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1. Dynamic Optimization in Discrete Time
Last edited 1999-11-22

1.1. Non-Stochastic Dynamic Programming

Consider the dynamic problem
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Notice:
1. Per period payoff is time additive.

2. kt cannot be changed in period t, but its future values, its law-of-motion can be changed by
ct,. i.e., k is a state variable and c is the control variable.

The direct way to solve this would be to form the Lagrangean
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with first order conditions
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This works if T is finite.

An alternative way is to recognize that in a problem like this, each sub-section of the path must be
optimal in itself. This means that the problem has a recursive formulation. For example, it the
problem is over three periods, we can rewrite (1.1)
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We then solve the problem backwards starting from the last period. In period T-1 the remaining
problem only depends on earlier actions through kT-1. In the final period, the problem is trivial;
simply set c2 so that k3 =0. In period T-1, we then want to solve
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We can here use the constraints to substitute
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where 1
1 1( ( , ),0)f f k c− = 1

2( ,0)f k−  gives the value of c2 that is consistent with k3=0, given

2 1 1( , )k f k c= . Clearly, the solution to (1.6) depends on k1. Furthermore, the achieved maximized
value of (1.6) certainly also depends on k1. This means that we need to find the function c1 =c1(k1),
i.e., for all possible values of k1. Given this, we can define
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This is the maximum value of the objective that can be achieved with two periods left and the the
state variable being k.

This simplifies the problem in period 1 to
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or
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with one first order condition

( )0 0 0 0 0 0( , ,0) ( , ), 2 ( , ) 0.c k cu k c V f c k f c k+ = (1.10)

The equations in (1.8)  and (1.9) are called Bellman equations. It is of course straightforward to
extend the analysis to any finite horizon problem.
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Time consistency

As we have seen, a dynamic problem can sometimes be separated in sub-problems, where the
solution to each sub-problem is optimal in itself (compare to sub-game perfection, if you know basic
game theory). If the objective function changes over time, this property may no longer hold.
Consider the following problem where individuals discount future utility at a faster rate for close
dates (as shown to be consistent with empirical psychological evidence)
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with 0<β<1. Then, in period t+1 the objective is
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which is not a sub problem of (1.11). In particular, the marginal rate of substitution between t+1 and
t+2 is 1 2( ) / ( )t tu c u c+ +′ ′  in period t, but is it 1 2( ) / ( )t tu c u cβ+ +′ ′  in period t+1.

Take a three period example with exponential utility. Then if the individual could control all future
consumption levels (commitment) in period 1, the individual maximizes
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However, this is not time consistent since in period 2 the individual would solve
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To get the time-consistent solution, we solve the problem under the constraint that second period
consumption is given by 1( ln ) / 2A c β− −
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With geometric discounting, the objective function does change over time, but only by a linear
transformation which does not affect the optimal solution. Suppose the objective function in period t
is

0
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which can be separated in
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At period a, the latter term has changed, but only by a linear transformation since it is now
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which has the same solution. Thus, if we let the agent re-optimize in each period, he will not change
his mind, if discounting is geometric.

Infinite Horizon

In an infinite horizon problem we cannot use the method of starting from the last period. Still, if the
problem has a well-defined value function, it satisfies the Bellman equation. Furthermore, under
conditions, which we will talk about later, there is only one function that solves the Bellman
equation, so if we find one function that solves the Bellman equation, we have a solution to the
dynamic optimization problem. Since geometric discounting will prove to be important for showing
uniqueness, we will use that from now on.

To find a solution, we can use two different approaches.

1. Guess on a value function and make sure it satisfies the Bellman equation.

2. Iterate on the Bellman equation until it converges.

Guessing

Guessing is often feasible when the problem is autonomous (stationary). Then, the problem is
independent of time in the sense that given in initial condition on the state variable(s), the solution
and the maximized objective is independent of the starting date. This, requires that time is infinite,
the law of motion for the state is independent of time and the per-period return function is the same
over time, and that any restriction on the control variable is the same over time. (Think about what
would happen if any of these conditions is not satisfied). Then, the value function is independent of
time so we can write.
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We can rewrite
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with first order conditions
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Suppose we find a solution to (1.20) (and to (1.21) if the optimum is interior). This has to be a
function c(kt), which is time-independent since U, V and f are . Plugging that into (1.20) we get rid
of the max so we have

( ) ( )( ) , ( ) ( , ( ))t t t t tV k U k c k V f k c kβ= + (1.22)

If (1.22) is satisfied for all values of k we have a solution to the value function, otherwise our guess
was incorrect.

Note that the whole RHS of (1.19) is a functional of the unknown function V(.) for the given
functions U and g. We can define this functional as T(V). The Bellman equation then defines a fixed
point for T in the space of functions V. The Bellman equation can thus be written
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The solution to the Bellman equation is thus a fixed point in the space of functions we are looking
for, not a fixed point for k. I.e., if we plug in some function of k in the RHS of (1.22) we must get
out the same function on the LHS. We will return this when we analyse the conditions under which
we know that one and just one such fixed point exists (Contraction mapping theorem).

Typically the value function is of a similar for to the objective function. This is intuitive in the light of
(1.22). For example if the utility function in (1.1) is logarithmic we guess that the value function is of
the form lnA k B+  for some constants A,B. For HARA utility functions (e.g., CRRA, CARA and
quadratic) the value functions are generally of the same type as the utility function (Merton, 1971).

An example

In (1.1) let U(k,c,t)=ln(c) and f(k,c,t)= kα -c, with 0<α<1. We then have
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Now, guess that V is of the same form as U, for example lnA k B+ , giving first order conditions
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Plugging this into the Bellman equation yields
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We see immediately that for this to be identically true for all values of k, we must have.
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This system is straightforward to solve, giving
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Having V, it is easy to find the optimal control from (1.25),
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Iteration

An alternative way is try to find the limit of finite horizon Bellman equation as the horizon goes to
infinity. Under for economical purposes quite general conditions this limit exists and is equal to the
value function for the infinite horizon problem. Let Vs(k) be the value function of the finite problem
with s periods left. Then we try to find

( ) ( )lim s
s

V k V k
→∞

≡ (1.30)

This method is usually done numerically, but it can (at some cost of messiness) be done also
analytically. Using the notation in (1.23)
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If the limit exists, it clearly satisfies the Bellman equation
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The remaining issue is what function to plug in as V0(k) in (1.31). However, suppose that T
discounts, i.e., β in (1.23) is strictly smaller than zero. Then, if we can show that
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and
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for all permissible values of k given relevant initial conditions, then it turns out that it does not

matter what function V0 we use. More importantly; if (1.33) holds, 0lim ( )n

n
T V k

→∞
provides the unique

solution to the Bellman equation so we have found the correct value function. A particularly simple
case would be if U and thus V are bounded.

The iteration in (1.31) can easily be done numerically, either by specifying a functional form, if we
know that, or by just choosing a grid. In the latter case we just a set of values for the state variable

{ }0 1, , , nk k kK . V0(k) is then a set of preliminary values (numbers) for each of the state variables in

the grid. We can also sometimes do it analytically.

An Iteration Example

Suppose the final condition in the finite horizon analogue of the problem behind (1.24) that kT+1=0.
Then, with one period to go (in T-1), we have
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Substitute into the value function
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You might be able to see that the coefficient on k is a power series that converge to ( )1α αβ−
when the horizon goes to infinity (provided αβ <1). Also the constants converge if also 0<β <1 and
the resulting function is
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Note that the policy function is a stable difference equation under the assumptions about α,β.

An envelope result

We will later have use for the envelope result, that we can evaluate ( )V k′  as the partial derivative

holding u constant, i.e.,
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Combining this with (1.21) gives
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So, if, for example, U(k,c,t) = U(c)  and f(k,c,t)= f(k) –c.

( )( ) ( , ) .t c t t k tV k U k u f k′ = (1.42)

In other words, along the optimal path, we can evaluate V’(k) by looking at what happens to the
objective function an additional unit of k is “consumed” today and all future values of the state
variable are unchanged.

State Variables

We often solve the dynamics programming problem by guessing a form of the value function. The
first thing to determine is then which variables should enter, i.e., which variables are the state
variables. The state variables must satisfy both following conditions

1. To enter the value function at time they must be realized at t.

Note, however, that it sometimes may be convenient to use Et (zt+s) as a state variable. The
expectation as of t is certainly realized at t even if the stochastic variable is not realized.

2. The set of variables chosen as state variables must together give sufficient information so that the
value of the program from t and onwards when the optimal control is chosen can be calculated.

What do we need if the per period utility function in (1.1) was 1( , )t tU c c − ?

Note, we should try to find the smallest such set. Look for example on the following problem.
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(1.43)

In general we need both k, and l in the value function but if f is linear we may only need a linear
combination. If ( , ) ( )t t t tf k l a k l= +  we could define a new state variable w = k+l and use V(w) as
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our value function. The reason is that to compute the value of the program we only need to know
the sum of k and l, their share are superfluous information.

1.2. Stochastic Dynamic Programming

As long as the recursive structure of the problem is intact adding a stochastic element to the
transition equation does not change the Bellman equation. Consider the problem
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where E is the expectations operator. Note that we have to specify the set of information that ut can
be conditioned on. Clearly it will in general be optimal to condition for example consumption on
observed realizations of εt.  If the agent may condition on information available at t we get the
Bellman equation with first order conditions
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or for a general distribution F of ε
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where E denotes the expectations operator. Note that ( )tV k  in (1.45) and (1.46) is a current value

function.

A Stochastic Consumption Example

Consider the following program
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The consumer decides how much to consume each period. The share ω of here assets is placed in a
riskless asset yielding r in return and (1-ω) in a risky asset with return zt, that is i.i.d.

The problem is autonomous so we write the current value Bellman equation with time independent
value function V
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Necessary first order conditions yield
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Now we use Merton’s result and guess that the value function is
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for some constants a and B. Substituting into (1.49) we get
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Note that (1.52) implies that ω is constant since zt is i.i.d.

Now we have to solve for the constant a. This is done by substituting the solutions to the first order
conditions and the guess into the Bellman equations.
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( ) ( ) ( )( )
( )

1

ln

ln ln 1 ln

ln ln 1 ln

ln 1 1 1

ln ln 1 ln ln ln(1

ln 1 1 1

1 ln

1
, (1 )

1

t

t t t

t t t

t t

t t

t t

t

t t

a A B

A a E a A B

A a a A c B

aE r z

A a a A a a

B aE r z

a A k

a c A

β β

β β β

β ω ω

β β β β

β β ω ω

β

β
β

+

+
= − + + +

= − + + − +

+ + + + −

= − + + + − +

+ + + + + −

= + +

⇒ = = −
−

(1.53)

1.3. Contraction mappings

In the previous section we discussed guessing on solutions to the Bellman equation. However, we
would like to know whether there exists a solution and whether it is unique. If the latter is not the
case, it is not in principle sufficient to guess and the verify the solution since we might have other
value functions that also satisfy the Bellman equation. To prove existence and uniqueness we will
apply a contraction mapping argument.

Complete Metric Spaces and Cauchy Sequences

Let X be a metric space, i.e., a set on which addition and scalar multiplication is defined. Also define
an operator d: X X× → R which we can think of as measuring the (generalized) distance between
any two elements of X. We call d a norm. It is assumed to satisfy

1. Positivity 
( , ) 0

( , ) 0

d x y

d x y x y

≥
= ⇔ =

2. Symmetry ( , ) ( , )d x y d y x= (1.54)

3. Triangle inequality ( , ) ( , ) ( , )d x z d x y d y z≤ +

Now, we call (X,d) a normed vector space or a metric space. An example of such a space would be
Rn together with the Euclidian norm ( , ) ,d x y x y= . Another example is the space C(S) of

continuous and bounded functions where each element is a function from nS ⊂ →R R together with
the “sup-norm” defined as follows. For any two elements in C(S), i.e., any two functions f and g, the
distance d between them is the maximal euclidian distance, i.e,.,

( , ) sup ( ), ( )
y S

d f g f y g y
∈

≡ (1.55)

Now let us define a Cauchy sequence. This is a sequence of elements {xn} in a space X that come
closer and closer to each other, using some particular norm. More precisely, for all e>0, there exist a
number n, such that for all m,p≥n, d(xm,xp)< e. An example of this would be the sequence
{1,1/2,1/3,…} which is a Cauchy sequence using the Euclidian norm. A Cauchy sequence converges
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if there is an element in X such that d(xn,x) approach zero as n goes to infinity. It may, of course, be
the case that the Cauchy sequence does not converge to a point in X. An eaxmple would be if we let
X be the open interval (0,∞) and look at the Cauchy sequence {1,1/2,1/3,…} which converges to
zero which is not in X.

Complete metric spaces

Now we are ready to define the complete metric space. This is a metric space where all Cauchy
sequences in it are convergent, i.e., they converge to a point in the space.

Contraction Mapping

Consider the metric space (X,d) and look at the function T that maps each element in X to some
element in X, :T X X→ . T is a contraction mapping if there exists a non-negative number r which
is strictly smaller than unity,   0≤ r <1, such that for all elements x, y  in X,

( ) ( )( ), ( ) ,d T x T y d x yρ≤ (1.56)

An example of such a mapping whould we a map in say scale 1:10 000 put on top of a map in scale
1:1000 covering the same geographical area. The norm can be the distance between the points on the
map. Clearly, (1.56) is satisfied for r =0.1.

The Contraction Mapping Theorem

Now we can state the very important contraction mapping theorem.

Result Consider a complete metric space, and let :T X X→ be a contraction mapping. The T has
one unique fixed point x, i.e., x=T(x).

Another very useful result is the following

Result Let S be a subset of Rn and B(S) the space of all bounded functions from S to R. Let T be a
map that maps all elements of B(S) into itself. Then, T is a contraction mapping if

1. For any functions w(s) and v(s) ( ) ( ) 0,w s v s s S− ≥ ∀ ∈ ( ) ( ) 0,Tw s Tv s s S⇒ − ≥ ∀ ∈ , and

2. There is a non-negative 0 β≤ b strictly smaller than unity such that for any number  c in R, and

any function w in B(S) , ( ( ) ) ( ( )) , .T w s c T w s c sβ+ = + ∀

Usually it is straightforward to apply the previous result to show that if we have positive discounting
the Bellman equation is a contraction mapping. The only problem is that it is confined to bounded
functions.


