
6 Dynamic Optimization in Continuous Time

6.1 Dynamic programming in continuous time

Consider the problem

max
c(t)T0

Z T

0

e−rtu (k, c, t) dt (1)

s.t. úk = f (k, c, t) (2)

k (0) = k, (3)

with

k (T ) = k̄ (case 1), or (4)

k (T ) free (case 2), or (5)

k (T ) ≥ k̄ (case 3). (6)

Thinking of the integral in the maximand as a sum of rectangles with
base dt and height e−rtu (k, c, t), we can approximate the problem with a
discrete time problem. Noting that for a small time interval dt, k (t+ dt) =
k (t) + f (k, c, t) dt, we can write the current value Bellman equation

V (k, t) = max
c

©
u (k, c, t) dt+ e−rdtV (k + f (k, c, t) dt, t+ dt)

ª
. (7)

We can the make Taylor approximations;

V (k, t) = max
c
{u (k, c, t) dt (8)

+ (1− rdt) (V (k, t) + Vk (k, t) f (k, c, t) dt+ Vt (k, t) dt) } (9)

Subtracting (1− rdt)V (k, t) from both sides, dividing by dt and then
letting dt go to zero yields,

rV (k, t) = max
c
{u (k, c, t) + Vk (k, t) f (k, c, t) + Vt (k, t)} (10)

= max
c

½
u (k, c, t) +

dV (k, t)

dt

¾
, (11)

where we note that dV (k, t) /dt is the total time derivative of the value
function. Sometimes, this equation is referred to as an asset pricing equation
� and interpreted as follows; if an asset is correctly valued (not providing
arbitrage opportunities) the opportunity cost of holding it (the LHS of (10))
equals the (optimal) sum of the immediate pay-off or dividend (the Þrst term
of (11)) and the capital gain (the second term of (11)).
Sometimes we can use the guess and verify technique to solve for the

value function if the problem is autonomous. An alternative is to use Optimal
Control and Pontryagin�s maximum principle.
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6.2 Optimal Control

Consider the problem in (1) with the continuous time Bellman equation (10).
Noting that since the term Vt (k, t) is independent of c, we can rewrite (10)

rV (k, t)− Vt (k, t) = max
c
{u (k, c, t) + Vk (k, t) f (k, c, t)} (12)

DeÞning the co-state or current shadow value variable as the derivative
of the value function w.r.t. k, along its optimal path k∗,

λ (t) ≡ Vk (k∗, t) . (13)

We see that a necessary condition for c∗ (t) to be optimal is that it is
given by

c∗ (t) = argmax
c
{u (k, c, t) + λ (t) f (k, c, t)} . (14)

Now, we need to pin down λ (t) . For, this purpose we analyze how λ devel-
ops over time by deriving a differential equation for λ (t) .Taking derivatives
w.r.t. k of the identity (12), we get

rVk (k, t)− Vkt (k, t) = uk (k, c∗, t) + Vkk (k, t) f (k, c∗, t) (15)

+Vk (k, t) fk (k, c
∗, t) , (16)

rλ (t)−
³
Vtk (k, t) + Vkk (k, t) úk

´
= uk (k, c

∗, t) + λ (t) fk (k, c∗, t) , (17)

rλ (t)− úλ (t) = uk (k, c
∗, t) + λ (t) fk (k, c∗, t) , (18)

where in second equation, we changed the order of diffentiation, using the
fact that ∂

∂k
∂V (k,t)
∂t

= ∂
∂t
∂V (k,t)
∂k

.
Equation (14) and (18) form the basis of Pontryagin�s maximum principle.

According to this, we derive necessary (and sometimes sufficient) conditions
for an optimal control. We do this without explicitly solving for the value
function. We Þrst deÞne the current value Hamiltoninan. This is the sum
of the instantaneous payoff and the product of costate(s) and the function
determining the law-of-motion of the state variable;

H (k, c, λ, t)≡u (k, c, t) + λ (t) f (k, c, t) . (19)

Note that the Hamiltonian has the same interpretation as the RHS of
the Bellman equation without the max-operator. In words, it is the sum
of the ßow of current pay-off and the generation of future pay-off. In the
Bellman equation, we use the value function to measure future payoffs while
the Hamiltonian use the shadow-value λ.
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According to Pontryagin maximum principle, the optimal control c∗ (t)
maximizes the Hamiltonian at each instant, the co-state (or shadow value)
satisÞes the differential equation, rλ (t) − úλ (t) = Hk (k, c, λ, t). These nec-
essary conditions will provide differential equations which we need to solve.
Typically we have one initial condition for each state variable. But we need
more information to solve the system since we also have the control vari-
able(s). In case (1) of (4), we have the necessary additional information. In
case (2), it must be that the shadow value of the state variable approach zero
as t→ T. This is called, the transversality condition. In case (3), either the
inequality is slack, in which case λ (T ) = 0, or it binds, giving the necessary
additional info in both cases. We can the summarize:

Result 17 According to the Pontryagin�s maximum principle
1. An optimal control c∗ (t) , satisÞes

c∗ (t) = argmax
c
H (k, c, λ, t) , (20)

2. where the current co-state or shadow value λ (t) , is a continuous function
of time, satisfying the differential equation.

rλ (t)− úλ (t) = Hk (k, c, λ, t) , (21)

except at points in time where c is discontinuous and with
3. end-condition(s) provided by

k (T ) = k̄ (case 1) or (22)

λ (T ) = 0 if k (T ) is free(case 2), or (23)

λ (T ) ≥ 0, and λ (T ) ¡k (T )− k̄¢ = 0 if k (T ) ≥ k̄(case (3). (24)

In addition, the path for k (t) must satisfy the initial condition, k (0) = k,
and úk (t) = Hλ (k, c, λ, t) = f (k, c, t) .

6.2.1 The consumption problem

As an example, consider the problem standard consumption-savings (Ram-
sey) problem

max
c(t)T0

Z T

0

e−rtu (c) dt (25)

s.t. úk = f (k)− c (26)

k (0) = k, (27)

k (T ) ≥ 0. (28)

70



with u and f increasing and concave. The current value Hamiltonian is

H (k, c, λ, t) = u (c) + λ (t) (f (k)− c) . (29)

Thus, c∗ (t) = argmaxc u (c) +λ (t) (f (k)− c) which is interior, implying

Hc (k, c, λ, t) = 0. (30)

→ u0 (c∗) = λ. (31)

Furthermore, from the second condition

Hk (k, c, λ, t) = λf
0 (k) = rλ− úλ. (32)

Taking time-derivatives of u0 (c∗) = λ and substituting into (32) we get

u00 (c∗) úc∗ = úλ, (33)

u0 (c∗) f 0 (k) = ru0 (c∗)− u00 (c∗) úc∗, (34)

→ úc∗ =
u0 (c∗)
−u00 (c∗) (f

0 (k)− r) , (35)

which is the Euler equation we have seen before. To analyze the behavior of
this system, we can use draw the phase-diagram as in section 3.5.
To get a closed form solution, i.e., an expression for the endogenous vari-

ables in terms of only the exogenous ones, we must specify the utility and
investment functions. Considering Þrst the utility functions, we have two
important special cases. First, CARA utility,

u (c) = −e
−γc

γ
, (36)

→ u0 (c) = e−γc, u00 (c) = −γe−γc (37)

in which case we get

úc∗ =
1

γ
(f 0 (k)− r) , (38)

i.e., consumption growth is a linear function in the difference between the
marginal return on savings and the subjective discount rate. The other case
is CRRA,

u (c) =
c1−σ
1−σ , (39)

→ u0 (c) = c−σ, u00 (c) = −σc−σ−1, (40)
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yielding

úc∗ =
c−σ

σc−σ−1
(f 0 (k)− r) = c

σ
(f 0 (k)− r) (41)

úc∗

c
=

1

σ
(f 0 (k)− r) , (42)

i.e., consumption growth rate is a linear function in f 0 (k)−r. The sensitivity
is given by 1/σ, which we call the intertemporal elasticity of substitution.
Here, we also have that σ is the constant of relative riskaversion.
What about the transversality condition? In this case, we know u0 (c∗ (T )) =

λ (T ) . So since utility in the examples is unbounded, i.e., u0 (c) > 0 for all
Þnite c, λ (T ) cannot be 0, instead k (T ) is zero. In other words, whenever
consumption has a value at T , the lower bound on k should bind and nothing
should be left.
Let us complete the example by assuming, for simplicity, a linear (Romer

type) production function f (k) = Ak. In the CRRA case, we get the linear
system

úc∗ =
A− r
σ

c (43)

úk = −c+Ak (44)·
úc∗
úk

¸
=

·
A−r
σ

0
−1 A

¸ ·
c∗

k

¸
. (45)

This system has roots A and A−r
σ
and the matrix of eigenvectors is·

0 r+A(σ−1)
σ

1 1

¸
≡ B−1. (46)

Consequently, the solution is of the form·
úc∗ (t)
úk (t)

¸
= B−1

·
eAt 0

0 e
A−r
σ
t

¸ ·
κ1
κ2

¸
(47)

=

"
0 r+A(σ−1)

σ
e
A−r
σ
t

eAt e
A−r
σ
t

#·
κ1
κ2

¸
, (48)

where κ1 and κ2 are two integration constants. We solve for the latter by
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using k (0) = k and k (T ) = 0.

k (0) = k =
£
1 1

¤ · κ1
κ2

¸
(49)

= κ1 + κ2 (50)

k (T ) = 0 =
h
eT e

A−r
σ
T
i · κ1

κ2

¸
(51)

→ κ1 =
e
A−r−σ

σ
T

e
A−r−σ

σ
T − 1

k, κ2 =
1

1− eA−r−σσ
T
k. (52)

We can now, for example, evaluate

úc∗ (t) =
r +A (σ − 1)

σ
e
A−r
σ
t 1

1− eA−r−σσ
T
k, (53)

úc∗ (0) =
r +A (σ − 1)

σ

1

1− eA−r−σσ
T
k. (54)

6.3 Sufficiency

Assume that f and u are concave in k, c and λ ≥ 0. This implies that the
Hamiltonian is concave in k, c. Then, Pontryagin�s necessary conditions (20)
and (21) and (22), or (23) or (24) are sufficient.

6.4 InÞnite horizon

Consider the inÞnite horizon problem

max
c(t)∞0

Z ∞

0

e−rtu (k, c, t) dt (55)

s.t. úk = f (k, c, t) (56)

k (0) = k, (57)

Pontryagin�s conditions (20) and (21) are necessary also in the inÞnite
horizon case, provided, of course, that there is a well deÞned solution. If there
is a binding restriction on the state variable of the type limT→∞ k (T ) = k̄,
this can help us pin down the solution. The Þnite horizon transversality
conditions can, however, not immediately be used in the inÞnite horizon
case. Suppose the maximized Hamiltonian is concave in k for every t, then
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the conditions (20) and (21) plus the inÞnite horizon transversality conditions

lim
T→∞

e−rTλ (T ) k (T ) = 0, and (58)

lim
T→∞

e−rTλ (T ) ≥ 0, (59)

provide a sufficient set of conditions for optimality. Often, the Hamiltonian
is concave in k, c together. This is sufficient for the maximized Hamiltonian
to be concave in k.
Sometimes a so called No-Ponzi condition helps us to make sure that

the transversality conditions are satisÞed. Suppose, for example, the pay-
off u (k, c, t) = u (c), that k represents debt of the agent and for simplicity
that f (k, c, t) = c + ρk − w, so debt increases by the difference between
consumption plus interest payments ρk and the wage w. It is reasonable to
assume that creditors demand to be repaid in a present value sense � the
discounted value of future repayment should always be at least as large as
debt. This is the No-Ponzi condition. When in addition, the agent prefers
to pay back no more than he ows, the implication is.

lim
T→∞

e−ρTk (T ) = 0. (60)

To see this, solve
úk (t)− ρk (t) = c (t)− w (t) (61)

giving

e−ρt
³
úk (t)− ρk (t)

´
= e−ρt (c (t)− w (t)) (62)

e−ρtk (t) =

Z t

0

¡
e−ρs (c (t)− w (t))¢ ds+ k (0) (63)

lim
T→∞

e−ρTk (T ) =

Z ∞

0

¡
e−ρs (c (t)− w (t))¢ ds+ k (0) (64)

So, the No-Ponzi requirement is that if the PDV of �mortgage� repayments is
no smaller than initial debt, i.e., − R∞

0
(e−ρs (c (t)− w (t))) ds k (0) ≥ k (0) ,

then limT→∞ e−ρTk (T ) ≤ 0. Clearly, when marginal utility is strictly positive,
the individual would never want to satisfy this with inequality, since he could
then increase consumption. Therefore, limT→∞ e−ρTk (T ) = 0.
The second necessary condition in (21) is now

− (ρ− r)λ (t) = úλ (t) (65)

λ (t) = λ (0) e−(ρ−r)t. (66)
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So provided marginal utility is positive at t = 0, (59) is satisÞed. Further-
more,

lim
T→∞

e−rTλ (T ) k (T ) = λ (0) lim
T→∞

e−rTe−(ρ−r)Tk (T ) (67)

= λ (0) lim
T→∞

e−ρTk (T ) (68)

= 0. (69)

where the last equality is the No-Ponzi condition.
Sometimes, the sufficient conditions allow us to identify the optimal con-

trol as the stable manifold (saddle-path) leading to a saddle-point stable
steady state. Consider again the problem

max
c(t)∞0

Z ∞

0

e−rtu (c) dt (70)

s.t. úk = f (k)− c, k (0) = k, (71)

which we graphically analyzed in section 3.5 showing the existence of saddle-
path and a steady state with

f 0 (kss) = r (72)

css = f (kss) (73)

Restating the current value Hamiltonian

H (k, c, λ, t) = u (c) + λ (t) (f (k)− c) , (74)

we note that if both u (c) and f (k) are concave, and λ (t) ≥ 0, H (k, c, λ, t) is
concave in k, c so the conditions for using the sufficiency result are satisÞed.
In addition to (41), (42), and k (0) = k, we thus only need to verify that (58)
and (59) are satisÞed. This is straightforward,

lim
T→∞

e−rTλ (T ) = lim
T→∞

e−rTu0 (css) = 0, (75)

lim
T→∞

e−rTλ (T ) k (T ) = lim
T→∞

e−rTu0 (css) kss = 0. (76)

6.5 Present value Hamiltonian

Sometimes, it is convenient to deÞne the present value Hamiltonian, i.e.,
expressing everything in values as seen from time 0. In problem (1), the
present value Hamiltonian is given by

H (k, c, µ, t) = e−rtu (k, c, t) + µf (k, c, t) , (77)
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where µ (t) is the present shadow value of the state variable. In this case,
the necessary conditions for optimality are

c∗ (t) = argmax
c
H (k, c, µ, t) (78)

− úµ (t) = Hk (k, c, µ, t) (79)
úk = Hµ (k, c, µ, t) (80)

In the Þnite horizon case, the transversality conditions are the same in
terms of µ (T ) and λ (T ) .In the inÞnite horizon case, we note that

µ (T ) = e−rTλ (T ) , (81)

so the conditions (58) and (59) become

lim
T→∞

µ (T ) k (T ) = 0, and (82)

lim
T→∞

µ (T ) ≥ 0. (83)

6.6 Many state variables and controls

Having several state variables and controls pose no principle problem. Nei-
ther does pointwise discontinuities in the control variable. To generalize,
suppose we have n state variables and n controls. An optimal control maxi-
mizes the Hamiltonian over all available controls c

c∗ (t) = argmax
c
H (k, c,λ, t) ≡ u (k, c, t) +

nX
i=1

λifi (k, c, t) . (84)

where λi is the shadow value associated with the state variable ki. Each λi (t)
, is continuous and satisÞes the differential equation

rλi (t)− úλi (t) =
∂

∂ki
H (k, c,λ, t) , (85)

except when c is discontinuous. For the transversality conditions, we have

ki (T ) = k̄i case (1), or (86)

λi (T ) = 0 case (2), or (87)

λi (T ) ≥ 0, and λi (T )
¡
ki (T )− k̄i

¢
= 0 case (3), (88)

for end-conditions for state variable i belonging to case 1, 2 or 3.
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