
7 Some numerical methods

7.1 Numerical solution to Bellman equations

When we cannot solve the Bellman equation analytically, there are several
methods to approximate a solution numerically. One of the most straight-
forward methods when the problem is autonomous, is to discretize the state
space and iterate on the Bellman equation until it converges. When the Bell-
man equation is a contraction mapping, strong results make sure that this
procedure converges to the correct value function.
When we discretize the state space, we restrict the state variable to take

values from a Þnite set

kt ∈
£
k1, k2, ...kn

¤ ≡ K (1)

where the superscripts index the elements of K.We then solve for c from the
law-of-motion for k

kt+1 = f (kt, ct) (2)

=⇒ ct = f̄ (kt, kt+1) (3)

We can then write the Bellman equation for the discretized problem as

V (kt) = max
kt+1∈K

u
¡
kt, f̄ (kt, kt+1)

¢
+ βV (kt+1) . (4)

As you see, this is a Bellman for a constrained problem, i.e., the control
variable is constrained relative to the case when kt+1 is continuous. Two
things should be noted; First the Bellaan equation is the true Bellman equa-
tion of the constrained problem and previous results hold, in particular the
contraction mapping theorems apply. Second, how important the constraint
implied by the discretization depend on how Þne grid it implies. Many (few)
elements of K with small (large) distances between them, imply that the
constraint is weak (severe).
Denoting an arbitrary initial value function by V0 (kt) , being n numbers,

we update this value function according to

V1 (kt) = max
kt+1∈K

u
¡
kt, f̄ (kt, kt+1) + βV0 (kt+1)

¢
(5)

giving V1 (kt) , being a new set of n numbers. We then iterate on the Bellman
equation

Vs+1 (kt) = max
kt+1∈K

u
¡
kt, f̄ (kt, kt+1) + βVs (kt+1)

¢
(6)

77



until Vs+1 (kt) ≈ Vs (kt) . For each of the n values of kt, we check u
¡
kt, f̄ (kt, kt+1)

¢
+

βV (kt+1) for all n values of kt+1 and choose the kt+1 that gives the highest
value, giving Vs+1 (kt). Therefore, each iteration requires n

2 evaluations when
the state variable is unidimensional.7

Lets consider a simple example.

max
{ct}∞t

∞X
t=0

βt ln (ct) (7)

s.t.kt+1 = f (kt, ct) ≡ kαt + (1− δ) kt − ct (8)

kt ≥ 0∀t (9)

k0 = k (10)

First, we solve for

ct = f̄ (kt, kt+1) = k
α
t + (1− δ) kt − kt+1. (11)

Then, we note that kt ∈
h
0, δ

1
α−1
i
=⇒ kt+1 ∈

h
0, δ

1
α−1
i
, implying that

value function is bounded. If also β < 1, the Bellman equation

V (kt) = max
ct
ln (kαt + (1− δ) kt − kt+1) + βV (kt+1) (12)

is a contraction mapping.

Let us parametrize, setting β = 0.9, δ = .2 and α = 1/2 =⇒ δ
1

α−1 = 25
and discretize the state space by requiring

kt ∈ [5, 10, 15, 20, 25] ≡ K∀t. (13)

Now set an initial value function, for example

V0 (k) = ln k ∀k.
This is then updated in the following way. For each possible kt, kt+1 we

calculate the left hand side of the Bellman equation, and solve the maximiza-
tion problem So, for kt = 5, and all kt+1 ∈ K we have

ln (5α + (1− δ) 5− 5) + .9 ln 5 = 1.66

ln (5α + (1− δ) 5− 10) + .9 ln 10 = −∞
ln (5α + (1− δ) 5− 15) + .9 ln 15 = −∞
ln (5α + (1− δ) 5− 20) + .9 ln 20 = −∞
ln (5α + (1− δ) 5− 25) + .9 ln 25 = −∞

7When the state variable is higher dimensionality, this method quickly become to com-
putationally burdensome.

78



Implying that the updated value function for kt = 5 is

V1 (5) = 1.66.

For kt = 10,

ln (10α + (1− δ) 10− 5) + .9 ln 5 = 3.27

ln (10α + (1− δ) 10− 10) + .9 ln 10 = 2.22

ln (10α + (1− δ) 10− 15) + .9 ln 15 = −∞
ln (10α + (1− δ) 10− 20) + .9 ln 20 = −∞
ln (10α + (1− δ) 10− 25) + .9 ln 25 = −∞

implying
V1 (10) = 3.27

In the same way, for kt = 15

ln (15α + (1− δ) 15− 5) + .9 ln 5 = 3.83

ln (15α + (1− δ) 15− 10) + .9 ln 10 = 3.84

ln (15α + (1− δ) 15− 15) + .9 ln 15 = 2.30

ln (15α + (1− δ) 15− 20) + .9 ln 20 = −∞
ln (15α + (1− δ) 15− 5) + .9 ln 25 = −∞

V1 (15) = 3.84

Doing this also for kt = 20 and kt = 25 completes the Þrst iteration. Then,
we repeat the iterations until we think the process has converged sufficiently,

7.2 Band Matrix Methods for differential equations

Assume we want to solve the differential equation

y00 (t) + ay0 (t) + by (t) = g (t) (14)

over some interval, with initial conditions given. If we want to solve this
numerically, we Þrst have to get rid of the abstract inÞnitely small differences
called differentials. We approximate these with Þnite size forward differences
such that

y0 (t) ≈ y (t+∆t)− y (t)
∆t

, (15)

y0 (t) ≈
y(t+∆t)−y(t)

∆t
− y(t)−y(t−∆t)

∆t

∆t
(16)

=
y (t+∆t)− 2y (t) + y (t−∆t)

∆t2
(17)

79



Using this we can solve the equation for a Þnite set of values in the
following way. Say we want to solve the equation in the interval t ∈ [p, q] and
we know that y0 (p) = y00 (p) = 0. We divide the interval for t into n equal
parts and use the following notation

tk = p+
k (q − p)

n
, (18)

tk − tk−1 =
q − p
n

≡ ∆t, (19)

y (tk) ≡ yk. (20)

This gives us the following equations

(y−1 − 2y0 + y1)
∆t2

= 0 (21)

(−y0 + y1)
∆t

= 0 (22)

(y−1 − 2y0 + y1)
∆t2

+ a
−y0 + y1
∆t

+ by0 = g (t0) (23)

(y0 − 2y1 + y2)
∆t2

+ a
−y1 + y2
∆t

+ by1 = g (t1) (24)

. (25)

. (26)

(yn−1 − 2yn + yn+1)
∆t2

+ a
−yn + yn+1

∆t
+ byn = g (tn) . (27)

This provides n + 3 linear equations for the n + 3 unknown y. Writing
this as a system we have

A


y−1
y0
y1
.
yn
yn+1

 =


0
0

g (t0)
g (t1)
.

g (tn)

 (28)


y−1
y0
y1
.
yn
yn+1

 = A−1


0
0

g (t0)
g (t1)
.

g (tn)

 , (29)

80



with (setting n = 3)

A ≡ (30)

∆t−2 −2∆t−2 ∆t−2 0 0 0

0 −∆t−1 ∆t−1 0 0 0

∆t−2 −2∆t−2−a∆t−1+b ∆t−2+a∆t−1 0 0 0

0 ∆t−2 −2∆t−2−a∆t−1+b ∆t−2+a∆t−1 0 0

0 0 ∆t−2 −2∆t−2−a∆t−1+b ∆t−2+a∆t−1 0

0 0 . ∆t−2 −2∆t−2−a∆t−1+b ∆t−2+a∆t−1


To get any accuracy, we should of course set n much larger than 3. As we

see, the matrix A contains many zeros, with a band of non-zeros around the
diagonal. Due to this feature, it is easy for the computer to invert it also if
n is in he order of hundreds.

7.3 Newton-Raphson

Suppose we are looking for an optimum of the real valued function f (x) ,x ∈ Rn

where f is twice differentiable. A standard way to do this numerically is to
apply the Newton-Raphson algorithm. If the optimum is interior, it satis-
Þes the necessary Þrst order conditions that the gradient is zero, i.e., at the
optimum, denoted x∗,

Df (x) = 0. (31)

Now apply a Þrst order linear approximation to the gradient from some
initial point x0

0 = Df (x∗) ≈ Df (x0) +D2f (x0) (x
∗ − x0) , (32)

where D2f (x0) is the Hessian matrix of second derivatives of f.
Provided the Hessian is invertible, we can get an approximation to x∗,

x∗ ≈ x0 −
¡
D2f (x0)

¢−1
Df (x0) . (33)

From this we can construct a search algorithm that under some circum-
stances makes better and better approximations

xs+1 ≈ xs −
¡
D2f (xs)

¢−1
Df (xs) . (34)

If we don�t have analytic solutions to the gradient and Hessian we can
use numerical approximations, for example the forward difference method;

81



For a small number ε, we have,

∂f (x)

∂x1
=

f

µ
x+

·
ε
0

¸¶
− f (x)

ε
(35)

∂f (x)

∂x2∂x1
=

∂f

x+

0
ε
0




∂x1
− ∂f(x)

∂x1

ε
. (36)

One should be very careful with this method since it can only Þnd local
optima in the case when f is not globally concave. In well-behaved problems,
it is however, easily programmed and fairly quick.

82


