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2.1 Dynamic Optimization in Continuous Time

2.2 Calculus of variation

Look at the following simple dynamic problem
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where F is continuous in its arguments. The problem is dynamic since &( )x t  is included. Otherwise we
could maximize point by point in time.

An economic example could be that F represents profits from a firm that make output by employing
labor (x). Time enters the profit function since the firm discounts future profits. If changes in the
number of persons employed is costly &( )x t  also enters the profit function. The firm can then not just
in each moment hire the number of persons that maximize current profits.

A solution to the problem is a function x*(t) (with a continuous derivative). To find it we try to find
some characteristics of it that can help us to search. We will in particular now derive some necessary
conditions that the solution must satisfy. From them we may find the solution.

The trick is to define admissible deviations h. These are the differences between the optimal path and
an admissible but sub-optimal path, i.e. h x xt t t≡ −*

 . The constraints in (2.1) imply that ht0 ≡ht1 ≡ 0
which in this case are the only admissibility constraints (together with differentiability).

t0 t1

x1

x0

Optimal path

An admissible 
sub-optimal path

ht

Now look at a linear combination of the optimal path and an admissible deviation. For any constant a
let
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y a x ah( ) *= + (2.2)

which is clearly admissible. Note that y(a) is a one parameter family of admissible paths, i.e., the
parameter a pins down a particular path of the variable y over the whole interval t0 to t1..

Define the value of the program if we use y(a)
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This value must by assumption be maximized when a=0. We also find a standard necessary first
order condition for a maximum
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We can rewrite this by integrating F hx&
&  by parts
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Substituting this into (2.5) we find that the necessary condition is that along the optimal path
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But this must be true for all the infinitely many different admissible deviations h. This requires that
the value within parenthesis in (2.7) is zero for all t within the planning horizon.

Result 1 A necessary condition for x* to be an optimal path for the problem (2.1) is
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This is the Euler Equation for the problem. We will see that this can be interpreted as a an arbitrage
condition between different points in time. Sometimes we may be able to solve for the function x*(t).
At least we can derive some properties of it.
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2.2.1 A simple consumption example

max ( )
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The Euler equation is
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Note that we express the Euler equation in terms of c rather than in K. This will make it easier to
interpret and gives us a first order differential equation in c instead of a second order in k.

Before solving we want to interpret the Euler equation  by showing that it is an arbitrage condition
between successive points in time. Integrate (2.11)
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(2.13) can be interpreted; Consider a small deviation from the optimal plan, namely a marginal
decrease in consumption in t and increase in t+dt. This is the first two terms in (2.13). By doing this
we earn more interest over the interval t to dt. The value of this is the third term. Overall, such a
marginal change should, according to the FOC yield zero change in the value function, if it is done
from the optimal path.

Now we use (2.11) to try to find a solution
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(2.14) tells us a lot of the optimal path although we may be unable to solve for the level of
consumption.

Note that (2.14) must hold for the solution to be optimal also for a non-constant interest rate. This is
intuitive in light of (2.13).

By specifying a utility function we can go further.

In the CARA utility (exponential) case
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This means that the absolute growth of consumption is constant. Note that this just defines the slope
of the optimal path, the level is determined from the dynamic budget constraint.
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Multiplying by the integration factor and integrating we have
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This is the intertemporal budget constraint. Solving this
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Note that if i=r consumption is simply a fraction of wealth, that decreases with the length of the
planning horizon.
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So with an infinite horizon ct = iWt.
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Similarly on the case of CRRA utility
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the Euler equation (2.14) becomes
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Here the growth rate of consumption is constant and proportional to the difference between market
and subjective discount rates. Compare this to (2.16).

Using the intertemporal budget constraint
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Note the results when σ=1 and when T→∞.

2.2.2 A sufficient condition

The Euler condition is necessary but not sufficient. It is however also sufficient for a maximum if
F t x x, , &� 	  is concave in x, &x .

Recall that if F t x x, , &� 	  is concave in x, &x  then
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To see this
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Assume that F t x x Ft t, , &

* * *� � ≡  satisfies the Euler equation and F is concave in x, &x . We then want to

show that F t x xt t, , &* *� �  is optimal, i.e., that
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for all admissible paths. Admissible deviations are defined h t x t x t( ) ( ) ( )*≡ −  with &( ) &( ) & ( )*h t x t x t≡ − .

Now using (2.25) we have that
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By integrating by parts we find that
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This shows that concavity, which gave us the inequality in (2.27), makes the Euler equation sufficient
for optimality.

Result 2 If F is concave in x, &x , the Euler equation, given in (2.8) is both necessary and sufficient for
an optimum.

2.2.3 Transversality conditions

Assume now that kt1  
is free. Before we used the terminal condition for kt1 to find one integration

constant. Now we need some other condition to do this – the transversality condition.

An admissible deviation h is now not required to satisfy h(t1)=0. The necessary condition (2.4), (2.5)
are still valid but (2.6) is changed slightly.
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So the necessary condition becomes that along the optimal path
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So we see that the Euler equation is still valid. In addition to the Euler equation we have the added
condition

F t x xx t t&

* *( , , & )1 1 1
0= (2.31)

This is the transversality condition.
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2.2.4 Example

In the consumption example (2.9) we expect that if no end condition is set for K it must be optimal
to consume so much that  marginal utility goes to zero. Let’s verify that.

F t K K e U cK t t
rt

t&

( , , & ) ( ).1 1 1

1

1
= − ′− (2.32)

2.2.5 Infinite horizon

The intuition for the Euler equation above as an arbitrage between successive time points still
suggests that it is valid also in infinite horizon problems. This is the case for properly specified
economic problems where the objective function converge to something finite for all admissible
deviations. If this is not the case optimality becomes ambiguous. General transversality conditions
are, however, not known.

In economic infinite horizon models we often want to find a steady state solution xss (s.t. & && )x x= = 0

for some properly detrended variable. This works if time does not enter F or just as an exponential
discounting. The problem is then (time) autonomous. If we take this steady state to be the boundary
condition
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t

t
ssx x
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= (2.33)

or

lim &

t
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= 0 (2.34)

we have the necessary information to find the solution with integration constants. Take the Ramsey
problem as an example.
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Note that in the following I find expressions for c rather than for k. Note also that the discounting
terms cancels. So the Euler equation can be written
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This gives us the system of differential equations
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Note that in terms of k the Euler equation is

e U f k e U e U f k e U k

U f k U U f k U k

t t t t− − − −′ ′ = ′ − ′′ ′ + ′′

′ ′ = ′ − ′′ ′ + ′′

θ θ θ θθ

θ

( ) & &&

( ) & &&,
(2.40)

i.e., a second order differential equation. Note the equivalence between a second order differential
equations and a two equation system of differential equations.

The system (2.39) has variable coefficients and may be difficult to solve analytically. But we have
already seen that it can be analyzed qualitatively. First we clearly have steady state. Secondly we can
draw its phase diagram.

Note that as always all paths (arrows) in the figure satisfy the Euler equation. The initial and
boundary conditions together pick just one path. Only the saddle path satisfies the boundary
condition and by knowledge of k0  we can then find c0. We have thus pinned down just one path and
(implicitly) found the two integration constants.

&c = 0

&k = 0

k

c
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2.3 Optimal control

Optimal control can be seen as an extension of calculus of variation and is often more convenient
when there is restrictions on the way the system can controlled. To facilitate this, we make a
distinction between control variables (e.g., consumption or investments) and state variables (e.g.,
capital stocks or debt) that are governed by a differential equation (transition equation) and thus
given in each point in time.

max , ,
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t t t t

t t
t
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Here, x is the state variable. The way it changes over time, can be affected by the control variable u.
As a means to finding a solution we define a multiplier function λt for the transition equation.

For a combination of x,u to be admissible it must be that ∀ t⊆[t0,t1] g t x u xt t t, , &� �− = 0. Adding this

zero to the maximand yields,
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Now we want to get rid &xt . So integrate by parts
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Now we use the same procedure as when deriving necessary conditions for the Calculus of Variation
problem. Instead of looking at admissible variations of x we look at admissible variations of the
control variable u. Let u* represent the optimal control and u some other admissible control and
define h= u*-u  Let y(a) denote the state variable generated by using the control u*+ah. Let J(a)
denote the value of the program (2.44) when using the control u*+ah. Clearly J(0) is the maximum of
J by definition and J’(0)=0. As before we will use this necessary condition to find necessary
properties of the solution.
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So far we have not put any restrictions on λ. It will soon be clear that it is very convenient to let it
follow the differential equation
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For (2.46) and (2.47)to hold we thus require that along the optimal path
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for all admissible deviations h. For this to hold for all such deviations we need that

f g t t tu u+ = ∀ ⊆λ 0 0 1, [ , ]. (2.49)

We have now found that if we define λt according to (2.47) the necessary condition for optimality
can be written as (2.49). To remember this and the we construct the Hamiltonian.

H t x u f t x u g t x ut t t t t t t t, , , , , , ,λ λ� � � � � �= + , (2.50)

from which we can derive the necessary conditions for optimality.

Result 3 Necessary conditions for a solution to (2.41), i.e., an optimal control, are

H f t x u g t x u

H f t x u g t x u

H g t x u x

u u t t t u t t

x x t t t x t t t

t t t

= + =

− = − − =

= =

, , , ,

, , , , &

, , &

* *

* *

*

� � � �
� � � �

� �

λ

λ λ

λ

0

(2.51)

and the initial condition x xt0 0=  and the terminal condition λ t1
0= .

2.3.1 Current value hamiltonian

Often we have problems where t only enters as an exponential discounting. E.g.,
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The Hamiltonian with necessary conditions is
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It is often convenient to use a current shadow value defined as
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Substitute into (2.53)
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We get rid of all the discounting factors by defining the current value Hamiltonian with associated
necessary conditions.

Result 4 Defining the current value Hamiltonian as ( ) ( ), , , ,rt
t t t tt x u e H t x u≡H . Necessary

conditions of an optimal control are
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, 0.
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µ
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H
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If T is infinity we may not divide the transversality condition by the discount factor since it is zero.

2.3.2 An alternative way of deriving the Hamiltonian

An alternative way of deriving the necessary conditions in (2.51) is to use the logic behind the
Bellman equation, i.e., to separate the dynamic problem into two parts, current payoff and all future
payoff, where the latter is calculated given that future decisions are taken optimally. This cannot be
done directly in continuous time, but we can approximate by using a discrete time version and then
let the length of the discrete time periods go to zero.

Now, consider the dynamic optimization problem

max ,
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(2.57)

In discrete time, time intervals dt, we can rewrite this as

max ,
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(2.58)

with an associated Bellman equation given by
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V x f x u dt rdt V x g x u dtt t u t t t dt t t t
t

( ) max , ( ) ,= + − ++� � � �� �1 , (2.59)

where we used the approximation e rdtrdt− ≈ −1 . Now, let us denoted the (shadow) value of the
state variable by mt. Clearly, this means that µ t tV x≡ ′( )  which means that we can write the first
order condition of (2.59) as

f x u dt rdt g x u dtu t t t dt u t t, ( ) ,� � � �+ − =+1 0µ . (2.60)

Dividing by dt and letting  dt go to zero yields
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(2.61)

as in (2.56). Furthermore, let us use the Bellman equation to calculate an explicit formula for m.

′ ≡ = + − +

⇒ = + − − + −
+

+ + +
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Dividing by dt and letting dt go to zero yields
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, (2.63)

as in (2.56). Thus, if we want the variable m to express the shadow value of capital, it has to satisfy
the differential equation in (2.63).

We can now interpret the current value Hamiltonian,

( ), ( , ) ( , )t t t t t t tx u f x u g x uµ≡ +H (2.64)

in the following way; The first term is the flow of current payoff and ( , )t tg x u is the accumulation of

the state variable. Multiplying the latter by the shadow value of the state variable gives the
accumulation of future payoffs. The sum of these two terms should be maximized over the control
variable. Exactly as in Dynamic Programming, we can thus interpret the optimality condition Hu=0

as a necessary condition for maximizing the sum of current and future profits.

2.3.3 Sufficiency

As in the Calculus of Variation we get a sufficiency condition by imposing the right concavity
condition. Assume that f and g are concave in x,u and λ≥0. This implies that the Hamiltonian is
concave in x,u. Then since f is concave
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So we want to show that the last integral in (2.65) is ≤0. Substitute for fx from (2.51) and then
integrate by parts the term involving &λ  to get rid of that.
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If λ≤0 we need that g is convex in x,u. Then H is still concave. If g is linear we see that its sufficient
that f is concave in x,u.

2.3.4 Some infinite horizon results

The optimality condition and the differential equation for the shadow value and the state variable
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(2.67)

are necessary also in the infinite horizon case. The finite horizon transversality conditions can,
however, not immediately be used in the infinite horizon case. In the following infinite horizon case,
we have sufficient conditions.

Result 5 Consider the problem

max , ,

. . & , , .

u

r ds

t t

T

t t t

t
T

s

t

e f x u t dt

s t x g x u x x

; @
� �
� �

0

0

0

0 0

−�

= =

� (2.68)

Suppose the maximized Hamiltonian is concave in x for every t, then the conditions in (2.67)  (or
equivalently in (2.56)) together with
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are all satisfied, the control is optimal.

Sometimes, the sufficiency conditions allow us to find the optimal control  as the stable manifold
(saddle-path) leading to a  saddle-point stable steady state. For example, consider a time-
autonomous problem where, in particular, the discount rate is constant. Then, the necessary
conditions

( , ) ( , )

( , )
t t x x t t t x t t

t t t

r f x u g x u

x g x u

µ µ µ− = − = − +
=

&

&

H
(2.70)

yields time autonomous differential equations for x and µ. Now, if the maximized Hamiltonian is
concave in x, and we find a saddle path leading to a steady state xss and µss it is clear that

lim lim
t

r ds
t

t

rt sse es
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−= =0 0µ µ  and lim lim .
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Another set of sufficient conditions is due to Mangasarin.   If H(t,x,u,λ) (not only the maximized
one) is concave in x,u, then (2.67) together with the transversality condition

lim ( )*
t

t t tx x
→∞

− ≥λ 0 (2.71)

for admissible paths x provide sufficient conditions for optimality

2.3.5 Bounded controls

For a control to be optimal it is necessary that it solves

max , , ,
u

t t tH t x u λ� � (2.72)

If u is bounded Hu = 0  is not necessary for an optimum. As in standard maximization the first order
conditions only holds for interior solutions.
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a b c d

 f(x)

x

If we maximize f(x) over [a,b] b is optimal and ′f x( )* >0. If the range is [c,d] c is optimal with
′f x( )* <0. Also in optimal control we may use Kuhn-Tucker multipliers in this case. Assume we

solve problem (2.41) but restrict u to the range [a,b]. We then form the appended Hamiltonian

H t x u f t x u g t x u

w b u w u a
t t t t t t t t, , , , , , ,

( ) ( ).

λ λ� � � � � �= +
+ − + −1 2

(2.73)

The optimality condition now becomes
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u u+ − + =
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1 2
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0

0

0

, ,

( ) ( ) .* *

(2.74)

Except for the knife-edge case we have that if w1>0, ( )*b u− =0 so the Hu>0 as in the figure   
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2.3.6 The Pontryagin maximum principle

Now we come to a more general formulation of the necessary conditions for a solution to the
optimal control problem. We allow for a any finite number of discontinuity points in the control, n
control and state variables and that the controls are restricted to a constant weak subset of Rn.
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(2.75)

Result 6

For u* and the resulting state vector x* to maximize (2.75) it is necessary that there exists a
constant λ0 and continuous functions λ(t) ( λi(t) i=1,...,n) such that ∀ ∈t T[ , ]0

λ λ0 00 1 0= ≠or , { , ( )} { , },λ t 0 (2.76)

u x u
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* *arg max , , , ,= H t λ� � (2.77)
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except at points of discontinuity of u

&λ i xH
i

= − (2.79)

and the transversality conditions
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The strange shadow value on the objective function λ0 may under some perverse circumstances be 0.
I believe you can safely ignore this possibility for the coming courses in economics.

Note that by specifying the control region we may formulate Kuhn-Tucker first order conditions
instead of (2.77).

At the points in time when the control jumps λ has a kink. It is, however, always continuous. Note
also that H is always continuous. Kuhn-Tucker shadow values on the control constraints, µt, may be
discontinuous.


