The Growth and Stability Pact - the monster from Brussels

ECB is considering a fiscal policy rule to make sure that debt and deficits remain stable. The rule is of the form,

$$
\dot{s}=\delta d-\sigma s
$$

where s is the primary surplus as share of GDP and d is the debt as share of GDP. δ measures how the fast consolidations (increasing the surplus) reacts to the debt and σ determines how fast a surplus (or deficit) returns to zero.

The dynamic budget constraint for the governments is

$$
\begin{aligned}
\dot{D} & =r D-S \\
\frac{\dot{D}}{D} & =r-\frac{S}{D}
\end{aligned}
$$

where r is the interest rate, D is debt and S the surplus.
Now,

$$
\begin{aligned}
\frac{\dot{d}}{d} & =\frac{\dot{D}}{D}-\frac{\dot{Y}}{Y} \\
& =r-\frac{S}{D}-g \\
& =r-\frac{s}{d}-g
\end{aligned}
$$

or

$$
\begin{equation*}
\dot{d}=d(r-g)-s \tag{1}
\end{equation*}
$$

We now want a differential equation in d only. For this purpose, we take the time derivative of the previous equation

$$
\begin{aligned}
\ddot{d} & =\dot{d}(r-g)-\dot{s} \\
& =\dot{d}(r-g)-(\delta d-\sigma s) \\
& =\dot{d}(r-g)-\delta d+\sigma(d(r-g)-\dot{d}) \\
& =\dot{d}(r-g-\sigma)-d(\delta-\sigma(r-g))
\end{aligned}
$$

Implying

$$
\ddot{d}-\dot{d}(r-g-\sigma)+d(\delta-\sigma(r-g))=0,
$$

i.e., the debt share follows a homogeneous second order linear difference equation. The solution is therefore

$$
\begin{equation*}
d(t)=c_{1} e^{\rho_{1} t}+c_{2} e^{\rho_{2} t} \tag{2}
\end{equation*}
$$

where the roots of system are

$$
\begin{aligned}
& \rho_{1}=\frac{r-g-\sigma}{2}-\frac{1}{2} \sqrt{(r-g-\sigma)^{2}-4(\delta-\sigma(r-g))} \\
& \rho_{2}=\frac{r-g-\sigma}{2}+\frac{1}{2} \sqrt{(r-g-\sigma)^{2}-4(\delta-\sigma(r-g))}
\end{aligned}
$$

When

$$
\delta<\frac{(r-g-\sigma)^{2}}{4}+\sigma(r-g)
$$

the roots are real. Furthermore, the largest root (i.e., ρ_{2}) falls in δ and is negative if

$$
\delta>\sigma(r-g)
$$

The ECB wanted global stability and no oscillations, requiring

$$
\delta \in\left(\sigma(r-g), \frac{(r-g-\sigma)^{2}}{4}+\sigma(r-g)\right) .
$$

Suppose $\sigma>r-g$ but $\delta<\sigma(r-g)$. Then one root is negative and one is positive. We can still have convergence, but then the ECB must put some restrictions on the initial surplus so that (2) has $c_{2}=0$. To find this restriction, we note that

$$
\begin{equation*}
\dot{d}(t)=c_{1} \rho_{1} e^{\rho_{1} t}+c_{2} \rho_{2} e^{\rho_{2} t} . \tag{3}
\end{equation*}
$$

Given $d(0)$ and $c_{2}=0$, we have two unknowns (c_{1} and $\dot{d}(0)$) Fortunately we have two equations, (2) and (3) evaluated at zero.

$$
\begin{aligned}
d(0) & =c_{1} \\
\dot{d}(0) & =c_{1} \rho_{1} \\
& =d(0) \rho_{1}
\end{aligned}
$$

So if, $\dot{d}(0)=d(0) \rho_{1}$, the deficit share converges to zero. We may want to express this in terms of the primary surplus by using (1)

$$
\begin{aligned}
& s(0)=d(0)\left(r-g-\rho_{1}\right) \\
& s(0)=d(0)\left(\frac{r-g+\sigma}{2}-\frac{1}{2} \sqrt{(r-g-\sigma)^{2}-4(\delta-\sigma(r-g))}\right) .
\end{aligned}
$$

If instead $\delta>\frac{(r-g-\sigma)^{2}}{4}+\sigma(r-g)$, the system oscillates but if the real part of the roots, $\frac{r-g-\sigma}{2}<0$, the system converges. The solution when roots are complex is

$$
d(t)=e^{a t}\left(c_{1} \cos (b t)+c_{2} \sin (b t)\right)
$$

where

$$
\begin{aligned}
a & =\frac{r-g-\sigma}{2} \\
b & =\frac{1}{2} \sqrt{4(\delta-\sigma(r-g))-(r-g-\sigma)^{2}} .
\end{aligned}
$$

As we see, the speed in the oscillations increase in δ, i.e., in the parameter that determines how fast the surplus reacts to the debt.

Again, we can find the integration constants c_{1} and c_{2} from knowledge of $d(0)$ and $\dot{d}(0)$.

$$
d(0)=\left(c_{1} \cos (0)+c_{2} \sin (0)\right)=c_{1},
$$

and

$$
\begin{aligned}
\dot{d}(t) & =e^{a t}\left(a\left(c_{1} \cos b t+c_{2} \sin b t\right)+b\left(c_{2}(\cos b t)-c_{1}(\sin b t)\right)\right) \\
\dot{d}(0) & =\left(a\left(c_{1} \cos 0+c_{2} \sin 0\right)+b\left(c_{2}(\cos 0)-c_{1}(\sin 0)\right)\right) \\
& =a c_{1}+b c_{2} \\
& =a d(0)+b c_{2} \\
& \rightarrow c_{2}=\frac{\dot{d}(0)-a d(0)}{b}
\end{aligned}
$$

implying

$$
\begin{aligned}
d(t) & =e^{a t}\left(d(0) \cos (b t)+\frac{\dot{d}(0)-a d(0)}{b} \sin (b t)\right) \\
& =e^{a t}\left(d(0) \cos (b t)+\frac{d(0)(r-g-a)-s(0)}{b} \sin (b t)\right)
\end{aligned}
$$

where we used the budget constraint $\dot{d}=d(r-g)-s$ evaluated at 0 to substitute for $\dot{d}(0)$.

