sufficiency

Of course, the v in the theorem has to be such that a characterization based on

first-order conditions is valid. Thus, v has to be such that the indifference curves

defined by u0 = cv(hc
ν

1−ν ) have the right shape for all u0. I.e., v−1(u0/c)c
−

ν

1−ν has

to be strictly increasing and concave in c for all u0.

Under these restrictions, we thus also have the following theorem, guaranteeing

sufficiency.

Theorem 2. Assume that ν < 1. If u(c, h) is given by

u(c, h) =

(

c · v
(

hc
ν

1−ν

))1−σ

− 1

1− σ
,

for σ 6= 1, or

u(c, h) = log(c) + log
(

v(hc
ν

1−ν )
)

,

where v is an arbitrary, twice continuously differentiable function with v(x) > − ν
1−ν

v′(x)x

and v′(x) < 0 for all x and the above-stated concavity requirements, then it satisfies

Assumption 1.

Since this proof is much less cumbersome than that for the main theorem, and

since it involves the manipulations necessary in applied work based on the preference

class we identify here, we include it in the main text.

5We would be very grateful if someone could point us to a proof somewhere, because we may

well have missed it.
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Proof. Straightforward differentiation delivers

u1(c, h) =
1

c

(

1 +
ν

1− ν

v′(hc
ν

1−ν )

v(hc
ν

1−ν )
hc

ν

1−ν

)

(

c · v
(

hc
ν

1−ν

))1−σ

and

u2(c, h) =
1

h

v′(hc
ν

1−ν )

v(hc
ν

1−ν )
hc

ν

1−ν

(

c · v
(

hc
ν

1−ν

))1−σ

.

Dividing the latter by the former we obtain

u2(c, h)

u1(c, h)
=
c

h

v′(hc
ν

1−ν )

v(hc
ν

1−ν )
hc

ν

1−ν

1 + ν
1−ν

v′(hc
ν

1−ν )

v(hc
ν

1−ν )
hc

ν

1−ν

.

By multiplying c by λ1−ν and h by λ−ν we obtain that this expression increases

by a factor λ. We have thus reproduced the first part of Assumption 1, i.e., the

first-order condition for labor on a balanced growth path.

By evaluating u1(c, h)/u1(cγ
1−ν , hγ−ν), we obtain γσ(1−ν), i.e., an expression that

is independent of c and h and hence c and h can be scaled arbitrarily. By letting

R = γσ(1−ν) we therefore see that also the second condition of Assumption 1 is

verified. Finally, it is easy to see that v(x) > − ν
1−ν

v′(x)x and v′(x) < 0 ensure that

utility is strictly decreasing in h and strictly increasing in c.

�

4.2.5 The elasticity of intertemporal substitution

The IES—the intertemporal elasticity of substitution of consumption—is a key ob-

ject in some macroeconomic analyses. In the time-additive setting considered here,

it is also directly related to the coefficient of relative risk aversion.6 Here we wish to

point out that in our framework, although the EIS remains constant on a balanced

6Swanson (2012) argues that, in the presence of leisure, the appropriate intertemporal notion

of relative risk aversion is a different object, defined based on the value function. Hence, what we

refer to here is not risk aversion in that sense but in the static sense.
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growth path, it can be endogenously determined. In contrast, in the standard KPR

setting, the EIS is exogenous. We have the following.

Proposition 1. Given the preferences specified in Theorem 1, with ν = 0, the

intertemporal elasticity of substitution is independent of c and h: it equals 1/σ.

With ν 6= 0, however, the intertemporal elasticity of substitution can depend on, and

be both increasing or decreasing in, hc
ν

1−ν .

Proof. For the KPR class this is verified straightforwardly. For the case ν 6= 0 the

verification builds on working out special cases. See Section 4.3.4. �

4.3 Special cases and relations to the literature

We now look at special cases of interest.

4.3.1 King-Plosser-Rebelo (1988): ν = 0

With ν = 0 we get the following class of preferences

u(c, h) =











(c·v(h))1−σ
−1

1−σ
if σ 6= 1

log(c) + log v(h), if σ = 1.

(11)

This is the most general preference class that is consistent with a balanced growth

path along which h is constant. These preferences were first specified by King,

Plosser, and Rebelo (1988). In the KPR class the income and substitution effects

of changes in the wage rate precisely cancel each other and households choose to

supply constant hours. Due to this feature the KPR class is dominating the macro

literature. Sometimes the KPR class is also referred to as “balanced-growth prefer-

ences” and often their use is justified because it seems appealing to restrict attention

to a framework that is consistent with a balanced growth path. However, the KPR

class is not only characterized by the balanced growth restriction but also by the

requirement that labor supply is constant.
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Within the KPR class two special cases stand out. One is the Cobb-Douglas

case with v(h) = (1−h)κ and σ 6= 1 (or with σ = 1 and v(h) = κ log(1−h)). Thus,

u(c, h) = (c(1−h)κ)1−σ/(1−σ) for σ 6= 1 and otherwise u(c, h) = log c+κ log(1−h).

The Cobb-Douglas case restricts the elasticity of substitution between consumption

and leisure to be one. Furthermore, the Cobb-Douglas case is part of the Gorman

class, which implies that the labor supply is independent of wealth (and non-labor

income).

The second often-used case of KPR preferences is

u(c, h) = log c− ψ
h1+

1
θ

1 + 1
θ

,

which is obtained by setting σ = 1 and v(h) = exp
(

−ψ h
1+1

θ

1+ 1
θ

)

. The parameter θ > 0

controls the (constant) Frisch elasticity whereas the relative risk aversion (and the

intertemporal elasticity of substitution) is one.

4.3.2 A case of the Greenwood-Hercowitz-Huffman (1988) preferences

With v(x) = 1 − x−
1−ν

ν and ν < 0 with σ 6= 1 (and v(x) = log
(

x−
1−ν

ν

)

+

log
(

x
1−ν

ν − 1
)

with σ = 1), we obtain the quasi-linear preferences

u (c, h) =











(

c−h1−
1
ν

)1−σ

−1

1−σ
if σ 6= 1,

log
(

c− h1−
1
ν

)

if σ = 1.

(12)

with ν < 0. This is an often used case of the Greenwood-Hercowitz-Huffman (1988)

preferences in which the Frisch elasticity is constant and equal to −ν. These prefer-

ences are non-homothetic but they are part of the Gorman class. GHH preferences

preclude any income effect on hours worked. Clearly, with a substitution effect alone,

GHH preferences imply increasing hours as the wage rate increases. Consequently,

we have ν < 0 and there is no overlap with the KPR class. In fact, preferences (12)

imply a relative risk aversion which depends on hc
ν

1−ν .
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Quasi-linear preferences are widely used in the applied labor literature, where the

household problem is often assumed to be static and σ can be set to zero without loss

of generality. However, the quasi-linear formulation does preclude income effects.

4.3.3 Constant Frisch elasticity à la MaCurdy (1981)

With v(x) =
(

1− ψν(1−σ)
(1−ν)(σ−1)

x
(1−ν)(σ−1)

ν

)
1

1−σ

for σ 6= 1, we obtain the constant Frisch

elasticity of labor supply à la MaCurdy (1981) with

u(c, h) =
c1−σ − 1

1− σ
− ψ

h
(1−ν)(σ−1)

ν

(1−ν)(σ−1)
ν

, if σ 6= 1. (13)

The attractiveness of this functional form is that two important elasticities are

controlled by two separate parameters: the EIS is constant and equal to 1/σ and

the constant Frisch elasticity is θ = ν
(1−ν)(σ−1)−ν

. As is well known, with σ 6=

1, preferences of the form (13) are not part of the KPR class. For this reason,

as already discussed in subsection 4.3.1, a significant part of the macroeconomic

literature restricts itself to the case with a unitary EIS by setting ν = 0, σ = 1 and

v(h) = exp
(

−ψ h
1+1

θ

1+ 1
θ

)

.7 Then preferences become u(c, h) = log c − ψ h
1+1

θ

1+ 1
θ

and are

part of the KPR class.

Figure 12 below illustrates how σ and ν have to be restricted on a balanced path

with falling hours: ν > 0 requires σ > 1
1−ν

> 1. Thus, any point on the downward-

sloping curve is admissible (in the figure ν is set at a quantitatively reasonable

value).

7For instance, Shimer (2010) proposes this preference specification in chapter 1 of his textbook

and then writes This formulation imposes that preferences are additively separable over time and

across states of the world. It also imposes that preferences are consistent with balanced growth—

doubling a household’s initial assets and its income in every state of the world doubles its consump-

tion but does not affect its labor supply. [. . . ] I maintain both of these assumptions throughout this

book.



28

σ

θ

1

ν = 0

1
1−ν

ν = 0.25

θ = ν
(1−ν)(σ−1)−ν

Figure 12: Combinations of elasticities
The figure shows combinations of relative risk aversion σ and Frisch elasticity θ in the functional form (13) that

are consistent with (i) constant hours (ν = 0) and (ii) hours falling at rate γ−0.25. With two percent productivity

growth, i.e., γ = 1.02 and ν = 0.25 hours worked decline at roughly 0.5 percent per year.
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4.3.4 An endogenous IES

The present section connects with Proposition 1 and discusses the EIS or, alterna-

tively, the (static) RRA implied by our preference class. As already pointed out,

under GHH—which is part of the present class, though that utility function is not

consistent with falling hours if productivity grows—the RRA is nontrivially deter-

mined. For many applications, perhaps particularly in asset pricing, it may be

interesting to consider preferences where the RRA in particular is decreasing in the

consumption-hours aggregate ch
ν

1−ν : in this case booms involve lower risk aversion.

We have not pursued a general investigation into how the RRA may vary under

different assumptions on v. It may however be instructive to simply show that a

formulation with a decreasing RRA is possible. So let v(x) =
(

1− ψ(1−σ)
ǫ

xǫ
)

1
1−σ

and ǫ ≡ 1−ν
ν
. We then obtain the functional form

u(c, h) =
c1−σ

1− σ
− ψ

hǫc2−σ

ǫ
, (14)

for ψ > 0, σ > 2 and ǫ > σ − 1. In this case, we obtain

RRA = σ +
(2− σ)ψ hǫc

ǫ

1− (2− σ)ψ hǫc
ǫ

, (15)

which is decreasing in x ≡ hc
ν

1−ν .

4.3.5 Departing from time invariance or time separability

Our preferences rely on there being a stationary utility function u(c, h) characterizing

choice. It is not altogether uncommon in the literature that people use utility func-

tions that are either not stationary or not time-separable. As for non-stationarity,

the typical assumption is that some elements of the period utility function shift

with labor productivity. Such functions are often motivated by (but not derived

from) some form of home-production structure where the same productivity growth

as in final-goods production occurs. As an example, one can make (13) consistent
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with constant hours in the long run by adding a time-varying term in front of ψ

that is growing at the appropriate rate (see, e.g., Mertens and Ravn, 2011). Such

a formulation has been deemed useful when one wants to consider free curvature in

consumption and hours separately and yet not violate the balanced-growth condi-

tions.

Reconciling constant hours worked in the long run with a small (or inexistent)

income effect has also attracted some attention in the macro literature, since small

income effects are sometimes appealing when it comes to fluctuations around a

balanced growth path. Hence, the literature has extended the KPR class by giving

up the assumption of time separability. A particularly well-known case is Jaimovich

and Rebelo (2009). Our analysis shows that even the GHH utility function (12) is

part of the general balanced-growth preferences specified in Theorem 1 though, as

discussed above, they would imply increasing hours worked as wages grow. However,

by adding a “habit” term Xt = cρtX
1−ρ
t−1 in front of h1−

1
ν in (12), we can also obtain

the preferences studied in Jaimovich and Rebelo (2009).

The purpose here is not to take issue with preference formulations that depart

from time invariance or time separability. It suffices to say that the “tricks” that

have been employed in the literature are still possible to employ under our preference

class.

5 Consumer heterogeneity and cross-sectional facts

We now comment briefly on two important concerns.

5.1 Models of consumer heterogeneity

Our theory of labor supply in the long run, strictly speaking, holds only for a

representative-agent economy. Is it relevant, then, in cases when aggregation does

not hold? Whereas it is beyond the scope of the present paper to provide a full
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answer to this question, let us still conjecture in the affirmative. More precisely, we

conjecture that in an environment with a stationary distribution of agents heteroge-

neous in assets, wages, utility-function parameters, etc., preferences in our class are

needed to match the aggregate growth facts (including aggregate hours shrinking at

a constant rate).

The reason for this conjecture is perhaps best explained with an example. So

consider the modern macro-style models of inequality: the Bewley-Huggett-Aiyagari

model. This model by now exists in a vast variety of versions, with the common

element being that there are incomplete markets for consumer-specific idiosyncratic

shocks of different kinds and implied differences in wealth and consumption. Many

of these models also consider substantial additional heterogeneity, such as in pref-

erences (see, e.g., the multiple-discount factor model in Krusell and Smith, 1998),

and yet others consider life-cycle versions with and without bequest motives (see,

e.g., Huggett, 1996).

These modern-macro models of inequality, then, don’t display aggregation (at

the very least due to incomplete markets) and they are typically analyzed in steady

state. A key question, then, is: for standard KPR preferences, and more generally

for the broader class of preferences considered here, do these models admit balanced

growth? The answer is yes. It is straightforward to transform variables and verify

this assertion, just like a representative-agent model would be rendered stationary

by variable transformation. Of course, growth makes a difference—the discount

rate(s), for example, would need to be transformed—so that some aspects of the

aggregate variables (such as the capital-output ratio) will depend on the rate of

growth, as will the moments of the stationary distribution of wealth. Why does the

transformation of variables work? It is straightforward to see that it is precisely

because the preferences are in the pre-specified class, and for this reason we have

trouble seeing that it would work outside of this class: balanced growth is, by

definition, a set of paths for the economy’s different variables that can be rendered
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constant by standard transformation.

5.2 Cross-sectional data

Another concern one might have from a perspective of heterogeneity is that perhaps

the model with an income effect that is larger than the substitution effect might

be inconsistent with what we know from cross-sectional data on households. In

particular, there seems to be a view that consumers with higher wages work more

not less, as would be implied by our theory.

First, we are not entirely sure of what the data says. Ideally, one would want a

life-time, all-inclusive hours measure and then ceteris-paribus experiments where a

permanent wage is changed across households. Arguably, convincing such studies are

hard to come by. Interestingly, there is in fact a recently published study that claims

that the wage-hours correlation is negative, not positive. In particular, the study of

the intensive margin in Heathcote, Storesletten, and Violante (2014) reports such

a correlation, after taking out time dummies and age effects. As for the extensive

margin, it is well documented that the highly educated work longer, but they also

start working later.

If, however, the perception that high-skilled people work more, not less, is correct,

then we must point out that such a fact would be difficult to explain also with the

standard model, i.e., with KPR preferences: our generalization would merely make

the challenge slightly more difficult. There are studies in the literature that have

attempted to address this issue, using a combination of assumptions. One is that

the high wages that are observed—and are observed to be associated with higher

working hours—represent a temporary window of opportunity. For such a situation,

our preference class is consistent with a positive correlation. Another possibility is a

non-convexity of the budget set of consumers in the form of a wage rate that depends

on the amount of hours worked (see Erosa, Fuester and Kambourov, 2015). Thus,

there are promising ways to generate a positive wage-hours correlation, though it
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remains to address the balanced-growth facts with these theories.

Finally, we note that based on the consumer data they look at, Heathcote,

Storesletten and Violante (2014), actually use a MaCurdy preference formulation—

thus, one in our class—that implies a strong income effect, even a stronger one that

we need to account for the long-run fall in hours: ν = 0.184 > 0.

6 Hours worked in Europe and the U.S.

Prescott (2004) and Rogerson (2006, 2008) use preferences that imply constant

hours worked in the long run. They argue that U.S. hours worked relative to those

in Europe have gone up because of upward movements of tax rates in Europe relative

to those in the U.S. What does the present theory of long-run labor supply have to

say about these comparisons?

The present theory does not present a problem for the Prescott-Rogerson ar-

gument. The perspective offered by our model only calls for a slightly different

interpretation of the data. The stable hours in the postwar U.S. may or may not

be difficult to explain from the perspective of our theory, but regardless of this, the

falling hours in the main European economies may well be because of higher taxes

(in relative terms). It is beyond the scope of the present paper to investigate this

issue in detail, but let us briefly look at the data and make some remarks.

So Figure 13 shows postwar hours in the U.S., in Germany, and in France.

Clearly, hours fall at a fast rate in the European economies, indeed at a much faster

rate than in the broader cross-section of countries we looked at in the data section

of the paper. Thus, the cross-country average is a rate of decline in hours that

lies in between that of the U.S. and those in Germany and France. But to the

extent one wanted to explain the U.S. experience from the perspective of our model,

what could be said? We believe that there are at least three reasons why the U.S.

experience may have represented a temporary departure from a long-run trend of
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Figure 13: Hours worked in the U.S., Germany, and France, 1950–2013

Notes: Source: GGDC Total Economy Database for total hours worked and OECD for the data on population aged 15–64. The

figure is comparable to the ones in Rogerson (2006).
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falling hours. One is the tax cuts of the Reagan years, that appear to have been

permanent: the Prescott-Rogerson argument. Another is the fact that median wages

have not grown much at all in the U.S., and per-capita hours are un-weighted by

productivity/wages, so if the vast majority of the population does not experience

wage growth, constant hours is of course consistent with our theory. Thus, the well-

documented increase in wage inequality from the late 1970s—which is also when

hours were rising within the postwar period—is factor two. Factor three is women’s

increased labor-force participation, which clearly is a transitional phenomenon, and

the point here is that women may formerly have been constrained and not able to

work (at appropriate wages) so that one cannot simply take a unitary perspective

on the household and say that male hours should decline at a very high rate to

compensate for women’s higher hours. It would be interesting to try to account for

these factors together, along with other drivers, but again this would be a project

in itself and the comments here just mean to signal how our preference formulation

would fit into such an investigation.

Finally, what about the developments of hours worked currently in the U.S., and

what about their future path? Very recently, participation rates have fallen, and

from the perspective of our theory, at least if the bulk of households have begun to

experience higher wages, such a fall in the participation rates would be consistent

with our theory and would also imply that one would not expect participation to

bounce back up.8 Similarly, for the future, if productivity keeps growing, our theory

of course predicts that hours worked will keep falling.

7 Conclusions

We have presented an extension to the standard preference framework used to ac-

count for the balanced-growth facts. The new preference class admit that hours

8This is of course not to say that there are no cyclical reasons for the participation movements.
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worked fall at a constant rate when labor productivity grows at a constant rate,

as we have also documented the data to show across history and space. The new

preference class intuitively involves an income effect that exceeds the substitution

effect. What are alternative theories that could explain why hours fall? Could

an alternative theory explain the past without contradicting the constant-hours

presumption of the standard macroeconomic model? We suspect that some other

form of non-homotheticity would work, at least qualitatively, and that it would

be possible to formulate a non-homotheticity such that it vanishes with increasing

income/productivity, as with Stone-Geary formulation for consumption. It seems

challenging to confront such a theory with data in a systematic way, but perhaps

it could be done. An advantage with our framework is that it does incorporate

(non-vanishing) non-homotheticity in a tractable, intuitive way.

We believe that our new preference class has potentially interesting implications

in a range of contexts. As for growth theory and growth empirics, note that on our

balanced path, the main macro aggregates (output, investment, consumption) grow

at the rate γ1−ν > 1 (ignoring population growth), i.e., at a rate lower than produc-

tivity and in a way that is determined by the preference parameter ν. Notice also

that from a development perspective, falling hours worked is not a sign of economic

malfunctioning but rather the opposite: it is the natural outcome given preferences

and productivity growth, and it rather instead illustrates clearly how output is an

incomplete measure of welfare (see Jones and Klenow, 2015): leisure grows. In-

terestingly, our theory says that growth theory probably should not abstract from

labor supply (which is typically set to “1” in models); rather, it seems an important

variable to model in conjunction with the growth process.

Does our preference class have something to say about business-cycle analysis?

We cannot identify any immediate substantive implications, but it is clear that our

model can be amended with shocks and transformed to a stationary one that can be

analyzed just like in the RBC and NK literatures. The preference class consistent



37

with hours falling at a constant, but low, rate is a bit different than the standard

one. From the perspective of a particular case—the MaCurdy constant-Frisch elas-

ticity functional form—one can admit an arbitrarily low elasticity of intertemporal

substitution of consumption, though only if the Frisch elasticity is then also very

low.

Other areas where the new preference class may be interesting to entertain in-

clude asset pricing and public finance. For asset pricing—as we showed in the

paper—it is possible to have attitudes toward risk behave qualitatively differently,

and possibly more in line with data, than using standard balanced-growth pref-

erences. These same features would potentially also help explain portfolio-choice

patterns across wealth groups. For public finance, the sustainability of government

programs, such as social security, and debt service in the future depend greatly on

how hours worked will develop (along, of course, with the development of produc-

tivity).

We hope to address some of these applications in future work.
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A.1 Appendix A: Proof

We now present the proof of Theorem 1.

Proof. The proof starts by stating and proving two lemmata, one characterizing the

marginal rate of substitution (MRS) function between c and h and one character-

izing the curvature with respect to consumption: the relative risk aversion (RRA)

function. The proof then uses these lemmata to derive the final characterization.

Because the proof will involve a large number of auxiliary functions that are either

functions of hc
ν

1−ν or of h, we economize somewhat on notation by sometimes de-

noting hc
ν

1−ν by x and by systematically letting fi be a function of x whereas mj is

a function of h (where i and j are indices for the different functions we will define).

A sequence of constants will also appear; they are denoted Ak, accordingly, from

k = 1 and on.

We now proof the first lemma.

Proof. Because λ is arbitrary, we can set it in (8) so that cλ1−ν = 1. This delivers

−
u2(1, hc

ν

1−ν )

u1(1, hc
ν

1−ν )
= wc−

1
1−ν .

Evaluating (8) at λ = 1 we obtain −
u2(c,h)
u1(c,h)

= w. Inserting this expression, we thus

obtain
u2(c, h)

u1(c, h)
= c

1
1−ν

u2(1, hc
ν

1−ν )

u1(1, hc
ν

1−ν )
. (A.1)

Now identifying v1(x) as
u2(1,x)
u1(1,x)

, where x = hc
ν

1−ν , gives the result in Lemma 1. �

It follows from Lemma 1 and u being twice continuously differentiable that v1 is

continuously differentiable.

Proof. The second first-order condition, (9), holds for all λ so it can be differentiated

with respect to λ and then evaluated at λ = 1 and divide by (9) again to yield

(1−ν)cγ1−ν
u11 (cγ

1−ν , hγ−ν)

u1 (cγ1−ν , hγ−ν)
−νhγ−ν

u12 (cγ
1−ν , hγ−ν)

u1 (cγ1−ν , hγ−ν)
= (1−ν)c

u11 (c, h)

u1 (c, h)
−νh

u12 (c, h)

u1 (c, h)
.

(A.2)
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This equation has to hold for all γ (and consequently one must adjust R, but R does

not appear in the equation). Moreover, it has to hold for all c and h; it has to hold

for all h because Assumption 1 allows any w and hence any h (given an arbitrary

c). Given this, by setting γ so that cγ1−ν = 1 we can state (A.2) as

(1− ν)
u11(1, hc

ν

1−ν )

u1(1, hc
ν

1−ν )
− νhc

ν

1−ν

u12(1, hc
ν

1−ν )

u1(1, hc
ν

1−ν )
= (1− ν)c

u11(c, h)

u1(c, h)
− νh

u12(c, h)

u1(c, h)
,

which holds for all c and h. We conclude that the right-hand side of equation (A.2)

only depends on hc
ν

1−ν , i.e., we can write

(1− ν)c
u11(c, h)

u1(c, h)
− νh

u12(c, h)

u1(c, h)
= f1(hc

ν

1−ν ), (A.3)

where f1 is then defined by the expression on the left-hand side of equation (A.2).

Differentiating (10) with respect to c gives

u12(c, h)u1(c, h)− u11(c, h)u2(c, h)

u1(c, h)2
=
c

ν

1−ν v1(x)

1− ν
+
νc

1
1−ν v′1(x)hc

ν

1−ν
−1

1− ν
≡ c

ν

1−ν f2(x),

where we used the notation x = hc
ν

1−ν and the last equality simply defines a new

function f2. Then, again using the characterization of the MRS function to replace

u2(c,h)
u1(c,h)

= c
1

1−ν v1(hc
ν

1−ν ), we obtain

u12(c, h)

u1(c, h)
−
u11(c, h)

u1(c, h)
c

1
1−ν v1(x) = c

ν

1−ν f2(x),

and hence

hu12(c, h)

u1(c, h)
=
u11(c, h)

u1(c, h)
hc

1
1−ν v1(x) + hc

ν

1−ν f2(x) =
cu11(c, h)

u1(c, h)
xv1(x) + xf2(x).

This expression can be combined with equation (A.3) to conclude that −cu11(c,h)
u1(c,h)

must be a function only of x; we call this function v2.
9

�

9The function v2(x) is thus defined by

−(1− ν)v2(x) + ν (v2(x)xv1(x)− xf2(x)) = f1(x),

which straightforwardly offers a solution (that will depend on v1, f1, and f2).
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We will now combine the information in Lemmata 1 and 2 to complete our proof.

We do this in two steps. First we analyze the case with ν 6= 0 and then the case

with ν = 0. Note that the case with ν = 0 is already discussed in King, Plosser and

Rebelo (1988).

The strategy of the proof is very similar in the two cases. First, we integrate

the RRA function in Lemma 2 with respect to c to obtain a functional form for

u1. As we integrate with respect to c, an unknown function of h appears. Then,

by differentiating the obtained function for u1 with respect to h we arrive at an

expression that can be compared to a restriction on u12
u1

found in the proof of Lemma

2. This comparison gives us some additional restrictions on the unknown function

of h. Thus, since the proof of Lemma 2 uses Lemma 1, we are in effect making sure

that the functional form we arrive at is consistent with both our lemmata. Having

arrived at a form for u1, we again integrate to deliver a candidate for u. Due to the

integration a new unknown function of h again appears, but we can again restrict

this function by differentiating our candidate u with respect to h and comparing the

result to Lemma 1. This, then, delivers our final functional form.

Case with ν 6= 0: note that the characterization of the RRA function in Lemma

2 can be restated as

∂ log u1(c, h)

∂ log(c)
= −v2

(

exp

(

log(h) +
ν

1− ν
log(c)

))

.

This equation can be integrated straightforwardly with respect to log(c) to arrive at

u1(c, h) = f3(hc
ν

1−ν )m1(h), (A.4)

where f3 is a new function of x and m1 is an arbitrary function of h.10

10The integration delivers an expression for log u1(c, h) as a function of log x plus a function of

h. The latter function can only be a function of h since c was integrated over. The function of

log x can be rewritten as a function of x. Equation (A.4) is then obtained after raising e to the

left- and right-hand sides of this equation and f3 and m1 are defined accordingly.
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Now observe that it follows from the proof of Lemma 2 that also u12(c,h)h
u1(c,h)

can

be written as a function of x alone: it equals −v2(x)xv1(x) + xf2(x). We use this

fact to further restrict the function m1. In particular, by taking derivatives in

equation (A.4) with respect to h, multiplying by h, and dividing by u1, we obtain

an expression for u12(c,h)h
u1(c,h)

that can be written as

f4(hc
ν

1−ν ) +
m′

1(h)h

m1(h)
,

where f4 is defined by f4(x) ≡ f ′

3(x)x/f3(x). For the consistency of these two

expressions for u12(c,h)h
u1(c,h)

—the one just stated, and the arbitrary function of x given

above (−v2(x)xv1(x) + xf2(x))—it must be that
m′

1(h)h

m1(h)
is a constant.11 Hence,

m1(h) = A1h
κ for some constants A1 and κ, i.e., it is isoelastic. Using this fact in

(A.4) gives

u1(c, h) = f3(hc
ν

1−ν )A1h
κ. (A.5)

Since ν 6= 0, the expression on the right-hand side can equivalently be written

f5(h
1−ν

ν c)hκ, by defining f5(x) = A1f3(x
1−ν

ν ). Therefore, (A.5) can be easily inte-

grated with respect to c to deliver

u(c, h) = f6(hc
ν

1−ν )hκ−
1−ν

ν +m2(h), (A.6)

where f6 is the new function that results from the integration of f5 over c and m2 is

an arbitrary function of h (as the integration was over c). With the aim of further

restricting m2, we can express u2 as

u2(c, h) = u1(c, h)c
1

1−ν v1(x) = f3(x)A1h
κc

1
1−ν v1(x) = f7(hc

ν

1−ν )hκ−
1
ν , (A.7)

where we have used the characterization of the MRS function in Lemma 1, (A.5), and

finally the definition f7(x) ≡ f3(x)A1x
1
ν v1(x). Thus, we can now check consistency

11If
m

′

1
(h)h

m1(h)
would depend on h, consistency could not be fulfilled for any given combination of c

and h.
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by taking the derivative of u with respect to h in (A.6) and comparing with (A.7).

The derivative becomes
(

κ−
1− ν

ν

)

f6(x)h
κ− 1

ν + c
ν

1−ν f ′

6(x)h
κ− 1−ν

ν +m′

2(h) ≡ f8(x)h
κ− 1

ν +m′

2(h),

where the equality comes from collecting terms and defining a new function f8

accordingly. For consistency, thus, this expression has to equal f7(x)h
κ− 1

ν for all

x and h. This is possible if and only if m′

2(h) = A2h
κ− 1

ν , where A2 is a con-

stant. Concentrating first on the case where κ − 1
ν

6= −1, we obtain m2(h) =
(

1 + κ− 1
ν

)

−1
A2h

1+κ− 1
ν +A3 ≡ A4h

1+κ− 1
ν +A3. The constant A3 can be set arbitrar-

ily as it does not affect choice. The second term in (A.6) can thus be merged together

with the first term using factorization and we can write u(c, h) as f9(x)h
1+κ− 1

ν +

A3, with f9(x) ≡ f6(x) + A4. Now note that h1+κ−
1
ν = x1+κ−

1
ν c−

ν

1−ν (1+κ−
1
ν ), so

that u(c, h) can be written as f9(x)x
1+κ− 1

ν c−
ν

1−ν (1+κ−
1
ν ) + A3. Now define v(x) ≡

(

(1− σ)f9(x)x
1+κ− 1

ν

)
1

1−σ

and σ ≡ κ ν
1−ν

and we conclude that we can write u(c, h) =

(cv(x))1−σ
−1

1−σ
(where A3 has been set to −1/(1− σ)).

In the special case where 1 + κ = 1/ν, we obtain from equation (A.6) that

u(c, h) = f6(hc
ν

1−ν ) +m2(h), but we also see from the arguments above that m2(h)

has to equal A2 log h + A5, where A5 is again an arbitrary constant. Since (given

ν 6= 0) we can write log h = log x − ν
1−ν

log c, our candidate u can be rewritten as

u(c, h) = f6(x)−A2
ν

1−ν
log(c) +A2 log(x) +A5. The constant A5 can be set to zero

and we can write u(c, h) = −A2
ν

1−ν

[

log(c)− 1−ν
A2ν

f6(x)−
1−ν
ν

log(x)
]

. The factorized

constant can be normalized to −1 (as it does not affect choice), and we can then

define log v(x) ≡ f6(x) +
1−ν
ν

log x, an arbitrary function; this concludes the case

1 + κ = 1/ν. Hence we obtain the utility function

u(c, h) =











(

c·v(hc
ν

1−ν )
)1−σ

−1

1−σ
if σ 6= 1

log(c) + log v(hc
ν

1−ν ), if σ = 1.

Utility is strictly decreasing in h and strictly increasing in c as long as v′(x) < 0 and

v(x) > − ν
1−ν

v′(x)x.
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Case with ν = 0: in this case we can rewrite the RRA function in Lemma 2 as

∂ log u1(c, h)

∂ log c
= −v2(h). (A.8)

We can integrate this equation with respect to log c to obtain

log u1(c, h) = −v2(h) log c+m3(h), (A.9)

where m3 is an arbitrary function, given that we integrated over c. Differentiating

with respect to h then gives

u12(c, h)

u1(c, h)
= −v′2(h) log c+m′

3(h). (A.10)

From the proof of Lemma 2 we know that u12(c,h)
u1(c,h)

must be possible to write as a

function of h alone (recall that ν = 0). From this we conclude that we must have

v′2(h) = 0, i.e., the only version of equation (A.9) that is possible is log u1(c, h) =

−σ log c+m3(h), where σ is a constant. Using this fact and raising e to both sides

of (A.9) then delivers

u1(c, h) = c−σm4(h), (A.11)

where m4(h) = exp (m3(h)). Integrating (A.11) with respect to c we can write

u(c, h) =











(cv(h))1−σ
−1

1−σ
+m5(h) if σ 6= 1

m4(h) log(c) + log v(h) if σ = 1;

(A.12)

here, in the first equation −1/(1− σ) +m5 is another function (of h) that appears

because of the integration over c and v(h) is defined from v(h)1−σ
−1

1−σ
= m4(h), whereas

in the second equation log v is the function that appears due to the integration.

We will now, along the lines of the case where ν 6= 0, show that m4 and m5 will

have to have very specific forms. We look at each in turn. So in the case with σ 6= 1,

combine (A.11) with Lemma 1 to write

u2(c, h) = c1−σv1(h)m3(h). (A.13)
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This can be contrasted with the result of differentiating (A.12) with respect to h,

an operation that yields

u2(c, h) = c1−σv(h)−σv′(h) +m′

5(h).

Since these last two equations both have to hold for all c and h, it must be that

m′

5(h) = 0, i.e., that m5(h) is a constant (which can be abstracted from).

Turning to the case where σ = 1, along the same lines we again derive two

expressions for u2 and check consistency. Combining (A.11) with Lemma 1 one

obtains that u2 cannot depend on c. Differentiating the second line of (A.12) with

respect to h, however, delivers a function of c unless m4(h) is a constant; as it does

not affect choice, we set this constant to 1.

This is our final characterization and we have now reproduced the statement in

our main theorem. In summary, in the σ 6= 1 case we obtain u(c, h) = (cv(h))1−σ
−1

1−σ

and in the σ = 1 case we obtain log(c) + log v(h). This completes the proof for the

case ν = 0. To ensure that u(c, h) is strictly decreasing in h we need v′(x) < 0. �
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B.1 Appendix B: Additional figures
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Figure B.1: Average annual hours per capita aged 15–64, 1950–2015

Notes: Source: GGDC Total Economy Database for total hours worked and OECD for the data on population aged 15–64. The

figure is comparable to the ones in Rogerson (2006). The sample includes 37 countries. Regressing the logarithm of hours worked on

time and country fixed effects gives slope coefficient of -0.00336. The R
2 of the regression is 0.64.
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Figure B.2: U.S. time used survey: Weekly hours worked

Notes: Source: ATUS, following the methodology in Aguiar and Hurst (2007). The sample contains all non-retired, non-student

individuals at age 21–65. For the years 1965–2003 the series is comparable to Aguiar and Hurst (2007) Table II and is updated till

2013 using the same methodology. Regressing the logarithm of hours worked on time gives slope coefficient of -0.0024.
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Figure B.3: Weekly hours of School (including class and homework) per

population aged 14+, 1900–2005

Notes: Source: Ramey and Francis (2009).
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Figure B.4: Hours per worker and participation rate in the post-war U.S.
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Figure B.5: Hours worked vs. labor productivity

Source: GGDC Total Economy Database for total hours worked and labor productivity and OECD for the data on population aged

15–64. The figure shows the scatter plot between labor productivity and hours worked for the year 1955 and 2010.



51

0%

100%

200%

300%

400%

500%

600%

700%

800%

1770 1810 1850 1880 1910 1920 1930 1950 1970 1990 2010

V
a

lu
e

 o
f 
c
a

p
it
a

l 
(%

 n
a

ti
o

n
a

l 
in

c
o

m
e

)

The market value of slaves was about 1.5 years of U.S. national income around 1770 (as mush as land).  Sources and 

series: see piketty.pse.ens.fr/capital21c. 

Figure 4.10. Capital and slavery in the United States
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Figure B.6: Additional balanced-growth facts


	Introduction
	Hours worked over time and across countries
	Hours over time
	Hours worked in the cross-section

	Balanced-growth facts and theory
	Characterization
	Balanced growth using functional language
	The main theorem
	The consumption-hours indifference curves
	Curvature
	The proof structure and some comments
	Sufficiency
	The elasticity of intertemporal substitution

	Special cases and relations to the literature
	King-Plosser-Rebelo (1988): =0
	A case of the Greenwood-Hercowitz-Huffman (1988) preferences
	Constant Frisch elasticity à la MaCurdy (1981)
	An endogenous IES
	Departing from time invariance or time separability


	Consumer heterogeneity and cross-sectional facts
	Models of consumer heterogeneity
	Cross-sectional data

	Hours worked in Europe and the U.S.
	Conclusions
	Appendix A: Proof
	Appendix B: Additional figures

