
5 Dynamic Optimization in Discrete Time

5.1 Non-Stochastic Dynamic Programming

Consider the dynamic problem

max
{c}Tt=1

TX
t=1

u (kt, ct, t) (1)

s.t. k1 = k (2)

kt+1 = f (kt, ct, t) , t = 1..., T, (3)

kT+1 = k̄ (4)

Before trying to solve this, notice

1. Per period payoff is additive over time.

2. kt cannot be changed in period t, but its future values, its law-of-motion
can be changed by ct.We will call k a state variable (to be more properly
deÞned later) and c a control variable. A sequence k1, k2, ..., kT+1 is said
to be admissible if and only if it satisÞes the constraints (2-4) for some
sequence c1, c2, ...cT .

A direct way to solve this would be to form the Lagrangian

L =
TX
t=1

u (kt, ct, t) + λt

TX
t=1

(f (kt, ct, t)− kt+1) (5)

+µ1 (k − k1) + µT+1
¡
kT+1 − k̄

¢
(6)

with Þrst order conditions

uk (kt, ct, t) + λtfk (kt, ct, t)− λt−1 = 0,∀t = 2, .., T, (7)

uc (kt, ct, t) + λtfc (kt, ct, t) = 0,∀t = 1, .., T, (8)

uk (k1, c1, 1) + λ1fk (k1, c1, 1)− µ1 = 0, (9)

−λT + µT+1 = 0, (10)

and (2-4).
This works, at least in principle, if T is Þnite. An alternative way is to

recognize that in a problem like this, each sub-section of the path must be

52



optimal in itself. This means that the problem has a recursive formulation
i.e., it can be set up sequentially. We can thus solve the problem backwards
starting from the last period. In any period, the remaining problem only
depends on earlier actions through the �inherited� value of k.
For example, it the problem is over three periods (T = 3) we can rewrite

(1)

max
c1,k2|k1

µ
u (k1, c1, 1) + max

c2,k3|k2

µ
u (k2, c2, 2) + max

c3,k4|k3
u (k3, c3, 3)

¶¶
(11)

s.t.kt+1 = f (kt, ct, t) , t = 1..., 3 (12)

k4 = k̄ (13)

In the Þnal period (T = 3), the problem is trivial; simply set c3 so that
k4 = k̄. The value of c3 that solves k̄ = f (k3, c3, 3) is a function of k3.

3

Denote that function c3 (k3) . We can then deÞne

u (k3, c3 (k3) , 3) ≡W (k3, 3) . (14)

The interpretation of W (k3, 3), is the maximum remaining pay-off in
period 3, being a function of the state variable k3.
In period 2, we then want to solve

max
c2,k3

(u (k2, c2, 2) + u (k3, c3 (k3) , 3)) (15)

s.t. k3 = f (k2, c2, 2) . (16)

Using W (k3, 3) ,we can write this

max
c2
(u (k2, c2, 2) +W (f (k2, c2, 2) , 3)) (17)

The solution and the maximized value depends on k2 only and we called the
latter the value function and k2 the state variable. We can then deÞne

W (k2, 2) ≡ max
c2
(u (k2, c2, 2) +W (f (k2, c2, 2) , 3)) . (18)

The interpretation of this Bellman equation is straightforward. It says
that the maximum remaining pay-off in period 2, being a function of k2, is
identically (i.e., for all k2) equal to the maximum over the control in period
2, c2, over period 2 pay-off and the maximum remaining pay-off in period 3
with period 3 state variable given by f (k2, c2, 2) .

3For now, we just assume it is unique.
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The trade-off between generation of current and future pay-off is opti-
mized by one simple FOC

uc (k2, c2, 2) +Wk (f (k2, c2, 2) , 3) fc (k2, c2, 2) = 0. (19)

Finally, in the Þrst period,

W (k1, 1) ≡ max
c1
(u (k1, c1, 1) +W (f (k1, c1, 1) , 2)) . (20)

If we know the value functions, the multidimensional problem has become
much simpler. The Bellman equation provides a way of verifying that the
value function we use is correct. It is of course straightforward to extend the
analysis to any Þnite horizon problem, yielding

W (kt, t) ≡ max
ct
(u (kt, ct, t) +W (kt+1, t+ 1)) (21)

s.t..kt+1 = f (kt, ct, t) (22)

5.1.1 Discounting and the Current Value Bellman equation

Very often macroeconomics, the objective function is a discounted sum of
pay-offs, i.e., (1) can be written

max
{c}Tt=1

TX
t=1

βt−1u (kt, ct, t) . (23)

In this case, it is convenient to work with curren value functions, V (k, t)
which should be interpreted as the maximum remaining value that can be
achived from time t and onward, given kt and seen from period t. In other
words, given a problem

max
{c}Tt=1

TX
t=1

βt−1u (kt, ct, t) (24)

s.t. kt+1 = f (kt, ct, t) , t = 1..., T (25)

k1 = k (26)

kT+1 = k̄

we deÞne for any t ∈ {1, ..., T}

V (kt, t) ≡ max
{c,k}Ts=t

TX
s=t

βs−tu (ks, cs, s) (27)

s.t. kt+1 = f (kt, ct, t) , t = s..., T. (28)

kT+1 = k̄.
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From this follows that

V (k, t) ≡ β−(t−1)W (k, t) .

Using this in the Bellman equation, (where I substitute for kt+1 from the
law-of-motion) we get the current value Bellman equation

W (kt, t) ≡ max
ct

¡
βt−1u (kt, ct, t) +W (f (kt, ct, t) , t+ 1)

¢
(29)

βt−1V (k, t) ≡ max
ct

¡
βt−1u (kt, ct, t) + βtV (f (kt, ct, t) , t+ 1)

¢
(30)

V (k, t) ≡ max
ct
(u (kt, ct, t) + βV (f (kt, ct, t) , t+ 1)) (31)

In practice, the current value Bellman equation, is the most used variant in
macroeconomics and, therefore, you will often see the word current dropped
and (31) is simple referred to as the Bellman equation and V (k, t) is referred
to as the value function.

5.1.2 InÞnite Horizon and Autonomous Problems

In an inÞnite horizon problem we cannot use the method of starting from the
last period. Still, if the problem has a well-deÞned value function, it satisÞes
the Bellman equation. Furthermore, under conditions, which we will talk
about later, there is only one function that solves the Bellman equation, so
if we Þnd one function that solves the Bellman equation, we have a solution
to the dynamic optimization problem. Since geometric discounting will prove
to be important for showing uniqueness, we will use that from now on.
To Þnd a solution, we will use two different approaches.

1. Guess on a value function and make sure it satisÞes the Bellman equa-
tion.

2. Iterate on the Bellman equation until it converges.

Guessing is often feasible when the problem is autonomous (stationary).
Then, the problem is independent of time in the sense that given in initial
condition on the state variable(s), the solution and the maximized objective
is independent of the starting date. A problem is autonomous if

1. Time is inÞnite,

2. the law of motion for the state (including constraints on the control) is
independent of time, and
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3. the per-period return function is the same over time, except for possibly
a geometric discount factor, i.e.,u (k, c, t) = βtu (k, c).

(Think about what would happen if any of these conditions is not satis-
Þed). In this case, the current value function turns out to be independent
of time.4 We can then write the current Bellman equation in terms of the
current value function

V (kt) ≡ max
ct
(u (kt, ct) + βV (kt+1)) (32)

s.t. kt+1 = f (kt, ct) . (33)

Suppose we Þnd a solution to the maximization problem in the RHS
of (32). This will be a time invariant function c(k), since u, V and f are
time-invariant. Plugging c (k) into (32), we get rid of the max-operator:

V (k) = u (k, c (k)) + βV (f (k, c (k))) (34)

If (34) is satisÞed for all values of admissible k, we have a solution to the
value function, otherwise our guess was incorrect.
Note that (34) is a functional equation, i.e., the LHS and RHS have to

be the same functions. It is convenient to deÞne the RHS as

T (V (k)) ≡ max
c
u (k, c) + βV (f (k, c)) (35)

where T operates on functions rather than on values. In the autonomous
case, when the value function is unchanged over time, the Bellman equation
then deÞnes a Þxed point for T in the space of functions V ;

V (k) = T (V (k)) . (36)

(36) means that if we plug in some function of k in the RHS of (36)
we must get out the same function on the LHS. The Bellman equation is a
necessary condition for V (k) being a correctly speciÞed value function, we
will later discuss conditions under which it is also sufficient.
Typically the value function is of a similar for to the objective function.

This is intuitive in the light of (34). For example if the u function in is
logarithmic we guess that the value function is of the form. For HARA
utility functions (e.g., CRRA, CARA and quadratic) the value functions are
generally of the same type as the utility function (Merton, 1971).

4The present value functions W (k, t) is not independent ot time, but is separable so
that we can write W (k, t) =W (k)βt−1.
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5.1.3 An example of guessing

In the problem (1) let time be inÞnite and

u(k, c, t) = βt ln(c), (37)

f(k, c, t) = kα − c, 0 < α < 1, (38)

and let the end-condition kT+1 = k̄ be replaced by kt > 0 ∀t.
This is an autonomous problem, so we have

V (kt) = max
c,k

(u (ct) + βV (kt+1)) (39)

s.t. kt+1 = f (kt, ct) , (40)

⇒ V (kt) = max
c
(ln ct + βV (k

α
t − ct)) (41)

Now, guess that V is of the same form as u, here X ln kt + Y , for some
unknown constants X and Y, giving Þrst order conditions

u0 (ct) = βV 0 (kαt − ct) (42)

1

ct
= β

X

kαt − ct
(43)

⇒ ct =
kαt

1 + βX
≡ c (kt) . (44)

kt+1 = kαt − ct = kαt −
kαt

1 + βX
=

βX

1 + βX
kαt (45)

Plugging c (kt) into the Bellman equation yields

X ln kt + Y = ln
kαt

1 + βX
+ β

µ
X ln

βX

1 + βX
kαt + Y

¶
(46)

= ln
kαt

1 + βX
+ β

µ
X ln

kαt
1 + βX

+X lnβX + Y

¶
(47)

= (1 + βX) ln
kαt

1 + βX
+ β (X lnβX + Y ) (48)

= α (1 + βX) ln kt − (1 + βX) ln (1 + βX) (49)

+βX lnβX + βY.

This is true for all values of k, if and only if

X = α (1 + βX) (50)

Y = − (1 + βX) ln (1 + βX) + βX lnβX + βY. (51)
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giving

X =
α

1− αβ (52)

Y =
βα ln (βα) + (1− βα) ln (1− αβ)

(1− β) (1− αβ) (53)

⇒ V (k) =
α

1− αβ ln k +
βα ln (βα) + (1− βα) ln (1− αβ)

(1− β) (1− αβ) . (54)

Having V (k) , it is easy to Þnd the optimal control, or the policy rule,

c (kt) =
kαt

1 + β α
1−αβ

= (1− αβ) kαt , (55)

ln kt+1 = lnαβ + α ln kt. (56)

5.1.4 Iteration

An alternative way is try to Þnd the limit of Þnite horizon Bellman equation
as the horizon goes to inÞnity. Under for economical purposes quite general
conditions this limit exists and is equal to the value function for the inÞnite
horizon problem. Let us change notation slightly, measuring time as the
number or remaining periods s until the Þnal period. We then denote the
(current) value function with s periods left by

V (k, s). (57)

and assume geometric discounting and that both pay-offs and the law-
of-motion for the state variable are time-independent (u(k, c, s) = u (k, c)
and f (k, c, s) = f (k, c) so that the inÞnite horizon problem is autonomous.
If the following limit is well-deÞned, we denote

lim s→∞V (k, s) ≡ V (k) . (58)

The iteration method is usually done numerically, but it can (at some
cost of messiness) be done also analytically. Using the T operator and the
Bellman equation, we Þnd the limit in the following way

V (k, s) = max
cs
(u (ks, cs) + βV (f (ks, cs) , s− 1)) (59)

≡ T (V (k, s− 1)) (60)

V (k, s) = T sV (k, 0) (61)

V (k) ≡ lim
s→∞

V (k, s) = lim
s→∞

T sV (k, 0) . (62)
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If the limit exists, it clearly satisÞes the Bellman equation

V (k) = T (V (k)) (63)

lim
s→∞

T sV (k, 0) = T
³
lim
s→∞

T sV (k, 0)
´
= lim

s→∞
T s+1V (k, 0) . (64)

The remaining issue is what function V (k, 0) to start the iteration with.
However, suppose that we can show that the limit V (k) satisÞes

lim
s→∞

βsV (ks) = 0 (65)

for ALL PERMISSABLE (in other words FEASIBLE) values of kt+s that can
be reached, given relevant initial conditions and other constraints. Then, it
can easily be shown that the Bellman equation is sufficient. Then, lims→∞ T sV (k, 0)
provides a unique solution to the Bellman equation. This means that the
limit is independent of the choice of V (k, 0) . As we see from (65), β < 1
and V (k) bounded are sufficient for uniqueness. Intuitively, if β < 1 and
pay-offs are bounded, the pay-off in the inÞnite horizon has no impact on the
value function. Let us revert to measure time in the usual way. Then, if the
Bellman equation is satisÞed, we have

V (kt) = max
ct
(u (kt, ct) + βV (f (kt, ct))) = (66)

max
ct

µ
u (kt, ct) + β

µ
max
ct+1

(u (kt+1, ct+1) + βV (f (kt+1, ct+1)))

¶¶
(67)

= max
{ct+n}10

1X
n=0

βnu (kt+n, ct+n) + β
2V (f (kt+1, ct+1)) . (68)

Repeating this, and taking the limit yields

V (kt) = max
{ct+n}s0

sX
n=0

βnu (kt+n, ct+n) + β
s+1V (f (kt+s, ct+s)) , (69)

V (kt) = max
{ct+n}∞0

∞X
n=0

βnu (kt+n, ct+n) + lim
s→∞

βs+1V (kt+s+1) , (70)

where we note that the constraint kt+s+1 = f (kt+s, ct+s) is satisÞed by con-
struction. Now, if lims→∞ βs+1V (kt+s+1) = 0, for all permissible paths of k
we have showed that

V (kt) = max
{ct+s}∞0

∞X
n=0

βsu (kt+s, ct+s) (71)

s.t. kt+s+1 = f (kt+s, ct+s)∀s ≥ 0, givenkt, (72)
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i.e., that the Bellman equation implies optimality.
The iteration in can easily be done numerically, either by specifying a

functional form if we know that, or by just choosing a grid. In the latter
case we assume that the state variable must belong to a Þnite set of val-
ues, say for example that in every period k must be chosen from the set
K ≡ {k1, k2, ..., kn}. Then, we can compute the corresponding set of possible
controls, cm,n ∈ C from the equation

km = f (kn, cm,n) . (73)

Then, in each iteration, we solve the Bellman equation for each k ∈ K,
giving for iteration s

V (kn, s) = max
cm,n∈C

(u (kn, cm,n) + βV (cm, s− 1)) . (74)

This goes quickly on a computer and the iteration is repeated until V (k, s)
is sufficiently close to V (k, s− 1) over the set of k ∈ K.

5.1.5 An envelope result

We will later have use for the following envelope result, which implies that we
can we can evaluate a dV (k) /dk as the partial derivative holding c constant.
To see this, note that

dV (kt)

dkt
≡ V 0 (kt) =

∂u (kt, ct)

∂kt
+ βV 0 (kt+1)

∂f (kt, ct)

∂kt
(75)

+
dct
dkt

µ
∂u (kt, ct)

∂ct
+ βV 0 (kt+1)

∂f (kt, ct)

∂ct

¶
. (76)

However, the Bellman equation implies that the last term above is zero,
either because the Þrst-order condition for and interior maximum is satisÞed
∂u(k,c)
∂c

+ βV 0 (kt+1)
∂f(kt,ct)
∂ct

= 0, of in the case of a corner because dct
dkt
= 0.

This envelope results is often very useful. Consider the example

u (kt, ct) = v (ct) , (77)

f (kt.ct) = y (kt)− ct. (78)

The interior solution to the Bellman equation satisÞes

0 = v0 (ct) + βV 0 (kt+1)
∂f (kt, ct)

∂ct
, (79)

→ v0 (ct) = βV 0 (kt+1) . (80)
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The envelope condition yields

V 0 (kt) =
∂u (kt, ct)

∂kt
+ βV 0 (kt+1)

∂f (kt, ct)

∂kt
(81)

= v0 (ct) y0 (kt) . (82)

V 0 (kt+1) → v0 (ct+1) y0 (kt+1) . (83)

Using this in (79) yields the Euler equation

v0 (ct) = βv0 (ct+1) y0 (kt+1) . (84)

5.1.6 State Variables

We often solve the dynamics programming problem by guessing a form of the
value function. The Þrst thing to determine is then which variables should
enter, i.e., which variables are the state variables. The state variables must
satisfy both following conditions
1. To enter the value function at time they must be realized at t.
Note, however, that it sometimes may be convenient to use an conditional

expectation Et(zt+s) as a state variable. The expectation as of t is certainly
realized at t even if the stochastic variable zt+s is not realized.
2. The set of variables chosen as state variables must together give suffi-

cient information so that the value of the program from t and onwards when
the optimal control is chosen can be calculated.5

Note, we should try to Þnd the smallest such set. If, for example we have
an investment problem with several assets to invest in and without any costs
of adjusting the portfolio, total wealth may be a sufficient as a state variable.

5.2 Stochastic Dynamic Programming

As long as the recursive structure of the problem is intact adding a stochastic
element to the transition equation does not change the Bellman equation.
Consider the problem

max
{ct}∞0

E0

∞X
t=0

βtu (kt, ct) (85)

s.t. kt+1 = f (kt, ct, εt+1)∀t ≥ 0, k0 given, and (86)

kt > 0 ∀t. (87)

5Can you Þgure out what do we need if the per period utility function in (1) were
u (ct, ct−1)?
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where E0 is the expectations operator, conditional on time 0 information and
we assume that ct can be chosen conditional on information about εs for all
s ≤ t. Furthermore, let us assume that the distribution of εt is i.i.d. over
time. Then, the Bellman equation becomes

V (kt) = max
ct
(u (kt, ct) + βEtV (f (kt, ct, εt+1))) , (88)

with a Þrst-order condition

0 = uc (kt, ct) + βEt (V
0 (kt+1) fk (kt, ct, εt+1)) . (89)

Note that, in generalEt (V
0 (kt+1) fk (kt, ct, εt+1)) 6= EtV 0 (kt+1)Etfk (kt, ct, εt+1).

5.2.1 A Stochastic Consumption Example

Consider the following problem

max
{ct}∞0

E0

∞X
t=0

βt ln ct (90)

s.t. At+1 = (At − ct) (1 + �mt+1)∀t ≥ 0, (91)

At ≥ 0, ∀t ≥ 0, A0 given. (92)

The consumer decides how much to consume each period. The sav-
ings is placed in a risky asset with gross return (1 + �mt+1), that is drawn
from an i.i.d. distribution with E (ln (1 + �mt+1)) = m > −∞. If, for ex-
ample the gross return is log-normal, with mean m̄ and variance σ2 then,

E (1 + �mt+1) = e
m̄+σ2

2 .
The problem is autonomous so we write the current value Bellman equa-

tion with time independent value function V

V (At) = max
ct
{ln ct + βEtV ((At − ct) (1 + �mt+1))} . (93)

The necessary Þrst order condition for ct yield

1

ct
= βEtV

0
(At+1) (1 + �mt+1) . (94)

Now we use Merton�s result and guess that the value function is

V (At) = Y +X lnAt, (95)
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for some constants Y and X. Substituting into (94), we get

1

ct
= βEt

X

At+1
(1 + �mt+1) , (96)

= βEt
X (1 + �mt+1)

(At − ct) (1 + �mt+1)
, (97)

= β
X

At − ct , (98)

→ ct =
At

1 + βX
, (99)

At − ct =
βXAt
1 + βX

. (100)

Now we have to solve for the constant X. This is done by substituting
the solutions to the Þrst order conditions and the guess into the Bellman
equations,

Y +X lnAt = max
ct,ω

{ln ct + βEtV ((At − ct) (1 + �mt+1))} , (101)

= ln
At

1 + βX
+ βEtV

µ
βXAt
1 + βX

(1 + �mt+1)

¶
, (102)

= ln
At

1 + βX
+ βEt

µ
Y +X ln

µ
βXAt
1 + βX

(1 + �mt+1)

¶¶
, (103)

= (1 + βX) lnAt − (1 + βX) ln (1 + βX) + βY (104)

+βX lnβX + βXm. (105)

This is satisÞed for all At iff

X = (1 + βX) (106)

=
1

1− β , (107)

Y = − 1

1− β ln
µ

1

1− β
¶
+ βY + β

1

1− β lnβ
1

1− β + β
m

1− β (108)

= − 1

1− β ln
1

1− β +
β

(1− β)2 (m+ lnβ) . (109)
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Thus,

ct =
At

1 + β 1
1−β

= (1− β)At, (110)

At − ct = βAt. (111)

At+1 = Atβ (1 + �mt+1) , (112)

lnAt+1 = lnAt + lnβ + ln (1 + �mt+1) (113)

Et lnAt+1 = lnAt + lnβ +m. (114)

Note that since ln (1 + �mt+1) is normally distributed, (1 + �mt+1) > 0, for all
t, implying At > 0 for all t. If, on the other hand, (1 + �mt+1) can be negative
with positive probability, Et ln (1 + �mt+1) is minus inÞnity implying that the
value functions is ill-deÞned.

5.3 Contraction mappings

In the previous section we discussed guessing on solutions to the Bellman
equation. However, we would like to know whether there exists a solution
and whether it is unique. If the latter is not the case, it is not in principle
sufficient to guess and verify, since we might have other value functions that
also satisfy the Bellman equation. To prove existence and uniqueness we will
apply a contraction mapping argument.6 For this purpose, we Þrst have to
deÞne some concepts.

5.3.1 Complete Metric Spaces and Cauchy Sequences

LetX be a vector space, i.e., a set on which addition and scalar multiplication
is deÞned. Also deÞne an operator d: which we can think of as measuring
the (generalized) distance between any two elements of X. We call d a norm
assumed to satisfy

1. Positivity ∀x, y ∈ X, d (x, y) ≥ 0 and d (x, y) = 0⇒ x = y.

2. Symmetry ∀x, y ∈ X, d (x, y) = d (y, x) .
3. Triangle inequality ∀x, y, z ∈ X, d (x, z) ≥ d (x, y) + d (y, z)

Now, we call (X, d) a normed vector space or a metric space. An example
of such a space would be Rn together with the Euclidean norm d (x, y) ≡

6An alternative is sometimes to look for the limit lims→∞ T s (V (k, 0)), which typically
is the solution we are interested in (at least in macroeconomics).
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kx, yk. Another example is the space C(S) of bounded functions where each
element is a function from S ⊆ Rn → R together with the �sup-norm� de-
Þned as follows. For any two elements in C (S), i.e., any two functions w (s)
and v (s), the distance d between them is the maximal euclidean distance,
i.e.,.,

d (w, v) ≡ sup
s∈S

kw (s) , v (s)k (115)

Now let us deÞne a Cauchy sequence. Intuitively, this is a sequence
of elements {xn} in a space X that come closer and closer to each other,
using some particular norm. More precisely, {xn} is deÞned as a sequence
of elements in X such that for all ε > 0, there exist a number n, such that
for all m, p ≥ n, d(xm, xp) < ε.. An example of such a sequence would be
the sequence {1, 1/2, 1/3, } which is a Cauchy sequence using the Euclidean
norm. A Cauchy sequence converges if there is an element y ∈ X such that
limn→∞ d(xn, y) = 0. It may, of course, be the case that the Cauchy sequence
does not converge to a point in X. An example would be if we let X be the
open interval (0, 1] and look at the Cauchy sequence {1, 1/2, 1/3, } which is
in X but converges to zero which is not in X.

5.3.2 Complete metric spaces

Now we are ready to deÞne the complete metric space. This is a metric space
in which all Cauchy sequences converge to a point in the space.

5.3.3 Contraction Mapping

Consider a metric space (X, d) and look at an operator T that maps X →
X. T is a contraction mapping by deÞnition if there exists a non-negative
number ρ ∈ [0, 1), such that for all elements x, y ∈ X,

d (T (x) , T (y)) ≤ ρd (x, y) , (116)

where we note that ρ must be strictly smaller than one.
An example of contraction mapping would we a map in say scale 1 : 10000

put on top of a map in scale 1 : 1000 covering the same geographical area.
The norm can be the distance between the points on the map. Clearly, (116)
is satisÞed for ρ = 0.1.

5.3.4 The Contraction Mapping Theorem

Now we can state the very important contraction mapping theorem.
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Result 15 Consider a complete metric space (X, d) and let T : X→ X be
a contraction mapping. Then, T has one unique Þxed point x∗ ∈ X, i.e., the
solution to x = T (x) always exists and is unique. Furthermore, the sequence
x0, T (x0),T

2(x0),...,T
n(x0) converges to x

∗ for all x0 ∈ X.

There are theorems that can be used to show that T is a contraction
mapping.

Result 16 Let the state space S be a subset of Rn and B(S) the set of all
bounded functions from S to R. Let T be a map that maps all elements of
B(S)→ B(S). Then, T is a contraction mapping if

1. for any functions w(s), v(s) ∈ B(S), the following holds; if w(s) ≥
v(s)∀s ∈ S then T (w(s)) ≥ T (v(s))∀s ∈ S (monotonicity), and

2. there is a β ∈ [0, 1) such that for any constant κ ∈ R, and any function
w (s) ∈ B (S) , T (w(s) + κ) = T (w(s)) + βκ. (discounting).

Usually it is straightforward to apply the previous result to show that if
we have strict discounting, the Bellman equation is a contraction mapping.
There is one major limitation which we have to live with, however, result 16
and variants of it require bounded value functions.
Let us look at an example, where we apply result 16. Consider a simple

growth model,

max
{ct}∞0

E0

∞X
t=0

βtu (ct) (117)

s.t. kt+1 = f (kt)− ct,∀t ≥ 0, k0 given, and (118)

ct, kt > 0 ∀t. (119)

where u is a continuous and increasing (utility) function with u (0) ≥ umin >
−∞ and 0 ≤ β < 1. To use the theorems we need to make some assumptions.
First, we need boundedness. For this purpose, we assume

f (0) = 0, (120)

f 0 (k) ≥ 0∀k ≥ 0, (121)

∃k̄ > 0, such that f (k) ≤ k∀k ≥ k̄. (122)

Now, deÞne S = [0, k̄] and note that if k0 is in S, so is all admissible kt.
Then, u (ct) is bounded since umin ≤ u (c) ≤ u

¡
k̄
¢
implying that any value

function must satisfy umin
1−β ≤ V (k) ≤ u(k̄)

1−β . By restricting the state space
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S = [0, k̄], we can therefore restrict our search for value functions that are
bounded on our state space.
Now, consider the Bellman equation

V (k) ≡ max
c≥0

u (c) + βV (f (k − c)) ≡ T (V (k)) (123)

Using the Þrst result, we need for any two bounded functions v (k) , w (k) , k ∈
S, .

v (k) ≥ w (k)∀k ⇒ T (v (k)) ≥ T (w (k))∀k. (124)

which is satisÞed. To see this, deÞne

c∗ = argmax
c
u (c) + βw (f (k)− c) (125)

then,

T (v (k)) = max
c
u (c) + βv (f (k)− c) ≥ u (c∗) + βv (f (k)− c∗) (126)

≥ u (c∗) + βw (f (k)− c∗) = T (w (k)) . (127)

Regarding condition 2, we note

T (v (k) + κ) = max
c≥0

u (c) + β (v (f (k − c)) + κ) (128)

= max
c≥0

u (c) + βv (f (k − c)) + βκ (129)

= T (v (k)) + βκ, (130)

so the second condition is satisÞed if . So the Bellman equation is a contrac-
tion mapping and always has one and one only unique solution, V (k) .
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