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1. Introduction

This course is about dynamic systems, i.e., systems that evolve over time. The first task will be to
simply describe how the system evolves, given some law of motion. Let us take a simple example.

1.1. A Simple Differential Equation

Consider a ball kicked up in the air. Define the height it has over the ground at time ¢ as A(f). When
it is in the air the gravity affects it so it accelerates towards the ground. This gives us a very simple
second order differential equation:

h()=g,
m (1.1)
g=-981 £
We could immediately see that the following function satisfies the differential equation
g’
h(l)ZT‘}‘le"FC‘Z (12)

for any constants c¢; and c,.

It is clear that we need to know more to exactly characterize a particular ball's flight in the air. For
example, if we know that it leaves the ground at time O and at an upward speed of 25 m/s, this
should be enough, So we have

h(0)=g-0+c, =25=¢, =25

g0’ (1.3)
h(0) = 5 +¢,0+c,=0=¢,=0

So the ball's height over the ground is given by

2

h(t) = %+25t (1.4)

Note the units.

(1.4) is the solution to the problem. It can be used to, for example, calculating how the ball will
reach.
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2
max h(f) = %+ 25¢

2
FOC: gt +25=0=1="22~25 (1.5)
g

2.5
825 L 55.05~3125m

= maxh(t) =

Solving problems of this type, in both continuous and discrete time, is the first topic of the course.

When we have learnt how to describe how a system evolves, we want to know how to optimize in
some dimension given the restrictions given by the law of motion of the system. This is the topic of
the second part of the course.

1.2. Approaches to Dynamic Optimization

The issue is to choose from a set of admissible controls of the path for x(#) for ¢ €[#,),T] the one that
maximizes a given objective functional which associates a particular value to each admissible path

Vx(@)].

Example: resource (oil) extraction. Choose an extraction plan u(f) stating how extraction effort to
use each point in time. This determines how much oil is pumped up, i.e., —x(¢) = g(x(?),u(t))

where x() is the remaining oil left in the well. To be admissible x(¢) and has to satisfy:

x(0)=K,
—x(t) = g(x(¢),u(t)) 20,Vt, (1.6)
x(T)=0.

The problem is dynamic, since actions today affect profit opportunities in the future. Given the
economic environment, x(f) determines the remaining profit opportunities. Furthermore, x(¢) is
given by the history and cannot jump since only its rate of change can be controlled. Such variables
are called state variables.

The value (or objective) function associates a number to each path. For example;

VIx(0]= [ e (pGi0) = clx(t).u(r)))dt
s.t.—x(t) = g(u(t),x(t)) (1.7)

= jF(t,x(t),x(t))dt.

Two approaches in this course:

1. Dynamic Programming (Bellman).
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T
Vi(x) = max Y F(t,x,.1,

Ui =1
s.t.x,,, =g(t,x,,u, (1.8)

X, X, given.

Idea; splitting problem into sub-problems. Define;

T
Vs(xs):gnw;ZF(r,x,,ut)

s (1.9)
s.t.x,,, =g(t,x,,u),x,,x, given.
Bellman's principle of optimality says
Vi(x,) = max F(s, x,,u., ) + Vi, (8(2,x,,4,)) (1.10)

If we know the functions Vi, it is easy to find the optimum policy from. If the soultion is interior, we
use FOC

F (5, Xg,10) + Vi (gt %, u,)) 8, (1%, 1,) =0 -(1.11)

2. Optimal Control (Pontryagin)

ril(atl)x!: F(t,x(t), u(t))dt

(1.12)
s.t. x(t) = g(t,x(t),u(t)),x(O),x(T) given.
Idea; optimum is found by each point in time maximize
max F(t,x(2),u(t))+ A1) g(t, x(1),u(?)), (1.13)

where A(¢) is the shadow value of the state variable. If we know A(¢) the optimum policy is easy to
find from, for example, FOC,

F,(t,x(2),u(t))+ A1) g, (t,x(2),u(t)) =0, (1.14)
Note the similarity between (1.11) and (1.14).

Before starting, we need to establish some basic concepts.
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