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7.  Numerical Methods

7.1. Band Matrix Methods for differential equations

Assume we want to solve the differential equation

′′ + ′ + =y x ay x by x g x( ) ( ) ( ) ( ) (7.1)

over some interval with initial conditions given. If we want to solve this numerically we first
have to get rid of the abstract infinitely small differences called differentials. We approximate
these with finite size differences so that
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Using this we can solve the equation in the following way. Say we want to solve the equation
in the interval [p,q] for x and we know that the first and second derivatives are zero at p. We
divide the interval for x into n equal parts and use the following notation
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This gives us the following equations.
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This is n+3 linear equations for the n+3 unknown y. Writing this as a system we have
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Example; Let us solve the following equation numerically
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The system resulting from the approximation can be written as
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where the first equation is the initial condition.

The solutions tend to be closer to the algebraic solution the larger is n, but is fairly close here
also for small values of n. This method is very well suited for computers.
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7.2. Non-Linear Equations

Suppose we are faced with the problem of solving
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for x*. This could for example be the equation implicitly defining a steady state of difference or
differential equation system. Starting from some initial value xn we can then make a first order

Taylor approximation. Define
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Then we have
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This gives us a better approximation to x* than our first xn guess. We can then repeat this until

we are sufficiently close to g(x)=0. Each repetition we thus update our value for x according
to
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Example;
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Starting with x={2,2} I got the following results

k x xk k1 2, ,,< A g xk1 6
0 2,2 {57.112, -3}
1 {1.714, 1.464} {19.741, -0.395}
2 {1.400, 1.104} {6.281, 0.086}
3 {1.146, 0.891} {1.665, 0.120}
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4 {1.003, 0.809} {0.269, 0.046}
5 {0.968, 0.797} {0.011, 0.003}
6 {0.966, 0.796} {0.000, 0.000}

In computer applications we may sometimes also want to approximate the matrix of
derivatives with a discrete approximation as in (7.2).

7.3. Newton-Raphson

Suppose we are looking for an optimum of the function f Rn( ),x x ∈ . A standard way to do
this numerically is to apply the Newton-Raphson algoritm. If the optimum is interior and f is
differentiable, it satisfies the necessary first order conditions that the gradient is zero

Df ( )*x 0= . (7.13)

Now apply a first order linear approximation to the gradient from some initial point x

0 x x x x x= ≈ + −Df Df D f( ) ( ) ( )* *2 2 7 . (7.14)

By rearranging terms we get an approximation to x*

x x x x* ( ) ( ).≈ − −D f Df2 1 (7.15).

From this we can construct a search algorithm that hopefully makes better and better
approximations

x x x xs s s sD f Df+
−= −1

2 1( ) ( ). (7.16)

If we don’t have analytic solutions to the gradient and Hessian we can use numerical
approximations, for example
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which is called the forward difference method.



John Hassler 54

One should be very careful with these methods. The first problem is only local optima will be
found with this method. Secondly, the method will surely converge only in a neighbourhood of   
x*. So often it is crucial for convergence which starting point is chosen.


