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1 Introduction

This course is about dynamic systems, i.e., systems that evolve over time.
The analysis of the dynamic evolvement of economic systems is of core im-
portance in many areas of economics. Growth, business cycles, asset pricing,
and dynamic game theory are just a few examples.

1.1 Solving a simple dynamic system

Very often, our economic models provide a difference or differential equation
for the endogenous variables. Take a very simple example; an arbitrage
asset pricing model. Suppose there is a safe asset, a bond, that provides
a return r every period. Suppose a share, giving rights to dividend ßow d,
is introduced. Now, arbitrage theory says that the share should also yield
a return r in equilibrium. DeÞning the price on the share as p, arbitrage
theory thus implies,

pt+1 + d

pt
= 1 + r. (1)

This is a simple difference equation,

pt+1 = (1 + r) pt − d. (2)

One straightforward way of solving it is to substitute forward or backward,
e.g., noting that

pt = (1 + r) pt−1 − d (3)

= (1 + r) ((1 + r) pt−2 − d)− d (4)

= (1 + r)2 pt−2 − d (1 + (1 + r)) (5)

and so on. A more general approach is to Þrst characterize all possible paths
consistent with the law-of-motion. Here, this is quite simple. You will learn
that set of possible paths is

pt = c (1 + r)
t +

d

r
(6)

for any constant c. As we see, there is an inÞnite number of solutions, i.e.,
we need more information. If, for example, we know that the value of p0, we
can solve for the constant

c = p0 − d
r

(7)

→ pt =

µ
p0 − d

r

¶
(1 + r)t +

d

r
. (8)
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In Þnance, the solution p = d
r
is called the fundamental solution, and we

see that if r > 0, the solution explodes as t goes to inÞnity if p0 6= d
r
. This

gives us another way of solving the difference equation. Suppose, we have
reason to believe that the solution should remain bounded. Then, if r > 0,
the only solution left is when c = 0. Note that (1 + r) is called the root of
the system. Note, the importance of whether the root is bigger or smaller
than unity (in absolute values).
We will also work in continuous time. Then, I usually use put the time

variable in parenthesis and use the dot symbol to indicate time derivatives.
In continuous time, non-existence of arbitrage means that capital gains, i.e.,
the change in the price per unit of time plus dividends per unit of time should
equal the opportunity cost, i.e., interest rate on the price of the assets. Thus,
non-existence of arbitrage implies

úp (t) + d = rp (t) . (9)

This is a simple linear Þrst-order differential equation. The set if solution is:

p (t) = cert +
d

r
. (10)

Also here, we have a term that is explosive if r > 0.
Later in the course, we will learn how to solve more complicated dynamic

systems, involving, e.g., several endogenous variables and varying parame-
ters.

1.2 Two approaches to Dynamic Optimization

The second part of the course, is to solve maximization problems in dynamic
systems. Suppose there is a potentially inÞnite set of paths x (t)T0 , each
denoting a particular continuous function x (t) for t ∈ [0, T ] . Suppose also
that we can evaluate them, i.e., they give different payoffs. Then, we will
learn how to derive difference or differential equations, that are necessarily
satisÞed for optimal paths. If we can solve these equations, we can Þnd the
optimal path. We will use two approaches in this course.

1.2.1 Dynamic Programming (Bellman).

Suppose we want to Þnd an optimal investment plan in discrete time and let
xt denote the stock of capital at time t. Also, let ut denote investments and
assume

xt+1 = g(xt, ut), (11)
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which we call the law-of-motion for xt.
Each period, the payoff is given by F (t, xt, ut) and the problem is to solve

max
uT0

TX
t=0

F (t, xt, ut) , (12)

s.t. xt+1 = g(xt, ut)∀t, (13)

x0 = x. (14)

Note that this is a dynamic problem; The choice of investment at time t,
ut may affect payoffs in many future period. First, the payoff at t, F (t, xt, ut)
is affected directly and also the next periods payoff since

F (t+ 1, xt+1, ut+1) = F (t+ 1, g(xt, ut), ut+1) .

Furthermore, also payoffs further away can be affected since, for example,
xt+2 = g(xt+1, ut+1) = g(g(xt, ut), ut+1), affecting the payoff in period t + 2.
The choice of ut must thus take into account all future payoff relevant effects.
Sometimes the dynamic problem degenerates in the sense that this dy-

namic link breaks. To illustrate this, let us simplify and take the example
where F (t, xt, ut) =

¡
1
1+r

¢t
(ft (xt)− ut) and g (xt, ut) = (1− δ)xt − ut. We

can interpret δ as the rate of capital depreciation. If δ = 1, we have xt+1 = ut
and by substituting from the law-of-motion, we can write the problem as

max
xT1

TX
t=0

µ
1

1 + r

¶t
(ft (xt)− xt+1) , (15)

x0 = x. (16)

The Þrst-order condition for choosing xt for any t > 0 is f
0
t (xs) = 1+r, so

to know how much to invest in period t, we only need to know the marginal
productivity of capital next period, i.e., we maximize period-by-period. With
δ < 1, we cannot do this. Then dynamic programing is a handy way to attack
the problem. We will use the Bellman�s principle of optimality, saying that
there exists a sequence of functions Vt (xt) such that

Vt (xt) = max
ut
F (t, xt, ut) + Vt+1 (g(xt, ut)) (17)

and where

Vt (xt) ≡ max
uTt

TX
s=t

F (s, xs, us) (18)

s.t. xt+1 = g(xt, ut) (19)

xt = xt. (20)
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Vt (xt) is called the value function and xt a state variable. We Þnd that
through the Bellman principle, we have split up the problem into a sequence
of one period problems. We can then solve the problem more easily since the
Þrst-order condition for maximizing the RHS of (17)

Fu (t, xt, ut) + V
0
t+1 (g(xt, ut)) gu(xt, ut) = 0. (21)

implicitly yields a system of difference equations in xt and ut that we may
be able to solve.

1.2.2 Optimal control (Pontryagin)

The other way of solving dynamic optimization problems that we will use
is called Optimal Control. We will use it for continuous time problems.
Suppose we want to solve

max
uT0

Z T

0

F (t, x (t) , u (t)) dt (22)

s.t. úx (t) = g (x (t) , u (t)) (23)

x (0) = x0 (24)

x (T ) = xT . (25)

Then, Pontryagin�s maximum principle says that for each point in time,
the optimal control, call it u∗ (t) , satisÞes

u∗ (t) = argmax
u(t)

F (t, x (t) , u (t)) + λ (t) g (x (t) , u (t)) , (26)

where λ (t) can be interpreted as the shadow value of the state variable (cap-
ital). The sum F (t, x (t) , u (t)) + λ (t) g (x (t) , u (t)), is called the Hamilto-
nian. Again, we have turned the dynamic problem into a sequence of static
problems. The Þrst order condition for (26) will implicitly deÞne a system
of differential equations. Note the similarity between (26) and (17).
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