
2 Some basics

2.1 Taylor series

We will often need to approximate a function around some point. SpeciÞcally,
suppose we now f (x0) and some of its derivatives and want to approximate
the value in some other point x 6= x0. An efficient way of doing such an
approximation is to use Taylors formula. This can be seen as an attempt to
Þt a polynomial (we will talk about such below) to a curve.

Result 1 The Taylor approximation is

f (x) ≈ f (x0) +
1

1!
f 0 (x0) (x− x0) + 1

2!
f 00 (x0) (x− x0)2 (27)

+
1

3!
f 000 (x0) (x− x0)3 + ...

Usually we will just use the Þrst order approximation f (x) ≈ f (x0) +
f 0 (x0) (x− x0) but sometimes a higher order approximation can be useful.
It can furthermore be shown, that the approximation error of an n�th order
Taylor approximation is given by

1

(n+ 1)!

d(n+1)f (c)

dx(n+1)
(x− x0)n+1 (28)

where c ∈ [x0, x]. As we see, when x− x0 is small, two forces imply that the
approximation error tends to be small when n is large. In the denominator,
(n+ 1)! is large and (x− x0)n+1 is small. In general, we cannot say that for
any (x− x0) a higher order approximation is better. But we can say that
the approximation error goes faster to zero when we let (x− x0) go to zero
if we use a higher order approximation.

2.2 Integration

If b > a, the expression
bZ
a

f (t) dt, (1)

can be interpreted as the area under the graph y = f(x) for x ∈ [a, b]. How
should one compute such an area? The most natural way would be to divide
the interval [a, b] into (many) sub-intervals by choosing numbers a = t1 <
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t2 < t3...tn = b. Suppose we choose uniform intervals, ti+1 − ti ≡ ∆t = b−a
n−1 .

Then we can approximate the area by

bZ
a

f (t) dt ≈
n−1X
i=1

f (ti)∆t, (2)

i.e., by summing rectangles of base ∆t and height f (ti) .

f t( )

ta b

F b a( , )

f t( )

tt2 t3t1 t4 t5 t6

If the function f (t) is bounded and differentiable and we let the number
of sub-intervals (n) increase and therefore size of each one decrease, the
approximation (2) becomes perfect as n→∞. To see this, note that we can
approximate the error in the approximation by the triangle f(ti+1)−f(ti)

2
∆t.

Since f (ti+1) ≈ f (ti)+f 0 (ti)∆t, by a Þrst order Taylor approximation, each
triangle can be approximated by

f 0 (ti)∆t
2

∆t =
f 0 (ti)
2

∆t2. (3)

Furthermore, the sum of errors,¯̄̄̄
¯
n−1X
i=1

f 0 (ti)
2

∆t2

¯̄̄̄
¯ ≤ max

i
|f 0 (ti)| 1

2

n−1X
i=1

∆t2 = (4)

max
i
|f 0 (ti)| 1

2
(n− 1)

µ
b− a
n− 1

¶2
= max

i
|f 0 (ti)| 1

2

(b− a)2
n− 1 . (5)

Clearly, this goes to zero as n goes to inÞnity. If the function f (t) has
discontinuities or is non-differentiable somewhere, we can do the summation
for each interval where f (t) is continuous.
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We conclude that we should think of the integral as a sum of rectangles,
each with height given by the function we are integrating and base dt.
If we can handle integration over compact intervals, we can also deÞne

integrals over unbounded intervals by taking the limit value as integration
limits (a, and/or b) approach inÞnity. Of course, this limit does not always
exist. If it does, we use the notation

lim
a→−∞

bZ
a

f (t) dt ≡
bZ

−∞

f (t) dt (6)

lim
b→∞

bZ
a

f (t) dt ≡
∞Z
a

f (t) dt (7)

2.2.1 Fundamental theorem of calculus

An integral is a generalization of a sum, and a derivative is a generalization
of a difference. The following theorem links these concepts. The Þrst part of
the Fundamental Theorem says that if

F (b) =

bZ
a

f (t) dt (8)

then

F 0 (b) =
∂

∂b

bZ
a

f (t) dt = f(b). (9)

(Convince yourself that this is reasonable by making a drawing.) A func-
tion F (t) that has the property that F 0(t) ≡ f(t) is called a primitive for
f . Clearly, if F (t) is a primitive for f(t), then also F (t) plus any constant,
is a primitive. Thus, the Þrst part of the fundamental theorem provides a
necessary, but not sufficient condition for Þnding the area.
Now let us turn to he second part of the theorem, which provides a way

of calculating the exact value of an integral like in (1).

Result 2 Let F be any primitive of f , then

bZ
a

f (t) dt = F (b)− F (a) ≡ [F (t)]ba . (10)
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Sometimes it is easy to Þnd the primitive, like in the cases f(t) = ta, 1/(at+
b) or eat, in which case F (t) is ta+1/(a+1), ln(at+b)/a, or eat/a respectively.
In other cases like π0.5e−x

2
, the primitive cannot be expressed by using stan-

dard algebraic functions. This does not mean that the primitive does not
exist. In the case π0.5e−x

2
, a primitive is the cumulative normal distribution,

which certainly exists.
Since the integral is a (kind of) sum, it is straightforward to understand

Liebniz� rule.

Result 3 If f is differentiable, then

∂

∂x

bZ
a

f (x, t) dt =

bZ
a

∂

∂x
f (x, t) dt, (11)

∂

∂a

bZ
a

f (x, t) dt = −f (x, a) , (12)

∂

∂b

bZ
a

f (x, t) dt = f (x, b) . (13)

f t x( , )

ta b

f t x f t x
x

dx( , ) ( , )+ ∂
∂

a da+ b db+

8



2.2.2 Change of variables

Suppose that y = g(x), then the rules of differentiation gives dy = g0(x)dx.
Now let us calculate the area under some function f(y) but integrating over
x. In a sense, this is like changing the scale of the horisontal axis. To do this,
we simply substitute y = g(x), dy = g0(x)dx. To get the integration limits,
we note that if x = a then y = g (a) .

Result 4 If, y = g(x) then

g(b)Z
g(a)

f (y) dy =

bZ
a

f (g (x)) g0(x)dx. (14)

Sometimes a variable substitution makes integration simpler. Take the
following example;

2Z
1

¡
x2 + 1

¢10
2xdx. (15)

Now deÞne y ≡ x2 + 1 ≡ g (x) implying

dy = 2xdx, g (1) = 2, g (2) = 5 (16)
2Z
1

¡
x2 + 1

¢10
2xdx =

5Z
2

y10dy (17)

2.2.3 Integration by parts

Another important result, which we will use a lot, is the following rule for
integration by parts. Assume we want to integrate a product of two func-
tions of x, i.e., u(x)v(x). Then, let U(x) be a primitive of u. The rule for
differentiation of products says

d (U (x) v (x))

dx
= u (x) v (x) + U (x) v0 (x) (18)

→ u (x) v (x) =
d (U (x) v (x))

dx
− U (x) v0 (x) . (19)

Then, we can integrate over x on both sides, giving
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Result 5Z b

a

u (x) v (x) dx =

Z b

a

d (U (x) v (x))

dx
dx−

Z b

a

U (x) v0 (x) dx (20)

= [U (x) v (x)]ba −
Z b

a

U (x) v0 (x) dx (21)

2.2.4 Double integration

As we know, the integral is an area under a curve f(t) over an interval [a, b]
in the t dimension. Similarly, we can compute the volume under a plane with
a height f(t, s) over an area in the t, s dimension. For example, let f(t, s) be
t · s and integrate over a rectangle with sides [at, bt] and [as, bs].

t

s

The function, z = ts

The volume under the plane f (t, s) is then given by

Z bs

as

Z bt

at

f (t, s) dtds =

Z bs

as

µZ bt

at

tsdt

¶
ds = (22)Z bs

as

Ã·
t2

2
s

¸bt
at

!
ds =

Z bs

as

s

µ
b2t − a2t
2

¶
ds = (23)µ

b2t − a2t
2

¶·
s2

2

¸bs
as

=

µ
b2t − a2t
2

¶µ
b2s − a2s
2

¶
(24)

Note, that we are Þrst calculating the area under f(t, s) over the interval
[at, bt]for each s. This area is a function of s which we then integrate over
the interval [as, bs] in the s-dimension. If we integrate over other areas than
rectangles, the limits of integration are not independent. For example, we
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may integrate over a triangle where bt = s. Simplify and set at = as = 0.
Then, we have

Z bs

0

Z s

0

f (t, s) dtds =

Z bs

0

µZ s

0

tsdt

¶
ds =

Z bs

0

µ·
t2

2
s

¸s
0

¶
ds = (25)Z bs

0

s
s2

2
ds =

·
s4

8

¸bs
0

=
b4s
8
. (26)

2.3 Complex numbers and trigonometric functions

The formula for the solution to a quadratic equation ax2 + bx+ c = 0, is

x = − b

2a
±
p
(b2 − 4ac)
2a

. (27)

If b2 − 4ac < 0 . The solution is not in the set of real numbers. The
introduction of complex numbers intended to extend the space of solutions
to accommodate such cases and it turns out that for all numbers in the
extended space, we can always Þnd solutions to such equations. We can
think of complex numbers as two-dimension objects z = (x, y). The Þrst
number, x, provides the value in the standard real dimension, while the
second provides the value in the other dimension, called imaginary. Thus,
real numbers are a special sub-set of complex number such that y = 0.

11



Realx

Imaginary 
y

i = (0,1)

1 = (1,0)

z = (x,y)

The rules for addition and multiplication with complex numbers are the
following

z1 + z2 = (x1 + x2, y1 + y2) (28)

z1z2 = (x1x2 − y1y2, x1y2 + x2y1) (29)

Using these rules, we can compute the square of a complex number only
consisting of a unitary imaginary part, i.e., z = i = (0, 1) .

(0, 1)2 = (0− 1, 0 + 0) = (−1, 0) = −1 (30)

We thus established the important result

Result 6 x = i is a solution to the equation x2 = −1.

Using the rules above, it is also straightforward to show that an alterna-
tive we of writing z is given by the following

z ≡ (x, y) = (x, 0) + (0, y) = x (1, 0) + y (0, 1) = x+ yi. (31)

We should also note that
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(x, y) (x,−y) = ¡x2 + y2,−xy + xy¢ = ¡x2 + y2, 0¢ ≡ |(x, y)|2 (32)

The numbers (x, y) and (x,−y) are called complex conjugates and the
value |x, y| is called the modulus of (x, y).

2.3.1 Polar representation

Recall that in the right-angled triangle in the Þgure, we have

cos (θ) =
x

r
(33)

sin (θ) =
y

r
(34)

r =
p
x2 + y2. (35)

r

θ

z=(x,y)

x

y

Using this, we can represent the complex number z either by its coordi-
nates, (x, y) or alternatively as r(cos(θ) + i sin(θ)). The latter form is called
the polar representation and r is the modulus and θ is the argument of z.
Usually we measure θ in radians.
We will use the following result below.

Result 7 Let z be the complex number (x, y) , then z satisÞes

z = reiθ (36)
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where r is the modulus of z and θ is the argument. In particular, for
r = 1 we get,

eiθ = cos (θ) + i sin (θ) (37)

e−iθ = cos (−θ) + i sin (−θ) = cos (θ)− i sin (θ) (38)

eiπ = cos (π) + i sin (π) = −1 (39)

Optional proof:
The Taylor formula around zero for any function f (x) is

f (x) = f (0) +
f 0 (0)
1!

x+
f 00 (0)
2!

x2 +
f 000 (0)
3!

x3... (40)

Using this for f(x) = ex, cos(x) and sin(x), and the rules

∂

∂x
cos (x) = − sin (x) (41)

∂

∂x
sin (x) = cos (x) (42)

we have respectively

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
... (43)

cos (x) = cos (0)− sin(0)x− cos (0)
2!

x2 +
sin (0)

3!
x3 (44)

+
cos (0)

4!
x4 − sin sin (0)

5!
x5 − cos (0)

6!
x6... (45)

= 1− x
2

2
+
x4

4!
− x

6

6!
... (46)

sin (x) = sin (0) + cos(0)x− sin (0)
2!

x2 − cos (0)
3!

x3 (47)

+
sin (0)

4!
x4 +

cos (0)

5!
x5 − sin (0)

6!
x6 − cos (0)

7!
x7... (48)

= x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 (49)

Thus, using the Taylor formula around zero to evaluate f(iθ) = eiθ, we
have
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eiθ = 1 + iθ +
(iθ)2

2!
+
(iθ)3

3!
+
(iθ)4

4!
+
(iθ)5

5!
+
(iθ)6

6!
... (50)

= 1 + iθ − 1
2
θ2 − 1

3!
iθ3 +

1

4!
θ4 +

1

5!
iθ5 − 1

6!
θ6 (51)

= 1− 1
2
θ2 +

1

4!
θ4 − 1

6!
θ6 (52)

+iθ − 1

3!
iθ3 +

1

5!
iθ5 (53)

= cos (θ) + i sin (θ) (54)

2.3.2 Polynomials

A polynomial P (z) of order n is deÞned as weighted sum of zs for s ∈
{0, ..., n}, i.e.,

P (z) ≡ anzn + an−1zn−1+, ...,+a1z1 + a0, (55)

for some sequence of constants {as}n0 . The following will be important for
our analysis of difference and differential equations.

Result 8 Result 9 A polynomial P (z) of order n has exactly n, not neces-
sarily distinct, roots. I.e., it can be expressed as

P (z) = an (z − r1) (z − r2) ... (z − rn) (56)

From (56), we see that each root ri is a solution to the equation P (z) = 0.
Note that the roots may be repeated, i.e.,ri = rj and that, of course, some
root may be complex. It turns out, also, that complex roots always come in
pairs, the complex conjugates.
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