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6. Dynamic Optimization in Discrete Time

6.1. Non-Stochastic Dynamic Programming

Consider the dynamic problem
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The direct way to solve this would be to form the Lagrangean
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with first order conditions
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An alternative way is to recognize the recursive structure of the problem. (6.1) can be written
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We then solve the problem backwards starting from the last period. In period T-1 the remaining
problem only depends on earlier actions through kT-1. Substituting from the constraint we then want
to solve

max ( ) ( )
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We need to solve for the function kT =h(kT-1), i.e., for all possible values of kT-1. Then we solve the
problem for T-2 given that we do what is optimal in T-1. So we solve
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Define the current value function for the last periods problem as
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Substitute into (6.6) and continue in the same iterative way to get
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where s denote the number of periods left to termination.

The equations in (6.8) and (6.9) are called Bellman equations. The first order conditions implicitly
defines difference equations for k.

− ′ − + ′ =− − + − − +U f k k V kT s T s s T s( ) 1 1 1 01 6 1 6β . (6.10)

To find the policy functions kT-s+1 =hs (kT-s) we need to find the value function. In a finite horizon
problem this is done as above by starting from the last period.

Infinite Horizon

In an infinite horizon problem we cannot use the method of starting from the last period. Instead we
can use to different approaches. 1. Guess on a value function and make sure it satisfies the Bellman
equation. 2. Iterate on the Bellman equation until it converges.

Guessing

Guessing is often feasible when the problem is autonomous. Then the value function is independent
of time so we can write.
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We can rewrite
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u
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with first order conditions

U k u V k g k uu t t t u t t( , ) ( ) ( , ) .+ ′ =+β 1 0 (6.13)

Suppose we find a solution to (6.12) (and to (6.13) when relevant) has to be a function u(kt ).
Plugging that into (6.12) we get rid of the max so we have

V k U k u k V g k u kt t t t t t t( ) , ( ) ( , ( ))= +1 6 1 6β (6.14)

Note that we can use the envelope result that we can evaluate ′V k1 6  as the partial derivative holding

u constant, i.e.,
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If (6.14) is satisfied we have a solution to the value function. On the other hand, if, for example, u
depends on more variables than k,  (6.14) is not satisfied and our guess was incorrect.

Note that the whole RHS of (6.11) is a functional of the unknown function V(.) for the given
functions U and g. We can define this functional as T(V). The Bellman equation then defines a fixed
point for T in the space of functions V. The Bellman equation can thus be written

V k T V k U k u V g k u
u
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The solution to the Bellman equation is thus a fixed point in the space of functions we are looking
for, not a fixed point for k. I.e., if we plug in some function of k in the RHS of (6.14) we must get
out the same function on the LHS. We will return this when we analyse the conditions under which
we know that one and just one such fixed point exists (Contraction mapping theorem).

Typically the value function is of a similar for to the objective function. This is intuitive in the light of
(6.14). For example if the utility function in (6.1) is logarithmic we guess that the value function is of
the form A k Bln +  for some constants A,B. For HARA utility functions (e.g., CRRA, CARA and
quadratic) the value functions are generally of the same type as the utility function (Merton, 1971).

Iteration

An alternative way is try to find the limit of finite horizon Bellman equation as the horizon goes to
infinity. Under for economical purposes quite general conditions this limit exists and is equal to the
value function for the infinite horizon problem
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s
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Using the notation in (6.16) we apply the operator T  until the sequence converges.
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if the limit exists. In this case we can be sure that this satisfies the Bellman equation which when we
use the formulation in (6.16) and the definition in (6.18) becomes
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With discounting it is typically unimportant what we plug in for V0(k) in (6.17). We can then start
with any function and iterate until we get convergence. This can easily be done numerically, either by
specifying a functional form, if we know that, or by just choosing a grid. In the latter case we just a
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set of values for the state variable k k kn0 1, , ,K; @ . V0(k) is then a set of preliminary values (numbers)

for each of the state variables in the grid.

An Iteration Example

In (6.1) let U(c)=ln(c) and f(k)= kα with 0<α<1.We then have

V k k k k

FOC
k k k

k
k

T
k

T T T

T T T
T

T

T
1 1 1

1

11

1

− −

−

−

= − +

−
= ⇒ =

+

1 6 3 8

3 8

maxln lnα α

α

α

β

βα βα
αβ

(6.20)

Substitute into the value function
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It is easy to see that the coefficient on k is a power series that converge to α αβ1−1 6  when the

horizon goes to infinity (provided αβ <1). Also the constants converge if also 0<β <1 and the
resulting function is
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From this we can derive the optimal policy function by using the first order condition for the Bellman
equation
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Note that the policy function is a stable difference equation under the assumptions about α,β.

Verification of Guess

If we had guessed the form A k Bln +  the Bellman equation had become
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giving first order conditions
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Plugging this into the Bellman equation yields
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which is satisfied if we set A and B to the values in (6.24).

State Variables

We often solve the dynamics programming problem by guessing a form of the value function. The
first thing to determine is then which variables should enter, i.e., which variables are the state
variables. The state variables must satisfy both following conditions

1. To enter the value function at time they must be realized at t.

Note, however, that it sometimes may be convenient to use Et (zt+s) as a state variable. The
expectation as of t is certainly realized at t even if the stochastic variable is not realized.
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2. The set of variables chosen as state variables must together give sufficient information so that the
value of the program from t and onwards when the optimal control is chosen can be calculated.

What do we need if the per period utility function in (6.1) was U c ct t( , )−1 ?

Note, we should try to find the smallest such set. Look for example on the following problem.
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In general we need both k, and l in the value function but if f is linear we may only need a linear
combination. If f k l a k lt t t t( , ) ( )= +  we could define a new state variable w = k+l and use V(w) as our
value function. The reason is that to compute the value of the program we only need to know the
sum of k and l, their share are superfluous information.
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6.2. Contraction mappings

In the previous section we discussed guessing on solutions to the Bellman equation. However, we
would like to know whether there exists a solution and whether it is unique. If the latter is not the
case, it is not in principle sufficient to guess and the verify the solution since we might have other
value functions that also satisfy the Bellman equation. To prove existence and uniqueness we will
apply a contraction mapping argument.

Complete Metric Spaces and Cauchy Sequences

Let X be a metric space, i.e., a set on which addition and scalar multiplication is defined. Also define
an operator d: X X× → R which we can think of as measuring the (generalized) distance between
any two elements of X. We call d a norm. It is assumed to satisfy

1. Positivity 
d x y

d x y x y

( , )

( , )

≥
= ⇔ =

0

0

2.         Symmetry d x y d y x( , ) ( , )= (6.30)

3. Triangle inequality d x z d x y d y z( , ) ( , ) ( , )≤ +

Now, we call (X,d) a normed vector space or a metric space. An example of such a space would be
Rn together with the Euclidian norm d x y x y( , ) ,= . Another example is the space C(S) of

continuous and bounded functions where each element is a function from S n⊂ →R R together with
the “sup-norm” defined as follows. For any two elements in C(S), i.e., any two functions f and g, the
distance d between them is the maximal euclidian distance, i.e,.,

d f g f y g y
y S

( , ) sup ( ), ( )≡
∈

(6.31)

Now let us define a Cauchy sequence. This is a sequence of elements {xn} in a space X that come
closer and closer to each other, using some particular norm. More precisely,  for all ε>0, there exist a
number n, such that for all m,p≥n, d(xm,xp)< ε. An example of this would be the sequence
{1,1/2,1/3,…} which is a Cauchy sequence using the Euclidian norm. A Cauchy sequence converges
if there is an element in X such that d(xn,x) approach zero as n goes to infinity. It may, of course, be
the case that the Cauchy sequence does not converge to a point in X. An eaxmple would be if we let
X be the open interval (0,∞) and look at the Cauchy sequence {1,1/2,1/3,…} which converges to
zero which is not in X.

Complete metric spaces

Now we are ready to define the complete metric space. This is a metric space where all Cauchy
sequences in it are convergent, i.e., they converge to a point in the space.
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Contraction Mapping

Consider the metric space (X,d) and look at the function T that maps each element in X to some
element in X, T X X: → . T is a contraction mapping if there exists a non-negative number ρ which is
strictly smaller than unity,   0≤ ρ <1, such that for all elements x, y  in X,

d T x T y d x y( ), ( ) ,1 6 1 6≤ ρ (6.32)

An example of such a mapping whould we a map in say scale 1:10 000 put on top of a map in scale
1:1000 covering the same geographical area. The norm can be the distance between the points on the
map. Clearly, (6.32) is satisfied for ρ =0.1.

The Contraction Mapping Theorem

Now we can state the very important contraction mapping theorem.

Result 22 Consider a complete metric space, and let T X X: → be a contraction mapping. The T
has one unique fixed point x, i.e., x=T(x).

Another very useful result is the following

Result 23 Let S be a subset of Rn and B(S) the space of all bounded functions from S to R. Let
T be a map that maps all elements of B(S) into itself. Then, T is a contraction mapping if

1. For any functions w(s) and v(s) w s v s s S( ) ( ) ,− ≥ ∀ ∈0 ⇒ − ≥ ∀ ∈Tw s Tv s s S( ) ( ) ,0 , and

2. There is a non-negative 0 ≤ β β strictly smaller than unity such that for any number  c in R, and
any function w in B(S) , T w s c T w s c s( ( ) ) ( ( )) , .+ = + ∀β

Usually it is straightforward to apply the previous result to show that if we have positive discounting
the Bellman equation is a contraction mapping. The only problem is that it is confined to bounded
functions.
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6.3. Stochastic Dynamic Programming

As long as the recursive structure of the problem is intact adding a stochastic element to the
transition equation does not change the Bellman equation. Consider the problem
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where E is the expectations operator. Note that we have to specify the set of information that ut can
be conditioned on. Clearly it will in general be optimal to condition for example consumption on
observed realizations of εt.  If the agent may condition on information available at t we get the
Bellman equation with first order conditions
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or for a general distribution F of ε
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where E denotes the expectations operator. Note that V kt1 6  in (6.34) and (6.35) is a current value

function.

A Stochastic Consumption Example

Consider the following program

max ln
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The consumer decides how much to consume each period. The share ω of here assets is placed in a
riskless asset yielding r in return and (1-ω) in a risky asset with return zt, that is i.i.d.
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The problem is autonomous so we write the current value Bellman equation with time independent
value function V

V A c E V A c r zt c t t t t t
t

( ) max ln
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ω

β ω ω1 6 1 6 1 61 62 73 81 1 1 (6.37)

Necessary first order conditions yield
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Now we use Merton’s result and guess that the value function is

V A a A Bt t( ) ln= + (6.39)

for some constants a and B. Substituting into (6.38) we get
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and
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Note that (6.41) implies that ω is constant since zt is i.i.d.

Now we have to solve for the constant a. This is done by substituting the solutions to the first order
conditions and the guess into the Bellman equations.
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