Formulas for MathII Exam.

These sheets will be distributed with the exam. Do not bring your own.

1. Complex numbers and trigonometric functions

Measured in radians we have $\sin (0)=0, \cos (0)=1, \sin (\pi / 2)=1, \cos (\pi / 2)=$ $0, \sin (\pi)=0, \cos (\pi)=-1, \sin \left(\frac{3 \pi}{2}\right)=-1, \cos \left(\frac{3 \pi}{2}\right)=0, \frac{d \sin (x)}{d x}=\cos (x)$ and $\frac{d \cos (x)}{d x}=-\sin (x)$.

The formula for the solution to a quadratic equation $a x^{2}+b x+c=0$, is

$$
x=-\frac{b}{2 a} \pm \frac{\sqrt{\left(b^{2}-4 a c\right)}}{2 a} .
$$

In the right-angled triangle in the figure, we have

$$
\cos (\theta)=\frac{x}{r}, \sin (\theta)=\frac{y}{r}, r=\sqrt{x^{2}+y^{2}} .
$$

Let z be the complex number (x, y), then z satisfies $z=r e^{i \theta}$ where r is the modulus of z and θ is the argument.
2. Differential equations.

For a linear differential equation with one of the roots given by r_{n}, the associated homogeneous solution is

$$
y(t)=e^{r_{n} t}
$$

For a linear differential equation with a complex pair of roots $r_{1,2}=a \pm b i$, the associated homogeneous solution is

$$
y(t)=e^{a t}\left(\bar{c}_{1} \cos (b t)+\bar{c}_{2} \sin (b t)\right) .
$$

For a linear differential equation with repeated roots $r_{1}, \ldots r_{k}$ all equal to r, the associated homogeneous solution is

$$
y(t)=c_{1} e^{r t}+c_{2} t e^{r t}+\ldots+c_{k} t^{k-1} e^{r t} .
$$

For the homogeneous linear system of differential equations,

$$
\left[\begin{array}{l}
\dot{y}_{1}(t) \\
\dot{y}_{2}(t)
\end{array}\right]=\mathbf{A}\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right],
$$

where A is assumed to have distinct eigenvalues different from zero, the solution is

$$
\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\mathbf{B}^{-1}\left[\begin{array}{cc}
e^{r_{1} t} & 0 \\
0 & e^{r_{2} t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]
$$

where \mathbf{B}^{-1} is the matrix of eigenvectors of \mathbf{A} and r_{1} and r_{2} are the eigenvalues of \mathbf{A}.
3. Difference equations

For a linear differential equation with one of the roots given by r_{n}, the associated homogeneous solution is

$$
x_{t}=c_{1} r_{1}^{t} .
$$

For a linear differential equation with a pair of complex roots given by $r_{1,2}=$ $a \pm b i$, the associated homogeneous solution is

$$
x_{t}=|r|^{t}\left(\tilde{c}_{1} \cos t \theta+\tilde{c}_{2} \sin t \theta\right)
$$

where $|r|=\sqrt{a^{2}+b^{2}}$ and $\theta=\tan ^{-1} \frac{b}{a}$.
For a linear differential equation with repeated roots $r_{1}, \ldots r_{k}$, all equal to r, the associated homogeneous solution is

$$
x_{t}=r^{t}\left(c_{1}+t c_{2}+\ldots+t^{k-1} c_{k}\right) .
$$

For the homogeneous linear system of differential equations,

$$
\left[\begin{array}{l}
y_{1, t+1} \\
y_{2, t+1}
\end{array}\right]=\mathbf{A}\left[\begin{array}{l}
y_{1, t} \\
y_{2, t}
\end{array}\right]
$$

where A is assumed to have distinct eigenvalues different from zero, the solution is

$$
\left[\begin{array}{l}
y_{1, t} \\
y_{2, t}
\end{array}\right]=\mathbf{B}^{-1}\left[\begin{array}{cc}
r_{1}^{t} & 0 \\
0 & r_{2}^{t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]
$$

4. Linear algebra

The eigenvalues of a matrix

$$
\mathbf{A} \equiv\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

are

$$
r_{1,2}=\frac{a_{11}+a_{22} \pm \sqrt{\left(a_{11}-a_{22}\right)^{2}+4 a_{12} a_{21}}}{2} .
$$

If r_{i} is an eigenvalue of \mathbf{A}, the associated eigenvector \mathbf{e}_{i} satisfies

$$
\mathbf{A} \mathbf{e}_{i}=r_{i} \mathbf{e}_{i} .
$$

The inverse of the matrix is given by

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]^{-1}=\frac{-1}{a_{11} a_{22}-a_{12} a_{21}}\left[\begin{array}{cc}
-a_{22} & a_{12} \\
a_{21} & -a_{11}
\end{array}\right] .
$$

