Macro II

John Hassler

Spring 2020

New Keynesian Model

- The RBC model works (perhaps surprisingly) well. But there are problems in generating enough variation in labor supply. There is no role for stabilization policy.
- A reasonable avenue to make a more realistic business cycle model is to take seriously that prices and perhaps wages are not continously adjusted.
- To talk about price stickyness, we need to allow some price-setting power – monopolistic competition.
- Different monopolistic firms requires different goods with potential for price dispersion.
- Otherwise, our model will build on the RBC model, i.e., being a stochastic general equilibrium model with forward looking rational agents.
- Have become the central modeling approach in e.g., central banking. Will look at the simplest possible version.

John Hassler ()

New Keynesian Model:1

Bonds instead of capital

• As before, we assume a representative household that maximizes

$$E_t \sum_{s=0} \beta^s U(C_{t+s}, L_{t+s})$$

• In order to allow monetary policy to affect intertemporal tradeoff, we introduce government bonds, B_t but disregard capital. Budget constraint of individual is then

s.t.
$$P_t C_t + Q_t B_t = B_{t-1} + W_t (1 - L_t) + T_t, \forall t \ge 0$$

where Q_t is the price one-period nominal bonds and T_t is a lump-sum transfer (firm profits, taxes...)

• In contrast to above, we now think of C_t as a basket/index of differentiated goods C(i), $i \in [0, 1]$,

$$C_{t} \equiv \left(\int_{0}^{1} C_{t} \left(i\right)^{1-\frac{1}{\varepsilon}} di\right)^{\left(1-\frac{1}{\varepsilon}\right)^{-1}}$$

,

• where $\varepsilon \ge 0$ determines how substitutable the goods are. Continous version of Dixit & Stiglitz (1977). John Hassler () New Keynesian Model:1 03/20 3 / 10

Constructing a price index

- In the budget constraint, we used an aggregate price index, P_t . Can we construct that from the underlying prices $P_t(i)$?
- Consider the problem of minimizing the cost of getting a given amount of aggregate consumption C_t

$$\min_{\{C_t(i)\}_{i=0}^1} \int_0^1 P_t(i) C_t(i) di - \lambda_t \left(\left(\int_0^1 C_t(i)^{1-\frac{1}{\varepsilon}} di \right)^{\left(1-\frac{1}{\varepsilon}\right)^{-1}} - C_t \right)$$

• FOC for $C_{t}(i)$

$$P_{t}(i)$$

$$= \lambda_{t} \left(1 - \frac{1}{\varepsilon}\right)^{-1} \left(\int_{0}^{1} C_{t}(i)^{1 - \frac{1}{\varepsilon}} di\right)^{\left(1 - \frac{1}{\varepsilon}\right)^{-1} - 1} \left(1 - \frac{1}{\varepsilon}\right) C_{t}(i)^{-\frac{1}{\varepsilon}}$$

$$= \lambda_{t} \left(\int_{0}^{1} C_{t}(i)^{1 - \frac{1}{\varepsilon}} di\right)^{\left(1 - \frac{1}{\varepsilon}\right)^{-1} - 1} C_{t}(i)^{-\frac{1}{\varepsilon}}$$

Constructing a price index:2

• Note that
$$:\left(\int_{0}^{1} C_{t}\left(i\right)^{1-\frac{1}{\varepsilon}} di\right)^{\left(1-\frac{1}{\varepsilon}\right)^{-1}-1} = C_{t}^{\frac{1}{\varepsilon}}$$
 by definition, giving $P_{t}\left(i\right) = \lambda_{t} C_{t}^{\frac{1}{\varepsilon}} C_{t}\left(i\right)^{-\frac{1}{\varepsilon}}$.

• What is λ_t in the FOC $P_t(i) = \lambda_t C_t^{\frac{1}{\varepsilon}} C_t(i)^{-\frac{1}{\varepsilon}}$?

• It is the minimized cost of increasing aggregate consumption C_t by one unit, i.e., λ_t is the price index P_t . Thus, $P_t(i) = \lambda_t C_t^{\frac{1}{\varepsilon}} C_t(i)^{-\frac{1}{\varepsilon}}$ gives

$$P_t(i) = P_t C_t^{\frac{1}{\varepsilon}} C_t(i)^{-\frac{1}{\varepsilon}} \left(\frac{P_t}{P_t(i)}\right)^{\varepsilon} = \frac{C_t(i)}{C_t}$$

- One percent change in the relative price of good *i*, leads to ε percent decline in relative demand for that good.
- What happens with budget shares of different goods when prices increase if ε = 1, lower than one, higher than one?

John Hassler ()

• Use
$$\left(\frac{P_t}{P_t(i)}\right)^{\varepsilon} = \frac{C_t(i)}{C_t}$$
 in aggregate expenditure; $P_t C_t = \int_0^1 P_t(i) C_t(i) di = \int_0^1 P_t(i) \left(\frac{P_t}{P_t(i)}\right)^{\varepsilon} C_t di = C_t P_t^{\varepsilon} \int_0^1 P_t(i)^{1-\varepsilon} di.$

• Dividing by C_t , gives $P_t = P_t^{\varepsilon} \int_0^1 P_t (i)^{1-\varepsilon} di$, or

$$P_{t} = \left(\int_{0}^{1} P_{t}\left(i\right)^{1-\varepsilon} di\right)^{\frac{1}{1-\varepsilon}}$$

• This is an exact price index, defining the minized cost per unit of aggregate consumption.

Note that; it is H1 and the larger is ε , more dispersion reduces the price index.

• Suppose one third of prices are 1, 2 and 3, respectively. The price level is then $P_t = \left(\int_0^{1/3} 1^{1-\varepsilon} di + \int_{1/3}^{2/3} 2^{1-\varepsilon} di + \int_{2/3}^1 3^{1-\varepsilon} di\right)^{\frac{1}{1-\varepsilon}} = \left(\frac{1^{1-\varepsilon}+2^{1-\varepsilon}+3^{1-\varepsilon}}{3}\right)^{\frac{1}{1-\varepsilon}}$

• Consider three cases, $\varepsilon = 0.01, 2$ and 100.

- With $\varepsilon = 0.01$, $P_t = 1.998$, i.e., almost the average price.
- With $\varepsilon = 2$, $P_t = 1.636$
- With $\varepsilon = 100$, $P_t = 1.011$, close to the minimum price.

• Explain!

- We can now conveniently treat the consumer problem in two stages;
 - given distribution of prices, mininize cost of consuming a given consumption level. Gives P_t.
 - 2 decide how much to work, consume and save.
- In many applications we can forget about the first step.
- But recall that relative price differences have welfare costs.

Individual agregate decisions - labor supply

• Given the two stage decision problem, the second yields optimality conditions as in RBC-model.

$$\frac{U_L(C_t, L_t)}{U_C(C_t, L_t)} = \frac{W_t}{P_t}$$

$$U_C(C_t, L_t) = \beta E_t \left[\frac{P_t}{Q_t P_{t+1}} U_C(C_{t+1}, L_{t+1}) \right]$$

- Let us use a utility function in terms of consumption and disutility of labor $1 N_t$. $U(C_t, 1 N_t) = \frac{C_t^{1-\sigma}}{1-\sigma} \phi \frac{N_t^{1+\varphi}}{1+\varphi}$ where φ measures how inelastic labor supply is.
- Take log of the intratemporal condition $\frac{W_t}{P_t} = \frac{\phi N_t^{\varphi}}{C_t^{-\sigma}}$ and let lower case variables denote logs and dropping the constant $\ln \phi$

$$w_t - p_t = \sigma c_t + \varphi n_t$$

Individual aggregate decisions - NK Euler

• The Euler equation $1 = \beta E_t \left[\frac{P_t}{Q_t P_{t+1}} \left(\frac{C_t}{C_{t+1}} \right)^{\sigma} \right]$ can be written, $1 = E_t \left(\exp\left(-\rho + i_t - \pi_{t+1} - \sigma \Delta c_{t+1} \right) \right)$

where
$$\rho \equiv -\ln \beta \approx 1 - \beta$$
,
 $i_t \equiv -\ln Q_t \approx 1 - Q_t$, $\pi_{t+1} \equiv \ln P_{t+1} - \ln P_t \approx \frac{P_{t+1}}{P_t} - 1$.

- Note that in a perfect foresight steady state with constant inflation and constant consumption growth γ , we have $-\rho + i - \pi - \sigma \gamma = 0$.
- First-order Taylor approximation around this steady state

$$\begin{aligned} &\exp\left(-\rho + i_{t} - \pi_{t+1} - \sigma\Delta c_{t+1}\right) \\ &\approx & 1 + (i_{t} - i) - (\pi_{t+1} - \pi) \\ & -\sigma\left(\Delta c_{t+1} - \gamma\right) \\ &= & 1 + i_{t} - \pi_{t+1} - \sigma\Delta c_{t+1} - i + \pi + \sigma\gamma \\ &= & 1 + i_{t} - \pi_{t+1} - \sigma\Delta c_{t+1} - \rho \end{aligned}$$

• According to the Euler equation the expected value of this should be unity, implying $c_t = E_t c_{t+1} - \frac{1}{\sigma} (i_t - E_t \pi_{t+1} - \rho)$

John Hassler ()

New Keynesian Model:1