
3. Differential Equations
3.1. Linear Differential Equations of First Order

A first order differential equation is an equation of the form

dx t
dt

x t F x t t( )
�( ) ( ( ), )≡ = (3.1)

As noted above, there will in general be a whole class of functions x(t;c) (parameterized by c) that
satisfies (3.1). We need more information, like an initial condition for xt0, pin down the solution
exactly.

Result 10  Given that F is continuous and has continuous first derivatives, there is going to be a one
function x(t) that satisfies (3.1) and the initial condition.

3.1.1. The Simplest Case

If F is independent of x, the solution is trivial. Then since

�( ) ( )x t f t= (3.2)

the class of functions satisfying this is a primitive function of f plus any constant, i.e.,

0

0( ) ( ) ( ) ( ) ,
t

t

x t f s ds c F t F t c= + = − +� � �

(3.3)

where dF(t)/dt �f(t). Note that F(t0) is a constant. We can thus merge the two constants and write

( ) ( ) ,x t F t c= + (3.4)

Certainly, for all c, (3.4) satisfies (3.2) or, equivalently, for any c� , (3.3) satisfies (3.2). For example,

f t e

F t e
a

at

at

( )

( )

=

=
(3.5)

The arbitrary constant is pinned down with some other piece of information. So, if we want to find
x(t) and we know the value of x(0), we get

( ) ( ) ( ) (0)

1at at

x t F t c F t F c

e ec c
a a a

= + = − +

= + = − +

�

�

(3.6)

Where c= x(0)+1/a.This satisfies �( )x t eat=  and x(0)=x(0).
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A note on notation

Above, we have used the proper notation of an integral, where both the lower and upper limits and
the dummy variable to integrate over have separate names and are all written out. Often, a more
sloppy notation is used,

0

( ) ( ) ( )
t

t

f s ds f t dt F t≡ ≡� � (3.7)

where it is understood that

d
dt

f t dt f t( ) ( )=z . (3.8)

This notation, called an indefinite integral, saves on variables, but can be confusing. Nevertheless, I
will use it sometimes. Using this notation in (3.4), we write

( ) ( ) ,x t f t dt c= +� � (3.9)

3.1.2. Linear First Order Differential Equations

Very often, a solution to a more complicated differential equation is derived by transforming the
original equation into something that has the form of (3.2). Linear first order differential with
constant coefficients equations can be solved directly using such a transformation. Consider

�( ) ( )y t Py t Q+ = (3.10)

In this case, we multiply both sides by ePt  (often called the integrating factor). After doing that,
note that the LHS becomes

e y t Py t e y t Pe y t
d e y t

dt
Pt Pt Pt

Pt

�( ) ( ) �( ) ( )
( )

+ = + =b g d i
(3.11)

Thus, thinking of e y tPt ( )  as simply a function of t, as x(t) in (3.2), we get a LHS that is the time
derivative of a known function of t and the RHS is also a function only of t. Then the solution is
found as in (3.3).
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d
dt

e y t e Q

e y t Q e ds Q e
P

c

y t Q e
P

Q e
P

c e

Q
P

c Q e
P

e

Q
P

c e

Pt Pt

Pt Ps

t

t Ps

t

t

Pt Pt
Pt

Pt
Pt

Pt

( )

( )

( )

~

d i =

= =
L
NM
O
QP

+

= − +
F
HG

I
KJ

= + −
F
HG

I
KJ

= +

z
−

−

−

0 0

0

0

(3.12)

If we know y(t) at some point in time, e.g. at t=0.

y y Q
P

c e y c y Q
P

P( ) ~ ~0 0= � + = � = −− (3.13)

Note that there is only one degree of freedom in the constants c and t0. Choosing another t0 simply
means that the constant c has to chosen in another way. Thus, one piece of information is sufficient
to pin down the solution exactly.

3.1.3. Variable R.H.S.

Assume the R.H.S. is a function of t. Use the same method as above.

�( ) ( ) ( )

( ) ( )

( ) ( )

y t Py t Q t
d
dt

e y t e Q t

e y t e Q t dt c

Pt Pt

Pt Pt

+ =

=

= +z
d i (3.14)

E.g., if Q(t)=t

e y t se ds c s e
P

e
P

ds c s e
P

e
P

c

t e
P

e
P

c y t t
P P

ce

Pt Ps

t

t Ps

t

t Ps

t

t Ps

t

t Ps

t

t

Pt Pt
Pt

( ) ~ ~

, ( )

= + =
L
NM
O
QP − + =

L
NM
O
QP −
L
NM
O
QP +

= − + � = − +

z z
−

0 0 0 0 0

2

2 2

1
(3.15)

where we had to use integration by parts.

3.1.4. Variable Coefficients

If also the coefficient on y(t) is variable we have to use a more general integrating factor to make the
L.H.S. into the time differential of a known function. Here the integrating factor is

e
P s ds

to

t
( )z

(3.16)
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with

d
dt

e P t e
P s ds P s ds

to

t

to

t
( ) ( )

( )
z

=
z

(3.17)

Using the sloppy notation:

�( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

y t P t y t Q t
d
dt

e y t e Q t

e y t e Q t dt c

P t dt P t dt

P t dt P t dt

+ =

zFH IK = z

z = z +z
(3.18)

Check that you can verify that

d
dt

e y t e P t y t e y t
P s ds P s ds P s ds

t

t

t

t

t

t
( ) ( ) ( )

( ) ( ) ( ) �( )0 0 0zF
HG

I
KJ =
z + z (3.19)

Note that this is a generalization of the constant coefficient case, since e e
Psds Pt ct

t

0z = + .

Example; money on a bank account with variable interest rate.

�( ) ( ) ( )

( )

( )

( ) ( ) ( )

( )

( )

( )

y t r t y t
d
dt

e y t

e y t c

y t y e y e

r t dt

r t dt

r t dt rt
t

=

zFH
I
K =

�
z =

= z ≠

−

−

0

0 00

(3.20)

Separating Variables

Sometimes, we can write a differential equation such that the LHS only contains functions of x and
�x and the RHS only a function of t.

( ) ( )xg x h t=� (3.21)

Letting G(x) be defined as a primitive of g(x), i.e., from G'(x)= g(x), we have
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( ( )) '( ( )) ( ) ( )

( ( )) ( )

dG x t G x t x xg x h t
dt
G x t h t dt c

= = =

� = +�

� �

(3.22)

We can recover x by inverting G. An example;

( ) ( )

2 2

2

1 2 3

11 3 3

( )

( )

( ) / 3

/ 3 / 3 .

x t x t

g x x

G x x t dt c t c

x G t c t c

−

−

−

−−

=

=

= − = + = +

= + = − +

�

�

(3.23)

3.2. Linear Differential Equations of Higher Order

3.2.1. Linear Second Order Differential Equations

A linear second order differential equation has the form.

��( ) ( ) �( ) ( ) ( ) ( )y t P t y t Q t y t R t+ + = (3.24)

This cannot be solved directly by transformations in the simple way we did with first order
equations. Instead we use a more general method (that would have worked above also).

Result 11  The general solution (the complete set of solutions) to a differential equation is the
general solution to the homogeneous part plus any particular solution to the complete equation.

Result 12  The general solution of the homogeneous part of a second order linear differential
equation can be expressed as c y t c y t1 1 2 2( ) ( )+  where y1(t) and y2(t) are two linearly independent
particular solutions to the homogeneous equations.

Two functions y1(t) and y2(t) are linearly independent in a region Ω if

there is no s. t.  c c c y t c y t
t

1 2 1 1 2 20 0, { , }, ( ) ( ),
.

≠ =
∀ ∈Ω

(3.25)

3.2.2. Homogeneous Equations with Constant Coefficients

A homogeneous (part of a) differential equation has a zero LHS when expressed as in (3.24);

��( ) �( ) ( )y t Py t Qy t+ + = 0 (3.26)

To solve this we start by solving the characteristic equation, which always is a polynomial, in this
case
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r P r Q2 0+ + = (3.27)

As we know this polynomial has exactly two roots.

r P P Q
1 2

2

2
4

2, = − ±
−

(3.28)

Now we can check that both er ti  are solutions to (3.26) by noting that.

y t e y t r e y t r eh
r t

h i
r t

h i
r ti i i

1 1 1

2( ) , � ( ) , �� ( )= = = (3.29)

so using (3.29) in (3.26) yields

r e P r e Q e e r P r Qi
r t

i
r t r t r t

i i
i i i i2 2 0+ + = + + =d i (3.30)

So then, the general solution to the homogenous equation is

y t c e c eh
r t r t( ) = +1 2
1 2 (3.31)

provided that the two parts are linearly independent, which they are unless r1=r2.

3.2.3. Complex Roots

The general solution to the homogenous equation is here found the same way.

r P P Q

r P Q P
a bi

y t c e c e

c e bt i bt c e bt i bt

e c c bt i c c bt

a bi t a bi t

at at

at

1 2

2

1 2

2

1 2

1 2

1 2 1 2

2
4

2

2
4 1

2

,

,

( ) ( )( )

cos sin cos sin

( ) cos ( ) sin .

= − ±
−

= − ±
− −

≡ ±

= +

= + + −

= + + −

+ −

b g b g
b g

(3.32)

where we used Result 8 to get the fourth equality. If we only care about real solutions, we restrict
the constants in a way to make sure the solution is only on the real line

y t e c bt c btat( ) cos sin= +1 2b g (3.33)

3.2.4. Repeated Roots

The general solution to the homogenous equation is in this case

y t c e c tert rt( ) = +1 2 (3.34)

Check that they are both solutions and convince yourself that they are linearly independent.
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3.2.5. Non-Homogeneous Equations with Constant Coefficients

��( ) �( ) ( ) ( )y t Py t Qy t R t+ + = (3.35)

Relying on Result 11, the only added problem is that we have to find one particular solution to the
complete equation. Typically we guess a form of this solution and then use the method of
undetermined coefficients. Often it works if we guess on a form similar to R(t), e.g., if it is a
polynomial of degree n we guess on another n degree polynomial with unknown coefficients.
Example:

��( ) �( ) ( )y t y t y t t t− + = +2 3 2 (3.36)

Guess that a particular solution is

At Bt C2 + + (3.37)

for some constants A,B,C. We then have to solve for these constants by substituting into the
differential equation.

��( ) �( ) ( )

( )

( )

y t y t y t

A At B At Bt C

At A B t A B C t t

− +

= − + + + +

= − − + − + = +

2

2 2 2

4 2 2 3

2

2 2

(3.38)

If this is going to hold for each t it is necessary that

A
A B B

A B C C

=
− − = � =

− + = � =

3
4 1 13

2 2 0 20
( ) (3.39)

So a particular solution is

y t t t( ) = + +3 13 202 (3.40)

The characteristic equation is

r r r
r

2 2

1 2

2 1 1 0
1

− + = − =
� =

( )

,
(3.41)

So the general solution is

y t c e c te t tt t( ) = + + + +1 2
23 13 20 (3.42)

3.2.6. Linear nth Order Differential Equations

y t P t y t P y t R tn n
n( ) ( ) ( ) ( ) ( )+ + + =−

1
1

� (3.43)
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The solution technique is here exactly analogous to the second order case. First we find the roots of
the characteristic equation

r P r Pn n
n+ + + =−

1
1 0� (3.44)

The general solution to the homogenous part is then the sum of the n solutions corresponding to
each of n roots. The only thing to note is that if one root, r, is repeated k≥2 times, the solutions
corresponding to this root is given by

c e c te c t ert rt
n

k rt
1 2

1+ + + −
� (3.45)

Repeated complex roots are handled the same way. Say the root a�bi is repeated in k pairs. Their
corresponding solution is given by

e c bt c bt t c bt t c btat k
k

k
k1 2

1
2 1

1
2cos sin cos sin+ + + +−

−
−

�d i . (3.46)

A particular solution to the complete equations can often be solved by the method of undetermined
coefficients.

3.3. Stability

From the solutions to the differential equations we have seen we find that the terms corresponding
to roots that have positive real parts tend to explode as t goes to infinity. This means that also the
solution explodes unless the corresponding integration constant, ci , is zero. Terms with roots that
have negative real parts, on the other hand, always converge to zero. Global stability, i.e., regardless
of initial conditions, is thus equivalent to all roots being negative.

3.3.1. Local Stability

Look at the nonlinear differential equation

�( ) ( )x t x t= −2 4 (3.47)

Although we have not learned how to solve such an equation, we can say something about it. Plot
x x→ �
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�( ) ( )x t x t= −2 4

We see that x(t)=2 and x(t)=-2 are stationary points. We also see that x(t)=-2 is locally stable. In the
region [∞,2) x converge to x=-2. 2 is an unstable stationary point and in the region (2, ∞] x explodes
over time.

In a plot x x→ �  local stability is equivalent to a negative slope at the stationary point.

3.4. Systems of Linear First Order Differential
Equations

Consider the following system of two first order differential equations

� ( )
� ( )

( )
( )

( )
( )

y t
y t

a a
a a

y t
y t

P t
P t

t t

1

2

11 12

21 22

1

2

1

2

L
NM
O
QP =
L
NM

O
QP
L
NM
O
QP +
L
NM
O
QP

= +Ay P
(3.48)

As in the one equations case we start by finding the general solutions to the homogeneous part. This
plus some particular solution is the general solution to the complete system.

If the off diagonal terms are zero the solution to the homogeneous part is trivial, since there is no
interdependency between the equations.

� ( )
� ( )

( )
( )

( )
( )

y t
y t

a
a

y t
y t

y t
y t

e
e

c
c

a t

a t

1

2

11

22

1

2

1

2

1

2

0
0

0
0

11

22

L
NM
O
QP =
L
NM

O
QP
L
NM
O
QP

�

L
NM
O
QP =
L
NM

O
QP
L
NM
O
QP

(3.49)
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The solution can be showed in a graph, a phase diagram.

Two Stable Roots One Stable Root

y2

y1

y2

y1

If the roots are stable, i.e., negative,. the homogeneous part always goes to zero. With only one root
stable, there is just one stable path.

(3.49) suggests a way of finding the solution to the homogeneous part of (3.48). We make a
transformation of the variables so that the transformed system is diagonal. Start by defining the new
set of variables;

x t
x t

y t
y t

x t
x t

y t
y t

y t
y t

x t
x t

1

2

1

2

1

2

1

2

1

2

1 1

2

( )
( )

( )
( )

� ( )
� ( )

� ( )
� ( )

( )
( )

( )
( )

.

L
NM
O
QP ≡
L
NM
O
QP

�

L
NM
O
QP ≡
L
NM
O
QP =
L
NM
O
QP =

L
NM
O
QP

−

B

B BA BAB
(3.50)

If we can find a B such that BAB-1 is diagonal we are half way. The solutions for x is then

x t
x t

e
e

c
c

r t

r t
1

2

1

2

1

2

0
0

( )
( )
L
NM
O
QP =
L
NM

O
QP
L
NM
O
QP (3.51)

where ri are the diagonal terms of the matrix BAB-1.The solution for y then follows from the
definition of x

y t
y t

x t
x t

e
e

c
c

r t

r t
1

2

1 1

2

1 1

2

1

2

0
0

( )
( )

( )
( )

L
NM
O
QP =
L
NM
O
QP =
L
NM

O
QP
L
NM
O
QP

− −B B (3.52)

From linear algebra we know that B-1 is the eigenvectors of A and that the diagonal terms of
BAB-1 are the corresponding eigenvalues. The eigenvalues are given by the characteristic equation
of A
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a r a
a a r

a r a r a a

r r a a a a a a

11 12

21 22

11 22 12 21
2

11 22 11 22 12 21

0

0

−
−

=

� − − − =

− + + − =

b gb g
( ) .

( ) det( )tr A A
� �� �� � ��� ���

(3.53)

The only crux is that we need the roots to be distinct, otherwise B-1 is not always invertible. Distinct
root implies that B-1 is invertible. (If A is symmetric B-1 is also invertible.)

Let us draw a phase diagram with the eigenvectors of A. The dynamic system behaves as the
diagonal one in (3.49) but the eigenvectors have replaced the standard, orthogonal axes.

One Stable and One Unstable Root

y2

y1

What is remaining is to find a particular solution of the complete system. One way is here to use the
method of undetermined coefficients. Another is to look for a steady state of the system, i.e., a point
where the time derivatives are all zero. This is easy if the second term in (3.48) is constant. We then
set the differential equal to zero so

0 11 21

21 22

1

2

1

2

1

2

11 21

21 22

1
1

2

1

2

=
L
NM

O
QP
L
NM
O
QP +
L
NM
O
QP

�

L
NM
O
QP = −
L
NM

O
QP
L
NM
O
QP ≡
L
NM
O
QP

−

a a
a a

y t
y t

P
P

y t
y t

a a
a a

P
P

y
y

ss

ss

( )
( )

( )
( )

.

(3.54)

Given that we know the value of y(0) we can now give the general solution of (3.48). The formula is
given in matrix form and is valid for any dimension of the system. First define
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rt

r t

r t

r t

e
e

e n

≡

L

N

MMMMM

O

Q

PPPPP

1

2

0 0
0 0

0 0

�

�

� � � �

�

(3.55)

and let bold letters define matrices. Then we have

y B x y B r C y

y B r C y B C y

C B y y

y B r B y y y

t t
ss

t
ss

ss ss

ss

t t 0
ss ss

= + = +

= + = +

� = −

� = − +

− −

− −

−

1 1

0
1

0
1

0

1

d i
d i

(3.56)

The method outlined above works also in the case of complex roots of the characteristic equation. If
the roots are a�bi we have

y t
y t

e
e

c
c

y
y

c e bt i bt
c e bt i bt

y
y

a bi t

a bi t

ss

ss

at

at

ss

ss

1

2

1 1

2

1

2

1 1

2

1

2

0
0

( )
( )

(cos sin )
(cos sin )

( )

( )
L
NM
O
QP =
L
NM

O
QP
L
NM
O
QP +
L
NM
O
QP

=
+
−

L
NM

O
QP

+
L
NM
O
QP

−
+

−

−

B

B

(3.57)

Example;

� ( )
� ( )

( )
( )

y t
y t

y t
y t

1

2

1

2

1 1
1 1

1
1

L
NM
O
QP =

− −
−

L
NM

O
QP
L
NM
O
QP +

−
−
L
NM
O
QP (3.58)

r i

i i
1 2

1

1

1 1

, = − ±

=
−L

NM
O
QP

−B
(3.59)

So from using (3.57) we get

y t
y t

i i c e t i t
c e t i t

y
y

e
i c c t c c t
c c t i c c t

y
y

e
c t c t
c t c t

y
y

t

t

ss

ss

t
ss

ss

t
ss

ss

1

2

1
1

2
1

1

2

1 2 1 2

1 2 1 2

1

2

1 2

2 1

1

2

1 1
( )
( )

(cos sin )
(cos sin )

( ) cos ( ) sin
( ) cos ( ) sin
~ cos ~ sin
~ cos ~ sin

L
NM
O
QP =

−L
NM
O
QP

+
−

L
NM

O
QP

+
L
NM
O
QP

=
− − +

+ + −
L
NM

O
QP +
L
NM
O
QP

=
−
+

L
NM

O
QP +
L
NM

−

−

−

− O
QP

(3.60)

So if we know y(0) we get
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y t
y t

e
y y t y y t

y y t y y t
y
y

t
ss ss

ss ss

ss

ss
1

2

1 1 2 2

2 2 1 1

1

2

0 0

0 0
( )
( )

( ) cos ( ) sin

( ) cos ( ) sin
L
NM
O
QP =

− − −

− + −

L
N
MM

O
Q
PP +
L
NM
O
QP

− d i d i
d i d i (3.61)

where

y
y

ss

ss
1

2

11 1
1 1

1
1

0
1

L
NM
O
QP

=
− −

−
L
NM

O
QP
L
NM
O
QP = −
L
NM
O
QP

−

. (3.62)

A phase diagram of the system in (3.61) looks like

-0.75 -0.5 -0.25 0.25 0.5 0.75 1

-1

-0.5

0.5

1

1.5

2
y2

y1

If the root has a real part closer to zero we get more pronounced circles. Here is a phase diagram
with a real part of -0.1.
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-1.5 -1 -0.5 0 0.5 1 1.5

0.5

1

1.5

2

2.5

3

In the repeated root case the matrix of the eigenvectors may be singular, so that we cannot find B-1.
Then we use the method of equivalent systems.

3.4.1. Equivalent Systems

A linear nth order differential equation is equivalent to a system of n first order differential
equations. So

���( ) ��( ) �( ) ( ) ( )y t a y t a y t a y t P t+ + + =1 2 3 (3.63)

can be transformed by the following substitution

�( ) ( )
��( ) ( ) � ( )
���( ) � ( )

�( )
� ( )
� ( )

( )
( )
( ) ( )

y t x t
y t x t x t
y t x t

y t
x t
x t a a a

y t
x t
x t P t

=
= =
=

�

L

N
MMM

O

Q
PPP

=
− − −

L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP

+
L

N
MMM

O

Q
PPP

1

2 1

2

1

2 3 2 1

1

2

0 1 0
0 0 1

0
0

(3.64)

Since the equations are equivalent they consequently have the same solutions. Sometimes one of the
transformations is more convenient to solve. Let us also transform a two dimensional system into a
second order equation

�

�

x a x a x c
x a x a x c

1 11 1 12 2 1

2 21 1 22 2 2

= + +
= + +

(3.65)
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First use the first equation to express x2 and then take the time derivative of the first. Then we can
eliminate x2 and its timederivative.

x
x

a
a x
a

c
a

x a x a x a x a a x a a x a c
a x a a x a x a a x a c a c

x a a x a a a a x c

2
1

12

11 1

12

1

12

1 11 1 12 2 11 1 12 21 1 12 22 2 12 2

11 1 12 21 1 22 1 22 11 1 22 1 12 2

11 22 1 11 22 12 21 11

= − −

= + = + + +
= + + − − +

− + + − =

�

�� � � �

� �

�� ( ) � ( ) ~

3.5. Phase Diagrams and Linearisation

Phase diagrams are convenient to analyze the behavior of a 2 dimensional system qualitatively. E.g.,

�( ) ( ), ( )
�( ) ( ), ( )

c t g c t k t p

k t g c t k t p

= +

= +
1 1

2 2

b g
b g (3.66)

The first step here is to find the two curves in the c,k-space where c and k, respectively are constant.
Setting (3.66) equal to zero defines two relations between c and k, which we denote by G1 and G2

1

2

( ) 0 ( )

( ) 0 ( )

c t c G k

k t c G k

= � =

= � =

�

�
(3.67)

We then draw these curves in the c,k-space. For example, you will soon be able to show that the
dynamic solution to the Ramsey consumption problem is given by the following system of
differential equations

�
( )
( )

�

c t u c
u c

f k

k t f k c

b g b gc h
b g b g

= − ′
′′

′ −

= −

θ
(3.68)

where c is consumption, u is some utility function k is a capital stock and f a net production
function. Setting the time derivatives to zero we get

0

0

1= − ′
′′

′ − � ′ =

= − � =

−u c
u c

f k f k

f k c c f k

( )
( )
b gc h b g

b g b g
θ θ

(3.69)

Draw these curves in the c,k space
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� �k t( ) 0

� �c t( ) 0c

k

We then have to find the signs of �k , and �c  above and below their respective zero motion curves.
From (3.68) we see that

∂
∂

∂
∂

� ( )
( )

�

c t
k

u c
u c

f k

k t
c

b g b g
b g

= − ′
′′

′′ <

= −

0

1

(3.70)

This means that �c  is positive to the left of �( )c t = 0  and negative to the right. For �k ′ we find that it
is positive below �( )k t = 0  and negative above. Then draw these motions as arrows in the phase
diagram. Note that no paths ever can cross.

� �k t( ) 0

� �c t( ) 0c

k
We conclude that this system has saddle point characteristics and thus have only one stable
trajectory towards the steady state.

The behavior close to the steady state should also be evaluated by means of linearization around the
steady state. We do that by approximating in the following way
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�( )
�( )

( , ) ( , )
( , ) ( , )

c t
k t

g c k c g c k k
g c k c g c k k

c c
k k

ss ss ss ss

ss ss ss ss

ss

ss
L
NM
O
QP =
L
NM

O
QP

−
−
L
NM

O
QP

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

1 1

2 2

(3.71)

with an obvious generalization to higher dimensions.

We now evaluate the roots of the matrix of derivatives. In the example we find that the
characteristic equation is

− ′ − ′ ′′ − − ′′ ′ ′′
− ′ −

L
NM

O
QP =

( ) ( / ) /
.

f u u c r f u u
f r

θ ∂ ∂
1

0  (3.72)

Since ′ =f θ  at the steady state, the 1,1 element of the coefficient  matrix is zero and the roots of
the system are given by

− ′ − − ′′ ′ ′ ′ =

� = ′ ±
′ + ′′ ′ ′′

r f r f u u

r f f f u u

( ) /

( ) /

0

2
4
2

2 (3.73)

so that one root is stable and the other explosive.


