
4 Difference equations

4.1 Sums, forward and backward solutions

4.1.1 Sums vs. Integrals

Difference equations can be solved in ways very similar to how we solve
differential equations. First, we will look at the analogy to integrals.
Consider the difference equation

At −At−1 ≡ ∆At = qt (1)

where ∆At is the change in A per unit (interval) of time. We sum both sides
from sum date t0 until t to get

tX
s=t0

∆As = At −At0−1 =
tX

s=t0

qs. (2)

We can then write the solution as

∆At = qt (3)

→ At =
tX

s=t0

qs +At0−1. (4)

As we see, this is very much like integrals

dA (t)

dt
= q (t) (5)

→ A (t) =

Z t

t0

q (s) ds+At0 , (6)

and the relation between qt and
Pt

s=t0
qs is the same as between q (t) and its

primitive, since

∆
tX

s=t0

qs = qt. (7)

4.1.2 Forward and backward solutions

The part
Pt

s=t0
qt of the RHS of (4) is exogenous, i.e., independent of At.

Sometimes, it converges in one or both the directions. Then we can write
the solutions in another way. Suppose the following limit exists
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lim
T→∞

tX
s=−T

qs ≡
tX

s=−∞
qs. (8)

Then, the other part of RHS of (4) should also have a well-deÞned limit

lim
T→∞

A−T ≡ A, (9)

so that the solution is

At =
tX

s=−∞
qs +A. (10)

Clearly, (10) solves (1),

At −At−1 =
tX

s=−∞
qs +A−

t−1X
s=−∞

qs −A = qt. (11)

If the she solution in (10) exists, it is called the backward solution.
Analogously, the limit

lim
T→∞

TX
s=t

qs ≡
∞X
s=t

qs, (12)

might exists, in which case

lim
T→∞

AT ≡ Ā (13)

also exists. Then, we have

lim
T→∞

(AT −At) =
∞X

s=t+1

qs, (14)

→ At = Ā−
∞X

s=t+1

qs, (15)

which is called the forward solution.
Example. Suppose qt follows a simple AR(1) process

∆At = qt, (16)

qt = rqt−1. (17)
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If, r < 1, we can use the forward solution and if r > 1, the backward
solution works. In the former case,

∞X
s=t+1

qs =
∞X
s=0

qt+1r
s =

qt+1
1− r , (18)

→ At = Ā− qt+1
1− r , (19)

where Ā is determined from, for example, an initial condition. In the latter
case,

tX
s=−∞

qs =
∞X
s=0

qtr
−s = qt

r

r − 1 (20)

At = qt
r

r − 1 +A. (21)

4.1.3 First order difference equations with constant coefficients

A Þrst order difference equation with constant coefficients has the following
form.

xt − axt−1 = c (22)

As we see, the LHS is not a pure difference, as in (1), so we cannot simply
sum over t. Instead we rely on the following result.

Result 12 The general solution (the complete set of solutions) to a differ-
ence equation is the general solution to the homogeneous part plus any par-
ticular solution to the complete equation.
The general solution to the homogeneous Þrst order difference equation

with coefficient a can be written

xht = Aa
t (23)

where A is an arbitrary constant.

A particular solution is sometimes the steady state which exists for (22)
if a 6= 1.

xss − axss = c (24)

→ xss =
c

1− a. (25)
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4.1.4 Non-constant RHS

Now look at
xt − axt−1 = qt. (26)

A way to solve (26) is to use a−t as the analogue to the integrating factor.
Multiplying both sides by a−t yields

a−t (xt − axt−1) = a−tqt. (27)

Now, we see that the LHS can be written ∆ (a−txt), implying

∆
¡
a−txt

¢
= a−tqt, (28)

⇒ a−txt =
tX

s=t0

a−sqs +A, (29)

a−txt =
tX

s=t0

a−sqs +A, (30)

xt = Aat +
tX

s=t0

at−sqs. (31)

Again, we should verify that this satisÞes our original difference equation.

4.1.5 Stable growth � the Solow growth model

Often in macro, the variables in the model grow in a way that precludes the
existence of a steady state. However, some transformation of the variables
might possess a steady state. The simplest example of this is the Solow
growth model Here, savings is exogenous and denoted S and the labor
supply Nt follows

Nt = e
gNt−1 ≈ (1 + g)Nt−1. (32)

There is one good, used for consumption and as capital, which follows
the law-of-motion

Kt+1 = Sf (Kt, Nt) , (33)

where f (Kt, Nt) is a concave production function. Let us specify production
as the CRS Cobb-Douglas function,

f (Kt, Nt) = N1−α
t Kα

t , (34)

1 > α > 0. (35)
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Letting lower case letters denote natural logarithms, we have

kt+1 = s+ (1− α)nt + αkt, (36)

kt+1 − αkt = s+ (1− α)nt, (37)

and

∆nt = g (38)

→ nt =
tX
0

g + n = tg + n, (39)

for some constant n.
Here, we can guess on a particular solution of the same form as the RHS,

i.e.,

kt = k + tgk (40)

k + (t+ 1) gk − α (k + tgk) = s+ (1− α)nt (41)

k (1− α) + t (1− α) gk + gk = s+ (1− α)n+ t (1− α) g (42)

For this to hold for all t, we need

gk = g, (43)

k =
s− g
1− α + n. (44)

giving a particular solution

kp,t =
s− g
1− α + n+ tg. (45)

This solution is in economics often called a balanced growth path, in which
all variables grow at the same rate. The complete solution is

kt = Aat +
s− g
1− α + n+ tg, (46)

kt =

µ
k0 −

µ
s− g
1− α + n

¶¶
at +

s− g
1− α + n+ tg. (47)

In this case, a convenient alternative is to deÞne a new variable, capital
per capita, Ct ≡ Kt/Nt → ct = kt − nt. Using this, and dividing (34) by Nt,

45



we get

Kt+1

Nt
=

Sf (Kt, Nt)

Nt
(48)

Kt+1Nt+1
Nt+1Nt

=
SN1−α

t Kα
t

Nt
= (49)

Ct+1e
g = S

µ
Kt

Nt

¶α
(50)

ct+1 + g = s+ αct (51)

ct+1 − αct = s− g (52)

→ css =
s− g
1− α (53)

ct =

µ
c0 − s

1− α
¶
αt +

s

1− α, (54)

coinciding with the solution in (46) but now expressed as steady state in
capital per capita, rather than a balanced growth path for capital.
We can also look at the log of output per capita,

yt = αct, (55)

yt =

µ
y0 − α s

1− α
¶
αt + α

s

1− α. (56)

This is the basis for the so-called growth regressions, pioneered by Barro,

yt − y0 = −y0
¡
1− αt¢+ s

1− αα
¡
1− αt¢ , (57)

where growth over a sample period 0 through t is seen to depend negatively
on initial output and positively on savings. Also,

yt − yt−1 =

µ
y0 − α s

1− α
¶
αt + α

s

1− α (58)

−
µ
y0 − α s

1− α
¶
αt−1 − α s

1− α (59)

= −
µ
y0 − α s

1− α
¶
αt−1 (1− α) (60)

=

µ
α

s

1− α − yt−1
¶
(1− α) . (61)

As we see, the growth rate (the log difference) of output per capita is a
fraction (1− α) of the difference between the steady state and current output
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per capita. Note that convergence is slower the larger is the capital�s share
of output. In the limit when α → 1, the model shows no convergence and
has become an endogenous growth model, with

∆kt = s, (62)

∆ct = ∆yt = s− g. (63)

4.2 Linear difference equations of higher order

4.2.1 Higher order homogeneous difference equations with con-
stant coefficients

Consider the homogeneous difference equation

xt+n + a1xt+n−1 + ...anxt = 0, (64)

DeÞnition 4 The forward operator E is deÞned by

Esxt ≡ Ext+s (65)

where s is any integer, positive or negative.

We can then write (64) in a condensed polynomial form

P (E)xt = 0. (66)

We then have to Þnd the roots of the equation

P (r) = rn + a1r
n−1 + ...an = 0 (67)

Each root contributes to the general solution with one term that is inde-
pendent of the others, exactly as with differential equations.

Result 13 Let rs denote the roots to the polynomial P (r), i.e., all solutions
to P (r) = 0. Let the Þrst k ≥ 0 roots be distinct and the remaining l = n−k
roots repeated. Then, the general solution to (64) is

xt = c1r
t
1 + ...+ ckr

t
k + r

t
k+1

¡
ck+1 + tck+2 + ...+ t

l−1ck+l
¢

(68)

If there is more than one set of repeated roots, each set of size m ≥ 2 con-
tributes with m linearly independent terms

rtk+1
¡
ck+1 + tck+2 + ...+ t

m−1ck+m
¢
. (69)
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In the case of complex roots, express the complex number in polar form

r = a+ bi = |r| (cos θ + i sin θ) , (70)

|r| =
p
a2 + b2, (71)

θ = tan−1
b

a
. (72)

We then use the fact that

eiθ = (cos θ + i sin θ) (73)

r = |r| eiθ → rt = |r|t eiθt = |r|t (cos tθ + i sin tθ) (74)

to get for the complex conjugates r1,2 = a± bi,
c1r

t
1 + c2r

t
2 = |r|t (�c1 cos tθ + �c2 sin tθ) (75)

which we can see is a generalization of (68). Complex roots thus give us
oscillating solutions.

4.2.2 Stability

From the solutions (68) and (75), it is clear that roots such that |r| < 1,give
converging terms.

4.2.3 Higher order non-homogeneous difference equations with
constant coefficients

Result 14 The general solution to a non-homogeneous difference equation
with constant coefficients is given by the general solution to the homogeneous
part plus any solution to the full equation.

To solve non-homogeneous equations we thus have to Þnd particular so-
lution to the complete equation to add to the general solution of the homo-
geneous part. The simplest non-homogeneous difference equation is

P (xt) = c. (76)

Here, we try a steady state

P (xss) = P (1)xss = c (77)

xss =
c

P (1)
(78)

provided P (1) 6= 0.
In the more general case we often have to guess a particular solution.
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4.3 Systems of linear Þrst order difference equations

Systems of Þrst order difference equations are solved with the diagonalization
method that we also used for the differential equation.


x1,t+1
x2,t+1
.

xn,t+1

 = A


x1,t
x2,t
.
xn,t

+P (79)

xt+1 = Axt +P. (80)

First we Þnd the diagonalizing matrix of eigenvectors B−1. Then we solve
the homogeneous equation by deÞning

yt+1 = Bxt+1 (81)

= BAxt+1 (82)

= BAB−1yt (83)

=


rt1 0 . 0
0 rt2 . 0
. . . .
0 0 . rtn



c1
c2
.
cn

 (84)

≡ rtc. (85)

Then we transform back2

xt+1 = B
−1yt+1 = B−1rtc. (86)

A particular solution to the complete equation then has to be added.
Here we might try to Þnd a steady state as a particular solution

xss = Axss +P, (87)

xss = (I−A)−1P. (88)

If we have the initial conditions we Þnd that

xt+1 = B−1rtc+ xss (89)

x1 = B−1r0c+ xss (90)

= B−1c+ xss (91)

c = B (x1 − xss) (92)

xt = B−1rtB (x1 − xss)+xss (93)

2Since the vector of constants, c, is arbitrary, we may equally well write xt = B
−1rtc.
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An example;

xt+1 =

·
0 1
−1 0

¸
xt +

· −1
−1

¸
. (94)

xss =

µ·
1 0
0 1

¸
−
·
0 1
−1 0

¸¶−1 · −1
−1

¸
=

· −1
0

¸
(95)

Eigenvalues are

r1,2 = i,−i→ rt1,2 = 1
t
³
cos
³π
2
t
´
± i sin

³π
2
t
´´

(96)

=
³
cos
³π
2
t
´
± i sin

³π
2
t
´´

(97)

and

B−1 =
·
1 1
i −i

¸
. (98)

The solution is

xt =

·
1 1
i −i

¸ ·
it 0
0 (−i)t

¸ ·
c1
c2

¸
+

· −1
0

¸
(99)

=

·
it (−i)t
it+1 (−i)t+1

¸ ·
c1
c2

¸
+

· −1
0

¸
(100)

=

·
c1i

t + c2 (−i)t
c1i

t+1 + c2 (−i)t+1
¸
+

· −1
0

¸
(101)

=


c1
¡¡
cos
¡
π
2
t
¢
+ i sin

¡
π
2
t
¢¢¢

+c2
¡
cos
¡
π
2
t
¢− i sin ¡π

2
t
¢¢

c1
¡¡
cos
¡
π
2
(t+ 1)

¢
+ i sin

¡
π
2
(t+ 1)

¢¢¢
+c2

¡
cos
¡
π
2
(t+ 1)

¢− i sin ¡π
2
(t+ 1)

¢¢
 (102)

+

· −1
0

¸
(103)

=

·
(c1 + c2)

¡
cos
¡
π
2
t
¢
+ (c1 − c2) i sin

¡
π
2
t
¢¢

(c1 + c2)
¡
cos
¡
π
2
(t+ 1)

¢
+ (c1 − c2) i sin

¡
π
2
(t+ 1)

¢¢ ¸+ · −1
0

¸
(104)·

�c1
¡
cos
¡
π
2
t
¢
+ �c2 sin

¡
π
2
t
¢¢

�c1
¡
cos
¡
π
2
(t+ 1)

¢
+ �c2 sin

¡
π
2
(t+ 1)

¢¢ ¸+ · −1
0

¸
. (105)

4.3.1 Non-invertible eigenvectors

If some roots are repeated B−1 may be non-invertible. In this case we cannot
use the diagonalization method. Instead we can use the existence of a higher
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order single difference equation that is equivalent to the systems of Þrst order
difference equations we want to solve. This is exactly analogous to the case
of differential equations.
Look at the following example

xt+1 =

· −1 1
−4 3

¸
xt (106)

The eigenvalues of the coefficient matrix are both 1 and the matrix of
eigenvectors are non-invertible. Now we transform the system into a second
order single difference equation.
From the Þrst row we have that

x1,t+1 = −x1,t + x2,t (107)

→ x2,t = x1,t+1 + x1,t, (108)

x2,t+1 = x1,t+2 + x1,t+1 (109)

Using the second row,

x2,t+1 = −4x1,t + 3x2,t (110)

→ x1,t+2 + x1,t+1 = −4x1,t + 3 (x1,t+1 + x1,t) (111)

0 = x1,t+2 − 2x1,t+1 + x1,t (112)

Note that the polynomial this second order difference equation is identical
to the characteristic equation of the coefficient matrix in (106). Consequently
the have the same (repeated) roots 1. The solution to (110) is

x1,t = (c1 + tc2) 1
t = (c1 + tc2) (113)

With knowledge of x0 and x1, we have

x1,t = (x1,0 + t (x1,1 − x1,0)) (114)

By using, (107), we can express the solution in terms of x1,t and x2,t

x1,t = x1,0 + t (x1,1 − x1,0) (115)

x2,t = x1,t+1 + x1,t (116)

= 2x1,0 + (2t+ 1) (x1,1 − x1,0) (117)

→
·
x1,t
x2,t

¸
=

·
1 t
2 2t+ 1

¸ ·
x1,0

x1,1 − x1,0
¸
. (118)
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